avrc :3
This commit is contained in:
parent
3f8e640377
commit
4218915fbf
13 changed files with 1721948 additions and 0 deletions
2
anno3/avrc/assignments/coff/.gitignore
vendored
Normal file
2
anno3/avrc/assignments/coff/.gitignore
vendored
Normal file
|
@ -0,0 +1,2 @@
|
|||
*~
|
||||
__pycache__
|
370
anno3/avrc/assignments/coff/barabaso/assignment2-barabasi.py
Normal file
370
anno3/avrc/assignments/coff/barabaso/assignment2-barabasi.py
Normal file
|
@ -0,0 +1,370 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # Network Analysis - Random Barabasi Model
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
import networkx as nx
|
||||
from networkx.drawing.nx_agraph import graphviz_layout
|
||||
import matplotlib as mpl
|
||||
mpl.use('Agg')
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import dzcnapy_plotlib as dzcnapy
|
||||
import csv
|
||||
import math
|
||||
import collections as coll
|
||||
from networkx.algorithms import community as com
|
||||
import community as lou
|
||||
|
||||
# Importazione dataset per calcolo di N, M
|
||||
with open("dataset.csv") as infile:
|
||||
csv_reader = csv.reader(infile)
|
||||
G = nx.Graph(csv_reader)
|
||||
|
||||
N = G.number_of_nodes()
|
||||
E = G.number_of_edges()
|
||||
M = int(E / N)
|
||||
|
||||
G = nx.barabasi_albert_graph(N, M)
|
||||
|
||||
nx.write_graphml(G, "graphs/Barabasi.graphml");
|
||||
|
||||
|
||||
# ## Nodes, Edges, Density
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
# Nodi, Archi, Densità
|
||||
numNodes = G.number_of_nodes()
|
||||
numEdges = G.number_of_edges()
|
||||
allEdges = int(numNodes * (numNodes-1) / 2)
|
||||
density = nx.density(G) * 100
|
||||
|
||||
# constants
|
||||
N = numNodes
|
||||
M = int(numEdges / numNodes)
|
||||
|
||||
print("#Nodes:", numNodes)
|
||||
print("#Edges:", numEdges)
|
||||
print("#Edges if graph was a full mesh:", allEdges)
|
||||
print("Density: %.2f%%" % density)
|
||||
|
||||
|
||||
# ## Degree
|
||||
|
||||
# ### Average, variance and standard deviation
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
avgDeg = (2*G.number_of_edges())/(G.number_of_nodes())
|
||||
print("Average degree: %.2f" % avgDeg)
|
||||
|
||||
deg = [G.degree(n) for n in G.nodes]
|
||||
var = np.var(deg)
|
||||
devstd = math.sqrt(var)
|
||||
|
||||
print("Variance {:.2f}".format(var))
|
||||
print("Standard deviation {:.2f}".format(devstd))
|
||||
|
||||
|
||||
# ### Linear scale distribution
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
# Degree distribution
|
||||
degrees = sorted([d for n, d in G.degree()], reverse=True)
|
||||
degreeCount = coll.Counter(degrees)
|
||||
x, y = zip(*degreeCount.items())
|
||||
|
||||
plt.figure()
|
||||
plt.plot(x, y, 'go-')
|
||||
plt.xlabel('Degree')
|
||||
plt.ylabel('Frequency')
|
||||
plt.title('Degree Distribution')
|
||||
plt.title('Degree Distribution with linear scale')
|
||||
plt.savefig('plots/LinScaleDegreeDistr.png')
|
||||
plt.show()
|
||||
|
||||
|
||||
# ### Logarithmic scale distribution
|
||||
|
||||
# In[7]:
|
||||
|
||||
|
||||
plt.scatter(x, y, s=50, c="green")
|
||||
plt.xlim(0.9, max(x))
|
||||
plt.ylim(0.9, max(y))
|
||||
plt.xscale('log')
|
||||
plt.yscale('log')
|
||||
plt.xlabel("Degree")
|
||||
plt.ylabel("Frequency")
|
||||
plt.title('Degree Distribution with logarithmic scale')
|
||||
plt.savefig('plots/LogScaleDegreeDistr.png')
|
||||
|
||||
|
||||
# ## Clustering coefficient
|
||||
|
||||
trans= nx.transitivity(G)*100
|
||||
# fraction of triadic closures (closed triangles) found in the network
|
||||
print("Transitivity coefficient of the network: %.2f%%" %trans)
|
||||
|
||||
# Clustering coefficient
|
||||
acc = nx.average_clustering(G)
|
||||
print ("Average clustering coefficient {:.2f}".format(acc))
|
||||
|
||||
|
||||
# ## Greatest Connected Component
|
||||
|
||||
# In[11]:
|
||||
|
||||
|
||||
|
||||
numCC = nx.number_connected_components(G)
|
||||
