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Predictive machine learning scenarios

+ A predictive machine learning is one where given a
dataset of labelled data, a learning algorithm is asked to
build a model capable of making predictions about
“some property” of new (previously unseen) examples.

4+ Depending on the kind of labels attached to the data and
of which “property” the algorithm is asked to predict, we
can distinguish between the following tasks:
classification, scoring and ranking, probability estimation,

and regression.




Classification

A classifier is a mapping:
c: & =€
where:
¢ ={C1,Co,...,C}

the “hat” over the name of the classifier denotes that the
classifier i1s an approximation of the true but unknown
function c.

An example Is a palir:
(x,c(x)) € & X €

where x Is an “instance” and c(x) is the true class of the
instance (possibly contaminated by noise).



Classification

Learning a classifier involves constructing the function ¢ such
that it matches ¢ as closely as possible (and not just on the
training set, but ideally on the entire instance space Z).



Sinary classification
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A decision tree

[ ‘Viagra’ ]
20 correct

5 errors / \
Iottery ] ¢(x) = spam

[‘Viagra’

Feature tree

40 correct

20 errors 10 correct

5 errors

accuracy = (40 + 10 + 20)/100 = 70%




Contingency table

® ®

QL L

® -

S O

= D

H- a

et || e cho=ham | (o) = spam
Predicted Predicted

Actual 30 20 50
Actual 10 40 50

40 60 100




Contingency table
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Performance measures

Measure Definition Equal to Estimates
number of positives Pos=) ye1eIlc(x) = @]

number of negatives Neg =) ve1ellc(x) =] | Te| — Pos

number of true positives TP=) yc1pI[C(x) =c(x) =]

number of true negatives TN =) ye1ellC(x) = c(x) =]

number of false positives  FP=) yc1ellC(x) =&,c(x) =] Neg— TN

number of false negatives FN =) ,cpI[C(x)=9,c(x)=®] Pos— TP

proportion of positives pos = ﬁ Y xeTe Ilc(x) = @] Pos/|Te| P(c(x) =)
proportion of negatives neg = ﬁ Y veTellc(x) = <] 1 - pos P(c(x) =9)
class ratio clr = pos/ neg Pos/ Neg

(*) accuracy acc = ﬁ Y veTeIlC(x) = c(x)] P(c(x) =c(x))
(*) error rate err = ﬁ Y veTeI[C(x) # c(x)] 1 —acc P(C(x) # c(x))




Performance measures

Measure Definition Equal to Estimates

 number of positives ~ Pos=Y yepllc(0) = a]

| number of negatives  Neg=Y yeqpllc(x) =]

number of true positi

number of true negat
number of false posit
number of false nega
P(c(x) = o)
P(c(x)=9)

proportion of positive
proportion of negativ
class ratio
P(¢(x) = c(x))
P(C(x) # c(x))

(*) accuracy

(*) error rate




Performance measures

Measure Definition Equal to Estimates
number of positives Pos=) yeeIlc(x) = @]
number of negatrves Neg Z xeTe I[c(x) = <] | Te| — Pos

,j’ number of true posrtrves

TP S 00 <=5

number of true ne

Neg— TN

Pos— TP

Pos/|Te| P(c(x) =)
1 — pos P(c(x) = o)
Pos/ Neg

number of false p

number of false n
proportion of posi
proportion of neg
class ratio
P(¢(x) = c(x))
1 —acc P(¢(x) # c(x))

(*) accuracy

(*) error rate




Performance measures

Measure Definition Equal to Estimates
number of positives Pos=) ye1oI[c(x) = @]

number of negatives Neg =) ve1ellc(x) =] | Te| — Pos

number of trueposmves ~ TIP= erTeI[c(x) = c(x) _ ]

number of true neganves, TN erTeI[c(x) - c(x) ' "

number of false positives TN

number of false negative — TP
proportion of positives /N Te| P(c(x) =)
proportion of negatives bos P(c(x)=9)
class ratio / Neg

P(¢(x) = c(x))
1cC P(¢(x) # c(x))

(*) accuracy

(*) error rate




Performanc
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Performance measures
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Contingency table
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Coverage Plot
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Coverage Plot
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Coverage plots properties

