
D
ra
ft

DISTRIBUTED SYSTEMS:
PARADIGMS AND MODELS
Academic Year 2010–2011

M. Danelutto
Version March 2, 2012

Teaching material – Laurea magistrale in Computer Science and Networking

D
ra
ft

D
ra
ftCONTENTS

Preface 1
Acknowledgments 3

1 Parallel hardware

(needs parallel software) 1

1.1 Hardware for parallel/distributed computing 2

1.1.1 Evolution of CPUs 3

1.1.2 High performance computing architectures 6

1.1.3 Cloud 10

1.2 Parallel software urgencies 11

2 Parallel programming: introducing the concept 15

2.1 Concurrent activity graph 18

2.2 Functional and non functional code 19

2.3 Performance 19

2.4 Other non functional concerns 21

2.4.1 Load balancing 21

2.4.2 Reliability 23

2.4.3 Security 24

2.4.4 Power management 25

2.5 “Classical” parallel programming models 25

2.5.1 POSIX/TCP 26

2.5.2 Command line interface 28

2.6 Implementing parallel programs the “classical” way 29

2.6.1 The application 29

2.6.2 The concurrent activity graph 29

iii

D
ra
ft

iv CONTENTS

2.6.3 Coordination 29

2.6.4 Implementation 30

2.6.5 Code relative to the implementation handling termination but

not handling worker faults 30

2.6.6 Adding fault tolerance (partial) 37

3 Algorithmic skeletons 45

3.1 Algorithmic skeletons: definition(s) 46

3.1.1 The skeleton advantage 48

3.1.2 The skeleton weakness 50

3.2 Skeletons as higher order functions with associated parallel semantics 50

3.2.1 Stream modelling 53

3.3 A simple skeleton framework 54

3.3.1 Stream parallel skeletons 54

3.3.2 Data parallel skeletons 55

3.3.3 Control parallel skeletons 59

3.3.4 A skeleton framework 60

3.3.5 Skeleton programs 61

3.4 Algorithmic skeleton nesting 62

3.4.1 Sequential code wrapping 63

3.4.2 Full compositionality 65

3.4.3 Two tier model 65

3.5 Stateless vs. statefull skeletons 66

3.5.1 Shared state: structuring accesses 67

3.5.2 Shared state: parameter modeling 69

4 Implementation of algorithmic skeletons 73

4.1 Languages vs. libraries 73

4.1.1 New language 73

4.1.2 Library 74

4.2 Template based vs. macro data flow implementation 76

4.2.1 Template based implementations 76

4.2.2 Macro Data Flow based implementation 82

4.2.3 Templates vs. macro data flow 86

4.3 Component based skeleton frameworks 86

Problems 88

5 Performance models 89

5.1 Modeling performance 90

5.1.1 “Semantics” associated with performance measures 91

5.2 Different kind of models 92

5.3 Alternative approaches 95

5.4 Using performance models 96

5.4.1 Compile time usage 97

5.4.2 Run time usage 98

D
ra
ft

CONTENTS v

5.4.3 Post-run time usage 99

5.5 Skeleton advantage 100

5.6 Monitoring application behaviour 101

5.7 Performance model design 103

5.7.1 Analytical performance models 103

5.7.2 Queue theory 104

6 Skeleton design 109

6.1 Cole manifesto principles 110

6.1.1 Summarizing ... 112

6.2 Looking for (new) skeletons 112

6.2.1 Analysis 112

6.2.2 Synthesis 113

6.3 Skeletons vs templates 113

7 Template design 115

7.1 Template building blocks 117

7.1.1 Client-server paradigm 119

7.1.2 Peer-to-peer resource discovery 119

7.1.3 Termination 120

7.2 Cross-skeleton templates 121

7.3 Sample template mechanisms 122

7.3.1 Double/triple buffering 122

7.3.2 Time server 123

7.3.3 Channel name server 124

7.3.4 Cache pre-fetching 125

7.3.5 Synchronization avoidance 127

7.4 Sample template design 129

7.4.1 Master worker template 129

7.4.2 Farm with feedback 131

8 Portability 135

8.1 Portability through re-compiling 137

8.1.1 Functional portability 137

8.1.2 Performance portability 138

8.2 Portability through virtual machines 139

8.3 Heterogeneous architecture targeting 140

8.4 Distributed vs multi-core architecture targeting 142

8.4.1 Template/MDF interpreter implementation 143

8.4.2 Communication & synchronization 144

8.4.3 Exploiting locality 144

8.4.4 Optimizations 145

9 Advanced features 149

9.1 Rewriting techniques 149

D
ra
ft

vi CONTENTS

9.2 Skeleton rewriting rules 151

9.3 Skeleton normal form 152

9.3.1 Model driven rewriting 154

9.4 Adaptivity 155

9.5 Behavioural skeletons 160

9.5.1 Functional replication behavioural skeleton in GCM 163

9.5.2 Hierarchical management 165

9.5.3 Multi concern management 170

9.5.4 Mutual agreement protocol 173

9.5.5 Alternative multi concern management 176

9.6 Skeleton framework extendibility 178

9.6.1 Skeleton set extension in template based frameworks 179

9.6.2 Skeleton set extension through intermediate implementation

layer access 179

9.6.3 User-defined skeletons in muskel 180

10 Skeleton semantics 185

10.1 Formal definition of the skeleton framework 185

10.2 Operational semantics 186

10.3 Parallelism and labels 190

10.4 How to use the labeled transition system 191

11 Parallel design patterns 193

11.1 Skeletons 194

11.2 Design patterns 194

11.3 Skeletons vs parallel design patterns 195

11.4 Skeletons ∪ parallel design patterns 197

12 Survey of existing skeleton frameworks 199

12.1 Classification 199

12.1.1 Abstract programming model features 199

12.1.2 Implementation related features 200

12.1.3 Architecture targeting features 201

12.2 C/C++ based frameworks 201

12.2.1 P3L 201

12.2.2 Muesli 202

12.2.3 SkeTo 202

12.2.4 FastFlow 203

12.2.5 ASSIST 204

12.3 Java based frameworks 204

12.3.1 Lithium/Muskel 204

12.3.2 Calcium 205

12.3.3 Skandium 205

12.4 ML based frameworks 206

12.4.1 Skipper 206

D
ra
ft

CONTENTS vii

12.4.2 OcamlP3L 206

12.5 Component based frameworks 207

12.5.1 GCM Behavioural skeletons 207

12.5.2 LIBERO 208

12.6 Quasi -skeleton frameworks 208

12.6.1 TBB 208

12.6.2 TPL 209

12.6.3 OpenMP 209
List of Figures 211
List of Tables 215
Acronyms 217

Index 219

References 223

D
ra
ft

viii

D
ra
ftPREFACE

This material covers most of the arguments presented in the course of “Distributed sys-

tems: paradigms and models” given at the “Laurea Magistrale” in Computer Science and

Networking (joint initiative by the University of Pisa and Scuola Superiore St. Anna) dur-

ing the Academic year in 2010–2011. In particular, the material covers all arguments

related to structured programming models and paradigms. The only arguments miss-

ing among those presented in the course are those relative to networks (wireless net-

works and peer-to-peer paradigm) which are covered by other, existing textbooks, as men-

tioned on the course web site at http://didawiki.cli.di.unipi.it/doku.php/
magistraleinformaticanetworking/spm/start.

This notes are an preliminary version of what, sooner or later, will be probably a book re-

lated to structured parallel programming and dealing with both design and implementation

aspects. Being an initial version, you should frequently and carefully read the errata corrige

available at the author’s web site (Papers tab at http://didawiki.cli.di.unipi.
it/doku.php/magistraleinformaticanetworking/spm/erratacorrigespm1011).

Please feel free to give any suggestion or to signal any kind of error directly to author writing

to the address marcod@di.unipi.it with Subject: SPM notes.

M. Danelutto

March 2011, Pisa, Italy

1

D
ra
ft

D
ra
ftACKNOWLEDGMENTS

This book is the result of a long lasting activity in the field of structured parallel program-

ming. I owe part of my experience to a number of colleagues that cooperated with me since

1990, including M. Aldinucci, F. André, B. Bacci, H. Bouziane, J. Buisson, D. Buono, S.

Campa, A. Ceccolini, M. Coppola, P. D’Ambra, C. Dalmasso, P. Dazzi, D. Di Serafino,

C. Dittamo, V. Getov, S. Gorlatch, L. Henrio, P. Kilpatrick, S. Lametti, M. Leyton, K.

Matsuzaki, C. Migliore, S. Orlando, C. Pantaleo, F. Pasqualetti, S. Pelagatti, C. Perez, P.

Pesciullesi, T. Priol, A. Rampini, D. Ratti, R. Ravazzolo, J. Serót, M. Stigliani, D. Talia,

P. Teti, N. Tonellotto, M. Torquati, M. Vanneschi, A. Zavanella, G. Zoppi.

marcod

3

D
ra
ft

D
ra
ft

CHAPTER 1

PARALLEL HARDWARE
(NEEDS PARALLEL SOFTWARE)

In recent years, a substantial improvement in computer and networking technology made

available parallel and distributed architectures with an unprecedented power. The hardware

revolution not only affected large parallel/distributed systems (e.g. those hosting thousands

to millions of CPUs/cores in large “data center-like” installations) but also personal com-

puting facilities (e.g. PCs, laptops and small clusters). This is mainly due to the shift from

single core to multi core design of mainstream chipsets. The change from single core to

multi core systems impacted also the programming model scenario. It introduced the need

of (and the urgency for) efficient, expressive and reliable parallel/distributed programming

paradigms and models.

