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Predictive machine learning scenarios

A predictive machine learning is one where given a 
dataset of labelled data, a learning algorithm is asked to 
build a model capable of making predictions about 
“some property” of new (previously unseen) examples. 

Depending on the kind of labels attached to the data and 
of which “property” the algorithm is asked to predict, we 
can distinguish between the following tasks: 
classification, scoring and ranking, probability estimation, 
and regression.



Classification

ĉ : X ! C

A classifier is a mapping:

where:
C = {C1, C2, . . . , Ck}

the “hat” over the name of the classifier denotes that the 
classifier is an approximation of the true but unknown 
function c.

An example is a pair:
(x, c(x)) 2 X ⇥ C

where x is an “instance” and c(x) is the true class of the 
instance (possibly contaminated by noise).



Classification

Learning a classifier involves constructing the function    such 
that it matches c as closely as possible (and not just on the 
training set, but ideally on the entire instance space     ).

ĉ
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A decision tree

2. Binary classification and related tasks 2.1 Classification

Figure 2.1, p.53 A decision tree
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(left) A feature tree with training set class distribution in the leaves. (right) A decision
tree obtained using the majority class decision rule.
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Contingency table

Predicted ⊕ Predicted ⊖
Actual ⊕ 30 20 50
Actual ⊖ 10 40 50

40 60 100
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Predicted ⊕ Predicted ⊖
Actual ⊕ 30 20 50
Actual ⊖ 10 40 50

40 60 100

Contingency table

TP FN
FP

Pos
NegTN



Performance measures

2. Binary classification and related tasks 2.1 Classification

Table 2.3, p.57 Performance measures I

Measure Definition Equal to Estimates

number of positives Pos =P
x2Te I [c(x) =©]

number of negatives Neg =P
x2Te I [c(x) =™] |Te|°Pos

number of true positives TP =P
x2Te I [ĉ(x) = c(x) =©]

number of true negatives TN =P
x2Te I [ĉ(x) = c(x) =™]

number of false positives FP =P
x2Te I [ĉ(x) =©,c(x) =™] Neg °TN

number of false negatives FN =P
x2Te I [ĉ(x) =™,c(x) =©] Pos°TP

proportion of positives pos = 1
|Te|

P
x2Te I [c(x) =©] Pos/|Te| P (c(x) =©)

proportion of negatives neg = 1
|Te|

P
x2Te I [c(x) =™] 1°pos P (c(x) =™)

class ratio clr = pos/neg Pos/Neg

(*) accuracy acc = 1
|Te|

P
x2Te I [ĉ(x) = c(x)] P (ĉ(x) = c(x))

(*) error rate err = 1
|Te|

P
x2Te I [ĉ(x) 6= c(x)] 1°acc P (ĉ(x) 6= c(x))
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x2Te I [ĉ(x) = c(x) =©]

number of true negatives TN =P
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Performance measures
2. Binary classification and related tasks 2.1 Classification

Table 2.3, p.57 Performance measures II

Measure Definition Equal to Estimates

true positive rate,
sensitivity, recall

tpr =
P

x2Te I [ĉ(x)=c(x)=©]P
x2Te I [c(x)=©] TP/Pos P (ĉ(x) =©|c(x) =©)

true negative rate,
specificity

tnr =
P

x2Te I [ĉ(x)=c(x)=™]P
x2Te I [c(x)=™] TN/Neg P (ĉ(x) =™|c(x) =™)

false positive rate,
false alarm rate

fpr =
P

x2Te I [ĉ(x)=©,c(x)=™]P
x2Te I [c(x)=™] FP/Neg = 1° tnr P (ĉ(x) =©|c(x) =™)

false negative rate fnr =
P

x2Te I [ĉ(x)=™,c(x)=©]P
x2Te I [c(x)=©] FN/Pos = 1° tpr P (ĉ(x) =™|c(x) =©)

precision, confi-
dence

prec =
P

x2Te I [ĉ(x)=c(x)=©]P
x2Te I [ĉ(x)=©] TP/(TP+FP) P (c(x) =©|ĉ(x) =©)