Pos
TP
FP Neg
Classifiers with the same Classifiers with the same
accuracy are on lines with are on lines parallel to
slope 1 the main diagonal

| — B | —

= (recall + specificity)/2 = (pos-rec + neg-rec)/2 = (TP/POS + TN/NEG)/2



Roc plots properties

tpr

for 1
Classifiers with the same

Classifiers with the same

accuracy are on lines with are on lines parallel to
slope Neg/Pos the main diagonal (i.e., with

— slope 1)

-



FInding the optimal classitier

Each point in this I I
ROCplot |77 P
corresponds to a 5 o }
different threshold ¢
and, thus a 2 5 i
different classifier. 2
Which one Is N
best? °
O.|25 O.|50 O.|75 1.00

False positive rate



Finding the optimal point

|Isometrics can be : T ’
set to give more .

importance to one ° I

class even if the S |

class ratio would ¢

suggest otherwise. § &- I

f | have different = |

costs for FP and for ~ ©

FN, | can use =

iIsometrics of slope

1/C, where C = j . . .
COSt(FN)/COSt(FP) 0.25 0.50 0.75 1.00

False positive rate



Scoring and ranking

4 )
Probability Scoring and
estimation Ranking




Scoring classifier

A scoring classifier is a mapping:
$: 2 - RF
the boldface notation denotes that the output is a vector, 1.e.:

S(z) = (51(), ..., 5k(2))
where the /-th component is the score assigned to class C;for
iInstance x.

If we only have two classes, it usually suffices to consider the
score for only one of the classes.

Important: here scores are always to be interpreted in the
context of a classifier, they are not learned from “true” scores;
rather, they are a measure of the confidence the classifier has in
its prediction.



A scoring tree

[‘Viagra)

[ ‘lottery’ ) Sﬁzmz_ 20

£

spam: 20
ham: 40

spam: 10
ham: 5

A feature tree
with training set
class distribution
on the leaves

[‘Viagra)

Iottery ) S(x)

/X

+2

S(x) = -1 S(x) = +1

A scoring tree
using the logarithm
of the class ratio
as scores



Margin

If we take the true class c¢(x) as +1 for positive examples
and -1 for negative examples, then the quantity:

+|8(x)| if §is correct on x
—|8(x)| otherwise

IS called the margin assigned by the scoring classifier to
the example




| 0oss functions

We would like to reward large positive margins, and penalise
large negative ones. This is achieved by means of a so-called

loss function L : R — /0, «o) which maps each example’s margin
z(x) 1o an associated loss L(z(x)).

We will assume that L(0) = 1, which is the loss incurred by having

an example on the decision boundary. We furthermore have L(z)
>] forz < 0, and usually also 0 <L(z) < I for z >0.

~incorrectly classified examples {0 correctly classified examples  © z




| 0oss functions

Loss functions are particularly important dur
since they are used to guide the search for t
solution. Changing the loss function may sig

iNg learning

ne optimal
nificantly

change the quality of the output of the learni

ng algorithm.



0-1 Loss

10

Loy (z) =1ifz<0,and Ly;(z) =0if z>0




Hinge Loss

10

Ihwz)=(1—-2)ifz<1,and LL(2)=0ifz>1

-1.5 -1 -0.5 0 0.5 1 1.5




Logistic Loss

10

Liog(2) =log, (1 + exp (—2))

1.5




—Xponential Loss

10

Lexp(2) = exp (—2)




Squared Loss

10

Lsq(2) = (1 - 2)°




| 0oss functions
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Ranking

[v.agra) [‘Viagra)
/ ¢ /

spam: 20 _
Iottery ) ham: 5 Iottery S(x) = +2
/ \ /0 \=1
spam: 20 spam: 10 alvY — Aroy
ham: 40 ham: 5 S == b=

A scoring function naturally induce a ranking function: it suffices to
sort instances according to the received score.