gcc = max(nx.connected_component_subgraphs(G), key=len)
|
||||
|
||||
nodesgcc = gcc.nodes()
|
||||
edgesgcc = gcc.edges()
|
||||
nx.write_graphml(gcc, "graphs/GCC.graphml");
|
||||
|
||||
print("Numero di componenti connesse:", numCC)
|
||||
print("Numero nodi GCC:", len(nodesgcc))
|
||||
print("Numero archi GCC:", len(edgesgcc))
|
||||
print("Percentuale di nodi sul totale %.2f%%:" %(len(nodesgcc)/len(G.nodes())*100))
|
||||
print("Percentuale di archi sul totale %.2f%%:" %(len(edgesgcc)/len(G.edges())*100))
|
||||
print("Densità: {:.2f}".format(nx.density(gcc) * 100))
|
||||
print("Distanza media: {:.2f}".format(nx.average_shortest_path_length(gcc)))
|
||||
|
||||
|
||||
# ### Distanze GCC
|
||||
|
||||
# In[13]:
|
||||
|
||||
|
||||
# TODO eseguire
|
||||
|
||||
distDict = {}
|
||||
#i=1
|
||||
row = []
|
||||
for n in gcc.nodes():
|
||||
nodeDists = nx.single_source_shortest_path_length(gcc,n)
|
||||
#if i%1000 == 0:
|
||||
# print(i)
|
||||
|
||||
for d in nodeDists:
|
||||
#if (int(d) in marked):
|
||||
# continue
|
||||
if nodeDists[d] in distDict:
|
||||
distDict[nodeDists[d]] = distDict[nodeDists[d]] + 1
|
||||
else:
|
||||
distDict[nodeDists[d]] = 1
|
||||
row.append(nodeDists[d])
|
||||
#i += 1
|
||||
|
||||
distDict.pop(0)
|
||||
|
||||
avgDist, cnt = zip(*distDict.items())
|
||||
|
||||
plt.bar(avgDist, cnt, width=0.3, color='b')
|
||||
plt.title("Distance Distribution for G")
|
||||
plt.ylabel("Frequency")
|
||||
plt.xlabel("Shortest Path Distance")
|
||||
#plt.savefig('plots/DistDistributionGlobal.png')
|
||||
plt.show()
|
||||
|
||||
|
||||
# ### GCC Eccentricity - Diameter - Radius - Center - Periphery
|
||||
|
||||
# In[15]:
|
||||
|
||||
|
||||
#Eccentricity
|
||||
ecc = nx.eccentricity(gcc)
|
||||
|
||||
# Adding eccentricity data to gcc
|
||||
for k in ecc.keys():
|
||||
gcc.node[k]['eccentricity'] = ecc.get(k)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
diametergcc = nx.diameter(gcc, ecc)
|
||||
radiusgcc = nx.radius(gcc, ecc)
|
||||
centergcc = nx.center(gcc, e=ecc)
|
||||
peripherygcc = nx.periphery(gcc, e=ecc)
|
||||
|
||||
print ("Diameter GCC:", diametergcc)
|
||||
print ("Radius GCC", radiusgcc)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
#Adding data to gcc
|
||||
nx.set_node_attributes(gcc, 0, 'center')
|
||||
nx.set_node_attributes(gcc, 0, 'periphery')
|
||||
|
||||
for v in range(len(centergcc)):
|
||||
gcc.node[centergcc[v]]["center"] = 1
|
||||
|
||||
for v in range(len(peripherygcc)):
|
||||
gcc.node[peripherygcc[v]]["periphery"] = 1
|
||||
|
||||
nx.write_graphml(gcc, "graphs/gccEcc.graphml");
|
||||
|
||||
|
||||
# ## Distanze
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
# Distanza media su tutta la rete
|
||||
distDict = {}
|
||||
#i=1
|
||||
#marked = set()
|
||||
row = []
|
||||
for n in G.nodes():
|
||||
nodeDists = nx.single_source_shortest_path_length(G,n)
|
||||
#if i%1000 == 0:
|
||||
# print(i)
|
||||
|
||||
for d in nodeDists:
|
||||
#if (int(d) in marked):
|
||||
# continue
|
||||
if nodeDists[d] in distDict:
|
||||
distDict[nodeDists[d]] = distDict[nodeDists[d]] + 1
|
||||
else:
|
||||
distDict[nodeDists[d]] = 1
|
||||
row.append(nodeDists[d])
|
||||
#i += 1
|
||||
#marked.add(int(n))
|
||||
|
||||
avgShortPathG = np.average(row)
|
||||
distDict.pop(0)
|
||||
|
||||
avgDist, cnt = zip(*distDict.items())
|
||||
|
||||
print("Average Distance {:.2f}".format(avgShortPathG))
|
||||
|
||||
plt.bar(avgDist, cnt, width=0.3, color='b')
|
||||
plt.title("Distance Distribution for G")
|
||||
plt.ylabel("Frequency")
|
||||
plt.xlabel("Shortest Path Distance")
|
||||
plt.savefig('plots/DistDistributionGlobal.png')
|
||||
plt.show()
|
||||
|
||||
|
||||
#print("Numero componenti connesse:", nx.number_connected_components(G))
|
||||
#print("Distanza media:", nx.average_shortest_path_length(G))
|
||||
|
||||
|
||||
# ## Degree correlation
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