In this chapter, we first outline the advances in computer architecture that took place

in the last years and that are still taking place while we write these notes. Then we briefly

point out the urgencies arising from these advances related to the programming model in

the perspective of providing programmers with frameworks that simplify the task of devel-

oping efficient, reliable and maintainable applications for typical parallel and distributed

architectures.

It is worth pointing out that within the whole book, we’ll consider “parallel” and “dis-

tributed” computing as two facets of the same problem. Despite the fact parallel computing

and distributed computing communities played different roles in the past and looked like

two completely separated communities, we believe that distributed computing is a kind

of “coarse grain” parallel computing or, if you prefer, that parallel computing if the “fine

grain” aspect of distributed computing.

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

1

D
ra
ft

2 PARALLEL HARDWARE(NEEDS PARALLEL SOFTWARE)

Figure 1.1 Moore’s rule (Figure taken from Wikipedia)

1.1 HARDWARE FOR PARALLEL/DISTRIBUTED COMPUTING

We recognize several factors that contribute to the urgency of developing efficient program-

ming models for parallel/distributed architectures. Among those factors, we would like to

mention:

a) Evolution of CPU design and of the relative implementation techniques. When moving
from single core to multi core chip design parallelism becomes the only way to exploit

chip features.

b) Evolution of high performance computer architectures, such as those appearing in the

Top500 list1, that are moving more and more from dedicated architectures to tightly

coupled assemblies of commodity processors through (almost) commodity intercon-

nection network. These machines hosts hundreds of thousands of cores, and their

exploitation requires correspondingly parallel/distributed applications.

c) The advent of cloud architecture and systems. These systems host a large number of

processing elements/cores and provide the users the possibility to “buy” or “rent” a

partition of the cloud to be used to run their own applications. Clouds require efficient

programming models paired with efficient management of the resources used, which

again is a typical problem related to parallel/distributed architecture targeting.

We discuss these three aspect in more detail in the following sections.

1http://www.top500.org

D
ra
ft

HARDWARE FOR PARALLEL/DISTRIBUTED COMPUTING 3

The Von Neumann architecture is the one with one (or more) processing unit and a single

(data and code) memory unit. Program is stored in memory and a register in the processing

unit denotes the address of the next instruction to execute. It is named after the computer

scientist John von Neumann (1903–1957). The interconnection between processing unit and

memory is called Von Neumann bottleneck.

Figure 1.2 Von Neumann Architecture

1.1.1 Evolution of CPUs

Since ’60, Moore law dominated the CPU design and implementation scenario. Moore’s

original statement dates back to 1965. In his publication ”Cramming more components

onto integrated circuits”, on the Electronics Magazine, he said that:

The complexity for minimum component costs has increased at a rate of roughly a
factor of two per year ... Certainly over the short term this rate can be expected to
continue, if not to increase. Over the longer term, the rate of increase is a bit more
uncertain, although there is no reason to believe it will not remain nearly constant
for at least 10 years. That means by 1975, the number of components per integrated
circuit for minimum cost will be 65,000. I believe that such a large circuit can be built
on a single wafer.

As a matter of fact, in the past 40 year, the amount of components successfully placed

on a single chip doubled approximately every two year.

The larger and larger number of components available on the chip have been used up to

early ’00 to improve the power of a single, Von Neumann style, processor, basically in two

different ways:

• by increasing the word length (4 bits in 1971 to 8, 16, 32 and up to 64 bits in 2008)

• by adding more and more features that contribute to the overall CPU performance

(pipelined units, super scalar design, different cache levels, out of order execution,

vector/SIMD instruction set, VLIW execution units, hyper threading, virtualization

support, etc.)

Along with the larger and larger number of components integrated onto the same chip,

clock frequencies have been raised. This allowed to implement CPUs with shorter and

shorter clock cycles. The consequences of this 40 year trend have been twofold.

On the one hand, the classical (imperative or object oriented) programming model was

supported by all these CPUs and therefore old programs run on all these new CPUs. In

some cases, re compilation of the source code is the only action required to port the code.

In case the new architecture is from the same manufacturer, binary portability of object

code is in general guaranteed2 and even compilation therefore is not necessary.

On the other hand, the existing programs may be run faster and faster on the new

architectures, due to the higher clock frequency and to the new features introduced in

processor micro architecture.

This long running process stopped in early ’00, however. Power dissipation related to the

higher number of components packaged on the chip and to the higher frequencies used come

to a point where chips required complex, highly efficient heat dissipation systems, possibly

liquid based. The amount of power dissipated by a chip was higher that several hundred of

2Old instruction set are provided on the new architectures. Pentium processors can still run code compiled
for 8086 in the ’80 at the beginning of ’00.

D
ra
ft

4 PARALLEL HARDWARE(NEEDS PARALLEL SOFTWARE)

Figure 1.3 Pollack’s rule

Watts. In the meanwhile, the new features added to CPUs required a substantial amount

of the overall chip area but provided quite limited improvements in performance.

As observed by Fred Pollack, an Intel engineer:

performance increases roughly proportional to the square root of the increase in com-
plexity.

whereas is is known that power consumption is roughly proportional to complexity of

the chip (and therefore to its area). This means that doubling the complexity of a chip only

leads to a 1.4 increase in performance. However, if we use the double area to implement

two smaller processors (half size of the 1.4 performance one), we get system that sports the

double of performance of the original chip dissipating the double of power of the original

chip.

This observation led to the development of an entirely new trend: engineers started

designing more CPUs on the same chip, rather than a single, more complex CPU. The

CPUs on the same chip are named cores and the design of the overall chip is called multi

core.

As the chip implementation technology keeps improving with rates similar to those of

the Moore’s law era, a new version of the Moore law has been developed, stating that

the number of cores on a chip will double approximately every two years.

Cores in multicore chips have been redesigned to get rid of those features that require

a huge area to be implemented and only contribute a modest improvement in the overall

CPU performance. As an example, cores in multicore chips usually do not use out-of-

order instruction execution. This allows to design smaller chips, consuming less power and,

mainly, being better packable in more and more dense multicore configurations.

Multicores already dominate the CPU scenario. Today it is almost impossible to buy

a computer with a single core inside, but in case of “netbooks” or ultraportable devices3.

Most of PCs already4 sell with dual or quad cores inside, and top end machines currently

use dual quad core or eight core processors.

3although currently available tablets and smart phones already include chips such as the Tegra one: a dual
ARM + nVidia GPU chip
4these notes are being written beginning of 2011

D
ra
ft

HARDWARE FOR PARALLEL/DISTRIBUTED COMPUTING 5

Figure 1.4 Different architectures for multicore SMP

However, multicore architectures need explicitly parallel programs to be used efficiently.

Each one of the cores in the architecture must have one or more active thread/process

assigned (in average) to keep the system busy and therefore to keep the system efficiency

high. This radically changed the situation. Parallel programs are needed. There is no chance

to take an old program and run it on a multicore getting a better performance, unless the

original program has already been designed and implemented as a parallel program. Indeed,

due to the simplification made to the cores, it could also be the case–and it is, usually–that

non parallel old code runs slower on new processors. Despite the fact multicore architectures

need explicitly parallel code to be exploited, their architectural design is quite traditional:

a number of CPU, with private caches accessing a common shared memory space. Therefore

the architectural model exposed by the micro architecture is a plain UMA SMP (Uniform

Memory Access, Symmetric MultiProcessor) model (see Fig. 1.4).

However, as technology evolves, more and more cores are available on chip and many

core architectures are already available today, with 64 and more cores on the same chip.

These architectures include Tilera chips (up to 100 cores5) and the Intel experimental 80

core chip6. These CPUs make a further step in architectural design in that they release the

UMA shared memory concept in favour of a regular interconnection of cores (usually based

on bi-dimensional mesh topologies) with own, private memory that can be accessed routing

proper messages through the on chip core interconnection network. As a consequence, the

memory model becomes a NUMA model (Non Uniform Memory Access, that is accesses to

different memory locations/addresses may require substantially different times) and more

advanced techniques have to be used to enforce data locality and therefore achieve complete

exploitation of the architecture peculiar features.

Up to now we concentrated on two CPU families: “traditional multicore” CPUs (rela-

tively small number of cores, UMA-SMP design) and “many core” CPUs (high number of

cores, NUMA memory, regular interconnection structure). There is a third kind of archi-

tectures that are being developed and used currently, namely the GP-GPU ones (General

Purpose Graphic Processing Units). These architectures actually provide a huge number of

cores (in the range 10-100, currently) but these cores are arranged in such a way they can

only executed SIMD code (Single Instruction Multiple Data), in particular multi threaded

code with threads operating on different data with the same code7.

GP-GPUs are normally used as CPU co-processors. In case data parallel code has to

be executed suitable to fit the GP-GPU execution model, the code and the relative data

5http://www.tilera.com/products/processors.php
6http://techresearch.intel.com/articles/Tera-Scale/1449.htm
7At the moment being, GP-GPUs are often referred to using the term many core although in this book we
will use the term many core to refer all those (non GPU) processors with a relatively high number of cores
inside (in the range 100 to 1K)

D
ra
ft

6 PARALLEL HARDWARE(NEEDS PARALLEL SOFTWARE)

Figure 1.5 Typical architecture of many core chips

is offloaded from main (CPU) core to the GP-GPUs cores (and private, fast memory).