Table : A summary of different quantities and evaluation measures for classifiers on a
test set Te. Symbols starting with a capital letter denote absolute frequencies (counts),
while lower-case symbols denote relative frequencies or ratios. All except those
indicated with (*) are defined only for binary classification.
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false positive rate,
false alarm rate

fpr =
P
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true negative rate,
specificity

tnr =
P
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Coverage plots properties
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Roc plots properties
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Finding the optimal classifier

2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.11, p.71 Finding the optimal point
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Selecting the optimal point on an ROC curve. The top dotted line is the accuracy
isometric, with a slope of 2/3. The lower isometric doubles the value (or prevalence) of
negatives, and allows a choice of thresholds. By intersecting the isometrics with the
descending diagonal we can read off the achieved accuracy on the y-axis.
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Isometrics can be 
set to give more 
importance to one 
class even if the 
class ratio would 
suggest otherwise. 
If I have different 
costs for FP and for 
FN, I can use 
isometrics of slope 
1/c, where c = 
cost(FN)/cost(FP).
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where the i-th component is the score assigned to class Ci for 
instance x.

Scoring classifier

A scoring classifier is a mapping:

the boldface notation denotes that the output is a vector, i.e.:
ŝ : X ! Rk

ŝ(x) = (ŝ1(x), . . . , ŝk(x))

If we only have two classes, it usually suffices to consider the 
score for only one of the classes.

Important: here scores are always to be interpreted in the 
context of a classifier, they are not learned from “true” scores; 
rather, they are a measure of the confidence the classifier has in 
its prediction.



A scoring tree

A feature tree 
with training set 
class distribution 
on the leaves

A scoring tree 
using the logarithm 
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2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.5, p.62 A scoring tree
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(left) A feature tree with training set class distribution in the leaves. (right) A scoring tree
using the logarithm of the class ratio as scores; spam is taken as the positive class.
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Margin

If we take the true class c(x) as +1 for positive examples 
and -1 for negative examples, then the quantity:

z(x) = c(x)ŝ(x) =

(
+|ŝ(x)| if ŝ is correct on x

�|ŝ(x)| otherwise

is called the margin assigned by the scoring classifier to 
the example



Loss functions

We would like to reward large positive margins, and penalise 
large negative ones. This is achieved by means of a so-called 
loss function L : ℝ → [0, ∞) which maps each example’s margin 
z(x) to an associated loss L(z(x)).

We will assume that L(0) = 1, which is the loss incurred by having 
an example on the decision boundary. We furthermore have L(z) 
≥1 for z < 0, and usually also 0 ≤ L(z) < 1 for z >0.

0 z

 L(z)

correctly classified examplesincorrectly classified examples

1



Loss functions

Loss functions are particularly important during learning 
since they are used to guide the search for the optimal 
solution. Changing the loss function may significantly 
change the quality of the output of the learning algorithm.
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Logistic Loss
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Ranking

2. Binary classification and related tasks 2.2 Scoring and ranking

Figure 2.5, p.62 A scoring tree

ʻViagraʼ

ʻlotteryʼ

=0

spam: 20

ham: 5

 =1

spam: 20

  ham: 40

=0

spam: 10

ham: 5

 =1

ʻViagraʼ

ʻlotteryʼ

=0

ŝ(x) = +2

  =1

ŝ(x) = −1

=0

ŝ(x) = +1

 =1

(left) A feature tree with training set class distribution in the leaves. (right) A scoring tree
using the logarithm of the class ratio as scores; spam is taken as the positive class.
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A scoring function naturally induce a ranking function: it suffices to 
sort instances according to the received score. 
The scoring on the right produce the following ranking of the tree 
leaves (and, thus, of the instances associated with them): 
[20+,5-],[10+,5-],[20+,40-]



Ranking error rate

The ranking error rate is defined as:

2. Binary classification and related tasks 2.2 Scoring and ranking

Example 2.3, p.65 Ranking accuracy

The ranking error rate is defined as

rank-err =
P

x2Te©,x 02Te™ I [ŝ(x) < ŝ(x 0)]+ 1
2 I [ŝ(x) = ŝ(x 0)]

Pos ·Neg

t The 5 negatives in the right leaf are scored higher than the 10 positives in
the middle leaf and the 20 positives in the left leaf, resulting in
50+100 = 150 ranking errors.

t The 5 negatives in the middle leaf are scored higher than the 20 positives in
the left leaf, giving a further 100 ranking errors.

