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Objective

– To learn task parallelism in CUDA
– CUDA Streams
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Serialized Data Transfer and Computation

– So far, the way we use cudaMemcpy serializes data transfer and 
GPU computation for VecAddKernel()

Trans. A Trans. B Comp Trans. C

time

Only use one direction, 
GPU idle

PCIe Idle
Only use one 
direction, GPU 
idle
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Device Overlap

– Some CUDA devices support device overlap
– Simultaneously execute a kernel while copying data between device and host 

memory

int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount( &dev_count);
for (int i = 0; i < dev_count; i++) {
cudaGetDeviceProperties(&prop, i);
if (prop.deviceOverlap) … 



5

Ideal, Pipelined Timing

– Divide large vectors into segments
– Overlap transfer and compute of adjacent segments

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1 = A.1 + B.1

Trans 
A.2

Trans 
B.2

Trans 
C.1

Comp 
C.2 = A.2 + B.2

Trans 
A.3

Trans 
B.3
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CUDA Streams

– CUDA supports parallel execution of kernels and 
cudaMemcpy() with “Streams”

– Each stream is a queue of operations (kernel launches and 
cudaMemcpy()calls)

– Operations (tasks) in different streams can go in parallel
– “Task parallelism”
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Streams

– Requests made from the host code are put into First-In-First-Out 
queues
– Queues are read and processed asynchronously by the driver and device
– Driver ensures that commands in a queue are processed in sequence.  E.g., 

Memory copies end before kernel launch, etc.

host thread

cudaMemcpy()
kernel launch
device sync
cudaMemcpy()

FIFO

device driver
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Streams cont.

– To allow concurrent copying and kernel execution, use multiple 
queues, called “streams”
– CUDA “events” allow the host thread to query and synchronize with individual 

queues (i.e. streams).

Event

host thread

Stream 0

device driver

Stream 1
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Conceptual View of Streams

MemCpy A.0
MemCpy B.0

Kernel 0
MemCpy C.0

MemCpy A.1
MemCpy B.1

Kernel 1
MemCpy C.1

Stream 0 Stream 1

Copy Engine

PCIe
up

Kernel 
Engine

Operations (Kernel launches, cudaMemcpy() calls)

PCIe
down
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