Then some specialized GP-GPU code (usually called kernel) is used to compute the result

exploiting GP-GPU data parallelism and eventually results are re-read back in the CPU

main memory. Overall, GP-GPU exploitation requires a notable programming effort. Open

programming models have been developed to operate on GP-GPUs, such as OpenCL8 and

GP-GPUs manufacturers provide they own programming frameworks to access GP-GPU

functionalities (e.g. CUDA by nVidia9). However, these programming frameworks require a

deep knowledge of target GPU architecture and programmers have to explicitly deal with all

the CPU-GPU data transfers in order to use the GPUs. This makes parallel programming

of GP-GPU very expensive, at the moment being, but the fact GP-GPUs already have on

board a huge number of cores (e.g. 520 cores on nVidia Fermi GPU) allows to eventually

reach impressive performances in plain data parallel computations.

According to chip manufacturers, current technology allows to increase by a plain 40%

per-year the number of on chip cores. As a result, it is expected to have an increasing number

of cores per chip in the near future. With such numbers, single chip programming must use

efficient parallel/distributed programming models, tools and implementation techniques.

1.1.2 High performance computing architectures

Traditionally, we label as “high performance computing” all those activities involving a

huge amount of computation/data. High performance computers are therefore those big

“machines” usually owned by big institutions or departments, able to perform impressive

amount of computations per unit of time and build out of an actually huge number of

processing elements.

Since year, the www.top500.org web site maintains a classification of the world most

powerful single computer installations. A list is published twice per year, in June and

November, hosting the top 500 computer installations in the world. The installation are

ranked by running a standard benchmark suite. Fig. 1.6 shows the top ten positions of the

list published in Nov 2010. Data relative to any one of the lists published from 1993 on

may be “summarized” also according to different parameters such as the number of proces-

sors/cores in the system, the kind of processors or interconnection network, the operating

system used, etc. A sample of these summary tables is shown in Fig. 1.7.

8http://www.khronos.org/opencl/
9http://www.nvidia.com/object/cuda learn products.html

D
ra
ft

HARDWARE FOR PARALLEL/DISTRIBUTED COMPUTING 7

Figure 1.6 Top ten positions in the Top500 list, Nov. 2010

D
ra
ft

8 PARALLEL HARDWARE(NEEDS PARALLEL SOFTWARE)

Figure 1.7 Summary figures relative to Top500 Nov. 2010 list (sample)

D
ra
ft

HARDWARE FOR PARALLEL/DISTRIBUTED COMPUTING 9

Figure 1.8 Historic/trend charts relative to Top500 (sample)

But the more interesting possibility offered by the Top500 lists is the possibility to see

the evolution of the features of the Top500 installations in time. Fig. 1.8 shows10 one of the

charts we can get summarizing the evolution in time of one of the features of the Top500

computers, namely the number of processors/cores included.

Looking at these time charts, several trends may be recognized in these high end systems:

• the number of processing elements is constantly increasing. Recently the increase in

processor count has been partially substituted by the increase in core per processor

count.

• most of the systems use scalar processors, that is “vector” processors–quite popular

for a period in this kind of systems–constitute a less and less significant percentage of

the totals.

• GP-GPUs are pervading the Top500 systems. More and more systems hosts nodes

with GP-GPU coprocessor facilities. This makes the systems heterogeneous, of course.

• interconnection networks are evolving from proprietary, special purpose networks to

optimized versions of a limited number of networks (Ethernet and Infinibad)

• Linux jeopardized all the other operating systems and currently runs more that 90%

of the total of the systems

• these systems are used to run a variety of applications. The most popular one are

financial applications (about 8.6% in Nov. 2010 list), research applications (about

10the graph is in colors, there is no way to get it in black&white. Therefore it may be hardly read on
printed version of the book. However, it can be easily regenerate “on screen” pointing a browser to the
http://www.top500.org/overtime/list/36/procclass web site.

D
ra
ft

10 PARALLEL HARDWARE(NEEDS PARALLEL SOFTWARE)

16.4%) and “not specified” applications (about 34%) which unfortunately also include

military applications.

From these trends we can therefore conclude that:

• we need programming environments able to efficiently manage more and more pro-

cessing elements. The Top500 applications are mostly written using low level, classical

programming environments such as MPI or OpenMP.

• we need programming environments able to efficiently manage heterogeneous archi-

tectures, such as those with GP-GPU equipped processing elements.

• we need programming environments supporting functional and performance porta-

bility across different parallel architectures, to be able to move applications across

Top500 systems.

1.1.3 Cloud

The term cloud computing has been introduced in the ’2000s and refers to the provisioning of

computer resources to run some kind of application that may be sequential or parallel. The

idea of cloud recalls the idea of a pool of resources with some kind of “undefined borders”.

The cloud resources are made available “on request” to the final user, that usually pays the

access to the cloud per resource and per time used.

Clouds have been invented by industry/commercial companies, in fact. On the one

side, several companies were using for their own purposes a huge number of workstations

connected through some kind of private network. These collections were often dimensioned

on peak necessities and therefore part of the resources were unused for a consisted percentage

of time. Therefore these companies thought it was convenient to find ways of selling the

extra power of this computing element agglomerate in such a way the investment made to

set up the collections of computing elements could be more fruitful. On the other side,

other companies found convenient to invest in computing resources and to sell the usage of

these computing resources to persons/companies that could not afford the expense to buy,

run and maintain the hardware resources they occasionally or permanently need but can

anyway use some budget to use the resources from a provider.

As a matter of fact, in less than 10 years a number of companies are providing cloud ser-
vices (including Amazon, Microsoft, Google) and the model is also currently being exported

as a convenient way to organize companies internal services.

At the moment being, an assessed “cloud” concept can be summarized as follows:

cloud computing is a computing model that guarantees on-demand access to a shared
pool of computing resources. The computing resources may include processing nodes,
interconnection networks, data storage, applications, services, etc. and they can be
configured to accomplish user needs with minimal management effort through a well
defined interface.

where the key points are

Computing model This provides a computing model. The user must adopt this exact

computing model to be able to use cloud computing.

On-demand Resources in the cloud are provided on-demand. There is no “reserved”

resource in the cloud: cloud applications express their needs through suitable APIs and

the cloud management software allocated the needed resources when the application

is run. This, in turn, means that the user application may no rely on any physical

property of the resources used. Different runs may get different physical resources.

Therefore everything (hw) is accessed through proper virtualization services.

D
ra
ft

PARALLEL SOFTWARE URGENCIES 11

Shared The resources in the pool are shared among cloud users. Cloud management

software will ensure separation among the logical resources accessed by different users.

Different resources The resources accessed through the cloud may be processing, storage

or interconnection resources–on the hardware side–as well as application or service

resources–on the software side.

Configurable Some configuration activity is requested to be able to access cloud resources.

The configuration usually consists in writing some XML code specifying the “kind” of

resources needed. In some other cases it may also consist in more specific programming

activity interacting with the cloud APIs.

This definition of cloud is usually interpreted in three slightly different ways:

SaaS At the application level, clouds may be perceived as a set of services that can be

accessed to compute results. We speak of Software As A Service (SaaS) in this case.

PaaS At the hardware level, clouds may be perceived as platforms of interconnected pro-

cessing elements that execute user applications. In this case we speak of Platform As

A Service (PaaS).

IaaS At an higher level with respect to PaaS we can perceive cloud as a virtual infrastruc-

ture, that is a hardware/software virtual environment used to run user applications.

User applications in this case are rooted in the software tools provided by the infras-

tructure rather than directly on the virtualized hardware as it happened in the PaaS

case. In this case we speak of Infrastructure As A Service (IaaS).

e.g.� As an example, if we develop a cloud application that uses the services provided by the cloud

to reserve flight seats or hotel rooms to provide the final user the possibility to organize a

trip to given place for a given amount of days, we are using a SaaS. If we prepare a cloud

application were a number of virtual machines running our own customized version of Linux

to run an MPI application on top of them, we are using a PaaS. Eventually, if we write

a cloud MPI application we are using IaaS, as in this case the cloud will provide us the

operating system + MPI virtual abstraction. C

When using cloud for parallel computing care has to be taken to make an efficient usage

of the resources claimed. The kind of actions taken also depends on the kind of usage

(SaaS, PaaS or IaaS) we make of the cloud. Let us restrict to a PaaS usage. If we prepare

our set of virtual machines to be eventually run on the cloud resources we have to be

aware that both different virtual machines may be allocated to different hardware resources

and that different runs of our application may eventually get assigned different resources.

Therefore, we must carefully access “system” resources through virtualization interfaces.

Interconnection network should be accessed through is POSIX/TCP interface exposed by

the PaaS, or the processing elements must be accessed to their generic specifications exposed

(e.g. Intel IA32 architecture), for instance.

Due to this variance in the assigned resources some dynamic adaptation should be prob-

ably included in the application non functional code, to achieve the best efficiency in the

usage of the “unknown” resources eventually assigned.

