
Accelerated Computing

GPU Teaching Kit

Lecture 14.2 - Task Parallelism in CUDA

Module 14 – Efficient Host-Device Data Transfer

2

Objective

– To learn task parallelism in CUDA
– CUDA Streams

3

Serialized Data Transfer and Computation

– So far, the way we use cudaMemcpy serializes data transfer and
GPU computation for VecAddKernel()

Trans. A Trans. B Comp Trans. C

time

Only use one direction,
GPU idle

PCIe Idle
Only use one
direction, GPU
idle

4

Device Overlap

– Some CUDA devices support device overlap
– Simultaneously execute a kernel while copying data between device and host

memory

int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount(&dev_count);
for (int i = 0; i < dev_count; i++) {
cudaGetDeviceProperties(&prop, i);
if (prop.deviceOverlap) …

5

Ideal, Pipelined Timing

– Divide large vectors into segments
– Overlap transfer and compute of adjacent segments

Trans
A.0

Trans
B.0

Trans
C.0

Trans
A.1

Comp
C.0 = A.0 + B.0

Trans
B.1

Comp
C.1 = A.1 + B.1

Trans
A.2

Trans
B.2

Trans
C.1

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

6

CUDA Streams

– CUDA supports parallel execution of kernels and
cudaMemcpy() with “Streams”

– Each stream is a queue of operations (kernel launches and
cudaMemcpy()calls)

– Operations (tasks) in different streams can go in parallel
– “Task parallelism”

6

7

Streams

– Requests made from the host code are put into First-In-First-Out
queues
– Queues are read and processed asynchronously by the driver and device
– Driver ensures that commands in a queue are processed in sequence. E.g.,

Memory copies end before kernel launch, etc.

host thread

cudaMemcpy()
kernel launch
device sync
cudaMemcpy()

FIFO

device driver

8

Streams cont.

– To allow concurrent copying and kernel execution, use multiple
queues, called “streams”
– CUDA “events” allow the host thread to query and synchronize with individual

queues (i.e. streams).

Event

host thread

Stream 0

device driver

Stream 1

9

Conceptual View of Streams

MemCpy A.0
MemCpy B.0

Kernel 0
MemCpy C.0

MemCpy A.1
MemCpy B.1

Kernel 1
MemCpy C.1

Stream 0 Stream 1

Copy Engine

PCIe
up

Kernel
Engine

Operations (Kernel launches, cudaMemcpy() calls)

PCIe
down

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 14 – Efficient Host-Device Data Transfer
	Objective
	Serialized Data Transfer and Computation
	Device Overlap
	Ideal, Pipelined Timing
	CUDA Streams
	Streams
	Streams cont.
	Conceptual View of Streams
	Slide Number 10

