
Accelerated Computing

GPU Teaching Kit

Lecture 17.1 – Introduction to Computational Thinking
Module 17 – Computational Thinking

2

Objective
– To provide you with a framework for further studies on

– Thinking about the problems of parallel programming
– Discussing your work with others
– Approaching complex parallel programming problems
– Using or building useful tools and environments

3

Fundamentals of Parallel Computing
– Parallel computing requires that

– The problem can be decomposed into sub-problems that can be safely solved at the
same time

– The programmer structures the code and data to solve these sub-problems
concurrently

– The goals of parallel computing are
– To solve problems in less time (strong scaling), and/or
– To solve bigger problems (weak scaling), and/or
– To achieve better solutions (advancing science)

The problems must be large enough to justify parallel
computing and to exhibit exploitable concurrency.

4

Shared Memory vs. Message Passing
– We have focused on shared memory parallel programming

– This is what CUDA (and OpenMP, OpenCL) is based on
– Future massively parallel microprocessors are expected to support shared memory

at the chip level
– The programming considerations of message passing model is quite

different!
– However, you will find parallels for almost every technique you learned in this course
– Need to be aware of space-time constraints

5

Data Sharing
– Data sharing can be a double-edged sword

– Excessive data sharing drastically reduces advantage of parallel execution
– Localized sharing can improve memory bandwidth efficiency

– Efficient memory bandwidth usage can be achieved by synchronizing
the execution of task groups and coordinating their usage of memory
data

– Efficient use of on-chip, shared storage and datapaths
– Read-only sharing can usually be done at much higher efficiency

than read-write sharing, which often requires more synchronization
– Many:Many, One:Many, Many:One, One:One

6

Synchronization
– Synchronization == Control Sharing
– Barriers make threads wait until all threads catch up
– Waiting is lost opportunity for work
– Atomic operations may reduce waiting

– Watch out for serialization

– Important: be aware of which items of work are truly independent

6

7

Parallel Programming Coding Styles –
Program and Data Models

Fork/Join

Master/Worker

SPMD

Program Models

Loop Parallelism
Distributed Array

Shared Queue

Shared Data

Data Models

These are not necessarily
mutually exclusive.

8

Program Models
– SPMD (Single Program, Multiple Data)

– All PE’s (Processor Elements) execute the same program in parallel, but
has its own data

– Each PE uses a unique ID to access its portion of data
– Different PE can follow different paths through the same code
– This is essentially the CUDA Grid model (also OpenCL, MPI)
– SIMD is a special case – WARP used for efficiency

– Master/Worker
– Loop Parallelism
– Fork/Join

8

9

Program Models
– SPMD (Single Program, Multiple Data)
– Master/Worker (OpenMP, OpenACC, TBB)

– A Master thread sets up a pool of worker threads and a bag of tasks
– Workers execute concurrently, removing tasks until done

– Loop Parallelism (OpenMP, OpenACC, C++AMP)
– Loop iterations execute in parallel
– FORTRAN do-all (truly parallel), do-across (with dependence)

– Fork/Join (Posix p-threads)
– Most general, generic way of creation of threads

9

10

Algorithm Structure
10

Start

Organize
by Task

Organize by
Data

Organize by
Data Flow

Linear Recursive Linear Recursive

Task
Parallelism

Divide and
Conquer

Geometric
Decomposition

Recursive
Data

Regular Irregular

Pipeline Event Driven

Mattson, Sanders, Massingill, Patterns for Parallel Programming

11

More on SPMD
– Dominant coding style of scalable parallel computing

– MPI code is mostly developed in SPMD style
– Many OpenMP code is also in SPMD (next to loop parallelism)
– Particularly suitable for algorithms based on task parallelism and geometric

decomposition.
– Main advantage

– Tasks and their interactions visible in one piece of source code, no need to
correlated multiple sources

1
1

SPMD is by far the most commonly used pattern for
structuring massively parallel programs.

12

Typical SPMD Program Phases
– Initialize

– Establish localized data structure and communication channels
– Obtain a unique identifier

– Each thread acquires a unique identifier, typically range from 0 to N-1, where N is
the number of threads.

– Both OpenMP and CUDA have built-in support for this.
– Distribute Data

– Decompose global data into chunks and localize them, or
– Sharing/replicating major data structure using thread ID to associate subset of the

data to threads
– Run the core computation

– More details in next slide…
– Finalize

– Reconcile global data structure, prepare for the next major iteration

1
2

13

Core Computation Phase
– Thread IDs are used to differentiate behavior of threads

– Use thread ID in loop index calculations to split loop iterations among threads
– Potential for memory/data divergence

– Use thread ID or conditions based on thread ID to branch to their specific actions
– Potential for instruction/execution divergence

1
3

Both can have very different performance results and code
complexity depending on the way they are done.

