
Accelerated Computing

GPU Teaching Kit

CUDA Memories

Module 4.1 – Memory and Data Locality

2

Objective
– To learn to effectively use the CUDA memory types in a parallel

program
– Importance of memory access efficiency
– Registers, shared memory, global memory
– Scope and lifetime

2

3

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total

}
}

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

Review: Image Blur Kernel.

4

How about performance on a GPU
– All threads access global memory for their input matrix elements

– One memory accesses (4 bytes) per floating-point addition
– 4B/s of memory bandwidth/FLOPS

– Assume a GPU with
– Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
– 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
– The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS

– This limits the execution rate to 3.3% (50/1500) of the peak
floating-point execution rate of the device!

– Need to drastically cut down memory accesses to get close to
the1,500 GFLOPS

5

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Example – Matrix Multiplication

6

A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}

7

Example – Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}

}

8

A Toy Example: Thread to P Data Mapping

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Block(0,0) Block(0,1)

Block(1,1)Block(1,0)

BLOCK_WIDTH = 2
Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,1)

9

Calculation of P0,0 and P0,1

P0,1M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2

P0,0

M1,3 P1,0

N3,0 N3,1

N2,1

N1,1

N0,1N0,0

N1,0

N2,0

P1,1

P0,1

10

Memory and Registers in the Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

11

Programmer View of CUDA Memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

12

Declaring CUDA Variables

– __device__ is optional when used with __shared__, or __constant__
– Automatic variables reside in a register

– Except per-thread arrays that reside in global memory

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

13

Example:
Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out, int w, int h)
{

__shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];

…
}

14

Where to Declare Variables?

Can host
access it?

Outside of
any Function In the kernel

global
constant

register
shared

15

Shared Memory in CUDA
– A special type of memory whose contents are explicitly defined and

used in the kernel source code
– One in each SM
– Accessed at much higher speed (in both latency and throughput) than global

memory
– Scope of access and sharing - thread blocks
– Lifetime – thread block, contents will disappear after the corresponding thread

finishes terminates execution
– Accessed by memory load/store instructions
– A form of scratchpad memory in computer architecture

16

Global Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared
Memory Register

File

Control Unit

PC IR

Hardware View of CUDA Memories

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 4.1 – Memory and Data Locality
	Objective
	Review: Image Blur Kernel.
	How about performance on a GPU
	Example – Matrix Multiplication
	A Basic Matrix Multiplication
	Example – Matrix Multiplication
	A Toy Example: Thread to P Data Mapping
	Calculation of P0,0 and P0,1
	Memory and Registers in the Von-Neumann Model
	Programmer View of CUDA Memories
	Declaring CUDA Variables
	Example:�Shared Memory Variable Declaration
	Where to Declare Variables?
	Shared Memory in CUDA
	Hardware View of CUDA Memories
	Slide Number 17