The scoring on the right produce the following ranking of the tree
leaves (and, thus, of the instances associated with them):

[20+,5-],[10+,5-],[20+,40-]




Ranking error rate

The ranking error rate is defined as:

ZxETe@,x’eTee ][§()/c) < $(x)]+ %I[§(x) = §(x")]

rank-err =

Pos- Neg

1 point of penality due to
a ranking error: a 1/2 point of penality for

positive example Is tying examples having
ranked below a negative different classes
example




Ranking error examples

2
S e S A
rank-err(x], 25, T5 , X, , T8 , Tg , Tr , Ly ) = — =

1
16 8

15
= T . . s ot et e} — —
rank_err(xl7392739373347395739673773338)_5X3_1



Ranking error

example
4+ The 5 negatives in the right leaf are scored
higher than the 10 positives in the middle leaf Viagra’
and the 20 positives in the left leaf, resulting
In
50 + 100 = 150 ranking errors. /
4+ The 5 negatives in the middle leaf are scored
higher than the 20 positives in the left leaf, ‘Iotter spam: 20
giving a further 100 ranking errors. y ham: 5
+ In addition, the left leaf makes 800 half =12
ranking errors (because 20 positives and 40
negatives get the same score), the middle leaf
50 and the right leaf 100. spam: 20 spam: 10

ham: 40 ham: 5

4+ In total we have 725 ranking errors out of a L L
possible 50-50=2500, corresponding to a 8($) = —1 S(fE) = +1
ranking error rate of 29% or a ranking
accuracy of 71%.



Sinary classifiers and Ranking functions

Given a ranking function A one can create different binary
classifiers based on & by choosing different thresholds:




Probabllity estimation

4 )
Probability Scoring and
estimation Ranking




Class probabillity estimation

A class probabillity estimator is a scoring classifier that
outputs probability vectors over classes, I.e., a mapping:
P: ¥ —[0,1]*

We write: ) ) )
p(x) = (p1(x),..., Pr(x))

where the I-th component is the probabillity assigned to
class C; and Zle pi(x) =1.

if we have only two classes, then p(x) denotes the
estimated probability for the positive class.




Probabllity estimation tree
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(cViagra)
/

Probability estimation tree

Iottery )

P(x)=0.33

- \

p(x)=0.80

p(x)=0.67




Mean squared probability error

The squared error (SE) of the predicted probability vector

on an example x is defined as:

L, .

where 1., is a vector having 1 in the position
corresponding to label ¢(x) and O In all other positions.



SE example (1)

Let us assume: p(x) = (0.7,0.1,0.2)

and that ¢(x)=Cj yielding I.x)=(1,0,0)
SE(x) would then be evaluated as:

2
1(—0.3,0.1,0.2)||3

)
0.0940.01 4 0.04

2
0.14
= —— = 0.07
2

SE(r) =




SE example (2)

Let us assume: p(z) = (0,1,0)

and that ¢(x)=Cj yielding I.x)=(1,0,0)
SE(x) would then be evaluated as:
‘(07 ]-7 O) o (17 07 O) H%

SE(zr) = 5

|(=1,1,0)[3
2
1+1+0
2
2
—
2




SE example (3)

Consider these cases:
c(x) = Cj
p(z) = (0.7,0.1,0.2) yielding SE(xz) = 0.07

p(x) = (0.99,0,0.01) yielding SE(x) = 0.0001

p(z) = (0.7,0.1,0.2) yielding SE(x) = 0.57
p(x) = (0.99,0,0.01) yielding SE(x) = 0.98



Mean squared error

The mean squared error is simply the average SE over all
iInstances in the test set:

Exercise: evaluate the squared error of the tree in our
running example:

4+ assuming that estimated probabilities for the three leafs
(from left to right) are 0.33,0.67, and 0.80 (solution: ~0.21)

4+ assuming that estimated probabilities are instead
0.10,0.80, and 0.90 (solution: ~0.24)



—mpirical Probabllities

Empirical probabilities are important as they allow us to obtain
or finetune probability estimates from classifiers or rankers. If
we have a set § of labelled examples, and the number of
examples in § of class C; Is denoted »n; , then the empirica
probabillity vector associated with S'Is:

p(S) = (na /IS, ..., nx/15])



Laplace correction

It is almost always a good idea to smooth these relative frequencies. The most
common way to do this is by means of the Laplace correction:

In effect, we are adding uniformly distributed pseudo-counts to each of the &
alternatives, reflecting our prior belief that the empirical probabillities will turn out
uniform.
We can also apply non-uniform smoothing by setting

- (S) = ni+m-7;

Py = S+ m

This smoothing technigue, known as the m-estimate, allows the choice of
the number of pseudo-counts m as well as the prior probabillities ;.

