138 lines
3.6 KiB
Text
138 lines
3.6 KiB
Text
|
digraph structs {
|
||
|
newrank=true;
|
||
|
size="5,5";
|
||
|
subgraph cluster1 { style=invis;
|
||
|
node [shape=record, height=0.8, width=0.5, fontsize=50, penwidth=4, fillcolor=white, style=filled];
|
||
|
edge [arrowhead=vee, minlen=1, penwidth=4, color=blue];
|
||
|
n82 [label="<i0>0|<i1>1"];
|
||
|
n82:i0 -> n81:n;
|
||
|
n82:i1 -> n76:n;
|
||
|
n81 [label="<i0>0|<i1>1"];
|
||
|
n81:i0 -> n80:n;
|
||
|
n81:i1 -> n74:n;
|
||
|
n80 [label="<i0>0|<i1>1"];
|
||
|
n80:i0 -> n79:n;
|
||
|
n80:i1 -> n73:n;
|
||
|
n79 [label="<i1>1"];
|
||
|
n79:i1 -> n78:n;
|
||
|
n78 [label="<i0>0|<i1>1"];
|
||
|
n78:i0 -> n77:n;
|
||
|
n78:i1 -> n68:n;
|
||
|
n77 [label="<i0>0|<i1>1"];
|
||
|
n77:i0 -> n63:n;
|
||
|
n77:i1 -> n67:n;
|
||
|
n63 [label="<i0>0|<i1>1"];
|
||
|
n63:i0 -> n61:n;
|
||
|
n63:i1 -> n62:n;
|
||
|
n61 [label="<i1>1"];
|
||
|
n61:i1 -> n60:n;
|
||
|
n60 [label="<i0>0"];
|
||
|
n60:i0 -> n59:n;
|
||
|
n59 [label="<i0>0"];
|
||
|
n59:i0 -> n49:n;
|
||
|
n49 [label="<i0>0|<i1>1"];
|
||
|
n49:i0 -> n48:n;
|
||
|
n49:i1 -> n43:n;
|
||
|
n48 [label="<i0>0|<i1>1"];
|
||
|
n48:i0 -> n47:n;
|
||
|
n48:i1 -> n41:n;
|
||
|
n47 [label="<i0>0|<i1>1"];
|
||
|
n47:i0 -> n46:n;
|
||
|
n47:i1 -> n40:n;
|
||
|
n46 [label="<i1>1"];
|
||
|
n46:i1 -> n45:n;
|
||
|
n45 [label="<i0>0|<i1>1"];
|
||
|
n45:i0 -> n44:n;
|
||
|
n45:i1 -> n35:n;
|
||
|
n44 [label="<i0>0|<i1>1"];
|
||
|
n44:i0 -> n29:n;
|
||
|
n44:i1 -> n34:n;
|
||
|
n29 [label="<i0>0|<i1>1"];
|
||
|
n29:i0 -> n27:n;
|
||
|
n29:i1 -> n28:n;
|
||
|
n27 [label="<i1>1"];
|
||
|
n27:i1 -> n26:n;
|
||
|
n26 [label="<i0>0"];
|
||
|
n26:i0 -> n25:n;
|
||
|
n25 [label="<i0>0"];
|
||
|
n25:i0 -> n24:n;
|
||
|
n24 [label="<i0>0|<i1>1"];
|
||
|
n24:i0 -> n23:n;
|
||
|
n24:i1 -> n1:n;
|
||
|
n23 [label="<i1>1"];
|
||
|
n1 [label="<i0>0"];
|
||
|
n28 [label="<i0>0"];
|
||
|
n28:i0 -> n26:n;
|
||
|
n34 [label="<i0>0"];
|
||
|
n34:i0 -> n33:n;
|
||
|
n33 [label="<i0>0"];
|
||
|
n33:i0 -> n32:n;
|
||
|
n32 [label="<i0>0|<i1>1"];
|
||
|
n32:i0 -> n3:n;
|
||
|
n32:i1 -> n31:n;
|
||
|
n3 [label="<i1>1"];
|
||
|
n3:i1 -> n2:n;
|
||
|
n2 [label="<i0>0"];
|
||
|
n2:i0 -> n1:n;
