
CUDA C vs. Thrust vs. CUDA Libraries

Lecture 2.1 - Introduction to CUDA C

Accelerated Computing

GPU Teaching Kit

2

Objective
– To learn the main venues and developer resources

for GPU computing
– Where CUDA C fits in the big picture

3

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

4

Libraries: Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-
depth knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs,
thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions
encountered in a broad range of applications

5

GPU Accelerated Libraries

Linear Algebra
FFT, BLAS,
SPARSE, Matrix

Numerical & Math
RAND, Statistics

Data Struct. & AI
Sort, Scan, Zero Sum

Visual Processing
Image & Video

NVIDIA
cuFFT,
cuBLAS,
cuSPARSE

NVIDIA
Math
Lib

NVIDIA
cuRAND

NVIDIA
NPP

NVIDIA
Video

Encode

GPU AI –
Board
Games

GPU AI –
Path
Finding

6

Vector Addition in Thrust

thrust::device_vector<float> deviceInput1(inputLength);
thrust::device_vector<float> deviceInput2(inputLength);
thrust::device_vector<float> deviceOutput(inputLength);

thrust::copy(hostInput1, hostInput1 + inputLength,
deviceInput1.begin());

thrust::copy(hostInput2, hostInput2 + inputLength,
deviceInput2.begin());

thrust::transform(deviceInput1.begin(), deviceInput1.end(),
deviceInput2.begin(), deviceOutput.begin(),
thrust::plus<float>());

7

Compiler Directives: Easy, Portable
Acceleration

Ease of use: Compiler takes care of details of parallelism
management and data movement

Portable: The code is generic, not specific to any type of hardware
and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions

8

OpenACC

– Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(input1[0:inputLength],input2[0:inputLength]),

copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];
}

9

Programming Languages: Most Performance and
Flexible Acceleration

Performance: Programmer has best control of parallelism and
data movement

Flexible: The computation does not need to fit into a limited set of
library patterns or directive types

Verbose: The programmer often needs to express more details

10

GPU Programming Languages

CUDA FortranFortran

CUDA CC

CUDA C++C++

PyCUDA, Copperhead, NumbaPython

Alea.cuBaseF#

MATLAB, Mathematica, LabVIEWNumerical analytics

11

CUDA - C

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

Accelerated Computing

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Lecture 2.1 - Introduction to CUDA C
	Objective
	3 Ways to Accelerate Applications
	Libraries: Easy, High-Quality Acceleration
	GPU Accelerated Libraries
	Vector Addition in Thrust
	Compiler Directives: Easy, Portable Acceleration
	OpenACC
	Programming Languages: Most Performance and Flexible Acceleration
	GPU Programming Languages�
	CUDA - C
	Slide Number 12