# The following code fragment calculates the dictionary and separates the keys and values into
|
||||
# two lists my_degree and their_degree:
|
||||
|
||||
my_degree, their_degree = zip(*nx.average_degree_connectivity(G).items())
|
||||
|
||||
plt.scatter(my_degree, their_degree, s=50, c="b",)
|
||||
plt.xscale('log')
|
||||
plt.yscale('log')
|
||||
plt.xlabel("k")
|
||||
plt.ylabel("$k_{nn}(k)$")
|
||||
plt.savefig('plots/Assortativity.png')
|
||||
|
||||
|
||||
# ## Communities
|
||||
|
||||
# ### 4-Clique Communities
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
# NO k-cliques bcos muh memory
|
||||
|
||||
# commK = com.k_clique_communities(G, 4)
|
||||
|
||||
# print("Clique computed")
|
||||
# lClique = 0
|
||||
# for i,cl in enumerate(commK):
|
||||
# lClique += 1
|
||||
# for n in cl:
|
||||
# G.node[n]["kClique"] = i+1
|
||||
|
||||
# print("Numero 4-Clique communities: ", lClique)
|
||||
|
||||
|
||||
# ### Modularity based communities (Louvain)
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
part = lou.best_partition(G)
|
||||
mod = lou.modularity(part,G)
|
||||
|
||||
part_as_seriesG = pd.Series(part)
|
||||
part_as_seriesG.sort_values()
|
||||
part_as_seriesG.value_counts()
|
||||
|
||||
print("Numero Louvain communities: ", part_as_seriesG.value_counts().size)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
#Saving Communities Attribute
|
||||
nx.set_node_attributes(G, 0, 'LvnG')
|
||||
for k in part.keys():
|
||||
part[k]+= 1
|
||||
|
||||
for i in part.keys():
|
||||
G.node[i]["LvnG"] = part.get(i)
|
||||
|
||||
nx.write_graphml(G, "graphs/GComm.graphml");
|
||||
|
||||
|
||||
# ## Centralities
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
dgr = nx.degree_centrality(G)
|
||||
clo = nx.closeness_centrality(G)
|
||||
har = nx.harmonic_centrality(G)
|
||||
eig = nx.eigenvector_centrality(G)
|
||||
bet = nx.betweenness_centrality(G)
|
||||
pgr = nx.pagerank(G)
|
||||
hits = nx.hits(G)
|
||||
|
||||
centralities = pd.concat(
|
||||
[pd.Series(c) for c in (hits[1], eig, pgr, har, clo, hits[0], dgr, bet)],
|
||||
axis=1)
|
||||
|
||||
centralities.columns = ("Authorities", "Eigenvector", "PageRank",
|
||||
"Harmonic Closeness", "Closeness", "Hubs",
|
||||
"Degree", "Betweenness")
|
||||
centralities["Harmonic Closeness"] /= centralities.shape[0]
|
||||
|
||||
# Calculate the correlations for each pair of centralities
|
||||
c_df = centralities.corr()
|
||||
ll_triangle = np.tri(c_df.shape[0], k=-1)
|
||||
c_df *= ll_triangle
|
||||
c_series = c_df.stack().sort_values()
|
||||
c_series.tail()
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
|
||||
|
289004
anno3/avrc/assignments/coff/barabaso/dataset.csv
Normal file
289004
anno3/avrc/assignments/coff/barabaso/dataset.csv
Normal file
File diff suppressed because it is too large
Load diff
57
anno3/avrc/assignments/coff/barabaso/dzcnapy_plotlib.py
Normal file
57
anno3/avrc/assignments/coff/barabaso/dzcnapy_plotlib.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
"""
|
||||
Library for plotting graphs in DZCNAPY
|
||||
"""
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
matplotlib.rc("font", family="Arial")
|
||||
matplotlib.style.use("grayscale")
|
||||
|
||||
attrs = {
|
||||
"edge_color" : "gray",
|
||||
"font_family" : "Liberation Sans Narrow",
|
||||
"font_size" : 15,
|
||||
"font_weight" : "bold",
|
||||
"node_color" : "pink",
|
||||
"node_size" : 700,
|
||||
"width" : 2,
|
||||
}
|
||||
thick_attrs = attrs.copy()
|
||||
thick_attrs["alpha"] = 0.5
|
||||
thick_attrs["width"] = 15
|
||||
|
||||
small_attrs = attrs.copy()
|
||||
small_attrs["node_size"] = 50
|
||||
small_attrs["font_size"] = 10
|
||||
|
||||
medium_attrs = small_attrs.copy()
|
||||
medium_attrs["node_size"] = 250
|
||||
|
||||
def set_extent(positions, axes, title=None):
|
||||
"""
|
||||
Given node coordinates pos and the subplot,
|
||||
calculate and set its extent.
