UniTO/anno3/avrc/assignments/dataviz/costants.py

58 lines
1.6 KiB
Python
Raw Normal View History

2019-12-05 16:44:41 +01:00
import pandas
import os
politicians = ['salvini', 'renzi']
valid_combination = set()
def create_dict(suffix, fread=None):
def read_file(filename):
if fread is None:
with open(filename, 'r') as f:
return f.read()
else:
return fread(filename)
obj = dict()
obj['all'] = dict()
for i in range(2013, 2020):
obj[i] = dict()
for p in politicians:
filename = f'dataset/{i}/{p}_{suffix}'
if os.path.exists(filename):
obj[i][p] = read_file(filename)
valid_combination.add(str(i)+':'+p)
# embed()
for p in politicians:
filename = f'dataset/all/{p}_{suffix}'
if os.path.exists(filename):
obj['all'][p] = read_file(filename)
valid_combination.add('all:'+p)
return obj
def load_jfile(fname):
import json
with open(fname, 'r') as f:
content = f.read()
return json.loads(content)
travelsHTML = create_dict('comuni.html')
counter = create_dict('counter', load_jfile)
# counter['all']['renzi'] = json.loads(counter['all']['renzi'])
# counter['all']['salvini'] = json.loads(counter['all']['salvini'])
emoji = create_dict('emoji', load_jfile)
words = create_dict('words')
sleep = create_dict('sleep', lambda fname: pandas.read_json(fname).drop('', axis=1).values.tolist())
tt = create_dict('trend.json', load_jfile)
# load trends tsv
import glob
tsv = dict()
l = len('dataset/trends/')
for g in glob.glob('dataset/trends/*.tsv'):
gname = g[l:]
with open(g, 'r') as f:
tsv[gname] = f.read()