script conversione
This commit is contained in:
parent
3e96fafb7f
commit
ae930205b7
8 changed files with 727 additions and 380 deletions
278
tesi/.gitignore
vendored
Normal file
278
tesi/.gitignore
vendored
Normal file
|
@ -0,0 +1,278 @@
|
|||
tesi.tex
|
||||
|
||||
## Core latex/pdflatex auxiliary files:
|
||||
*.aux
|
||||
*.lof
|
||||
*.log
|
||||
*.lot
|
||||
*.fls
|
||||
*.out
|
||||
*.toc
|
||||
*.fmt
|
||||
*.fot
|
||||
*.cb
|
||||
*.cb2
|
||||
.*.lb
|
||||
|
||||
## Intermediate documents:
|
||||
*.dvi
|
||||
*.xdv
|
||||
*-converted-to.*
|
||||
# these rules might exclude image files for figures etc.
|
||||
# *.ps
|
||||
# *.eps
|
||||
# *.pdf
|
||||
|
||||
## Generated if empty string is given at "Please type another file name for output:"
|
||||
.pdf
|
||||
|
||||
## Bibliography auxiliary files (bibtex/biblatex/biber):
|
||||
*.bbl
|
||||
*.bcf
|
||||
*.blg
|
||||
*-blx.aux
|
||||
*-blx.bib
|
||||
*.run.xml
|
||||
|
||||
## Build tool auxiliary files:
|
||||
*.fdb_latexmk
|
||||
*.synctex
|
||||
*.synctex(busy)
|
||||
*.synctex.gz
|
||||
*.synctex.gz(busy)
|
||||
*.pdfsync
|
||||
|
||||
## Build tool directories for auxiliary files
|
||||
# latexrun
|
||||
latex.out/
|
||||
|
||||
## Auxiliary and intermediate files from other packages:
|
||||
# algorithms
|
||||
*.alg
|
||||
*.loa
|
||||
|
||||
# achemso
|
||||
acs-*.bib
|
||||
|
||||
# amsthm
|
||||
*.thm
|
||||
|
||||
# beamer
|
||||
*.nav
|
||||
*.pre
|
||||
*.snm
|
||||
*.vrb
|
||||
|
||||
# changes
|
||||
*.soc
|
||||
|
||||
# comment
|
||||
*.cut
|
||||
|
||||
# cprotect
|
||||
*.cpt
|
||||
|
||||
# elsarticle (documentclass of Elsevier journals)
|
||||
*.spl
|
||||
|
||||
# endnotes
|
||||
*.ent
|
||||
|
||||
# fixme
|
||||
*.lox
|
||||
|
||||
# feynmf/feynmp
|
||||
*.mf
|
||||
*.mp
|
||||
*.t[1-9]
|
||||
*.t[1-9][0-9]
|
||||
*.tfm
|
||||
|
||||
#(r)(e)ledmac/(r)(e)ledpar
|
||||
*.end
|
||||
*.?end
|
||||
*.[1-9]
|
||||
*.[1-9][0-9]
|
||||
*.[1-9][0-9][0-9]
|
||||
*.[1-9]R
|
||||
*.[1-9][0-9]R
|
||||
*.[1-9][0-9][0-9]R
|
||||
*.eledsec[1-9]
|
||||
*.eledsec[1-9]R
|
||||
*.eledsec[1-9][0-9]
|
||||
*.eledsec[1-9][0-9]R
|
||||
*.eledsec[1-9][0-9][0-9]
|
||||
*.eledsec[1-9][0-9][0-9]R
|
||||
|
||||
# glossaries
|
||||
*.acn
|
||||
*.acr
|
||||
*.glg
|
||||
*.glo
|
||||
*.gls
|
||||
*.glsdefs
|
||||
*.lzo
|
||||
*.lzs
|
||||
|
||||
# uncomment this for glossaries-extra (will ignore makeindex's style files!)
|
||||
# *.ist
|
||||
|
||||
# gnuplottex
|
||||
*-gnuplottex-*
|
||||
|
||||
# gregoriotex
|
||||
*.gaux
|
||||
*.gtex
|
||||
|
||||
# htlatex
|
||||
*.4ct
|
||||
*.4tc
|
||||
*.idv
|
||||
*.lg
|
||||
*.trc
|
||||
*.xref
|
||||
|
||||
# hyperref
|
||||
*.brf
|
||||
|
||||
# knitr
|
||||
*-concordance.tex
|
||||
# TODO Comment the next line if you want to keep your tikz graphics files
|
||||
*.tikz
|
||||
*-tikzDictionary
|
||||
|
||||
# listings
|
||||
*.lol
|
||||
|
||||
# luatexja-ruby
|
||||
*.ltjruby
|
||||
|
||||
# makeidx
|
||||
*.idx
|
||||
*.ilg
|
||||
*.ind
|
||||
|
||||
# minitoc
|
||||
*.maf
|
||||
*.mlf
|
||||
*.mlt
|
||||
*.mtc[0-9]*
|
||||
*.slf[0-9]*
|
||||
*.slt[0-9]*
|
||||
*.stc[0-9]*
|
||||
|
||||
# minted
|
||||
_minted*
|
||||
*.pyg
|
||||
|
||||
# morewrites
|
||||
*.mw
|
||||
|
||||
# nomencl
|
||||
*.nlg
|
||||
*.nlo
|
||||
*.nls
|
||||
|
||||
# pax
|
||||
*.pax
|
||||
|
||||
# pdfpcnotes
|
||||
*.pdfpc
|
||||
|
||||
# sagetex
|
||||
*.sagetex.sage
|
||||
*.sagetex.py
|
||||
*.sagetex.scmd
|
||||
|
||||
# scrwfile
|
||||
*.wrt
|
||||
|
||||
# sympy
|
||||
*.sout
|
||||
*.sympy
|
||||
sympy-plots-for-*.tex/
|
||||
|
||||
# pdfcomment
|
||||
*.upa
|
||||
*.upb
|
||||
|
||||
# pythontex
|
||||
*.pytxcode
|
||||
pythontex-files-*/
|
||||
|
||||
# tcolorbox
|
||||
*.listing
|
||||
|
||||
# thmtools
|
||||
*.loe
|
||||
|
||||
# TikZ & PGF
|
||||
*.dpth
|
||||
*.md5
|
||||
*.auxlock
|
||||
|
||||
# todonotes
|
||||
*.tdo
|
||||
|
||||
# vhistory
|
||||
*.hst
|
||||
*.ver
|
||||
|
||||
# easy-todo
|
||||
*.lod
|
||||
|
||||
# xcolor
|
||||
*.xcp
|
||||
|
||||
# xmpincl
|
||||
*.xmpi
|
||||
|
||||
# xindy
|
||||
*.xdy
|
||||
|
||||
# xypic precompiled matrices and outlines
|
||||
*.xyc
|
||||
*.xyd
|
||||
|
||||
# endfloat
|
||||
*.ttt
|
||||
*.fff
|
||||
|
||||
# Latexian
|