|
||||
"""
|
||||
axes.tick_params(labelbottom="off")
|
||||
axes.tick_params(labelleft="off")
|
||||
if title:
|
||||
axes.set_title(title)
|
||||
|
||||
x_values, y_values = zip(*positions.values())
|
||||
x_max = max(x_values)
|
||||
y_max = max(y_values)
|
||||
x_min = min(x_values)
|
||||
y_min = min(y_values)
|
||||
x_margin = (x_max - x_min) * 0.1
|
||||
y_margin = (y_max - y_min) * 0.1
|
||||
try:
|
||||
axes.set_xlim(x_min - x_margin, x_max + x_margin)
|
||||
axes.set_ylim(y_min - y_margin, y_max + y_margin)
|
||||
except AttributeError:
|
||||
axes.xlim(x_min - x_margin, x_max + x_margin)
|
||||
axes.ylim(y_min - y_margin, y_max + y_margin)
|
||||
|
||||
def plot(fname, save = False):
|
||||
plt.tight_layout()
|
||||
if save:
|
||||
plt.savefig("plots/{}.pdf".format(fname), dpi=600)
|
||||
plt.show()
|
301569
anno3/avrc/assignments/coff/barabaso/graphs/Barabasi.graphml
Normal file
301569
anno3/avrc/assignments/coff/barabaso/graphs/Barabasi.graphml
Normal file
File diff suppressed because it is too large
Load diff
301569
anno3/avrc/assignments/coff/barabaso/graphs/GCC.graphml
Normal file
301569
anno3/avrc/assignments/coff/barabaso/graphs/GCC.graphml
Normal file
File diff suppressed because it is too large
Load diff
376974
anno3/avrc/assignments/coff/barabaso/graphs/GComm.graphml
Normal file
376974
anno3/avrc/assignments/coff/barabaso/graphs/GComm.graphml
Normal file
File diff suppressed because it is too large
Load diff
452380
anno3/avrc/assignments/coff/barabaso/graphs/gccEcc.graphml
Normal file
452380
anno3/avrc/assignments/coff/barabaso/graphs/gccEcc.graphml
Normal file
File diff suppressed because it is too large
Load diff
23
anno3/avrc/assignments/coff/barabaso/log.txt
Normal file
23
anno3/avrc/assignments/coff/barabaso/log.txt
Normal file
|
@ -0,0 +1,23 @@
|
|||
#Nodes: 37702
|
||||
#Edges: 263865
|
||||
#Edges if graph was a full mesh: 710701551
|
||||
Density: 0.04%
|
||||
Average degree: 14.00
|
||||
Variance 372.92
|
||||
Standard deviation 19.31
|
||||
/usr/lib64/python3.6/site-packages/matplotlib/font_manager.py:1331: UserWarning: findfont: Font family [
|
||||
'Arial'] not found. Falling back to DejaVu Sans
|
||||
(prop.get_family(), self.defaultFamily[fontext]))
|
||||
Transitivity coefficient of the network: 0.24%
|
||||
Average clustering coefficient 0.00
|
||||
Numero di componenti connesse: 1
|
||||
Numero nodi GCC: 37702
|
||||
Numero archi GCC: 263865
|
||||
Percentuale di nodi sul totale 100.00%:
|
||||
Percentuale di archi sul totale 100.00%:
|
||||
Densità: 0.04
|
||||
Distanza media: 3.69
|
||||
Diameter GCC: 6
|
||||
Radius GCC 4
|
||||
Average Distance 3.69
|
||||
Numero Louvain communities: 23
|
BIN
anno3/avrc/assignments/coff/barabaso/plots/Assortativity.png
Normal file
BIN
anno3/avrc/assignments/coff/barabaso/plots/Assortativity.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 24 KiB |
Binary file not shown.
After Width: | Height: | Size: 24 KiB |
Binary file not shown.
After Width: | Height: | Size: 22 KiB |
Binary file not shown.
After Width: | Height: | Size: 24 KiB |
Loading…
Reference in a new issue