The Laplace correction is a special case of the m-estimate with m =k
and m; = 1/k.



Seyond binary classification
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Multi-class classification
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Performance of multi-class classifiers

: per-class
Predicted recalls

15 2 3 20 15/20=0.75
Actual 7 15 8 30 15/30=0.50
2 3 45 50 45/50=0.90

24 20 56 100

per-class b{/@ Q//Q
precisions \@\‘1’ \@\‘b R




-xtending binary classifiers to handle multi-class
abelings

Various ways to combine several binary classifiers into a
single k-class classifier:

4+ one-vs-rest schemes
e unordered learning
e fixed-order learning

4+ One-vs-one schemes
® symmetric

® asymmetric



one-vs-rest (unordered)

Train &k classifiers:

initial dataset 1vs{2,3} 2vs{1,3} 3vs {12}
X y X y X y x y

/ / -/ -1

3 -/ -/ )i

2 -/ )| -1

/ / -/ -1

3 -/ -/ )i

¢ ¢ ¢




output-code matrix for one-vs-rest (unordered)



output-code matrix for one-vs-rest (fixed-order)

1 2

VS VS
(2,3 {3/




output-code matrix for one-vs-one (Ssymmetric)

1 1 2
VS VS VS
2 3 3

C +1 +1 0
&, —1 0 —|—1
C3 0 —1 -—1



output-code matrix for one-vs-one (asymmetric)

1 2 1 3 2 3
VS VS VS VS VS VS
2 1 3 1 3 2

c; [+1 —1 +1 —1 0 0

C3 0 o -1 +1 -1 +1



Output-code decoding

To classify a new example, a vector w is built containing the
output of the learnt classifiers. The output class is the one
whose row In the output-code matrix is the nearest to w.
Distance between code-words and output vectors is
defined as: d(w,c) = > _.(1 — c;w;)/2

1 2 3
Vs Vs Vs w=(+1-1-1)
{2,3} {1,3) {1,2}
o [+1 -1 —1 d(w.Cy) = 0
C> —1 —|—1 —1 d(w, 02) = 2
c;c \—1 —1 +1 d(w,C3) = 2



Difficulties Iin applying one-vs-rest and one-vs-one
schemes

In the one-vs-rest scheme the single classifiers usually see
highly unbalanced datasets even though the initial dataset is
balanced.

In the one-vs-one scheme the above problem is mitigated
by assigning the O label to examples not belonging to the
two labels being assessed. Particularly problematic when
data Is scarce.
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Real-valued targets

A function estimator, also called a regressor, is a mapping

f X —R
The regression learning problem is to learn a function estimator
from examples (xi, f(xi)).

Note that we switched from a relatively low-resolution target
variable to one with infinite resolution. Trying to match this precision
in the function estimator will almost certainly lead to overfitting —
besides, it is highly likely that some part of the target values in the
examples is due to fluctuations that the model is unable to capture.

It is therefore entirely reasonable to assume that the examples are

noisy, and that the estimator is only intended to capture the general
trend or shape of the function.



Fitting polynomials to data
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A plecewise constant function
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Overfitting

An n-degree polynomial has n+1 parameters and it is always
able to match up to n+1 points.

A piecewise constant model with n segments has 2n-1
parameters and it is always able to match up to » points.

Usually it is true that the larger the number of parameters, the
larger the number of points the model is able to match
(independently on how they are positioned in the space).

However: a rule of thumb is that, to avoid overfitting, the
number of parameters estimated from the data must be
considerably less than the number of data points.



S1as and variance

If we underestimate the number of parameters of the model, we will not
be able to decrease the loss to zero, regardless of how much training
data we have.

On the other hand, with a larger number of parameters the model will
be more dependent on the training sample, and small variations in the
training sample can result in a considerably different model.

This is sometimes called the bias—-variance dilemma: a low-
complexity model suffers less from variability due to random variations
In the training data, but may introduce a systematic bias that even large
amounts of training data can’t resolve; on the other hand, a high-
complexity model eliminates such bias but can suffer non-systematic
errors due to variance.