||||
TSWLatexianTemp*
|
||||
|
||||
## Editors:
|
||||
# WinEdt
|
||||
*.bak
|
||||
*.sav
|
||||
|
||||
# Texpad
|
||||
.texpadtmp
|
||||
|
||||
# LyX
|
||||
*.lyx~
|
||||
|
||||
# Kile
|
||||
*.backup
|
||||
|
||||
# gummi
|
||||
.*.swp
|
||||
|
||||
# KBibTeX
|
||||
*~[0-9]*
|
||||
|
||||
# TeXnicCenter
|
||||
*.tps
|
||||
|
||||
# auto folder when using emacs and auctex
|
||||
./auto/*
|
||||
*.el
|
||||
|
||||
# expex forward references with \gathertags
|
||||
*-tags.tex
|
||||
|
||||
# standalone packages
|
||||
*.sta
|
||||
|
||||
# Makeindex log files
|
||||
*.lpz
|
|
@ -1,6 +1,6 @@
|
|||
SRC = tesi.tex
|
||||
AUX = tesi.aux
|
||||
DEL = tesi.aux tesi.bbl tesi.blg tesi.log tesi.out
|
||||
DEL = tesi.aux tesi.bbl tesi.blg tesi.log tesi.out tesi_unicode.tex tesi.pdf tesi.tex texput.log
|
||||
NAME = tesi
|
||||
|
||||
tesi:
|
||||
|
@ -9,9 +9,14 @@ tesi:
|
|||
rm -f $(DEL)
|
||||
@echo
|
||||
@echo "=== Building from scratch ==="
|
||||
emacs tesi_unicode.org -f org-latex-export-to-latex --kill
|
||||
python3 conv.py tesi_unicode.tex tesi.tex
|
||||
pdflatex $(SRC)
|
||||
bibtex $(AUX)
|
||||
pdflatex $(SRC)
|
||||
pdflatex $(SRC)
|
||||
@echo
|
||||
@echo "=== All done. Generated $(NAME).pdf ==="
|
||||
|
||||
clean:
|
||||
rm -f $(DEL)
|
||||
|
|
40
tesi/conv.py
40
tesi/conv.py
|
@ -1,21 +1,45 @@
|
|||
import json
|
||||
import re
|
||||
from sys import argv
|
||||
|
||||
allsymbols = json.load(open('./unicode-latex.json'))
|
||||
symbols = ['≼', '→', '⊀', '⋠', '≺', '∀', '∈', '₂', '₁', 'ₐ', 'ₘ', 'ₙ', 'ᵢ' ]
|
||||
symbols = {s: allsymbols[s] for s in symbols}
|
||||
print(symbols)
|
||||
mysymbols = ['≡', '≼', '→', '⊀', '⋠', '≺', '∀', '∈', '₂', '₁', 'ₐ', 'ₘ', 'ₙ', 'ᵢ', 'ⁱ']
|
||||
|
||||
symbols = {s: allsymbols[s] for s in mysymbols}
|
||||
mathsymbols = {s: '$'+allsymbols[s]+'$' for s in symbols}
|
||||
|
||||
def read_by_char(fname):
|
||||
# Yield character and True/False if inside mathmode block
|
||||
mathmode = False
|
||||
mathmode_begin = set(['\\begin{equation*}', '\\begin{equation}'])
|
||||
mathmode_end = set(['\\end{equation*}', '\\end{equation}'])
|
||||
cnt = 0
|
||||
with open(fname, 'r') as fp:
|
||||
for line in fp.readlines():
|
||||
for ch in line:
|
||||
yield ch
|
||||
cnt += 1
|
||||
words = [w.strip() for w in line.split(' ')]
|
||||
if mathmode_begin.intersection(words):
|
||||
assert mathmode == False
|
||||
mathmode = True
|
||||
elif mathmode_end.intersection(words):
|
||||
assert mathmode == True, f'Line: {words}, number: {cnt}'
|
||||
mathmode = False
|
||||
|
||||
def convert(ch):
|
||||
for ch in line:
|
||||
yield ch, mathmode
|
||||
|
||||
def convert(ch, mathmode):
|
||||
if not mathmode:
|
||||
return mathsymbols[ch] if ch in mathsymbols else ch
|
||||
else:
|
||||
return symbols[ch] if ch in symbols else ch
|
||||
|
||||
newfile = [convert(ch) for ch in read_by_char(argv[1])]
|
||||
# convert symbols except the one requiring math mode modifiers
|
||||
# all passes produces a list of words that must be joined by ' '.join( )
|
||||
firstpass = ''.join([convert(*c) for c in read_by_char(argv[1])]).split(' ')
|
||||
# secondpass = insert_math(''.join(firstpass).split(' '))
|
||||
# thirdpass = escape_outside_mathmode(firstpass)
|
||||
|
||||
newfile = ' '.join(firstpass)
|
||||
with open(argv[2], 'w') as f:
|
||||
f.writelines(newfile)
|
||||
f.write(newfile)
|
||||
|
|
320
tesi/prova.md
320
tesi/prova.md
|
@ -1,320 +0,0 @@
|
|||
|
||||
# TODO Scaletta <code>[1/2]</code>
|
||||
|
||||
- [X] Abstract
|
||||
- [-] Background <code>[25%]</code>
|
||||
- [X] Ocaml
|
||||
- [ ] Lambda code
|
||||
- [ ] Pattern matching
|
||||
- [ ] Translation Verification
|
||||
- [ ] Symbolic execution
|
||||
|
||||
\begin{abstract}
|
||||
|
||||
This dissertation presents an algorithm for the translation validation of the OCaml
|
||||
pattern matching compiler. Given the source representation of the target program and the
|
||||
target program compiled in untyped lambda form, the algoritmhm is capable of modelling
|
||||
the source program in terms of symbolic constraints on it's branches and apply symbolic
|
||||
execution on the untyped lambda representation in order to validate wheter the compilation
|
||||
produced a valid result.