t In addition, the left leaf makes 800 half ranking errors (because 20 positives
and 40 negatives get the same score), the middle leaf 50 and the right leaf
100.

t In total we have 725 ranking errors out of a possible 50 ·50 = 2500,
corresponding to a ranking error rate of 29% or a ranking accuracy of 71%.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 81 / 540

1 point of penality due to 
a ranking error: a 

positive example is 
ranked below a negative 

example

1/2 point of penality for 
tying examples having 

different classes



Ranking error examples

rank-err(x+
1 , x

+
2 , x

�
3 , x

+
4 , x

+
5 , x

�
6 , x

�
7 , x

�
8 ) =

2

16
=

1

8



Ranking error 
example

The 5 negatives in the right leaf are scored 
higher than the 10 positives in the middle leaf 
and the 20 positives in the left leaf, resulting 
in 
50 + 100 = 150 ranking errors. 


The 5 negatives in the middle leaf are scored 
higher than the 20 positives in the left leaf, 
giving a further 100 ranking errors. 


In addition, the left leaf makes 800 half 
ranking errors (because 20 positives and 40 
negatives get the same score), the middle leaf 
50 and the right leaf 100. 


In total we have 725 ranking errors out of a 
possible 50·50=2500, corresponding to a 
ranking error rate of 29% or a ranking 
accuracy of 71%.
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ŝ(x) = +2

ŝ(x) = +1ŝ(x) = �1



Binary classifiers and Ranking functions

Given a ranking function h one can create different binary 
classifiers based on h by choosing different thresholds:

x1, x2, x3, x4, x5, . . . , xN
h1

h2

h3

+ -

+ -

+ -



Probability estimation 

Scoring and 
Ranking

Probability 
estimation

EvaluationEvaluation



Class probability estimation

A class probability estimator is a scoring classifier that 
outputs probability vectors over classes, i.e., a mapping:

2. Binary classification and related tasks 2.3 Class probability estimation

Class probability estimation

A class probability estimator – or probability estimator in short – is a scoring
classifier that outputs probability vectors over classes, i.e., a mapping
p̂ : X ! [0,1]k . We write p̂(x) =

°
p̂1(x), . . . , p̂k (x)

¢
, where p̂i (x) is the

probability assigned to class Ci for instance x, and
Pk

i=1 p̂i (x) = 1.

If we have only two classes, the probability associated with one class is 1 minus
the probability of the other class; in that case, we use p̂(x) to denote the
estimated probability of the positive class for instance x.

As with scoring classifiers, we usually do not have direct access to the true
probabilities pi (x).
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Probability estimation tree
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2. Binary classification and related tasks 2.3 Class probability estimation

Figure 2.12, p.73 Probability estimation tree
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A probability estimation tree derived from the feature tree in Figure 1.4.
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Mean squared probability error

The squared error (SE) of the predicted probability vector 
on an example x is defined as:

SE(x) =
1

2
kp̂(x)� Ic(x)k22

=
1

2

kX

i=1

(p̂i(x)� I[c(x) = Ci])
2

where         is a vector having 1 in the position 
corresponding to label c(x) and 0 in all other positions.

Ic(x)



SE example (1)

Let us assume: p̂(x) = (0.7, 0.1, 0.2)

and that c(x)=C1 yielding Ic(x)=(1,0,0) 
SE(x) would then be evaluated as:

SE(x) =
k(0.7, 0.1, 0.2)� (1, 0, 0)k22

2

=
k(�0.3, 0.1, 0.2)k22

2

=
0.09 + 0.01 + 0.04

2

=
0.14

2
= 0.07



SE example (2)

Let us assume:
and that c(x)=C1 yielding Ic(x)=(1,0,0) 
SE(x) would then be evaluated as:

p̂(x) = (0, 1, 0)

SE(x) =
k(0, 1, 0)� (1, 0, 0)k22

2

=
k(�1, 1, 0)k22

2

=
1 + 1 + 0

2

=
2

2
= 1



SE example (3)