Bias and Variance

©
©




81as and variance

Interestingly this idea can be captured formally. In fact the
expected loss of the regressor over example x can be
decomposed as:

B ((7@) - f@)| = (@) - BU@)? + Bl(f) ~ BlF)?

= Bias®(f(x)) + Var(f())

zero If the regressor Is correct on average,
otherwise it exhibit a systematic bias

(fx) —E[f@)])’

error due to fluctuations around the

A - 2
E ~E
[(f (0 -E[f0)]) ] average (.e., the variance of the error)



81as and variance
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Var(f(z)) + Bias®(f(z))



Unsupervised and descriptive learning

Beyond Binary
Classification

Multi-class
scores and
probabilities

Multi-class
classification

Unsupervised

Regression ,
Learning




Machine learning tasks
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Predictive vs Descriptive learning

Descriptive:
>
model :

Domain o .
o Discovery
Features -

algorithm

objects

In descriptive learning the task and learning problem coincide: we
do not have a separate training set, and the task is to produce a

descriptive model of the data.

Summarising:
+ In predictive learning the task is to learn a model to label unseen
examples.

4+ In descriptive learning the task is to learn a model describing the
data.



Unsupervised learning

In unsupervised learning there is no labels associated to
the data. The tasks involve figure out regularities in the
data using only the data itself.
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Clustering

Clustering can be thought of as the task of making sense of
data by finding homogeneous groups inside it.



Predictive clustering vs Descriptive clustering

Predictive clustering can be understood as the process
of learning a new labelling function from unlabelled data. A

‘clusterer’ is then a mapping
q:X — €

where € ={Cy,Co,...,Cy} 1S a set of new labels.

In descriptive clustering the model learned from the data
would instead be a mapping

q:D—€
where D IS the used dataset.



Predictive clustering example

25}

1.5+

0.5¢




Machine learning tasks

Predictive model Descriptive model

classification,

Supervised learning .
regression

subgroup discovery

descriptive clustering,
Unsupervised learning  predictive clustering association rule
discovery




Supervised subgroup-discovery

Task definition:
given a labelled dataset {(x, /(x))}, find a function:

g: D — {true, false}
such that G = {x € D|g(x) = true} has a class distribution
markedly different from the original population.

G Is said to be the extension of the subgroup.

Example: in a sales dataset, find a sulbgroup of people
whose propensity to buy a given product is markedly higher
than that of the whole population.



Supervised sub-group discovery

In general sub-group discovery algorithms are guided by an
evaluation measure. Many different ones exist, but most of

them share the following characteristics:

+ they prefer larger sub-groups

+ they are usually symmetric, I1.e., they report the same
value for the sub-group and for its complement (what

does this imply?)



Machine learning tasks

Predictive model

Descriptive model
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Assoclation rules

Task description:

Given an unlabelled dataset D find a set of rules { b — 7/ }
such that the itemset bU# is frequent and that 4 is likely to

hold whenever b holds.

Here b and h are sets of attribute/value pairs.



Assoclation rules

To mine association rules, we first need to identify frequent
temsets (the ones with high support). Once we know that
temset {i;,iz,i3} IS frequent, then all the following rules are

frequent:

] — 12,13 2 — 11,13 13— 11,12
11,12 — 13 11,13 — 12 12,13 — 1]
Among those rules, we want to select those satisfying some

measure. For instance, If we use “confidence” then we would
select those for which supp(b U h)/supp(b) is high.



—Xample

If we set 0.6 as our support
threshold (i.e., an itemset is frequent
whenever it appears in 60% of the
transactions). The following frequent
itemsets can be extracted:

{Bread} (supp:0.8), {Milk} (supp: 0.6),
{Water} (supp:0.6), {Bread, Milk} (supp:0.6)

allowing one to generate the
following rules:

Bread — Milk (conf: 0.6/0.8=0.75)
Milk — Bread (conf: 0.6/0.6=1)

id

Product

Bread
Milk
Water

Bread
Milk

Water
Bread
Ham

Water
Eggs

OO gl AU WO WOIdDNDNDI = =

Bread
Milk




Problems

The brute force approach to this problem would generate all
possible subsets of available items and calculate the
support for each of them. This would require exponential
time (why?).

Much more efficient algorithms exist. Main property that
efficient algorithms exploit is the fact that If an itemset is
unfrequent so are all its supersets.