1.2 PARALLEL SOFTWARE URGENCIES

By looking at the three different aspects outlined in the previous Section, we can try to list

a set of different urgencies (along with the connected desiderata) relative to the parallel

programming environments. In this Section we briefly discuss the main items in this list.

D
ra
ft

12 PARALLEL HARDWARE(NEEDS PARALLEL SOFTWARE)

Parallelism is everywhere. Parallelism is moving from HPC systems to all day systems. Per-

sonal computers, laptops and, recently, tablets and smart phones, have multi core processors

inside. The amount of cores per processor is increasing constantly with time. We should

expect to have a significant numbers of cores in any of these personal system within a few

years. We therefore need to develop parallel computing theory, practice and methodologies

rather than further developing sequential only their sequential counterparts. In particular,

future programmers should be formed with parallelism in mind: we must abandon the idea

that sequential algorithms come first and then they can be parallelized. These new pro-

grammers must start thinking to the problems directly in a parallel computing perspective.

Heterogeneous architectures are becoming important. With the advent of GP-GPUs most

processing elements will have some kind of co-processor in the near future. GP-GPUs sport

an impressive number of cores that unfortunately may be used only for particular kind

of parallel computations, namely data parallel style computations. Parallel programming

frameworks should be able to seamlessly support these heterogeneous architectures and

should provide the application user with high level tools to access co-processor resources.

This is even more important taking into account that heterogeneous architectures with

FPGA based co-processors start to be available11. FPGAs are particular circuits that

may be configure to perform different computations directly “in hardware”. Being com-

pletely configurable they offer huge possibilities to improve critical portions of applications

by directly programming “in hardware” these portions of code. However, this is a quite com-

plex task definitely outside the possibilities of the application programmers. Programming

frameworks should be able to provide high level access API also for this kind of accelera-

tors. Outside the single processor features, even if we consider “distributed” architectures

such as COW/NOW12 architectures we have to take into account that rarely the systems

hosted are identical. Some of them may be equipped with co-processors. More in general,

upgrade due to normal system maintenance will introduce some degree of heterogeneity in

the system.

Parallel program portability is an issue. Parallel program portability is an issue, especially

if non functional feature portability is considered in addition to functional portability13.

Functional portability is usually ensured by the software platform targeted. An MPI pro-

gram running on the first computer in the Top500 list may be quite easily ported on a
different computer of the same list as well as on your own laptop. Of course the perfor-

mances achieved and the amount of data processed will be affected. First of all, different

amounts of memory may accommodate the execution of programs using differently sized

input/output data. This is normal and it also happens in the sequential scenario. How-

ever, even in case the same data sizes may be processed different configuration in terms

of the interconnection network and of the kind of processing elements used may lead to

very different performance results for the very same parallel application. A decent paral-

lel programming framework should ensure performance portability across different target

architectures as much as possible, modulo the fact that nothing can be done in case of

“insufficient” resources. Performance portability is not the only one non functional concern

portability issue, however. Nowadays power management policies represent a significant non

11see Intel Atom E6x5C series http://edc.intel.com/Platforms/Atom-E6x5C/ http://newsroom.
intel.com/community/intel_newsroom/blog/tags/system-on-chip
12COW is the acronym of Cluster Of Workstations, whereas NOW is the acronym of Network Of Worksta-
tions
13see Sec. 2.2 for the definition of functional/non functional properties in a parallel computation

D
ra
ft

PARALLEL SOFTWARE URGENCIES 13

functional concern and again we wish to have parallel programming frameworks capable to

support power management policy portability across different target architectures14.

Code reuse is an issue. When developing a parallel application we will often be in the

situation that a huge amount of sequential code already exists solving (part of) the different

problems that have to solved in our application. These sequential codes are often the result

of years of development, debugging and fine tuning. Rewriting them is therefore simply an

unfeasible hypothesis. Any parallel programming framework must therefore support re-use

of existing code as much as possible. In turn, this means that it must provide the possibility

to link this code in those parts of the parallel application solving the particular problem

solved by the sequential code and to orchestrate parallel execution of different instances of

these sequential codes as well.

Dynamic adaptation must support non exclusive usage of parallel resources. When writing

parallel code for cloud systems, as well as for architectures not in exclusive access, we

must take into account of the varying features of the hardware used. Parallel software

frameworks must provide support for the development of dynamic adaptation policies to

get rid of the inefficiencies introduced by the varying features of the target architecture.

The support must be efficient enough to support reconfiguration of the running application

with a minimal overhead.

14e.g. we want programming environments capable to guarantee that a “power optimal” implementation
of an application on target architecture A may be ported to architecture B preserving power optimality,
either by simple recompilation or by some kind of automatic application restructuring

D
ra
ft

D
ra
ft

CHAPTER 2

PARALLEL PROGRAMMING: INTRODUCING
THE CONCEPT

A generally assessed definition of parallel computing can be stated as follows:

Parallel computing is the use of two or more processing elements in combination to
solve a single problem.

At the very beginning of the parallel computing story “processing elements” where actually

full computers, while nowadays they can be full computers as well as cores in general purpose

(CPU) or special purpose (GPU) units. Also the term “two or more” was really referring to

numbers in the range of ten, while nowadays it may range up to hundreds of thousands15.

Despite the different types and number of processing elements used, however, parallel

computing is a complex activity requiring different steps to produce a running parallel

program:

• First, the set of possibly concurrent activities have to be identified. Concurrent activ-

ities are those activities that may be performed in concurrently/in parallel. Activities

that may be performed concurrently exclusively depend on the features of the prob-

lem we want to solve. When defining the set of concurrent activities we defined both

which and how many concurrent activities we have.

• Then, proper coordination of the concurrent activities has to be designed. Coordi-

nation includes synchronization as well as access to logically shared data from within

different concurrent activities identified in the first step. Coordination features are

derived from the features of the problem to solve and from the features of the set of

concurrent activities devised in the first step.

• Last but not least, the concurrent activities and the related coordination activities

must be implemented–in parallel–with the tools available and trying to maximize the

15The “supercomputer” currently in the top position of the www.top500.org list sports 186368 cores (Nov.
2010 list)

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

15

D
ra
ft

16 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

benefits of parallel execution. As an example, trying to minimize the wall clock time

spent to solve the problem at hand. While implementing the concurrent activities with

the available tools we can eventually realize that some of the logically concurrent activ-

ities are not worth begin parallelized as no benefits derived from their implementation

“in parallel”. Possibly, the tools available to support parallel implementation of con-

current activities will be such that the concurrent activities individuated in the first

step may not be used to produce any kind of improvement–in terms of performance–of

the application, and therefore we have to go back to step one and look for an alterna-

tive decomposition of our problem in terms of concurrent activities. In any case, the

implementation of concurrent activities in parallel performed in this last step depends

on the tools and on the features of the parallel architecture we are targeting.

e.g.� As an example, let us suppose we want to implement a parallel application transforming a
color image in a black&white image. Conceptually, the image is an array of pixels. Each pixel
is defined by a color. The set of concurrent activities we can individuate is such that we have
one concurrent activity for each one of the pixels of the image. Each one of these activities will
simply transform pixel representation according to a function f : RGB → B&W 16 mapping
color pixels to black and white pixels. After having individuated the possibly concurrent
activities needed to solve our problem, we investigate the kind of coordination needed among
these activities. In our case, all the individuated concurrent activities may actually start in
concurrently, provided concurrent accesses are supported to the different image pixels. Then
we have to wait for the termination of all the concurrent activities in order to establish that
our computation is completed, that is that our problem has been solved.

Let us consider we are using a shared memory multi core architecture with 16 cores to
implement our application, and that the image to transform has been already allocated in
memory. We can therefore implement each pixel transformation concurrent activity as a
separate thread. We can start all the threads (one per pixel) in a loop and then wait for
the termination of all those threads. The possibility to access single pixels of the image
concurrently–for reading the color value and for writing the computed grey value–is guaran-
teed by the global shared memory abstraction exposed by threads.

We can easily recognize that the loop starting the threads and the one waiting for thread
completion are huge, due to the huge numbers of pixels in the image, with respect to the
number of cores in the target machine, which in turn determines the actual maximum paral-
lelism degree of our application. Therefore we can “restrict” the number of parallel activities
originally found in our problem by programming the application in such a way the image
pixels are partitioned in a number of sub-images equal to the number of cores in our tar-
get architecture. The structure of the final parallel application remains the same, only the
parallelism degree changes to match the parallelism degree of the architecture. This will
obviously be a much better parallel implementation than the first one: no useless–i.e. not
corresponding to the actual parallelism degree of the target architecture–parallelization has
been introduced in the code.

What if the target architecture was a network of workstations instead? we should have used
processes instead of threads and we should also have programmed some specific communi-
cation code to send the parts of the images to be processed to the different processes used.
Due to longer time required both to start a process on a remote machine (w.r.t. the time
needed to start a thread on a multicore) and to communicate over interconnection network
(w.r.t. the time spent to implement an independent–e.g. not synchronized–access to the
image pixels in main memory) this obviously requires a careful design of the implementation
grouping large number of potentially concurrent activities into a much smaller number of
processes to be run on different processing elements in the network.

C

16we denote with f : α→ β a function mapping values of type α to values of type β, as usual in functional
style

D
ra
ft

17

Looking in more detail at the three steps detailed above, we can refine the different

concepts just exposed.