14

Making Science Better, not just Faster

or… in other words:
There will be no Nobel Prizes or Turing
Awards awarded for “just recompile” or
using more threads

1
4

15

A Revolution - Sodium Map of the Brain

– Images of sodium in the brain
– Sodium is one of the most regulated substance in human tissues
– Any significant shift in sodium concentration signals cell death
– Much less abundant than water in human tissues, about 1/2000
– Very large number of samples are needed for good SNR
– Requires high-quality reconstruction, currently considered

impractical
Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

16

A Revolution - Sodium Map of the Brain

– Enables study of brain-cell viability before anatomic
changes occur in stroke and cancer treatment.
– Drastic improvement of timeliness of treatment decision
– Minutes for stroke and days for oncology.

16

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

17

Reconstructing MR Images
Cartesian Scan Data Spiral Scan Data

Gridding1

FFT LS

Spiral scan data + Gridding + FFT:
Fast scan, fast reconstruction, good images

Can become realtime with about 10X speedup.

kx

ky

kx

kykx

ky

18

Spiral scan data + LS
Superior images at expense of significantly more computation;

several hundred times slower than gridding.
Traditionally considered impractical!

Reconstructing MR Images
Cartesian Scan Data Spiral Scan Data

Gridding

FFT Least-Squares (LS)

kx

ky

kx

ky kx

ky

19

High-Throughput Computing = Futuristic Biology
– in-silico screening of drugs
– mastering diseases
– personalized medicine

– Thanks: Lorena Barba

20

In-silico Drug Screening
– Weed out inactive compounds
– Rank “drug candidates” for given

targets
– Example:

– CERN grid — 300,000 potential
drugs against avian flu
screened

– 2000 computers, 4 weeks!
– 4 years cpu-time

–

– a process critical in
– some degenerative diseases (e.g.,

Parkinson’s): aggregates abnormal
– drug production: aggregates

undesirable
– time scale of the process:

– in vitro: up to days!
– impossible for molecular dynamics

2
0

Protein Aggregation

21

Electrostatic Interactions Play a Crucial Role
– Classical molecular dynamics:

– very detailed ... but too expensive at large scale!
– Alternative: continuum model of surrounding water

– don’t care what the H20 molecules do
– model as a continuum dielectric
– leads to a boundary integral equation (BIE) problem

– Fast algorithm, well-suited for GPU:
– fast multipole method, solves BIE in O(N) ops

22

22

23

23

24

As in Many Computation-hungry Applications
– Three-step approach:

– Restructure the mathematical formulation
– Innovate at the algorithm level
– Tune core software for hardware architecture

2
4

25

Conclusion: Three Options
– Good: “Accelerate” Legacy Codes

– Recompile/Run
– Call CUBLAS/CUFFT/thrust/matlab/PGI pragmas/etc.
– => good work for domain scientists (minimal CS required)

– Better: Rewrite / Create new codes
– Opportunity for clever algorithmic thinking
– => good work for computer scientists (minimal domain knowledge required)

– Best: Rethink Numerical Methods & Algorithms
– Potential for biggest performance advantage
– => Interdisciplinary: requires CS and domain insight
– => Exciting time to be a computational scientist

2

26

Think, Understand… then, Program
– Think about the problem you are trying to solve
– Understand the structure of the problem
– Apply mathematical techniques to find solution
– Map the problem to an algorithmic approach
– Plan the structure of computation

– Be aware of in/dependence, interactions, bottlenecks
– Plan the organization of data

– Be explicitly aware of locality, and minimize global data
– Finally, write some code! (this is the easy part)

2
6

27

Future Studies
– More complex data structures
– More scalable algorithms and building blocks
– More scalable math models

– Thread-aware approaches
– More available parallelism

– Locality-aware approaches
– Computing is becoming bigger, and everything is further away

2

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 17 – Computational Thinking
	Objective
	Fundamentals of Parallel Computing
	Shared Memory vs. Message Passing
	Data Sharing
	Synchronization
	Parallel Programming Coding Styles – �Program and Data Models
	Program Models
	Program Models
	Algorithm Structure
	More on SPMD
	Typical SPMD Program Phases
	Core Computation Phase
	Making Science Better, not just Faster��or… in other words:�There will be no Nobel Prizes or Turing Awards awarded for “just recompile” or using more threads
	A Revolution - Sodium Map of the Brain
	A Revolution - Sodium Map of the Brain
	Reconstructing MR Images
	Reconstructing MR Images
	High-Throughput Computing = Futuristic Biology
	In-silico Drug Screening
	Electrostatic Interactions Play a Crucial Role
	Slide Number 22
	Slide Number 23
	As in Many Computation-hungry Applications
	Conclusion: Three Options
	Think, Understand… then, Program
	Future Studies
	Slide Number 28