Consider these cases:

p̂(x) = (0.7, 0.1, 0.2) yielding SE(x) = 0.07

p̂(x) = (0.99, 0, 0.01) yielding SE(x) = 0.0001

c(x) = C1

c(x) = C3

p̂(x) = (0.99, 0, 0.01) yielding SE(x) = 0.98

p̂(x) = (0.7, 0.1, 0.2) yielding SE(x) = 0.57



Mean squared error

The mean squared error is simply the average SE over all 
instances in the test set:

2. Binary classification and related tasks 2.3 Class probability estimation

Mean squared probability error

We can define the squared error (SE) of the predicted probability vector
p̂(x) =

°
p̂1(x), . . . , p̂k (x)

¢
as

SE(x) = 1
2

kX

i=1
(p̂i (x)° I [c(x) =Ci ])2

and the mean squared error (MSE) as the average squared error over all
instances in the test set:

MSE(Te) = 1
|Te|

X

x2Te
SE(x)

The factor 1/2 in Equation 2.6 ensures that the squared error per example is
normalised between 0 and 1: the worst possible situation is that a wrong class is
predicted with probability 1, which means two ‘bits’ are wrong.
For two classes this reduces to a single term (p̂(x)° I [c(x) =©])2 only referring
to the positive class.
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Exercise: evaluate the squared error of the tree in our 
running example:  

 assuming that estimated probabilities for the three leafs 
(from left to right) are 0.33,0.67, and 0.80 (solution: ~0.21) 
 assuming that estimated probabilities are instead 
0.10,0.80, and 0.90 (solution: ~0.24)



Empirical Probabilities

Empirical probabilities are important as they allow us to obtain 
or finetune probability estimates from classifiers or rankers. If 
we have a set S of labelled examples, and the number of 
examples in S of class Ci is denoted ni , then the empirical 
probability vector associated with S is: 

ṗ(S) = (n1/|S|, . . . , nk/|S|)



Laplace correction

This smoothing technique, known as the m-estimate, allows the choice of 
the number of pseudo-counts m as well as the prior probabilities πi.

It is almost always a good idea to smooth these relative frequencies. The most 
common way to do this is by means of the Laplace correction: 

In effect, we are adding uniformly distributed pseudo-counts to each of the k 
alternatives, reflecting our prior belief that the empirical probabilities will turn out 
uniform.
We can also apply non-uniform smoothing by setting 

The Laplace correction is a special case of the m-estimate with m = k 
and πi = 1/k. 

2. Binary classification and related tasks 2.3 Class probability estimation

Smoothing empirical probabilities

It is almost always a good idea to smooth these relative frequencies. The most
common way to do this is by means of the Laplace correction:

ṗi (S) = ni +1
|S|+k

In effect, we are adding uniformly distributed pseudo-counts to each of the k
alternatives, reflecting our prior belief that the empirical probabilities will turn out
uniform.
We can also apply non-uniform smoothing by setting

ṗi (S) = ni +m ·ºi

|S|+m

This smoothing technique, known as the m-estimate, allows the choice of the
number of pseudo-counts m as well as the prior probabilities ºi . The Laplace
correction is a special case of the m-estimate with m = k and ºi = 1/k.
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Performance of multi-class classifiers

3. Beyond binary classification 3.1 Handling more than two classes

Example 3.1, p.82 Performance of multi-class classifiers I

Consider the following three-class confusion matrix (plus marginals):

Predicted

15 2 3 20
Actual 7 15 8 30

2 3 45 50
24 20 56 100

t The accuracy of this classifier is (15+15+45)/100 = 0.75.

t We can calculate per-class precision and recall: for the first class this is
15/24 = 0.63 and 15/20 = 0.75 respectively, for the second class
15/20 = 0.75 and 15/30 = 0.50, and for the third class 45/56 = 0.80 and
45/50 = 0.90.
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15/20=0.75
15/30=0.50
45/50=0.90

per-class  
recalls

15
/24

=0.6
3

15
/20

=0.7
5

45
/56

=0.8per-class  
precisions

accuracy

  15+15+45 

   100
= 0.75



Extending binary classifiers to handle multi-class 
labelings

Various ways to combine several binary classifiers into a 
single k-class classifier: 

one-vs-rest schemes 
• unordered learning 
• fixed-order learning 
one-vs-one schemes 

• symmetric 
• asymmetric



one-vs-rest (unordered)

Train k classifiers:

