
Secure Socket Layer
&

Transport Layer Security

Dipartimento di Informatica

Università degli Studi di Torino

 1

«simplified» SSL

 2

Client Serverclient_hello

server_hello

certificate

EncryptPK(server)(k)

Encrypt&MACk(Data)

Secure Socket Layer &
Transport Layer Security

• SSL was initially proposed by
Netscape

• Initially an Internet Draft
• Now an IETF Internet Standard

(RFCs defining SSLv3 and TLS)

 3

SSL architecture

• Based on TCP transport
• Two protocol levels
• The SSL Record Protocol provides a

security layer to upper-level protocols:
– E.g. HTTP, POP3, IMAP, LDAP, SMTP
– 3 protocols that are part of the SSL suite:

• Handshake
• Change Cipher Spec
• Alert

 4

SSL architecture

 5

IP

TCP

SSL Record Protocol

SSL Handshake
Protocol

SSL Change
Cipher Spec

Protocol

SSL Alert
Protocol HTTP

Connections and Sessions

• Connection: based on a connection-
oriented protocol, where peer devices
communicate in a reliable way (e.g., with
TCP). Every connection is associated to one
session.

• Session: association between two peers.
Defines a set of encryption and
authentication parameters that are used by
one or more related connections, as part of
a higher level set of communication events.

 6

• Two peers (e.g., a Browser and a Web
Server) may simultaneously run
more than one secure connection.

• Two simultaneous sessions, are also
possible, in principle.

 7

Connections and Sessions

Session state

• Session identifier: id of session state
• Peer certificate: certificate X.509v3 of the

peer entity (may be empty)
• Compression method
• Cipher spec: encryption and hash

algorithms, as well as the hash size
• Master secret: 48 secret bytes, shared by

the two peers
• Is resumable: set to true if it is possible to

start new connections within this session

 8

Connection state

• Server & Client Random: random bytes used within
this connection

• Server write MAC secret: secret key used for
computing MACs sent by the server

• Client write MAC secret: secret key used for computing
MACs sent by the client

• Server write key: encryption key for data sent by
server

• Client write key: encryption key for data sent by client
• Initializaton vectors: used for CBC encryption
• Sequence numbers: must be < 264-1; set to 0 after

change cypher spec

 9

Session state

• The Handshake Protocol creates a
“pending” state, that becomes the
“current” state after the handshake
is complete.

 10

SSL Record Protocol
Provides confidnetiality and integrity, based on two keys

that are shared during the handshake.
Data from the upper layer protocol are process as follows:

 11

Upper layer data

Fragmentation

Compression

MAC

Cifratura

Add SSL Header

SSL Record Protocol

• Fragmntation: blocks <= 214 bytes
• Compression: optional, lossless
• MAC = hash(MAC _write_secret |

pad2 | hash(MAC _write_secret | pad1 |
Seq_num | Type| Length| Fragment))

pad1: 0x36 48 (MD5) or 40 (SHA-1)
pad2: 0x5C 48 (MD5) or 40 (SHA-1)
Type: higher level protocol that has produced

the Fragment of size Length (after
compression)

 12

SSL Record Protocol

• Encryption: also covers the MAC
– Block ciphers: IDEA (128), RC2-40 (40),

DES-40 (40), DES (56), 3DES (168),
Fortezza (80) – padding may be
necessary.

– Stream ciphers: RC4-40 (40), RC4-128
(128)

 13

 Max length canno exceed 214+2048

SSL Record Protocol

SSL Header :

Content Type:
– change_cipher_spec
– alert
– handshake
– application protocol

 14

Content
Type

Major
Version (3)

Minor
Version (0)

Compressed Length
 214+2048

Change Cipher Spec
Protocol

• One of the three SSL protocols
• Just one message with one byte, that

must be equal to 1 (00000001)
• Pending state => current state

 15

Alert Protocol

• Alert messages are sent over the Record
protocol (with possible compression and
encryption)

• 2 bytes
– 1 byte for the alert level (warning [1] or fatal

[2])
– 1 byte for the code

• The fatal level alerts close the connection
and prevent further connections from
being opened within the same session.