Concurrent activities. When determining which are the possibly concurrent activities that

can be used to solve our problem, we determine the candidates to be implemented in parallel.

Two kind of approaches may be followed:

• we may look for all the concurrent activities we can figure out and assume that imple-

mentation will extract from the whole (possibly large) set those actually being worth

to be implemented in parallel, that is the exact subset “maximizing” the performance

of our application.

• Alternatively, we may directly look for the best decomposition of the problem in

concurrent activities, that is the set of concurrent activities that, if implemented in

parallel (all of them), lead to the better performance values in the computation of our

problem.

The first approach clearly only depends on the features of the problem we want to solve,

while the second one also depends on the features of the target architecture we want to use17.

In general, different alternatives exists to devise the number and the kind of concurrent

activities needed to solve a problem. Again, all possible alternatives may be devised in

this phase or–more likely–one alternative is selected and other alternatives are possibly

considered later on in case of negative feedbacks from the implementation phase.

Coordination. Coordinating concurrent activities is related to two different aspects: syn-

chronization and data access. The synchronization aspects are related to problem of “or-

dering” the concurrent activities. Some activities may need results from other activities to

start their computation and therefore some synchronization is needed. In other cases a set

of concurrent activities must be started at a given time, for instance after the completion of

another (set of) concurrent activity (activities). The data access aspects are related to the

possibility for concurrent activities to access common data structures. Concurrent accesses

have to be regulated to ensure correctness of the concurrent computations. Regulation of

common (shared) data access depends on the kind of accesses performed. Concurrent read

accesses to a read only shared data structure usually do not pose problems, while concur-

rent write accesses to a shared data structure must be properly scheduled and synchronized.

Also, coordination may be achieved via accesses to shared data structures or via message

passing. The usage of shared memory accesses and message passing can be combined to

optimize coordination of concurrent activities in environments supporting both mechanisms.

Implementation. Implementation requires considering several problems, including paral-

lel activities implementation, coordination implementation and resource usage. Parallel

activities may be implemented with several different and partially equivalent mechanisms:

processes, threads, kernels on a GPU, “hardware” processes, that is processes computed on

specialized hardware such as programmable FPGA co-processors or specific hardware co-

processors. Coordination implementation may exploit different mechanisms, such as those

typical of shared memory environments or of message passing environments. Very often the

coordination activities must take into account the possibilities offered by interconnection

networks, internal or external to the processing elements. As an example, in clusters of

workstations the interconnection network may support forms of broadcasting and multicas-

ting that greatly enhance the possibilities to implement efficient collective18 coordination

17target architecture in terms of both software (compilers and run times available) and hardware (number
and kind of processing elements/resources available.
18i.e. involving a set of parallel activities/actors

D
ra
ft

18 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

operations. In a multicore, the UMA or NUMA19 memory hierarchy may force particular

allocation of shared data in memory in order to achieve efficient parallel activities coordi-

nation. Resource usage concerns the allocation of parallel activities to the resources (cores,

processing elements, memory locations, etc.) actually available. In turn, this means that

both mapping–assigning parallel activities to processing resources–and scheduling–starting

and stopping parallel activities–policies and strategies must be devised. In general most of

the problems related to mapping and scheduling are NP-complete problems, and therefore

in most cases proper heuristics are used instead of exact algorithms.

2.1 CONCURRENT ACTIVITY GRAPH

The concurrent activities individuated in the first step performed to produce a parallel

implementation of a given application is the starting point for all the implementation ac-

tivities, the ones performed in the thirds step mentioned at the beginning of this Chapter.

Actually, the starting point we have to consider includes both the concurrent activities and

the actions needed to coordinate them in the parallel application.

We therefore introduce a formalism aimed at modeling the concurrent activities needed

to implement a given parallel application: the concurrent activity graph. The concurrent

activity graph is defined as a graph:

G = (A,N)

where the nodes (n ∈ N) are concurrent activities and arcs represent two different types of

relations among nodes, that is A = Cd ∪Dd, where :

• the control dependencies Cd, are those dependencies explicitly given by the program-

mer and to establish an ordering in the execution of concurrent activities. 〈n1, n2〉 ∈
Cd represents the fact that the activity represented by node n2 must be executed after

the end of the activity represented by node n1.

• data dependencies are those dependencies 〈n1, n2〉 ∈ Dd modeling the fact that a

data item produced by concurrent action modeled by node n1 is needed to compute

the concurrent activity modeled by node n2.

Activities that do no have dependencies (neither control nor data dependencies) may be

executed in parallel. Activities linked by a control or data dependency must be executed

sequentially, although they can be executed in parallel with other concurrent activities.

Within the graph G we can identify input activities as those activities that are activated

by the presence of application input data, and output activities as those activities that

produce the data relative to final parallel application result.

Within the graph, we also identify the critical path, as the “longest” path of activities

connected by control or data dependencies from an input node to an output node. “Longest”

in this context has to be understood in terms of performance. As suggested by the name,

critical path is the natural candidate when looking for optimizations in a parallel application.

In fact, as a critical path starts with the availability of the input data and application

results may only be delivered when all the output activities, including the one concluding

the critical path, are terminated, the best time we can achieve in the execution of our

parallel application is the time taken in the execution of the whole critical path20.

19(Non)Uniform Memory Access. In a UMA architecture, all accesses to main memory costs the same
time independently of the position of the core requiring the access. In a NUMA architecture, different
cores may take different times to access the same shared memory location. The differences in time may be
considerable.
20i.e. of the set of concurrent activities included in the critical path

D
ra
ft

FUNCTIONAL AND NON FUNCTIONAL CODE 19

We want to point out that the graph G is a logical graph, that is it corresponds to the

logically concurrent activities we individuated among the overall activities to be performed

in order to get the problem solutions.

Later on, we will speak of similar implementation graphs that refer to the parallel activ-

ities performed in the implementation of our concurrent activities graph. That graph could

be sensibly different and is definitely dependent on the features of the target platform (hw

and sw).

2.2 FUNCTIONAL AND NON FUNCTIONAL CODE

When considering the code needed to implement a parallel application–i.e. the code pro-

duced at the end of the implementation phase as described in the previous Section–we can

easily understand it is composed of two distinct and very different kinds of code:

Functional code The code needed to compute the actual results of the parallel computa-

tion. In case we want to compute weather forecast, the computation of the weather

parameters (temperature, rain probability, etc.) out of the set of observed measures

(current temperature, wind direction and intensity, humidity, etc.) is made by func-

tional code.

Non functional code The code needed to orchestrate the computation of functional code

in parallel. This includes code to set up parallel activities, to schedule these activities

to the available resources and to coordinate their execution up to completion. In case

of weather forecast, the split of functional code computation in such a way different

sub-domains of the input data may be processed independently and in parallel and

then a unique result may be build from the partial results computed on each sub-

domain is all managed by non functional code.

In general, functional code is the code needed to compute what the application has

actually to compute, whereas the non functional code is the code needed to determine

how these functional results are actually computed in parallel. Functional code is domain

specific21 code and it has often been developed and tuned in years/decades. Non functional

code is platform specific22 instead.

The kind of expertise needed to write good code is therefore different in the two cases:

• to write good functional code a good expertise in the application domain is required,

which is typically the expertise of specialized application programmers, whereas

• to write good non functional code a good expertise in the parallel programming is

required, which is quite independent of the application area but very dependent on

the target platform used.

2.3 PERFORMANCE

Performance is the main goal of parallel programming. The (quite difficult) task of im-

plementing a parallel application solving in parallel a given problem is only afforded if we

have a reasonable expectation that eventually the parallel application will provide “better”

results, in terms of performance, with respect to the sequential application(s) solving the

same problem.

21the term domain specific is used to denote code/features depending on the application domain at hand
22again, we refer to “platform” as the ensemble of software and hardware in the target architecture.

D
ra
ft

20 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

Now the “performance” of an application may be defined in different ways. In Chap. 5

we will carefully introduce and discuss performance measures. What is in general expected

from a parallel program in terms of performance is that

the time spent to execute the parallel program using n processing elements is about 1
n

of the time spent executing any sequential program solving the same problem.

As we will see, several factors impair the possibility to achieve such behaviour. In par-

ticular, the features of the problem to be solved have to be taken into account. First of all,

not all the problems are suitable to be parallelized. Some problems have been recognized as

inherently sequential and therefore will never benefit from parallelism/parallel implementa-

tion. Then, even those problems suitable to be somehow parallelized may contain a fraction

of the work needed to solve the problem which is not parallelizable.

A well know law, the Amdhal law, states that the amount of non parallelizable work

in an application determines the maximum speedup we may achieve by parallelizing that

application.

Assume you have an application where f percent of the total work is inherently sequential–

it could not be parallelized. And assume that the whole application needs TS units of time

to be completed in sequential. Therefore fTS units of time will be spent in the application

serial fraction and (1− f)TS units in its non serial fraction. The best thing we can imagine

is that using n processing elements the (1− f)TS time can scaled down to

(1− f)TS
n

Therefore the speedup23 we can achieve with our application, which is defined as

sp(n) =
Tseq
T (n)

(the ratio among the time spent in sequential computation (1 processing element) and the

time spent in the parallel computation with n processing elements) is

sp(n) =
Ts

fTS + (1− f)TS

n

If we assume to have infinite processing resource available, the term (1− f)TS

n clearly goes
to 0 and therefore the asymptotic speedup may be written as:

lim
n→∞

sp(n) =
TS
fTS

=
1

f
(2.1)

Equation 2.1 is the Amdhal law. It has important consequences. In particular, it states

that any application having x% of serial fraction could not achieve a speedup larger that 1

over x.

e.g.� If you have an application running in 10 hours with a 10% serial fraction, you will never

succeed running this application in less than 1 hour (limn→∞ sp(n) = 1
0.10

= 10, 10hours
10

=

1 hour). C

Amdhal law establish a completely theoretic limit to the speedup we can achieve through

the parallelization of the activities needed to solve a given problem. However, there are

many factors that impair the possibility of achieving the limits established by Amdhal law.