…

1 
3 
2 
1 
3

x y
initial dataset

…

-1 
-1 
1 

-1 
-1

x y

…

1 
-1 
-1 
1 

-1

x y

…

-1 
1 

-1 
-1 
1

x y
1 vs {2,3} 2 vs {1,3} 3 vs {1,2}

ĉ1 ĉ2 ĉ3



output-code matrix for one-vs-rest (unordered)

0

@
+1 �1 �1
�1 +1 �1
�1 �1 +1

1

A
C1

C2

C3

1  
vs 

{2,3}

2 
vs 

{1,3}

3 
vs 

{1,2}



output-code matrix for one-vs-rest (fixed-order)

C1

C2

C3

1  
vs 

{2,3}

2 
vs 
{3}0

@
+1 0
�1 +1
�1 �1

1

A



output-code matrix for one-vs-one (symmetric)

C1

C2

C3

1  
vs 
2

1 
vs 
3

2 
vs 
30

@
+1 +1 0
�1 0 +1
0 �1 �1

1

A



output-code matrix for one-vs-one (asymmetric)

C1

C2

C3

1  
vs 
2

2 
vs 
1

1 
vs 
30

@
+1 �1 +1 �1 0 0
�1 +1 0 0 +1 �1
0 0 �1 +1 �1 +1

1

A

3 
vs 
1

2 
vs 
3

3 
vs 
2



Output-code decoding

To classify a new example, a vector w is built containing the 
output of the learnt classifiers. The output class is the one 
whose row in the output-code matrix is the nearest to w. 
Distance between code-words and output vectors is 
defined as: 

0

@
+1 �1 �1
�1 +1 �1
�1 �1 +1

1

A
C1

C2

C3

1  
vs 

{2,3}

2 
vs 

{1,3}

3 
vs 

{1,2}
w = (+1 -1 -1)

d(w, c) =
P

i(1� ciwi)/2

d(w,C1) = 0

d(w,C2) = 2

d(w,C3) = 2



Difficulties in applying one-vs-rest and one-vs-one 
schemes

In the one-vs-rest scheme the single classifiers usually see 
highly unbalanced datasets even though the initial dataset is 
balanced. 

In the one-vs-one scheme the above problem is mitigated 
by assigning the 0 label to examples not belonging to the 
two labels being assessed. Particularly problematic when 
data is scarce.
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Real-valued targets

A function estimator, also called a regressor, is a mapping 

The regression learning problem is to learn a function estimator 
from examples (xi , f(xi )).  

Note that we switched from a relatively low-resolution target 
variable to one with infinite resolution. Trying to match this precision 
in the function estimator will almost certainly lead to overfitting – 
besides, it is highly likely that some part of the target values in the 
examples is due to fluctuations that the model is unable to capture.  

It is therefore entirely reasonable to assume that the examples are 
noisy, and that the estimator is only intended to capture the general 
trend or shape of the function.
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regression learning problem is to learn a function estimator from examples
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Fitting polynomials to data

3. Beyond binary classification 3.2 Regression

Figure 3.2, p.92 Fitting polynomials to data
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(left) Polynomials of different degree fitted to a set of five points. From bottom to top in
the top right-hand corner: degree 1 (straight line), degree 2 (parabola), degree 3, degree
4 (which is the lowest degree able to fit the points exactly), degree 5. (right) A piecewise
constant function learned by a grouping model; the dotted reference line is the linear
function from the left figure.
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3. Beyond binary classification 3.2 Regression

Example 3.8, p.92 Line fitting example

Consider the following set of five points:

x y
1.0 1.2
2.5 2.0
4.1 3.7
6.1 4.6
7.9 7.0

We want to estimate y by means of a polynomial in x. Figure 3.2 (left) shows the
result for degrees of 1 to 5 using tlinear regression, which will be explained in
Chapter 7. The top two degrees fit the given points exactly (in general, any set of
n points can be fitted by a polynomial of degree no more than n °1), but they
differ considerably at the extreme ends: e.g., the polynomial of degree 4 leads to
a decreasing trend from x = 0 to x = 1, which is not really justified by the data.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 124 / 540



A piecewise constant function
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Overfitting

An n-degree polynomial has n+1 parameters and it is always 
able to match up to n+1 points. 