|
||||
In this context a valid result means that for every input in the domain of the source
|
||||
program the untyped lambda translation produces the same output as the source program.
|
||||
The input of the program is modelled in terms of symbolic constraints closely related to
|
||||
the runtime representation of OCaml objects and the output consists of OCaml code
|
||||
blackboxes that are not evaluated in the context of the verification.
|
||||
|
||||
\end{abstract}
|
||||
|
||||
|
||||
# 1. Background
|
||||
|
||||
|
||||
## 1.1 OCaml
|
||||
|
||||
Objective Caml (OCaml) is a dialect of the ML (Meta-Language) family of programming
|
||||
languages.
|
||||
OCaml shares many features with other dialects of ML, such as SML and Caml Light,
|
||||
The main features of ML languages are the use of the Hindley-Milner type system that
|
||||
provides many advantages with respect to static type systems of traditional imperative and object
|
||||
oriented language such as C, C++ and Java, such as:
|
||||
|
||||
- Parametric polymorphism: in certain scenarios a function can accept more than one
|
||||
|
||||
type for the input parameters. For example a function that computes the lenght of a
|
||||
list doesn't need to inspect the type of the elements of the list and for this reason
|
||||
a List.length function can accept list of integers, list of strings and in general
|
||||
list of any type. Such languages offer polymorphic functions through subtyping at
|
||||
runtime only, while other languages such as C++ offer polymorphism through compile
|
||||
time templates and function overloading.
|
||||
With the Hindley-Milner type system each well typed function can have more than one
|
||||
type but always has a unique best type, called the *principal type*.
|
||||
For example the principal type of the List.length function is "For any *a*, function from
|
||||
list of *a* to *int*" and *a* is called the *type parameter*.
|
||||
|
||||
- Strong typing: Languages such as C and C++ allow the programmer to operate on data
|
||||
|
||||
without considering its type, mainly through pointers. Other languages such as C#
|
||||
and Go allow type erasure so at runtime the type of the data can't be queried.
|
||||
In the case of programming languages using an Hindley-Milner type system the
|
||||
programmer is not allowed to operate on data by ignoring or promoting its type.
|
||||
|
||||
- Type Inference: the principal type of a well formed term can be inferred without any
|
||||
|
||||
annotation or declaration.
|
||||
|
||||
- Algebraic data types: types that are modelled by the use of two
|
||||
|
||||
algebraic operations, sum and product.
|
||||
A sum type is a type that can hold of many different types of
|
||||
objects, but only one at a time. For example the sum type defined
|
||||
as *A + B* can hold at any moment a value of type A or a value of
|
||||
type B. Sum types are also called tagged union or variants.
|
||||
A product type is a type constructed as a direct product
|
||||
of multiple types and contains at any moment one instance for
|
||||
every type of its operands. Product types are also called tuples
|
||||
or records. Algebraic data types can be recursive
|
||||
in their definition and can be combined.
|
||||
Moreover ML languages are functional, meaning that functions are
|
||||
treated as first class citizens and variables are immutable,
|
||||
although mutable statements and imperative constructs are permitted.
|
||||
In addition to that OCaml features an object system, that provides
|
||||
inheritance, subtyping and dynamic binding, and modules, that
|
||||
provide a way to encapsulate definitions. Modules are checked
|
||||
statically and can be reificated through functors.
|
||||
|
||||
1. TODO 1.2 Pattern matching <code>[37%]</code>
|
||||
|
||||
- [ ] capisci come mettere gli esempi uno accanto all'altro
|
||||
|
||||
Pattern matching is a widely adopted mechanism to interact with ADT.
|
||||
C family languages provide branching on predicates through the use of
|
||||
if statements and switch statements.
|
||||
Pattern matching is a mechanism for destructuring and analyzing data
|
||||
structures for the presence of values simbolically represented as
|
||||
tokens. One common example of pattern matching is the use of regular
|
||||
expressions on strings. OCaml provides pattern matching on ADT,
|
||||
primitive data types.
|
||||
|
||||
- [X] Esempio enum, C e Ocaml
|
||||
|
||||
type color = | Red | Blue | Green
|
||||
|
||||
begin match color with
|
||||
| Red -> print "red"
|
||||
| Blue -> print "red"
|
||||
| Green -> print "red"
|
||||
|
||||
OCaml provides tokens to express data destructoring
|
||||
|
||||
- [X] Esempio destructor list
|
||||
|
||||
|
||||
begin match list with
|
||||
| [ ] -> print "empty list"
|
||||
| element1 :: [ ] -> print "one element"
|
||||
| element1 :: element2 :: [ ] -> print "two elements"
|
||||
| head :: tail-> print "head followed by many elements"
|
||||
|
||||
- [X] Esempio destructor tuples
|
||||
|
||||
|
||||
begin match tuple with
|
||||
| (Some _, Some _) -> print "Pair of optional types"
|
||||
| (Some _, None) -> print "Pair of optional types, last null"
|
||||
| (None, Some _) -> print "Pair of optional types, first null"
|
||||
| (None, None) -> print "Pair of optional types, both null"
|
||||
|
||||
Pattern clauses can make the use of *guards* to test predicates and
|
||||
variables can be binded in scope.
