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Objective
– To learn to effectively use the CUDA memory types in a parallel 

program
– Importance of memory access efficiency
– Registers, shared memory, global memory
– Scope and lifetime
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// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total

}
}

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

Review: Image Blur Kernel.
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How about performance on a GPU
– All threads access global memory for their input matrix elements

– One memory accesses (4 bytes) per floating-point addition
– 4B/s of memory bandwidth/FLOPS

– Assume a GPU with
– Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
– 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
– The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS

– This limits the execution rate to 3.3% (50/1500) of the peak 
floating-point execution rate of the device!

– Need to drastically cut down memory accesses to get close to 
the1,500 GFLOPS
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Example – Matrix Multiplication
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A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}
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Example – Matrix Multiplication
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if ((Row < Width) && (Col < Width)) {
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// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
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}
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A Toy Example: Thread to P Data Mapping
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Calculation of P0,0 and P0,1
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Memory and Registers in the Von-Neumann Model
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Programmer View of  CUDA Memories
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Declaring CUDA Variables

– __device__ is optional when used with  __shared__, or __constant__
– Automatic variables reside in a register

– Except per-thread arrays that reside in global memory

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application
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Example:
Shared Memory Variable Declaration 

void blurKernel(unsigned char * in, unsigned char * out, int w, int h) 
{

__shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];

…
}
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Where to Declare Variables?
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Shared Memory in CUDA
– A special type of memory whose contents are explicitly defined and 

used in the kernel source code
– One in each SM
– Accessed at much higher speed (in both latency and throughput) than global 

memory
– Scope of access and sharing - thread blocks
– Lifetime – thread block, contents will disappear after the corresponding thread 

finishes terminates execution
– Accessed by memory load/store instructions
– A form of scratchpad memory in computer architecture
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