A piecewise constant model with n segments has 2n-1 
parameters and it is always able to match up to n points. 

Usually it is true that the larger the number of parameters, the 
larger the number of points the model is able to match 
(independently on how they are positioned in the space). 

However: a rule of thumb is that, to avoid overfitting, the 
number of parameters estimated from the data must be 
considerably less than the number of data points.



Bias and variance

If we underestimate the number of parameters of the model, we will not 
be able to decrease the loss to zero, regardless of how much training 
data we have.  

On the other hand, with a larger number of parameters the model will 
be more dependent on the training sample, and small variations in the 
training sample can result in a considerably different model.  

This is sometimes called the bias–variance dilemma: a low-
complexity model suffers less from variability due to random variations 
in the training data, but may introduce a systematic bias that even large 
amounts of training data can’t resolve; on the other hand, a high-
complexity model eliminates such bias but can suffer non-systematic 
errors due to variance.



Bias and Variance

3. Beyond binary classification 3.2 Regression

Figure 3.3, p.94 ? Bias and variance
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A dartboard metaphor illustrating the concepts of bias and variance. Each dartboard
corresponds to a different learning algorithm, and each dart signifies a different training
sample. The top row learning algorithms exhibit low bias, staying close to the bull’s eye
(the true function value for a particular x) on average, while the ones on the bottom row
have high bias. The left column shows low variance and the right column high variance.
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Bias and variance

Interestingly this idea can be captured formally. In fact the 
expected loss of the regressor over example x can be 
decomposed as:

3. Beyond binary classification 3.2 Regression

? Bias and variance II

We can make this a bit more precise by noting that expected squared loss on a
training example x can be decomposed as follows:

E
h°

f (x)° f̂ (x)
¢2

i
=

°
f (x)°E

£
f̂ (x)

§¢2 +E
h°

f̂ (x)°E
£

f̂ (x)
§¢2

i

The expectation is taken over different training sets and hence different function
estimators.

The first term on the right is zero if these function estimators get it right on
average; otherwise the learning algorithm exhibits a systematic bias of some
kind.

The second term quantifies the variance in the function estimates f̂ (x) as a
result of variations in the training set.
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otherwise it exhibit a systematic bias
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error due to fluctuations around the 
average (i.e., the variance of the error)

E

⇣
f(x)� f̂(x)

⌘2
�
= (f(x)� E[f̂(x)])2 + E[(f̂(x)� E[f̂(x)])2]

= Bias2(f̂(x)) + Var(f̂(x))



Bias and variance

E[(f(x)� f̂(x)2] = E[f(x)2 � 2f(x)f̂(x) + f̂(x)2]

= E[f(x)2]� 2f(x)E[f̂(x)] + E[f̂(x)2]

= E[f(x)2]� 2f(x)E[f̂(x)] + E[f̂(x)2]� E[f̂(x)]2 + E[f̂(x)]2

= E[f̂(x)2]� E[f̂(x)]2 + f(x)2 � 2f(x)E[f̂(x)] + E[f̂(x)]2

= E[(f̂(x)� E[f̂(x)])2] + (f(x)� E[f̂(x)])2

= Var(f̂(x)) + Bias2(f̂(x))
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Machine learning tasks

Predictive model Descriptive model

Supervised learning classification, 
regression subgroup discovery

Unsupervised learning predictive clustering
descriptive clustering, 

association rule 
discovery



Predictive vs Descriptive learning

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Figure 3.4, p.96 Descriptive learning

Task

Descriptive 

model
Features

Domain 

objects

Discovery 
algorithm

Data

Learning problem

In descriptive learning the task and learning problem coincide: we do not have a
separate training set, and the task is to produce a descriptive model of the data.
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In descriptive learning the task and learning problem coincide: we 
do not have a separate training set, and the task is to produce a 
descriptive model of the data. 
Summarising:  

in predictive learning the task is to learn a model to label unseen 
examples.  
in descriptive learning the task is to learn a model describing the 
data.



Unsupervised learning

In unsupervised learning there is no labels associated to 
the data. The tasks involve figure out regularities in the 
data using only the data itself.