|
||||
|
||||
- [ ] Esempio binding e guards
|
||||
|
||||
|
||||
begin match token_list with
|
||||
| "switch"::var::"{"::rest ->
|
||||
| "case"::":"::var::rest when is_int var ->
|
||||
| "case"::":"::var::rest when is_string var ->
|
||||
| "}"::[ ] -> stop ()
|
||||
| "}"::rest -> error "syntax error: " rest
|
||||
|
||||
- [ ] Un altro esempio con destructors e tutto i lresto
|
||||
|
||||
In general pattern matching on primitive and algebraic data types takes the
|
||||
following form.
|
||||
|
||||
- [ ] Esempio informale
|
||||
|
||||
It can be described more formally through a BNF grammar.
|
||||
|
||||
- [ ] BNF
|
||||
|
||||
- [ ] Come funziona il pattern matching?
|
||||
|
||||
2. TODO 1.2.1 Pattern matching compilation to lambda code
|
||||
|
||||
- [ ] Da tabella a matrice
|
||||
|
||||
Formally, pattern and values are defined as follow:
|
||||
|
||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
|
||||
|
||||
<colgroup>
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-left" />
|
||||
</colgroup>
|
||||
<thead>
|
||||
<tr>
|
||||
<th scope="col" class="org-left">pattern ::=</th>
|
||||
<th scope="col" class="org-left">Patterns</th>
|
||||
</tr>
|
||||
</thead>
|
||||
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="org-left">\_</td>
|
||||
<td class="org-left">wildcard</td>
|
||||
</tr>
|
||||
|
||||
|
||||
<tr>
|
||||
<td class="org-left">x</td>
|
||||
<td class="org-left">variable</td>
|
||||
</tr>
|
||||
|
||||
|
||||
<tr>
|
||||
<td class="org-left">c(p1,p2,…,pn</td>
|
||||
<td class="org-left">constructor pattern</td>
|
||||
</tr>
|
||||
|
||||
|
||||
<tr>
|
||||
<td class="org-left">(p1| p2)</td>
|
||||
<td class="org-left">or-pattern</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
|
||||
|
||||
<colgroup>
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-left" />
|
||||
</colgroup>
|
||||
<thead>
|
||||
<tr>
|
||||
<th scope="col" class="org-left">values ::=</th>
|
||||
<th scope="col" class="org-left">Values</th>
|
||||
</tr>
|
||||
</thead>
|
||||
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="org-left">c(v1, v2, …, vn)</td>
|
||||
<td class="org-left">constructor value</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
The entire pattern matching code can be represented as a clause matrix
|
||||
that associates rows of patterns (p<sub>i,1</sub>, p<sub>i,2</sub>, …, p<sub>i,n</sub>) to
|
||||
lambda code action lⁱ
|
||||
|
||||
\begin{equation*}
|
||||
(P → L) =
|
||||
\begin{pmatrix}
|
||||
p_{1,1} & p_{1,2} & \cdots & p_{1,n} → l₁ \\
|
||||
p_{2,1} & p_{2,2} & \cdots & p_{2,n} → l₂ \\
|
||||
\vdots & \vdots & \ddots \vdots → \vdots \\
|
||||
p_{m,1} & p_{m,2} & \cdots & p_{m,n} → lₘ
|
||||
\end{pmatrix}
|
||||
\end{equation*}
|
||||
|
||||
Most native data types in OCaml, such as integers, tuples, lists,
|
||||
records, can be seen as instances of the following definition
|
||||
|
||||
type t = Nil | One of int | Cons of int * t
|
||||
|
||||
that is a type *t* with three constructors that define its complete
|
||||
signature.
|
||||
Every constructor has an arity. Nil, a constructor of arity 0, is
|
||||
called a constant constructor.
|
||||
|
||||
The pattern *p* matches a value *v*, written as p ≼ v, when
|
||||
one of the following rules apply
|
||||
|
||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
|
||||
|
||||
<colgroup>
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-left" />
|
||||
</colgroup>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="org-left">\_</td>
|
||||
<td class="org-left">≼</td>
|
||||
<td class="org-left">v</td>
|
||||
<td class="org-left"> </td>
|
||||
</tr>
|
||||
|
||||
|
||||
<tr>
|
||||
<td class="org-left">x</td>
|
||||
<td class="org-left">≼</td>
|
||||
<td class="org-left">v</td>
|
||||
<td class="org-left"> </td>
|
||||
</tr>
|
||||
|
||||
|
||||
<tr>
|
||||
<td class="org-left">(p₁ |\\ p₂)</td>
|
||||
<td class="org-left">≼</td>
|
||||
<td class="org-left">v</td>
|
||||
<td class="org-left">iff p₁ ≼ v or p₂ ≼ v</td>
|
||||
</tr>
|
||||
|
||||
|
||||
<tr>
|
||||
<td class="org-left">c(p₁, p₂, …, pₐ)</td>
|
||||
<td class="org-left">≼</td>
|
||||
<td class="org-left">c(v₁, v₂, …, vₐ)</td>
|
||||
<td class="org-left">iff (p₁, p₂, …, pₐ) ≼ (v₁, v₂, …, vₐ)</td>
|
||||
</tr>
|
||||
|
||||
|
||||
<tr>
|
||||
<td class="org-left">(p₁, p₂, …, pₐ)</td>
|
||||
<td class="org-left">≼</td>
|
||||
<td class="org-left">(v₁, v₂, …, vₐ)</td>
|
||||
<td class="org-left">iff pᵢ ≼ vᵢ ∀i ∈ [1..a]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
We can also say that *v* is an *instance* of *p*.