|
||
|
n31 [label="<i0>0"];
|
||
|
n31:i0 -> n2:n;
|
||
|
n35 [label="<i0>0"];
|
||
|
n35:i0 -> n34:n;
|
||
|
n40 [label="<i0>0"];
|
||
|
n40:i0 -> n39:n;
|
||
|
n39 [label="<i0>0"];
|
||
|
n39:i0 -> n35:n;
|
||
|
n41 [label="<i0>0"];
|
||
|
n41:i0 -> n40:n;
|
||
|
n43 [label="<i0>0"];
|
||
|
n43:i0 -> n41:n;
|
||
|
n62 [label="<i0>0"];
|
||
|
n62:i0 -> n60:n;
|
||
|
n67 [label="<i0>0"];
|
||
|
n67:i0 -> n66:n;
|
||
|
n66 [label="<i0>0"];
|
||
|
n66:i0 -> n65:n;
|
||
|
n65 [label="<i0>0|<i1>1"];
|
||
|
n65:i0 -> n50:n;
|
||
|
n65:i1 -> n59:n;
|
||
|
n50 [label="<i1>1"];
|
||
|
n50:i1 -> n49:n;
|
||
|
n68 [label="<i0>0"];
|
||
|
n68:i0 -> n67:n;
|
||
|
n73 [label="<i0>0"];
|
||
|
n73:i0 -> n72:n;
|
||
|
n72 [label="<i0>0"];
|
||
|
n72:i0 -> n68:n;
|
||
|
n74 [label="<i0>0"];
|
||
|
n74:i0 -> n73:n;
|
||
|
n76 [label="<i0>0"];
|
||
|
n76:i0 -> n74:n;
|
||
|
}
|
||
|
subgraph cluster2 { style=invis;
|
||
|
node [shape=none, fontsize=60, margin="0.5,0.1"];
|
||
|
P3 [label="S0"];
|
||
|
P1 [label="S1_a"];
|
||
|
P5 [label="S1_b"];
|
||
|
P2 [label="S2_a"];
|
||
|
P6 [label="S2_b"];
|
||
|
P4 [label="S3"];
|
||
|
P13 [label="R0"];
|
||
|
P15 [label="R1"];
|
||
|
P16 [label="R2"];
|
||
|
P14 [label="R3"];
|
||
|
P12 [label="M0"];
|
||
|
P10 [label="M1"];
|
||
|
P9 [label="M2"];
|
||
|
P11 [label="M3"];
|
||
|
P7 [label="Buffer_s"];
|
||
|
P8 [label="Risultato"];
|
||
|
P22 [label="M0_2"];
|
||
|
P20 [label="M1_2"];
|
||
|
P19 [label="M2_2"];
|
||
|
P21 [label="M3_2"];
|
||
|
P17 [label="Buffer_2"];
|
||
|
P18 [label="Risultato_2"];
|
||
|
}
|
||
|
{rank=same n82 P22} -> {rank=same n81 n76 P21} -> {rank=same n80 n74 P20} -> {rank=same n79 n73 P19} -> {rank=same n78 n72 P18} -> {rank=same n77 n68 P17} -> {rank=same n63 n67 P16} -> {rank=same n61 n62 n66 P15} -> {rank=same n60 n65 P14} -> {rank=same n59 n50 P13} -> {rank=same n49 P12} -> {rank=same n48 n43 P11} -> {rank=same n47 n41 P10} -> {rank=same n46 n40 P9} -> {rank=same n45 n39 P8} -> {rank=same n44 n35 P7} -> {rank=same n29 n34 P6} -> {rank=same n27 n28 n33 P5} -> {rank=same n26 n32 P4} -> {rank=same n25 n3 n31 P3} -> {rank=same n24 n2 P2} -> {rank=same n23 n1 P1} [style=invis]
|
||
|
}
|