
Thread Scheduling

Lecture 3.5 – CUDA Parallelism Model

Accelerated Computing

GPU Teaching Kit



2

Objective
– To learn how a CUDA kernel utilizes hardware execution resources

– Assigning thread blocks to execution resources
– Capacity constrains of execution resources
– Zero-overhead thread scheduling



3

Transparent Scalability

– Each block can execute in any order relative to others. 
– Hardware is free to assign blocks to any processor at any time

– A kernel scales to any number of parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Thread grid
Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time



4

Example: Executing Thread Blocks

– Threads are assigned to Streaming 
Multiprocessors (SM) in block granularity

– Up to 8 blocks to each SM as resource allows
– Fermi SM can take up to 1536 threads

– Could be 256 (threads/block) * 6 blocks 
– Or 512 (threads/block) * 3 blocks, etc.

– SM maintains thread/block idx #s
– SM manages/schedules thread execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

SM



5

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit



6

The Von-Neumann Model with SIMD units

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

Single Instruction Multiple Data
(SIMD)



7

Warps as Scheduling Units

• Each Block is executed as 32-thread Warps
– An implementation decision, not part of the 

CUDA programming model
– Warps are scheduling units in SM
– Threads in a warp execute in SIMD 
– Future GPUs may have different number of 

threads in each warp



8

Warp Example
• If 3 blocks are assigned to an SM and each block has 256 threads, 

how many Warps are there in an SM?
– Each Block is divided into 256/32 = 8 Warps
– There are 8 * 3 = 24 Warps 

…t0 t1 t2 … t31
…

…t0 t1 t2 … t31
…Block 0 Warps Block 1 Warps

…t0 t1 t2 … t31
…Block 2 Warps

Register File

L1 Shared Memory



9

Example: Thread Scheduling (Cont.)
– SM implements zero-overhead warp scheduling

– Warps whose next instruction has its operands ready for consumption are eligible 
for execution

– Eligible Warps are selected for execution based on a prioritized scheduling policy
– All threads in a warp execute the same instruction when selected



10

Block Granularity Considerations
– For Matrix Multiplication using multiple blocks, 

should I use 8X8, 16X16 or 32X32 blocks for Fermi?

– For 8X8, we have 64 threads per Block. Since each SM 
can take up to 1536 threads, which translates to 24 
Blocks. However, each SM can only take up to 8 Blocks, 
only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each 
SM can take up to 1536 threads, it can take up to 6 
Blocks and achieve full capacity unless other resource 
considerations overrule.

– For 32X32, we would have 1024 threads per Block. Only 
one block can fit into an SM for Fermi. Using only 2/3 of 
the thread capacity of an SM. 



GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Lecture 3.5 – CUDA Parallelism Model
	Objective
	Transparent Scalability
	Example: Executing Thread Blocks
	The Von-Neumann Model
	The Von-Neumann Model with SIMD units
	Warps as Scheduling Units
	Warp Example
	Example: Thread Scheduling (Cont.)
	Block Granularity Considerations
	Slide Number 11