|
||||
|
||||
When we consider the pattern matrix P we say that the value vector
|
||||
\vv{v} = (v₁, v₂, …, vᵢ) matches the line number i in P if and only if the following two
|
||||
conditions are satisfied:
|
||||
|
||||
- \[ p_{i,1} & p_{i,2} & \cdots & p_{i,n} \] ≼ (v₁, v₂, …, vᵢ)
|
||||
- \[ ∀j < i p_{j,1} & p_{j,2} & \cdots & p_{j,n} \] ⋠ (v₁, v₂, …, vᵢ)
|
||||
|
||||
We can define the following three relations with respect to patterns:
|
||||
|
||||
- Patter p is less precise than pattern q, writtens p ≼ q when all
|
||||
instances of q are instances of p
|
||||
- Pattern p and q are equivalent, written p ≡ q, when their instances
|
||||
are the same
|
||||
- Patterns p and q are compatible when they share a common instance
|
||||
|
BIN
tesi/tesi.pdf
Normal file
BIN
tesi/tesi.pdf
Normal file
Binary file not shown.
|
@ -32,8 +32,6 @@
|
|||
#+LaTeX_HEADER: \usepackage{algorithm}
|
||||
#+LaTeX_HEADER: \usepackage{algpseudocode}
|
||||
#+LaTeX_HEADER: \usepackage{amsmath,amssymb,amsthm}
|
||||
#+LaTeX_HEADER: \usepackage[utf8]{inputenc}
|
||||
#+LaTeX_HEADER: \usepackage[T1]{fontenc}
|
||||
#+Latex_HEADER: \newtheorem{definition}{Definition}
|
||||
#+LaTeX_HEADER: \usepackage{graphicx}
|
||||
#+LaTeX_HEADER: \usepackage{listings}
|
||||
|
@ -58,9 +56,9 @@ blackboxes that are not evaluated in the context of the verification.
|
|||
|
||||
\end{abstract}
|
||||
|
||||
* 1. Background
|
||||
* Background
|
||||
|
||||
** 1.1 OCaml
|
||||
** OCaml
|
||||
Objective Caml (OCaml) is a dialect of the ML (Meta-Language) family of programming
|
||||
languages.
|
||||
OCaml shares many features with other dialects of ML, such as SML and Caml Light,
|
||||
|
@ -104,7 +102,7 @@ inheritance, subtyping and dynamic binding, and modules, that
|
|||
provide a way to encapsulate definitions. Modules are checked
|
||||
statically and can be reificated through functors.
|
||||
|
||||
*** TODO 1.2 Pattern matching [37%]
|
||||
*** TODO Pattern matching [37%]
|
||||
- [ ] capisci come mettere gli esempi uno accanto all'altro
|
||||
|
||||
Pattern matching is a widely adopted mechanism to interact with ADT.
|
||||
|
@ -183,15 +181,15 @@ It can be described more formally through a BNF grammar.
|
|||
- [ ] Da tabella a matrice
|
||||
|
||||
Formally, pattern are defined as follows:
|
||||
| pattern ::= | Patterns |
|
||||
|----------------+---------------------|
|
||||
| pattern | Patterns |
|
||||
|-----------------+---------------------|
|
||||
| _ | wildcard |
|
||||
| x | variable |
|
||||
| c(p₁,p₂,...,pₙ | constructor pattern |
|
||||
| c(p₁,p₂,...,pₙ) | constructor pattern |
|
||||
| (p₁\vert p₂) | or-pattern |
|
||||
|
||||
Values are defined as follows:
|
||||
| values ::= | Values |
|
||||
| values | Values |
|
||||
|---------------------+-------------------|
|
||||
| c(v₁, v₂, ..., vₙ) | constructor value |
|
||||
|
||||
|
@ -201,10 +199,10 @@ lambda code action lⁱ
|
|||
\begin{equation*}
|
||||
(P → L) =
|
||||
\begin{pmatrix}
|
||||
p_{1,1} & p_{1,2} & \cdots & p_{1,n} → l₁ \\
|
||||
p_{2,1} & p_{2,2} & \cdots & p_{2,n} → l₂ \\
|
||||
\vdots & \vdots & \ddots \vdots → \vdots \\
|
||||
p_{m,1} & p_{m,2} & \cdots & p_{m,n} → lₘ
|
||||
p_{1,1} & p_{1,2} & \cdots & p_{1,n} & → l₁ \\
|
||||
p_{2,1} & p_{2,2} & \cdots & p_{2,n} & → l₂ \\
|
||||
\vdots & \vdots & \ddots & \vdots & → \vdots \\
|
||||
p_{m,1} & p_{m,2} & \cdots & p_{m,n} & → lₘ
|
||||
\end{pmatrix}
|
||||
\end{equation*}
|
||||
|
||||
|
@ -219,24 +217,28 @@ signature.
|
|||
Every constructor has an arity. Nil, a constructor of arity 0, is
|
||||
called a constant constructor.
|
||||
|
||||
The pattern /p/ matches a value /v/, written as p ≼ v, when
|
||||
one of the following rules apply
|
||||
The pattern /p/ matches a value /v/, written as p ≼ v, when one of the
|
||||
following rules apply
|
||||
|
||||
| _ | ≼ | v | |
|
||||
| x | ≼ | v | |
|
||||
| | | | |
|
||||
|--------------------+---+--------------------+-------------------------------------------|
|
||||
| _ | ≼ | v | ∀v |
|
||||
| x | ≼ | v | ∀v |
|
||||
| (p₁ \vert\ p₂) | ≼ | v | iff p₁ ≼ v or p₂ ≼ v |
|
||||
| c(p₁, p₂, ..., pₐ) | ≼ | c(v₁, v₂, ..., vₐ) | iff (p₁, p₂, ..., pₐ) ≼ (v₁, v₂, ..., vₐ) |
|
||||
| (p₁, p₂, ..., pₐ) | ≼ | (v₁, v₂, ..., vₐ) | iff pᵢ ≼ vᵢ ∀i ∈ [1..a] |
|
||||
|--------------------+---+--------------------+-------------------------------------------|
|
||||
|
||||
We can also say that /v/ is an /instance/ of /p/.
