
Accelerated Computing

GPU Teaching Kit

Lecture 16.2 - Electrostatic Potential Calculation - Part 2
Module 16 - Application Case Study – Electrostatic Potential Calculation

2

Objective
– To learn how to apply parallel programming techniques to an

application
– A fast gather kernel
– Thread coarsening for more work efficiency
– Data structure padding for reduced divergence
– Memory access locality and pre-computation techniques

3

A Slower Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, int
numatoms) {

int atomarrdim = numatoms * 4;
int k = z / gridspacing;

for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;

float energy = 0.0f;
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];

float dy = y - atoms[n+1];
float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

}
}

Output oriented.

4

A Slower Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const
float *atoms, int numatoms) {

int atomarrdim = numatoms * 4;
int k = z / gridspacing;
for (int j=0; j<grid.y; j++) {
float y = gridspacing * (float) j;
for (int i=0; i<grid.x; i++) {
float x = gridspacing * (float) i;
float energy = 0.0f
for (int n=0; n<atomarrdim; n+=4) {
// calculate potential contribution of each atom
float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
– energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}
}

}

More redundant work.

5

Pros and Cons of the Slower Sequential Code
– Pros

– Fewer access to the energygrid array
– Simpler code structure

– Cons
– Many more calculations on the coordinates
– More access to the atom array
– Overall, much slower sequential execution due to the sheer number of

calculations performed

5

6

Simple DCS CUDA Block/Grid Decomposition

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks:
64-256 threads

Threads compute
1 potential each

7

Gather Parallelization

Thread 1 Thread 2 …

in

out

8

A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float *atoms,
int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing;
float y = gridspacing * (float) j;

float x = gridspacing * (float) i;

float energy = 0.0f;
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];

float dy = y - atoms[n+1];
float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

One thread per grid point

9

A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float *atoms,
int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

int atomarrdim = numatoms * 4;

int k = z / gridspacing;
float y = gridspacing * (float) j;

float x = gridspacing * (float) i;

float energy = 0.0f;
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];

float dy = y - atoms[n+1];
float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

} All threads access all atoms.
Consolidated writes to grid points

10

Additional Comments
– Gather kernel is much faster than a scatter kernel

– No serialization due to atomic operations
– Compute efficient sequential algorithm does not translate into the fast

parallel algorithm
– Gather vs. scatter is a big factor
– But we will come back to this point later!

11

Even More Comments
– In modern CPUs, cache effectiveness is often more important than

compute efficiency
– The input oriented (scatter) sequential code actually has bad cache

performance
– energygrid[] is a very large array, typically 20X or more larger than atom[]
– The input oriented sequential code sweeps through the large data structure for each

atom, trashing cache.

12

Outline of A Fast Sequential Code
for all z {
for all atoms {pre-compute dz2 }
for all y {
for all atoms {pre-compute dy2 (+ dz2) }
for all x {
for all atoms {
compute contribution to current x,y,z point
using pre-computed dy2 + dz2

}
}

}
}

}
}

12

13

More Thoughts on Fast Sequential Code
– Need temporary arrays for pre-calculated dz2 and dy2 + dz2 values
– So, why does this code has better cache behaior on CPUs?

13

14

Reuse Distance Calculation for More Computation Efficiency

15

Thread Coarsening

16

A Compute Efficient Gather Kernel

17

Thread Coarsening for More Computation Efficiency

18

Performance Comparison

19

More Work is Needed to Feed a GPU

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