Machine learning tasks

Predictive model Descriptive model

Supervised learning classification, 
regression subgroup discovery

Unsupervised learning predictive clustering
descriptive clustering, 

association rule 
discovery



Clustering

Clustering can be thought of as the task of making sense of 
data by finding homogeneous groups inside it.



Predictive clustering vs Descriptive clustering

Predictive clustering can be understood as the process 
of learning a new labelling function from unlabelled data. A 
‘clusterer’ is then a mapping                   

3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Predictive and descriptive clustering

One way to understand clustering is as learning a new labelling function from
unlabelled data. So we could define a ‘clusterer’ in the same way as a classifier,
namely as a mapping q̂ : X !C , where C = {C1,C2, . . . ,Ck } is a set of new
labels. This corresponds to a predictive view of clustering, as the domain of the
mapping is the entire instance space, and hence it generalises to unseen
instances.

A descriptive clustering model learned from given data D µX would be a
mapping q̂ : D !C whose domain is D rather than X . In either case the labels
have no intrinsic meaning, other than to express whether two instances belong to
the same cluster. So an alternative way to define a clusterer is as an equivalence
relation q̂ µX £X or q̂ µ D £D or, equivalently, as a partition of X or D .
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In descriptive clustering the model learned from the data 
would instead be a mapping
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where D is the used dataset.



Predictive clustering example
3. Beyond binary classification 3.3 Unsupervised and descriptive learning

Figure 3.5, p.98 Predictive clustering
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(left) An example of a predictive clustering. The coloured dots were sampled from three
bivariate Gaussians centred at (1,1), (1,2) and (2,1). The crosses and solid lines are
the cluster exemplars and cluster boundaries found by 3-means. (right) A soft
clustering of the same data found by matrix decomposition.
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Supervised subgroup-discovery

Task definition:  
given a labelled dataset {(x, l(x))}, find a function:

ĝ : D ! {true, false}

such that                                           has a class distribution 
markedly different from the original population. 

G is said to be the extension of the subgroup. 

Example: in a sales dataset, find a subgroup of people 
whose propensity to buy a given product is markedly higher 
than that of the whole population.

G = {x 2 D|ĝ(x) = true}



Supervised sub-group discovery

In general sub-group discovery algorithms are guided by an 
evaluation measure. Many different ones exist, but most of 
them share the following characteristics: 

they prefer larger sub-groups 

they are usually symmetric, i.e., they report the same 
value for the sub-group and for its complement (what 
does this imply?)



Predictive model Descriptive model

Supervised learning classification, 
regression subgroup discovery

Unsupervised learning predictive clustering
descriptive clustering, 

association rule 
discovery

Machine learning tasks



Association rules

Task description: 

Given an unlabelled dataset D find a set of rules { b → h } 
such that the itemset b∪h is frequent and that h is likely to 
hold whenever b holds. 

Here b and h are sets of attribute/value pairs. 

 



Association rules

To mine association rules, we first need to identify frequent 
itemsets (the ones with high support). Once we know that 
itemset {i1,i2,i3} is frequent, then all the following rules are 
frequent: 
i1 → i2,i3               i2 → i1,i3                   i3 → i1,i2  
i1,i2 → i3               i1,i3 → i2                   i2,i3 → i1 
Among those rules, we want to select those satisfying some 
measure. For instance, if we use “confidence” then we would 
select those for which supp(b ∪ h)/supp(b) is high.



Example

If we set 0.6 as our support 
threshold (i.e., an itemset is frequent 
whenever it appears in 60% of the 
transactions). The following frequent 
itemsets can be extracted: 

{Bread} (supp:0.8), {Milk} (supp: 0.6), 
{Water} (supp:0.6), {Bread, Milk} (supp:0.6) 

allowing one to generate the 
following rules: 

Bread → Milk (conf: 0.6/0.8=0.75) 
Milk → Bread (conf: 0.6/0.6=1)

id Product
1 Bread

1 Milk

1 Water

2 Bread

2 Milk

3 Water

3 Bread

3 Ham

4 Water

4 Eggs

5 Bread

5 Milk



Problems

The brute force approach to this problem would generate all 
possible subsets of available items and calculate the 
support for each of them. This would require exponential 
time (why?). 

Much more efficient algorithms exist. Main property that 
efficient algorithms exploit is the fact that if an itemset is 
unfrequent so are all its supersets. 