|
||||
|
||||
When we consider the pattern matrix P we say that the value vector
|
||||
\vv{v} = (v₁, v₂, ..., vᵢ) matches the line number i in P if and only if the following two
|
||||
$\vec{v}$ = (v₁, v₂, ..., vᵢ) matches the line number i in P if and only if the following two
|
||||
conditions are satisfied:
|
||||
- \[ p_{i,1} & p_{i,2} & \cdots & p_{i,n} \] ≼ (v₁, v₂, ..., vᵢ)
|
||||
- \[ ∀j < i p_{j,1} & p_{j,2} & \cdots & p_{j,n} \] ⋠ (v₁, v₂, ..., vᵢ)
|
||||
- p_{i,1}, p_{i,2}, \cdots, p_{i,n} ≼ (v₁, v₂, ..., vᵢ)
|
||||
- ∀j < i p_{j,1}, p_{j,2}, \cdots, p_{j,n} ⋠ (v₁, v₂, ..., vᵢ)
|
||||
|
||||
We can define the following three relations with respect to patterns:
|
||||
- Patter p is less precise than pattern q, writtens p ≼ q when all
|
||||
- Patter p is less precise than pattern q, written p ≼ q, when all
|
||||
instances of q are instances of p
|
||||
- Pattern p and q are equivalent, written p ≡ q, when their instances
|
||||
are the same
|
||||
|
@ -255,7 +257,7 @@ match x with
|
|||
#+END_SRC ocaml
|
||||
|
||||
the initial input of the algorithm consists of a vector of variables
|
||||
\vv{x} = (x₁, x₂, ..., xₙ) of size n
|
||||
$\vec{x}$ = (x₁, x₂, ..., xₙ) of size n
|
||||
and a clause matrix P → L of width n and height m.
|
||||
|
||||
\begin{equation*}
|
||||
|
|
358
tesi/tesi_unicode.tex
Normal file
358
tesi/tesi_unicode.tex
Normal file
|
@ -0,0 +1,358 @@
|
|||
% Created 2020-02-24 Mon 14:35
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[11pt]{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{grffile}
|
||||
\usepackage{longtable}
|
||||
\usepackage{wrapfig}
|
||||
\usepackage{rotating}
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{textcomp}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{capt-of}
|
||||
\usepackage{hyperref}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{algorithm}
|
||||
\usepackage{algpseudocode}
|
||||
\usepackage{amsmath,amssymb,amsthm}
|
||||
\newtheorem{definition}{Definition}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{listings}
|
||||
\usepackage{color}
|
||||
\author{Francesco Mecca}
|
||||
\date{}
|
||||
\title{Translation Verification of the OCaml pattern matching compiler}
|
||||
\hypersetup{
|
||||
pdfauthor={Francesco Mecca},
|
||||
pdftitle={Translation Verification of the OCaml pattern matching compiler},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 26.3 (Org mode 9.1.9)},
|
||||
pdflang={English}}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
\section{{\bfseries\sffamily TODO} Scaletta [1/2]}
|
||||
\label{sec:orgd539212}
|
||||
\begin{itemize}
|
||||
\item[{$\boxtimes$}] Abstract
|
||||
\item[{$\boxminus$}] Background [20\%]
|
||||
\begin{itemize}
|
||||
\item[{$\boxtimes$}] Ocaml
|
||||
\item[{$\square$}] Lambda code [0\%]
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Untyped lambda form
|
||||
\item[{$\square$}] OCaml specific instructions
|
||||
\end{itemize}
|
||||
\item[{$\boxminus$}] Pattern matching [50\%]
|
||||
\begin{itemize}
|
||||
\item[{$\boxtimes$}] Introduzione
|
||||
\item[{$\square$}] Compilation to lambda form
|
||||
\end{itemize}
|
||||
\item[{$\square$}] Translation Verification
|
||||
\item[{$\square$}] Symbolic execution
|
||||
\end{itemize}
|
||||
\item[{$\square$}] Translation verification of the Pattern Matching Compiler
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Source translation
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Formal Grammar
|
||||
\item[{$\square$}] Compilation of source patterns
|
||||
\end{itemize}
|
||||
\item[{$\square$}] Target translation
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Formal Grammar
|
||||
\item[{$\square$}] Symbolic execution of the lambda target
|
||||
\end{itemize}
|
||||
\item[{$\square$}] Equivalence between source and target
|
||||
\end{itemize}
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Practical results
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\begin{abstract}
|
||||
|
||||
This dissertation presents an algorithm for the translation validation of the OCaml
|
||||
pattern matching compiler. Given the source representation of the target program and the
|
||||
target program compiled in untyped lambda form, the algoritmhm is capable of modelling
|
||||
the source program in terms of symbolic constraints on it's branches and apply symbolic
|
||||
execution on the untyped lambda representation in order to validate wheter the compilation
|
||||
produced a valid result.
|
||||
In this context a valid result means that for every input in the domain of the source
|
||||
program the untyped lambda translation produces the same output as the source program.
|
||||
The input of the program is modelled in terms of symbolic constraints closely related to
|
||||
the runtime representation of OCaml objects and the output consists of OCaml code
|
||||
blackboxes that are not evaluated in the context of the verification.
|
||||
|
||||
\end{abstract}
|
||||
|
||||
\section{Background}
|
||||
\label{sec:org06597c8}
|
||||
|
||||
\subsection{OCaml}
|
||||
\label{sec:org8d0180f}
|
||||
Objective Caml (OCaml) is a dialect of the ML (Meta-Language) family of programming
|
||||
languages.
|
||||
OCaml shares many features with other dialects of ML, such as SML and Caml Light,
|
||||
The main features of ML languages are the use of the Hindley-Milner type system that
|
||||
provides many advantages with respect to static type systems of traditional imperative and object
|
||||
oriented language such as C, C++ and Java, such as:
|
||||
\begin{itemize}
|
||||
\item Parametric polymorphism: in certain scenarios a function can accept more than one
|
||||
type for the input parameters. For example a function that computes the lenght of a
|
||||
list doesn't need to inspect the type of the elements of the list and for this reason
|
||||
a List.length function can accept list of integers, list of strings and in general
|
||||
list of any type. Such languages offer polymorphic functions through subtyping at
|
||||
runtime only, while other languages such as C++ offer polymorphism through compile
|
||||
time templates and function overloading.
