
Accelerated Computing

GPU Teaching Kit

Lecture 16.1 - Electrostatic Potential Calculation - Part 1
Module 16 - Application Case Study – Electrostatic Potential Calculation

2

Objective
– To learn how to apply parallel programming techniques to an

application
– Thread coarsening for more work efficiency
– Data structure padding for reduced divergence
– Memory access locality and pre-computation techniques

3

VMD
– Visual Molecular Dynamics

– Visualizing, animating, and analyzing bio-molecular systems
– More than 200,000 users as of 2012
– Batch (movie making) vs. interactive mode
– Run on laptops, desktops, clusters, supercomputers

4

Electrostatic Potential Map
– Calculate initial electrostatic potential map around the simulated

structure considering the contributions of all atoms
– Most time consuming, focus of our example.

potential[j]: potential
at lattice point being

evaluated

atom[i]

ri,j: distance from
lattice point j to

atom[i]

5

Electrostatic Potential Calculation
– The contribution of atom[i] to the electrostatic potential at lattice[j] is

potential[j] = atom[i].charge / rij.
– In the Direct Coulomb Summation method, the total potential at

lattice point j is the sum of contributions from all atoms in the system.

6

Overview of Direct Coulomb Summation
(DCS) Algorithm
– One way to compute the electrostatic potentials on a grid,

ideally suited for the GPU
– All atoms affect all map lattice points, most accurate

– For each lattice point, sum potential contributions for all
atoms in the simulated structure:

potential += charge[i] / (distance to atom[i])
– Approximation-based methods such as cut-off summation

can achieve much higher performance at the cost of
some numerical accuracy and flexibility

7

Direct Coulomb Summation (DCS) Algorithm Detail
– At each lattice point, sum potential contributions for all atoms in the

simulated structure:
– potential[j] += charge[i] / (distance to atom[i])

©Wen-mei W. Hwu and David Kirk/NVIDIA, Urbana, August 13-17, 2012

potential[j]: potential
at lattice point being

evaluated
atom[i]

ri,j: distance from
lattice point j to

atom[i]

8

Irregular Input vs. Regular Output
– Atoms come from modeled

molecular structures, solvent
(water) and ions

– Irregular by necessity

– Energy grid models the
electrostatic potential value at
regularly spaced points

– Regular by design

©Wen-mei W Hwu and David

9

Summary of Sequential C Version
– Algorithm is input oriented

– For each input atom, calculate its contribution to all grid points in an x-y slice

– Output (energy grid) is regular
– Simple linear mapping between grid point indices and modeled physical

coordinates

– Input (atom) is irregular
– Modeled x,y,z coordinate of each atom needs to be stored in the atom array

– The algorithm is efficient in performing minimal
calculations on distances, coordinates, etc.

9

10

An Intuitive Sequential C Version

The grid parameter gives the
number of grid points in each
dimension of the lattice.

void cenergy (float *energygrid, dim3 grid, float gridspacing, float z,
const float * atoms, int numatoms) {

int I, j, n;
int k = z / gridspacing;
int automarrdim = numatoms * 4;
For (j=0; j<grid.y; j++) {
float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) I;
float energy = 0.0f;
for (n=0; n<automarrdim; n+=4) {
float dx = x – atoms [n];
float dy = y – atomas[n+1];
float dz = z – atoms[n+2];
energy += atomas[c+3]/sqrtf(dx * dx + dz * dz);

}
energygrid[grid.x * grid.y * k + grid.x * j + i= = energy;

}
}

}

11

A More Optimized Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float
*atoms, int numatoms) {

int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

}
}

Input oriented

12

An More Optimized Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float

*atoms, int numatoms) {
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each
atom
float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

}
}

13

A More Optimized Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float

*atoms, int numatoms) {
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each
atom
float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

}
}

14

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float

*atoms, int numatoms) {
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each
atom
float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

}
}

15

CUDA DCS Implementation Overview
– Allocate and initialize potential map memory on host CPU
– Allocate potential map slice buffer on GPU
– Preprocess atom coordinates and charges
– Loop over potential map slices:

– Copy potential map slice from host to GPU
– Loop over groups of atoms:

– Copy atom data to GPU
– Run CUDA Kernel on atoms and potential map slice on GPU

– Copy potential map slice from GPU to host
– Free resources

16

Straightforward CUDA Parallelization
– Use each thread to compute the contribution of an atom to all grid

points in the current slice
– Scatter parallelization

– Kernel code largely correspond to intuitive CPU version with outer
loop stripped

– Each thread corresponds to an outer loop iteration of CPU version
– numatoms used in kernel launch configuration host code

17

A Very Slow DCS Scatter Kernel!
void __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing,
float z) {

int n = (blockIdx.x * blockDim .x + threadIdx.x) * 4;
float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2));

}
}

}
}

Needs to be calculated
redundantly by every thread

18

A Very Slow DCS Scatter Kernel!
void __global__ cenergy(float *energygrid, float *atoms, dim3
grid, float gridspacing, float z) {

int n = (blockIdx.x * blockDim .x + threadIdx.x) *4;
float dz = z - atoms[n+2]; // all grid points in a slice have

the same z value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have

the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx

+ dy2+ dz2));
}

}
}©Wen-mei W. Hwu and David Kirk/NVIDIA, Urbana, August 13-17, 2012

18

Needs to be done as
an atomic operation

19

Scatter Parallelization

Thread 0 Thread 1 …

in

out

iterate over output

20

Why is scatter parallelization often used rather than gather?

– In practice, each in element does not have significant effect on all out
elements

– Output tends to be much more regular than input
– Input usually comes as sparse data structure, where coordinates are part of the data
– One needs to look at the input data to see if an input is relevant to an output value
– Output is usually a regular, grid
– Given an input value, one can easily find output via index calculation

20

21

Challenges in Gather Parallelization
– Regularize input elements so that it is easier to find all in elements

that affects an out element
– Input Binning (ECE598HK)

– Can be even more challenging if data is non-uniformly distributed
– Cut-off Binning for Non-Uniform Data (ECE598HK)

– For this lecture, we assume that all in elements affect all out
elements

21

22

Pros and Cons of the Scatter Kernel
– Pros

– Follows closely the simple CPU version
– Good for software engineering and code maintenance
– Preserves computation efficiency (coordinates, distances, offsets) of sequential code

– Cons
– The atomic add serializes the execution, very slow!
– Not even worth trying this.

22

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