 16

Alert Protocol

• Examples of fatal alerts:
– unexpected_message
– bad_record_mac: MAC is wrong
– decompression_failure
– handshake_failure: security parameters

uncacceptable
• Other errors:

– certificate_expired
– certificate_revoked
– close_notify: sender does not intend to write any

further

 17

Peer authentication

• Server & Client authentication
• Server authentication only
• No authentication (man-in-the-middle

attacks are possible)

 18

Handshake Protocol

• The handshake protocol provides:
– possible server and client

authentication
– encryption, hash, and compression

algorithm negotiation
– key exchange mechanisms

• Message format:

 19

Type (1) Length (3) Content (1)

Handshake Protocol

 20

Client Serverclient_hello

server_hello Phase 1

certificate

server_key_exchange

certificate_request

server_hello_done

Phase 2

certificate

client_key_exchange

certificate_verify Phase 3

Optional

Handshake Protocol

 21

Client Server

change_cipher_spec

finished

Phase 4

change_cipher_spec

finished

Handshake Protocol: Phase
1

• Creates a logical connection and associates
security parameters & services

• Client initiates the handshake by sending a
client_hello message with these parameters:
– Version (highest supported)
– Random (28 byte random + 4 byte antireplay

timestamp)
– Session Id (0 update or new connection, =0 new

session and connection)
– Compression Method (client-supported algorithms)
– Cipher Suite (security parameters)

 22

Handshake Protocol: Phase
1

• client_hello may also be used to re-negotiate the
security parameters

• server may request a client_hello by sending a
hello_request parameterless message

• server_hello completes the parameter
negotiation for the session’s security
parameters: version (lowest between the one
proposed by client and the highest supported by
server), Cipher Suite, Compression algorithm.
– Session Id is new if client had sent a 0
– Random is a new value (28+4 bytes)

 23

Cipher Suite

• Contains two information sets:
– Key Exchange Method: specifies the

key exchange method
– CipherSpec: specifies the encryption

and message authentication
algorithms that will be used

 24

Key Exchange Method

• RSA: secret session key is encrypted
with the peer’s public key

• Fixed Diffie-Hellman: the server
certificate contains the DH public
parameters; the client’s DH public
parameters are sent in a certificate (if
client authentication is required), or in
the following key exchange message (If
client authentication is not required)

 25

Key Exchange Method

• Ephemeral Diffie-Hellman: Diffie-
Hellman public keys are signed with the
sender’s private key KS (RSA or DSS); the
receiver verifies authenticity using the
corresponding public key KP (contained in
the sender’s certificate)

• Anonymous Diffie-Hellman: DH public
parameters are sent without
authentication (exposed to man-in-the-
middle attacks)

 26

CipherSpec
• Encryption algorithm
• MAC algorithm
• stream or block cipher choice
• Hash size
• Initialization Vector size for CBC

encryption

 27

Signature method

• Signatures are based on the following
hash value:

hash(client_hello.random | server_hello.random |
Data_to_be_signed)

so as to avoid replay attacks
• With DSS hash=SHA-1
• With RSA, hash=hashMD5 | hashSHA-1

 28

Handshake Protocol: Phase
2

• Server starts by sending its certificate
within an X.509 certificate chain
(except for anonymous DH)

• If the certificate contains fixed DH
parameters, this message also
accomplishes the server key exchange

• If RSA key exchange is used, there is
no need for a subsequent
server_key_exchange message

 29

Handshake Protocol: Phase
2

• A server_key_exchange message is sent for:
– Anonymous Diffie-Hellman: contains the common

parameters (q,α) and the server’s public key PUs

– Ephemeral Diffie-Hellman: contains the common
parameters (q,alfa) and the server’s public key PUs,
together with the signature of the same values

– RSA key exchange: the RSA key included in the
certificate may be used for signatures only, and a
new RSA key pair is generated to be used for
encrypting the pre_master_secret. The public
component of this new key pair is signed with the
RSA key corresponding to the primary RSA key
contained in the certificate, and this signed public
key is sent in the server_key_exchange message.