|
||||
With the Hindley-Milner type system each well typed function can have more than one
|
||||
type but always has a unique best type, called the \emph{principal type}.
|
||||
For example the principal type of the List.length function is "For any \emph{a}, function from
|
||||
list of \emph{a} to \emph{int}" and \emph{a} is called the \emph{type parameter}.
|
||||
\item Strong typing: Languages such as C and C++ allow the programmer to operate on data
|
||||
without considering its type, mainly through pointers. Other languages such as C\#
|
||||
and Go allow type erasure so at runtime the type of the data can't be queried.
|
||||
In the case of programming languages using an Hindley-Milner type system the
|
||||
programmer is not allowed to operate on data by ignoring or promoting its type.
|
||||
\item Type Inference: the principal type of a well formed term can be inferred without any
|
||||
annotation or declaration.
|
||||
\item Algebraic data types: types that are modelled by the use of two
|
||||
algebraic operations, sum and product.
|
||||
A sum type is a type that can hold of many different types of
|
||||
objects, but only one at a time. For example the sum type defined
|
||||
as \emph{A + B} can hold at any moment a value of type A or a value of
|
||||
type B. Sum types are also called tagged union or variants.
|
||||
A product type is a type constructed as a direct product
|
||||
of multiple types and contains at any moment one instance for
|
||||
every type of its operands. Product types are also called tuples
|
||||
or records. Algebraic data types can be recursive
|
||||
in their definition and can be combined.
|
||||
\end{itemize}
|
||||
Moreover ML languages are functional, meaning that functions are
|
||||
treated as first class citizens and variables are immutable,
|
||||
although mutable statements and imperative constructs are permitted.
|
||||
In addition to that OCaml features an object system, that provides
|
||||
inheritance, subtyping and dynamic binding, and modules, that
|
||||
provide a way to encapsulate definitions. Modules are checked
|
||||
statically and can be reificated through functors.
|
||||
|
||||
\begin{enumerate}
|
||||
\item {\bfseries\sffamily TODO} Pattern matching [37\%]
|
||||
\label{sec:orgd3cffc0}
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] capisci come mettere gli esempi uno accanto all'altro
|
||||
\end{itemize}
|
||||
|
||||
Pattern matching is a widely adopted mechanism to interact with ADT.
|
||||
C family languages provide branching on predicates through the use of
|
||||
if statements and switch statements.
|
||||
Pattern matching is a mechanism for destructuring and analyzing data
|
||||
structures for the presence of values simbolically represented as
|
||||
tokens. One common example of pattern matching is the use of regular
|
||||
expressions on strings. OCaml provides pattern matching on ADT,
|
||||
primitive data types.
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\boxtimes$}] Esempio enum, C e Ocaml
|
||||
\end{itemize}
|
||||
\begin{verbatim}
|
||||
type color = | Red | Blue | Green
|
||||
|
||||
begin match color with
|
||||
| Red -> print "red"
|
||||
| Blue -> print "red"
|
||||
| Green -> print "red"
|
||||
|
||||
\end{verbatim}
|
||||
|
||||
OCaml provides tokens to express data destructoring
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\boxtimes$}] Esempio destructor list
|
||||
\end{itemize}
|
||||
\begin{verbatim}
|
||||
|
||||
begin match list with
|
||||
| [ ] -> print "empty list"
|
||||
| element1 :: [ ] -> print "one element"
|
||||
| element1 :: element2 :: [ ] -> print "two elements"
|
||||
| head :: tail-> print "head followed by many elements"
|
||||
\end{verbatim}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\boxtimes$}] Esempio destructor tuples
|
||||
\end{itemize}
|
||||
\begin{verbatim}
|
||||
|
||||
begin match tuple with
|
||||
| (Some _, Some _) -> print "Pair of optional types"
|
||||
| (Some _, None) -> print "Pair of optional types, last null"
|
||||
| (None, Some _) -> print "Pair of optional types, first null"
|
||||
| (None, None) -> print "Pair of optional types, both null"
|
||||
\end{verbatim}
|
||||
|
||||
Pattern clauses can make the use of \emph{guards} to test predicates and
|
||||
variables can be binded in scope.
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Esempio binding e guards
|
||||
\end{itemize}
|
||||
\begin{verbatim}
|
||||
|
||||
begin match token_list with
|
||||
| "switch"::var::"{"::rest ->
|
||||
| "case"::":"::var::rest when is_int var ->
|
||||
| "case"::":"::var::rest when is_string var ->
|
||||
| "}"::[ ] -> stop ()
|
||||
| "}"::rest -> error "syntax error: " rest
|
||||
|
||||
\end{verbatim}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Un altro esempio con destructors e tutto i lresto
|
||||
\end{itemize}
|
||||
|
||||
In general pattern matching on primitive and algebraic data types takes the
|
||||
following form.
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Esempio informale
|
||||
\end{itemize}
|
||||
|
||||
It can be described more formally through a BNF grammar.
