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Objective
– To learn the main venues and developer resources 

for GPU computing 
– Where CUDA C fits in the big picture
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3 Ways to Accelerate Applications

Applications

Libraries

Easy to use
Most Performance

Programming 
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives
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Libraries: Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-
depth knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs, 
thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions 
encountered in a broad range of applications 
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GPU Accelerated Libraries

Linear Algebra
FFT, BLAS, 
SPARSE, Matrix

Numerical & Math
RAND, Statistics

Data Struct. & AI
Sort, Scan, Zero Sum

Visual Processing
Image & Video

NVIDIA
cuFFT, 
cuBLAS, 
cuSPARSE

NVIDIA
Math 
Lib

NVIDIA 
cuRAND

NVIDIA
NPP

NVIDIA
Video 

Encode

GPU AI –
Board 
Games

GPU AI –
Path 
Finding
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Vector Addition in Thrust

thrust::device_vector<float> deviceInput1(inputLength);
thrust::device_vector<float> deviceInput2(inputLength);
thrust::device_vector<float> deviceOutput(inputLength);

thrust::copy(hostInput1, hostInput1 + inputLength,
deviceInput1.begin());

thrust::copy(hostInput2, hostInput2 + inputLength,
deviceInput2.begin());

thrust::transform(deviceInput1.begin(), deviceInput1.end(),
deviceInput2.begin(), deviceOutput.begin(),
thrust::plus<float>());
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Compiler Directives: Easy, Portable 
Acceleration

Ease of use: Compiler takes care of details of parallelism 
management and data movement

Portable: The code is generic, not specific to any type of hardware 
and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions
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OpenACC

– Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop 
copyin(input1[0:inputLength],input2[0:inputLength]),  

copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];
}
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Programming Languages: Most Performance and 
Flexible Acceleration

Performance: Programmer has best control of parallelism and 
data movement

Flexible: The computation does not need to fit into a limited set of 
library patterns or directive types

Verbose: The programmer often needs to express more details 
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GPU Programming Languages

CUDA FortranFortran

CUDA CC

CUDA C++C++

PyCUDA, Copperhead, NumbaPython

Alea.cuBaseF#

MATLAB, Mathematica, LabVIEWNumerical analytics
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CUDA - C

Applications

Libraries

Easy to use
Most Performance

Programming 
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives
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