In particular, overheads incur in the implementation of parallel applications. Overhead

23the concept of speedup will be better introduced in Chap. 5.

D
ra
ft

OTHER NON FUNCTIONAL CONCERNS 21

incur in the execution of any non functional code of parallel applications. An overhead is

to be intended as a time loss with respect to the computation of the parallel application

(functional) results. As an example, setting up the parallel activities, either threads or

local/remote processes, is an activity that introduces an overhead. If we consider the time

needed to compute the solution of our problem, this does not comprehend the time needed

to set up parallel activities. However, if we do not setup parallel activities we’ll not be able

to achieve any kind of speedup. Therefore overheads incur, they are somehow necessary

to implement parallelism, but we have to manage to minimize them as much as possible.

Another example of overhead is the one related to communications. If we set up a number

of concurrent activities as processes on different processing elements and some data has

to be distributed to the processes before they start computing, then the time needed to

distributed the data through communication is plain “communication overhead”.

Looking again at the Amdhal law, we can modify it in such a way overheads are taken

into account. In particular we can image the time spent to compute in parallel the non serial

fraction of the application is Ts

n +Tov instead of being simply Ts

n . Unfortunately, overheads

(Tov) depend on the parallelism degree. Communication time depends on the number of

entities participating in the communication or the time spent to start concurrent/parallel

activities depends on the number of activities actually involved, as an example. Therefore

Amdhal law should be rewritten as

lim
n→∞

sp(n) = lim
n→∞

Ts

fTS + (1− f)(TS

n + Tov(n))
=

1

f + (1− f)Tov(n)
TS

(2.2)

In case of negligible overhead this clearly reduces to Eq. 2.1, but if the fraction of overhead

with respect to the total sequential time is significant, the asymptote speedup is even

smaller than one expected taking into account only the weight of the serial fraction. It

is clear therefore that the less overhead we introduce in our parallel application with non

functional code the better performance we can achieve.

2.4 OTHER NON FUNCTIONAL CONCERNS

When designing and implementing parallel applications, performance is the main non func-

tional concern we are interested in, but other non functional concerns are also important.

We outline in the following paragraphs the more important further non functional concerns

in parallel programming.

2.4.1 Load balancing

When considering a set of parallel activities each computing a subset of what’s needed to

compute a global result, we must be careful not to organize these activities in such a way

load unbalance is verified. Load unbalance is the situation where parallel activities in a set

of activities get a different amount of work to be computed. As we are assuming that the

results of all the activities are needed to produce the global result, in case of load unbalance

we have to wait for the longest lasting activity to complete before producing the global

results. While the longest lasting activity is completing, the other activities may be idle

having already finished their computation. As a result, the overall computation will last

more than in case of a balanced distribution of work (see Fig. 2.1).

We can therefore conclude that load balancing of parallel activities is fundamental to

achieve good performance values. Several techniques may be used to achieve load balancing,

including:

Static techniques These techniques may be used at compile time or at run time to es-

tablish a static subdivision of work among the concurrent activities actually run in

D
ra
ft

22 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

Figure 2.1 Unbalanced computation. Three concurrent activities (a1, a2, a3) on three different
processing elements, spend unbalanced amount of times to complete. The application completes when
al the activities have been completed. Idle times on the processing elements computing a1 and a3
reduce application efficiency.

parallel. In case the static assignment turns out to be not correct, either due to the

impossibility to exactly predict the amount of work assigned to concurrent activi-

ties or because of changes in the target architecture (e.g. additional load charged on

processing elements of different applications sharing the same resources), the overall

result will demonstrate poor performance.

Dynamic techniques These techniques are in general used at run time and achieve load

balancing by dynamically assigning and re-assigning work to the concurrent activities.

These techniques may achieve better load balancing in all those cases where the exact

amount of work of activities could not precisely be defined before the activities actually
take place at the expense of a larger overhead related to the management of dynamic

work assignment/re-assignment.

e.g.� As an example, consider again the example made at the beginning of this Chapter, relative

to transformation of color images into black&white images. If we statically divide the image

pixels in partitions and we assign one partition per processing element, the partition overhead

is negligible but in case one of the processing elements becomes overloaded, its partition

could be computed sensibly later than the other ones delaying the delivery of the whole

black&white image. On the other hand, if we dynamically assign to idle processing elements

one of the pixels still to be computed, we will achieve a much better load balancing which

is able to manage processing element overload situations such as the one mentioned above.

However, the cost in terms of communications/accesses to shared memory and scheduling

activities–which is overhead from our viewpoint–is (much) larger than in case of the static

assignment. Therefore when considering static or dynamic assignment alternatives we have

to measure this overhead, see which is the relation of the overhead introduced with respect

to the overhead achieved due to load unbalance and eventually decide whether it is worth

implementing the dynamic or the static assignment algorithm. C

D
ra
ft

OTHER NON FUNCTIONAL CONCERNS 23

Load balancing is also impacted by the kind of processing resources used. In case of het-

erogeneous processing elements24 load unbalance may also arise from the usage of different

processing elements to compute comparable amounts of work.

2.4.2 Reliability

Reliability in parallel computing may be defined as the ability to complete a computation

in presence of (different kind of hardware/software) faults.

Reliability, also referred to as “fault tolerance”, is by itself a huge problem even in case

sequential computations are taken into account. When parallel computation are considered

is even more complex, due to the larger set of activities that have to be managed to get rid

of the faults.

A number of techniques have been developed to implement fault tolerance. We mention

just one of these techniques, without pretending to be complete but just to give the flavor

of the problems that have to be solved.

Checkpointing. When executing an application we can insert non functional code taking

“snapshots” of the application at given points during its execution. Each one of these snap-

shots, called usually checkpoint hosts the whole “state” of the computation, including values

of variables in memory and the value of the program counted at the moment the checkpoint

has been taken. The checkpoints are saved to the disk. Once checkpoint cpi+1 has been

successfully saved to disk, checkpoint cpi may be removed from disk. In case a hardware or

software fault causes the fault of the incorrect (and usually immediate) termination of the

application, rather than restarting it from the beginning, the last checkpoint saved to the

disk is used to restart the application. Memory representing variables is reinitialized with

the variable values saved to disk and the control flow of the application is restarted from

the program counter saved in the disk checkpoint.

Several problems must be taken into account, including: i) we need a mechanism to

perceive faults and consequently restart the application from its last valid checkpoint, ii)

we need to able to save the application state to disk, including side effects, iii) we need

to insert into the application code proper non functional code “freezing” the application,

dumping the application state to disk and eventually “unfreezing” the application25.

Now consider the same mechanisms applied to a parallel application. We need to be able
to take a “distributed” checkpoint, that is a checkpoint with parts related to the state of

each one of the parallel activities making up the application but we also need to checkpoint

the global state of the application. As an example we must take into account (and store

to disk) where the set of concurrent activities as a whole was arrived in the execution of

the parallel application. This means that if concurrent activity Ci was sending a message

to Cj , we have to store this as Ci being sending the message, Cj being going to receive

the message and with the actual contents of the message stored somewhere else in the

“interconnection network” state, maybe. Also, consider the problem of synchronizing the

checkpoints on the different processing elements used for our parallel computations. We

need a two phase protocol where all the processing elements first agree on the event “it is

time to take a checkpoint” and only when they all agree and the computations on all the

processing elements have been “frozen” they may start taking the local snapshots.

Without entering in too much details it should be clear that organizing fault tolerance

in a parallel application is quite a difficult task. However, it should also be clear that HPC

24e.g. processing elements in a cluster with different CPUs and/or different amounts of memory and different
clock speed, or cores in a multicore with NUMA access to shared memory banks.
25it is necessary to stop the application while taking the checkpoint to avoid inconsistencies, in general

D
ra
ft

24 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

definitely requires fault tolerance. If the MTBF (Medium Time Between Faults, the average

time we can expect to elapse before another fault appears) in a normal computer ranges in

month or years, when considering large supercomputers this time goes down to hours. This

is mainly due to the very high number of components used in this large supercomputers,

but the net effect is that in these installations the MTBF may be smaller than the time

needed to run an application. This means that if no fault tolerance (non functional) code

is properly inserted into the parallel application code, the application will never succeed to

complete correctly.

2.4.3 Security

Security is related to the possibility to keep confidential data and code used to compute

parallel applications as well as to guaranteed integrity of data and code transmitted across

different processing elements connected by some interconnection network and participating

to the parallel computation.

Several distinct issued related to security must be taken into account in parallel com-

puting, especially taking into account that parallel machines are rarely assigned to a single

user and that different kind of distributed architectures (COWs, NOWs and GRIDs) may

be implemented on top of public (and therefore potentially unsecure) network segments.