 30

Handshake Protocol: Phase
2

• A non-anonymous server may request a
client certificate with a
certificate_request message, containing
two parameters:
– Certificate type: signature only RSA (or

DSS), RSA (or DSS) for fixed Diffie-Hellman,
RSA (or DSS) for ephemeral Diffie-Hellman

– CA: DN of acceptable CAs

• The server concludes phase 2 with a
server_done message

 31

Handshake Protocol: Phase
3

• After the server_done message, the
client verifies the certificate and the
server_hello parameters

• If the server has requested a certificate:
– If the client has one, this is sent in a

certificate message.
– Otherwise a no_certificate alert is sent

 32

Handshake Protocol: Phase
3

• A client_key_exchange message is
sent, containing, depending on the key
exchange type:
– RSA: a pre_master_secret encrypted with

the server’s public key
– Ephemeral or anonymous Diffie-

Hellman: the client’s public parameters
– Fixed Diffie-Hellman: nothing, as the

parameters were already part of the
certificate

 33

Handshake Protocol: Phase
3

• finally, the client may send a
certificate_verify message,
containing a signature of previously
sent data and of the
master_secret.

 34

Handshake Protocol: Phase
4

• The client sends a change_cipher_spec
message (not part of the handshake protocol).
This will make the pending state current.

• The client sends a finished message, using the
new context (encryption and authentication
methods and keys). The finished message
contains hash values computed on the master
secret and on all previously exchanged
handshake protocol messages

• The same is done by the server and the
session may continue using the new context

 35

Key generation
• The handshake protocol provides end to end

authentication, and after this a
pre_master_secret is shared;

• The pre_master_secret was sent as encrypted
data with RSA or is based on the DH shared key
if Diffie-Hellman is used;

• The 16*3 = 48 byte master_secret is
computed as a hash of constant strings (‘A’,
‘BB’, ‘CCC’), previously exchanged random
data, and the pre_master_secret;

• The master_secret is used as a seed for
generating further secrets and keys. It is shared
by client and server.

 36

Key generation
• The following keys must be generated:

– Client MAC write
– Server MAC write
– Client write secret key
– Server write secret key
– IV for client write
– IV for server write

These values are generated by applying MD5
and SHA-1 on master_secret, random
values and constants (‘A’, ‘BB’, ‘CCC’,).

 37

Key generation
• master_secret:

master_secret = MD5(pre_master_secret | SHA(‘A’ |
pre_master_secret | client_hello.random |

server_hello.random)) |
MD5(pre_master_secret | SHA(‘BB’ | pre_master_secret |

client_hello.random | server_hello.random)) |
MD5(pre_master_secret | SHA(‘CCC’ | pre_master_secret |

client_hello.random | server_hello.random))

• other keys - repeatedly apply the following:
key_sequence = MD5(master_secret | SHA(‘A’ | master_secret |

client_hello.random | server_hello.random)) |
MD5(master_secret | SHA(‘BB’ | master_secret |

client_hello.random | server_hello.random)) |
MD5(master_secret | SHA(‘CCC’ | master_secret |

client_hello.random | server_hello.random)) |

 38

Transport Layer Security

• RFC 2246
• Version 3.1
• Uses HMAC (RFC 2104), e.g,:

MAC = HMAC_MD5MAC _write_secret (Seq_num | Type
| Version | Length | Data
Fragment)

• Uses a different function for key
generation

 39

Transport Layer Security
Pseudorandom function

PRF(secret, label, seed):
Based on the following:

A(0) = seed
A(i+1) = HMAC_hfsecret (A(i))

P_hf(secret,seed) = HMAC_hfsecret(A(1) | seed) |
 HMAC_hfsecret(A(2) | seed) |
 HMAC_hfsecret(A(3) | seed) |

hf = MD5 or SHA-1
PRF(S1 | S2, label, seed) = P_MD5(S1, label| seed)

 P_SHA-1(S2, label| seed)

 40

Transport Layer Security

TLS adds some Alert codes: es. (fatal)
• decryption_failed
• record_overflow
• unknown_ca
• insufficient_security
• protocol_version
• internal_error

 41

Transport Layer Security

• CipherSuites: same as SSLv3, without
Fortezza

• Client certificates:
– rsa_sign
– dss_sign
– rsa_fixed_dh
– dss_fixed_dh

• Padding: data must be aligned to block
dimension, max 255 bytes

 42

TLS: key generation
• certificate_verify: hash computed on handshake

messages only (no master_secret)
• finished:

PRF(master_secret, finished_label,
MD5(handshake_messages) | SHA-
1(handshake_messages))

finished_label = “client finished” or “server finished”

• master_secret = PRF(pre_master_secret, “master
secret”, client_hello.random |
server_hello.random)

• key_sequence = PRF(master_secret, “key expansion”,
 SecurityParameters.server_random |
SecurityParameters.client_random)

 43

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

