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Objective
– To learn how to apply parallel programming techniques to an 

application 
– Thread coarsening for more work efficiency 
– Data structure padding for reduced divergence
– Memory access locality and pre-computation techniques
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VMD
– Visual Molecular Dynamics

– Visualizing, animating, and analyzing bio-molecular systems
– More than 200,000 users as of 2012
– Batch (movie making) vs. interactive mode
– Run on laptops, desktops, clusters, supercomputers
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Electrostatic Potential Map
– Calculate initial electrostatic potential map around the simulated 

structure considering the contributions of all atoms
– Most time consuming, focus of our example.

potential[j]: potential 
at lattice point being 

evaluated

atom[i]

ri,j: distance from  
lattice point j to 

atom[i]
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Electrostatic Potential Calculation
– The contribution of atom[i] to the electrostatic potential at lattice[j] is 

potential[j] = atom[i].charge / rij. 
– In the Direct Coulomb Summation method, the total potential at 

lattice point j is the sum of contributions from all atoms in the system.
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Overview of Direct Coulomb Summation 
(DCS) Algorithm
– One way to compute the electrostatic potentials on a grid, 

ideally suited for the GPU
– All atoms affect all map lattice points, most accurate

– For each lattice point, sum potential contributions for all 
atoms in the simulated structure: 

potential +=  charge[i] / (distance to atom[i])
– Approximation-based methods such as cut-off summation 

can achieve much higher performance at the cost of 
some numerical accuracy and flexibility
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Direct Coulomb Summation (DCS) Algorithm Detail
– At each lattice point, sum potential contributions for all atoms in the 

simulated structure: 
– potential[j] +=  charge[i] / (distance to atom[i])
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Irregular Input vs. Regular Output
– Atoms come from modeled 

molecular structures, solvent 
(water) and ions

– Irregular by necessity

– Energy grid models the 
electrostatic potential value at 
regularly spaced points

– Regular by design

©Wen-mei W Hwu and David
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Summary of Sequential C Version
– Algorithm is input oriented

– For each input atom, calculate its contribution to all grid points in an x-y slice

– Output (energy grid) is regular
– Simple linear mapping between grid point indices and modeled physical 

coordinates

– Input (atom) is irregular
– Modeled x,y,z coordinate of each atom needs to be stored in the atom array

– The algorithm is efficient in performing minimal 
calculations on distances, coordinates, etc.

9



10

An Intuitive Sequential C Version

The grid parameter gives the 
number of grid points in each 
dimension of the lattice. 

void cenergy (float *energygrid, dim3 grid, float gridspacing, float z, 
const float * atoms, int numatoms) {

int I, j, n;
int k = z / gridspacing;
int automarrdim = numatoms * 4;
For (j=0; j<grid.y; j++) {
float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) I;
float energy = 0.0f;
for (n=0; n<automarrdim; n+=4) {
float dx = x – atoms [n  ];
float dy = y – atomas[n+1];
float dz = z – atoms[n+2];
energy += atomas[c+3]/sqrtf(dx * dx + dz * dz);

}
energygrid[grid.x * grid.y * k + grid.x * j + i= = energy;

}
}

}
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A More Optimized Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float 
*atoms, int numatoms) {

int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom
float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

}
}

Input oriented 
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An More Optimized Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float 

*atoms, int numatoms) {
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each 
atom
float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

}
}
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A More Optimized Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float 

*atoms, int numatoms) {
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each 
atom
float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

}
}
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An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float 

*atoms, int numatoms) {
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each 
atom
float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

}
}
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CUDA DCS Implementation Overview
– Allocate and initialize potential map memory on host CPU
– Allocate potential map slice buffer on GPU
– Preprocess atom coordinates and charges
– Loop over potential map slices:

– Copy potential map slice from host to GPU
– Loop over groups of atoms:

– Copy atom data to GPU
– Run CUDA Kernel on atoms and potential map slice on GPU

– Copy potential map slice from GPU to host
– Free resources
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Straightforward CUDA Parallelization
– Use each thread to compute the contribution of an atom to all grid 

points in the current slice
– Scatter parallelization

– Kernel code largely correspond to intuitive CPU version with outer 
loop stripped

– Each thread corresponds to an outer loop iteration of CPU version
– numatoms used in kernel launch configuration host code
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A Very Slow DCS Scatter Kernel!
void  __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing, 
float z) {

int n = (blockIdx.x * blockDim .x + threadIdx.x) * 4;
float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i]  += charge / sqrtf(dx*dx + dy2+ dz2));

}
}

}
}

Needs to be calculated 
redundantly by every thread
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A Very Slow DCS Scatter Kernel!
void  __global__ cenergy(float *energygrid, float *atoms, dim3 
grid, float gridspacing, float z) {

int n = (blockIdx.x * blockDim .x + threadIdx.x) *4;
float dz = z - atoms[n+2];  // all grid points in a slice have 

the same z  value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have 

the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i]  += charge / sqrtf(dx*dx 

+ dy2+ dz2));
}

}
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Needs to be done as 
an atomic operation
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Scatter Parallelization

Thread 0 Thread 1 …

in

out

iterate over output
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Why is scatter parallelization often used rather than gather?

– In practice, each in element does not have significant effect on all out 
elements

– Output tends to be much more regular than input
– Input usually comes as sparse data structure, where coordinates are part of the data
– One needs to look at the input data to see if an input is relevant to an output value
– Output is usually a regular, grid
– Given an input value, one can easily find output via index calculation
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Challenges in Gather Parallelization
– Regularize input elements so that it is easier to find all in elements 

that affects an out element
– Input Binning (ECE598HK)

– Can be even more challenging if data is non-uniformly distributed
– Cut-off Binning for Non-Uniform Data (ECE598HK)

– For this lecture, we assume that all in elements affect all out 
elements
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Pros and Cons of the Scatter Kernel
– Pros

– Follows closely the simple CPU version
– Good for software engineering and code maintenance
– Preserves computation efficiency (coordinates, distances, offsets) of sequential code

– Cons
– The atomic add serializes the execution, very slow!
– Not even worth trying this.
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