We just name a couple of them here and the we list additional issues specifically related to

parallel computing.

Authentication. When using machines made up of a number of different computing ele-

ments, each with its own copy of an operating system, authentication is needed to be able

to run a parallel program. In particular, all accesses to the machine resources (process-

ing elements) must go through proper authentication procedures/steps. NOW and GRIDs

usually raise this problem, although both GRID middleware26 and COW/NOW manage-

ment software provide SSI 27 (Single System Image) facilities that solve this problem or

anyway make it simpler. As an example, some GRID middleware use identity certificates

and certification authorities to guarantee access to the grid resources to a given user. The

user provides its certificate to the grid front end and the grid middleware takes care of

propagating the certificate to the resources that will be actually reserved and used for the

user application. However, in all those cases where no specific support for authentication

is provided, parallel application programmers must insert proper authentication code (non

functional code) into the application code.

Sensible data handling. When using data that should not be revealed outside, specific

techniques must be used to cipher data flowing across untrusted network segments, such

as those typical of public network infrastructure. Again, this is non functional code. The

parallel application programmer must insert in all the code relative to communication of

either code or data suitable routines to cipher transmitted in such a way in case they are

snooped it is very difficult to evince their actual content. Message ciphering–at the sending

side-and deciphering–at the receiving side–is anyway a costly activity. It is pure overhead

from the functional viewpoint. Therefore its cost should be minimized as much as possible.

This may require additional processing elements only dedicated to security handling to

guarantee the better completion time of our application at the expense of some additional

processing power dedicated to security overhead.

26the set of libraries and run time tools used to run computational grids
27Single System Image abstraction provides the user with the illusion a set of distributed and independent
processing elements are a unique system with parallel/distributed processing capabilities

D
ra
ft

“CLASSICAL” PARALLEL PROGRAMMING MODELS 25

Sensible code handling. While sensible data handling may be managed inserting proper,

non functional ciphering/deciphering code in the application code, the management of sen-

sible code requires different techniques. “Code deployment”, the distribution of code onto

the different processing elements participating to a given parallel computation, is usually

made with ad hoc tools: in case of distributed architectures, specific COW/NOW manage-

ment tools or GRID middleware tools are used. In case of multi/many core architectures

operating system or machine vendor tools are used instead. The problem of sensible code

handling is more evident in network based architectures, for the very same motivations

stated when dealing with sensible data handling. In this case the parallel application pro-

grammers has two possibilities to ensure secure code management during code deployment:

either the deployment tools already support secure code management–and in this case it is

only a matter of configuring these tools–or they do not support secure code management

and therefore the parallel application programmer is forced to re-implement its own, secure

deployment tools28.

2.4.4 Power management

Power management is a (non functional) concern when dealing with parallel applications.

The amount of cores used in current parallel applications may be huge and any saving

in power will correspond to a significant decrease of cost. Each one of the concurrent

activities identified when parallelizing an application may potentially run on a distinct

processing element. Also, each sequential activity may be completed in a time roughly

proportional to processing power of the processing element used for the computation. It is

also known, however, the more powerful processing elements consume more than the less

powerful ones, and that GPUs may consume less power than CPUs when executing data

parallel computations.

Therefore, when designing parallel applications care must be taken to avoid using un-

necessarily “power hungry” computations. If a computation may be executed in time t on

a (set of) processing element(s) Pa or in time t′ > t on a (set of) processing element(s) Pb
consuming respectively w and w′ Watts, in case both t and t′ happen to be such that no

deadline is missed29, then the processing element(s) with the smaller power consumption

must30 be used. In our case, if w < w′ then we should use Pa otherwise we should use Pb.

Power management requires special non functional code in the application code to sup-
port monitoring of power consumption. Also, in case we want to support the possibility to

move applications from more consuming processing elements to less consuming ones once

we evince that the less consuming and less powerful processing elements guarantee anyway

the completion of the activities “in time”, we need further non functional code to be added

to the parallel application, namely the one needed to stop an activity, move it to another

processing element and–last but not least–to restart the moved activity after notifying all

the activities in the parallel computation that location of the moved activity has changed31.

2.5 “CLASSICAL” PARALLEL PROGRAMMING MODELS

We will use the term classical parallel programming models in this text to refer to all

those programming models (or frameworks) that provide the programmer with all the tools

needed to write parallel programs without actually providing any primitive high level pro-

gramming paradigm. More explicitly, we will include in the category of “classical” parallel

28as an example ciphering code before the actual deployment through unsecure network segments.
29in other words, they do not make the critical path execution longer
30could be conveniently
31This to ensure consistency in communications, as an example.

D
ra
ft

26 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

programming models all those models that basically provide suitable mechanisms to im-

plement concurrent activities, communication and synchronization as well as concurrent

activities mapping and scheduling, but do not provide higher level mechanisms such as

those completely taking care of the implementation details related to a given parallelism

exploitation pattern nor they provide suitable abstractions to separate functional (business

logic) code from non functional one.

As an example, programming environments such as those provided by COW/NOWs

with Linux processing elements interconnected through TCP sockets will be classified as

“classic” parallel programming environments, as well as programming environments such as

MPI (the Message Passing Interface [66]) or OpenMP (the current de facto standard for

multi core programming) and Cuda/OpenCL (the current de facto standards for GP-GPU

programming [53, 52]).

In this Section, we will shortly discuss POSIX/TCP environments only. The interested

reader my find a number of different documents describing the all those “classic” program-

ming frameworks, but as POSIX/TCP is something which is well known and ubiquitously

available, we will introduce it here in such a way later on we will/may use it to discuss

different details related to the implementation of structured parallel programming frame-

works.

2.5.1 POSIX/TCP

The POSIX/TCP framework relies on two pillars:

• The availability of the POSIX system calls, including those related to process man-

agement and to TCP/IP socket management, and

• The availability of some kind of shell command line interface supporting remote access

features such as ssh, scp, rsync, rdist, etc.

The first pillar may be exploited to run parallel programs (i.e. parallel program components)

on a variety of target architectures, without being concerned by operating system peculiar-

ities. In particular, POSIX processes and threads constitute a kind of lingua franca32 in

the field of the mechanisms supporting the set up and running of concurrent activities. On

the other side, TCP (and UDP) sockets represent a viable, quite general mechanisms33 to

implement communications between the parallel application concurrent activities.

The second pillar allows to build all those tools that are needed to support the deployment

and the parallel/distributed run of the parallel program components.

We separately outline the main features, commands and system calls related to these

two pillars in the next sections.

2.5.1.1 POSIX system calls In this section we outline the POSIX system calls related to

the set up of concurrent activities, to communications and to synchronizations. We just

outline the main system calls of interest. The reader may refer to the manual pages of any

POSIX system (using obtained by running a man syscall-name command at the shell

prompt) for further details on the exact syntax and usage of these system calls.

Concurrent activity set up. Concurrent activities may be set up in a POSIX framework

as either processes or threads. The related system calls operate in the framework set up

by the operating system. Therefore processes (threads) are processes (threads) of the same

“machine” (either single processor or multicore). POSIX presents a peculiar interface for

32POSIX API is implemented in Linux/Unix, Mac OS X and (with proper support tools) in Windows
systems.
33even if not perfectly efficient, for certain types of communications

D
ra
ft

“CLASSICAL” PARALLEL PROGRAMMING MODELS 27

process set up, based on two distinct system calls. The fork system call duplicates the

process invoking the syscall. The original process gets the process identifier of the new (copy

of the original) process, while the new process get a “0” (process identifiers are integers in

POSIX). The exec system call, instead, differentiates the code of the current process: the

old code being executed before the exec syscall is abandoned and a new program is used

as the process body taken from the executable file specified through the exec parameters34.

Therefore the typical sequence of system calls used to create a process includes a fork,

followed by a conditional statement checking the fork result: in case it is 0 (that is it is

the child process running) an exec is called to differentiate the code. In case it is not 0

(that is it is the parent process running) the code continues with the rest of the process

body. Processes execute in a separate address space. No sharing is supported unless the

processes explicitly use SysV system calls to declare and use segments of shared memory

(see communication paragraph below). However, the child process inherits a copy of all

the variables defined and assigned by the parent process before the fork execution. The

termination of a process may be awaited using a wait or a waitpid system call. The

former waits for the termination of any one of the processes forked by the process invoking

the wait. The second one waits the termination of a process with a specific process identifier.

Both syscalls are blocking.

POSIX threads (pthreads) are set up with a pthread create system call. Thread body

must be specified by passing–via one of the parameters–a function receiving a void * argu-

ment and returning a void * result. A single parameter may be passed to the thread (the

function parameter) via another pthread create parameter. Threads share the global

address space of the process invoking the pthread create calls. This means that global

variables are shared among threads. Threads may access them for reading and writing.

In case of multiple threads accessing variables, the accesses may/should be synchronized

using locks and semaphores that are provided within the same libpthread providing the

mechanisms for thread creation. The termination of a thread may be awaited using the

blocking system call pthread join.