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] BNF
|
||||
|
||||
\item[{$\square$}] Come funziona il pattern matching?
|
||||
\end{itemize}
|
||||
|
||||
\item {\bfseries\sffamily TODO} 1.2.1 Pattern matching compilation to lambda code
|
||||
\label{sec:orgc04d093}
|
||||
|
||||
\begin{itemize}
|
||||
\item[{$\square$}] Da tabella a matrice
|
||||
\end{itemize}
|
||||
|
||||
Formally, pattern are defined as follows:
|
||||
\begin{center}
|
||||
\begin{tabular}{ll}
|
||||
pattern & Patterns\\
|
||||
\hline
|
||||
\_ & wildcard\\
|
||||
x & variable\\
|
||||
c(p₁,p₂,\ldots{},pₙ) & constructor pattern\\
|
||||
(p₁\(\vert{}\) p₂) & or-pattern\\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
Values are defined as follows:
|
||||
\begin{center}
|
||||
\begin{tabular}{ll}
|
||||
values & Values\\
|
||||
\hline
|
||||
c(v₁, v₂, \ldots{}, vₙ) & constructor value\\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
The entire pattern matching code can be represented as a clause matrix
|
||||
that associates rows of patterns (p\(_{\text{i,1}}\), p\(_{\text{i,2}}\), \ldots{}, p\(_{\text{i,n}}\)) to
|
||||
lambda code action lⁱ
|
||||
\begin{equation*}
|
||||
(P → L) =
|
||||
\begin{pmatrix}
|
||||
p_{1,1} & p_{1,2} & \cdots & p_{1,n} & → l₁ \\
|
||||
p_{2,1} & p_{2,2} & \cdots & p_{2,n} & → l₂ \\
|
||||
\vdots & \vdots & \ddots & \vdots & → \vdots \\
|
||||
p_{m,1} & p_{m,2} & \cdots & p_{m,n} & → lₘ
|
||||
\end{pmatrix}
|
||||
\end{equation*}
|
||||
|
||||
Most native data types in OCaml, such as integers, tuples, lists,
|
||||
records, can be seen as instances of the following definition
|
||||
|
||||
\begin{verbatim}
|
||||
type t = Nil | One of int | Cons of int * t
|
||||
\end{verbatim}
|
||||
that is a type \emph{t} with three constructors that define its complete
|
||||
signature.
|
||||
Every constructor has an arity. Nil, a constructor of arity 0, is
|
||||
called a constant constructor.
|
||||
|
||||
The pattern \emph{p} matches a value \emph{v}, written as p ≼ v, when one of the
|
||||
following rules apply
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{llll}
|
||||
& & & \\
|
||||
\hline
|
||||
\_ & ≼ & v & ∀v\\
|
||||
x & ≼ & v & ∀v\\
|
||||
(p₁ \(\vert{}\)$\backslash$ p₂) & ≼ & v & iff p₁ ≼ v or p₂ ≼ v\\
|
||||
c(p₁, p₂, \ldots{}, pₐ) & ≼ & c(v₁, v₂, \ldots{}, vₐ) & iff (p₁, p₂, \ldots{}, pₐ) ≼ (v₁, v₂, \ldots{}, vₐ)\\
|
||||
(p₁, p₂, \ldots{}, pₐ) & ≼ & (v₁, v₂, \ldots{}, vₐ) & iff pᵢ ≼ vᵢ ∀i ∈ [1..a]\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
We can also say that \emph{v} is an \emph{instance} of \emph{p}.
|
||||
|
||||
When we consider the pattern matrix P we say that the value vector
|
||||
\(\vec{v}\) = (v₁, v₂, \ldots{}, vᵢ) matches the line number i in P if and only if the following two
|
||||
conditions are satisfied:
|
||||
\begin{itemize}
|
||||
\item p\(_{\text{i,1}}\), p\(_{\text{i,2}}\), \(\cdots{}\), p\(_{\text{i,n}}\) ≼ (v₁, v₂, \ldots{}, vᵢ)
|
||||
\item ∀j < i p\(_{\text{j,1}}\), p\(_{\text{j,2}}\), \(\cdots{}\), p\(_{\text{j,n}}\) ⋠ (v₁, v₂, \ldots{}, vᵢ)
|
||||
\end{itemize}
|
||||
|
||||
We can define the following three relations with respect to patterns:
|
||||
\begin{itemize}
|
||||
\item Patter p is less precise than pattern q, written p ≼ q, when all
|
||||
instances of q are instances of p
|
||||
\item Pattern p and q are equivalent, written p ≡ q, when their instances
|
||||
are the same
|
||||
\item Patterns p and q are compatible when they share a common instance
|
||||
\end{itemize}
|
||||
\end{enumerate}
|
||||
|
||||
\subsection{1.2.1.1 Initial state of the compilation}
|
||||
\label{sec:orgc758fe3}
|
||||
|
||||
Given a source of the following form:
|
||||
|
||||
\#+BEGIN\_SRC ocaml
|
||||
match x with
|
||||
\begin{center}
|
||||
\begin{tabular}{l}
|
||||
p₁ -> e₁\\
|
||||
p₂ -> e₂\\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\ldots{}
|
||||
\begin{center}
|
||||
\begin{tabular}{l}
|
||||
pₘ -> eₘ\\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\#+END\_SRC ocaml
|
||||
|
||||
the initial input of the algorithm consists of a vector of variables
|
||||
\(\vec{x}\) = (x₁, x₂, \ldots{}, xₙ) of size n
|
||||
and a clause matrix P → L of width n and height m.
|
||||
|
||||
\begin{equation*}
|
||||
(P → L) =
|
||||
\begin{pmatrix}
|
||||
p_{1,1} & p_{1,2} & \cdots & p_{1,n} → l₁ \\
|
||||
p_{2,1} & p_{2,2} & \cdots & p_{2,n} → l₂ \\
|
||||
\vdots & \vdots & \ddots \vdots → \vdots \\
|
||||
p_{m,1} & p_{m,2} & \cdots & p_{m,n} → lₘ
|
||||
\end{pmatrix}
|
||||
\end{equation*}
|
||||
\end{document}
|
|
@ -521,7 +521,7 @@
|
|||
"⋝":"\\eqgtr",
|
||||
"⋞":"\\curlyeqprec",
|
||||
"⋟":"\\curlyeqsucc",
|
||||
"⋠":"\\npreccurlyeq",
|
||||
"⋠":"\\npreceq",
|
||||
"⋡":"\\nsucccurlyeq",
|
||||
"⋢":"\\nsqsubseteq",
|
||||
"⋣":"\\nsqsupseteq",
|
||||
|
|
Loading…
Reference in a new issue