Communication. POSIX provides different mechanisms supporting communications among

concurrent entities: shared memory for threads, pipes, sockets, message queues and shared

memory for processes. Shared memory is primitive when using pthreads. No special mecha-

nisms are needed to declare or use shared memory, but the proper usage of synchronization

mechanisms when performing concurrent accesses to shared variables. POSIX processes

may use pipes or sockets to implement inter-process communications. Pipes are “in mem-

ory” files. They are declared using the pipe syscall. This returns a couple of file descriptors

that may be used (one for reading and one for writing) to access the pipe. Writing to the

write descriptor results in the possibility to read the same data on the read descriptor of

the pipe. Usually pipes are created before forking a new process. Then either the parent

process writes to the pipe and the child process reads from the pipe or vice versa. Of course,

pipes created in the parent process may also be used to communicate in between two child

processes. Operations on pipes require the usual read and write syscalls used to read

or write plain disk files. Sockets may be also be used for interprocess communications.

Sockets eventually provide descriptors such as those provided by a pipe, but there are a

couple of significant differences: i) socket declaration is asymmetric. Two processes using a

socket behave as a client/server system. The server declares a server socket and binds it to

an address. Then it accepts connections by the client. The result of a connection is a socket

providing the file descriptor used to access transmitted data. The client declares a client

socket and connects it to the server socket. The connection returns the file descriptor used

34There are several different version of the exec syscall depending on the kind of data type used to represent
the parameters, actually: execv, execl, execve, execle

D
ra
ft

28 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

to access transmitted data. ii) the socket file descriptor supports bi-directional communi-

cation. Both client and server may write and read to the socket descriptor. Data written

by client (server) may be read by server (client).

The syscalls used to operate on sockets include: socket to declare either client or server

socket, bind to bind a server socket to an address, connect to connect a client socket

to a server socket, listen to declare the amount of pending connections allowed on a

server socket, accept to accept connections from clients on a server socket, close and

shutdown to terminate a socket connection. POSIX supports AF INET and AF UNIX
sockets. The former uses IP addresses (IP address + port number) and support communi-

cations between remote machines. The latter uses “filename” addresses and only supports

communications between processes running on the same machine (instance of POSIX op-

erating system). POSIX so called “SysV IPC” syscalls allows processes to share memory

segments and to exchange messages via message queues. They also provide the semaphore

mechanisms needed to synchronize accesses to the shared memory segments. The dec-

laration of a shared memory segment is achieved using a shmget syscall. The shared

memory segment may then be accesses via a normal pointer obtained from a shmat syscall.

Different processes may access the same shared memory segment provided they agree on

the shared memory segment identifier passed to the shmget syscall. With similar system

calls (msgget, msgsend, msgrcv) shared message queues among processes and (semget,

semop) shared semaphores may be used.

Synchronization. To synchronize activities of POSIX processes and thread different mecha-

nisms may be used. Threads may used locks and semaphores, via pthread mutex lock/

pthread mutex unlock and sem wait/sem post syscalls. Processes running on the

same machine may use SysV semaphores (see above) to synchronize, as well as AF UNIX,

AF INET, SysV message queues or pipes, used in such a way pure synchronization messages

are exchanged35. In order to synchronize the activities of processes running on separated

machines, AF INET sockets must be used.

2.5.2 Command line interface

In this section we shortly outline the main Unix commands used to deploy and run paral-

lel/distributed programs on a network of POSIX workstations and to control the execution.

As for the POSIX system calls, the interested user may get more details on these commands

running a man command-name at the shell prompt.

Deployment. To deploy code and data to remote machines, the scp, rsycn and rdist
commands can be used. scp copies files/directories to and from a remote machine. Sources

and destinations may be specified as local files/directory (usual syntax) or remote ones

(denoted with the machine name followed by “:” followed by the (relative or absolute) file-

name. Different flags may be used to recursively copy directories and to affect the ciphering

algorithms used to secure the communication. scp usually requires the login/password of

the remote machine, unless you adopt special procedures36. rsync synchronized local and

remote directories (denoted with a syntax such as the one used for scp), that is copies

the modified files of the source to the destination. It is very efficient as it only transfers

the modified portions of file across network. Therefore code and data may be copied to

the remote machine simply by rsyncing the proper directories. rdist performs a task

35if a process has to wait an event signaled by another process, it may read from a message queue/pipe/socket
just one byte, while the signaling process may write that byte at the right “synchronization” point
36to avoid the request of the remote login password, you should insert your public key (usually in the file
$HOME/.ssh/id rsa.pub in the $HOME/.ssh/authorized keys file of the remote machine. The public
rsa password must be generated with an empty passphrase.

D
ra
ft

IMPLEMENTING PARALLEL PROGRAMS THE “CLASSICAL” WAY 29

similar to the one performed by rsync, but it is specialized to support file transfer towards

a number of different remote machines. It uses a distfile configuration file that may

include different “targets” (operations) each moving different local directories to (possibly

different) sets of remote machines. In order to be able to use anyone of these commands,

the user must have a valid account on the remote machines used.

Lifecycle control. To start processes on a remote machine the ssh command may be used.

This command takes a (remotely valid37) command and executed it on a remote machine.

The syntax used to specify the remote machine consists in a user name followed by the “@”

and by the qualified name of the remote machine. In order to be able to use ssh, the user

must have a valid account on the remote machines used. As for scp special care must be

taken to avoid having the remote system asking the password before executing the requested

command. To stop remote processes, the ssh command may be used to run proper kill
commands. ssh may also be used to run monitoring commands on the remote systems (e.g.

a ps listing the status of the user processes, or a uptime to monitor the machine load).

2.6 IMPLEMENTING PARALLEL PROGRAMS THE “CLASSICAL” WAY

We discuss in this Section a trivial implementation of a simple parallel application on a

POSIX/TCP system. The intent is to point out all the peculiarities and difficulties related

to the usage of low level mechanisms to implement parallel applications.

2.6.1 The application

We want to implement a very simple application that squares a set of integers in parallel.

Therefore, in our application:

• the input is constituted by a given number of integers

• each one of the integers has to be squared (“squaring” is our “business logic code”)

• the output (on screen) is the set of squared integers

For the sake of simplicity, we do not require an “ordered” input, therefore if we ask the

computation of squares of x1, . . . , xm then allow to have xi ∗ xi appearing on the screen

before xi−k ∗ xi−k.

2.6.2 The concurrent activity graph

Given the set of input data

x1, . . . , xm

the concurrent activities set is given by

{∀i : x2
i }

as all the tasks (i.e. the tasks computing each x2
i) are independent: no data dependencies

are present.

2.6.3 Coordination

Being the concurrent activities independent we need no coordination among concurrent

activities. Of course, we need to have the input data to start and we should stop only after

computing all the concurrent activities.

37that is a valid command on the user account on the remote system

D
ra
ft

30 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

Figure 2.2 Implementation graph of the sample application

2.6.4 Implementation

We assume to target a POSIX/TCP workstation network. Therefore we will use processes

to implement concurrent activities and sockets to implement communications and synchro-

nization. We also assume–in principle–to have concurrent activities partitioned across the

available processing elements.

A possible implementation is the following one:

• a processing element (the emitter) hosts all the input data and delivers input data

items (one at a time) to one of the processing elements belonging to a set of worker

processes

• a set of identical worker processes will wait for a task to be computed from the emitter

process, compute the task and deliver the result to a collector process

• a collector process will collect results from workers and print them to screen.

The logical parallel activities graph is the one depicted in Fig. 2.2.

2.6.5 Code relative to the implementation handling termination but not handling

worker faults

We decide to implement communications as follows:

• the emitter process publishes a server socket. It accepts connections from workers.

When a connection is accepted the emitter sends to the worker a task to be computed

and closes the connection. The emitter process is single threaded, so one connection

at a time is handled. This is reasonable due to the negligible amount of work needed

to handle the connection.

• the collector process publishes a server socket. It accepts connections from the workers.

When a connection is accepted the collector reads from the socket a result and prints

it to screen. Then the connection is closed. Again, the collector process is single

threaded.

D
ra
ft

IMPLEMENTING PARALLEL PROGRAMS THE “CLASSICAL” WAY 31

• the worker process executes a loop. In the loop body:

1. it opens a socket and connects to the emitter server socket, sending its process

identifier.

2. it reads a tasks from the socket connected to the emitter, closes the socket and

computes the result relative to the task

3. it opens a socket and connects to the collector server socket, sends the result to

the collector and closes the socket.

The usage of the TCP sockets in this “connectionless” mode is not typical nor encouraged.

We adopted it here as it allows to clearly individuate the different phases in the parallel

program: communication and computation phases, mainly.

The following listing details the code of the emitter process.

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 #include <un i s td . h>
4 #include <s t d l i b . h>
5 #include <sys / types . h>
6 #include <sys / socke t . h>
7 #include <n e t i n e t / in . h>
8 #include <netdb . h>
9 #include <arpa / i n e t . h>

10

11 // on demand s c h e d u l i n g o f t a s k s to workers
12 // r e c e i v e r e q u e s t from worker i −> send t a s k to compute to worker i
13 // when no more t a s k s are a v a i l a b l e , send an EOS terminat ion
14 //
15 // usage i s :
16 // a . out portno c o l l e c t o r h o s t c o l l e c t o r p o r t
17 //
18

19 #define MAXHOSTNAME 80
20 #define MAXWORKERS 16
21

22 #define TRUE (1==1)
23 #define FALSE (1==9)
24

25 int main (int argc , char ∗ argv []) {
26 int s , cs , s i , retcode , k , pid , i ;
27 unsigned int s a l en ;
28 struct sockaddr in sa , s a i ;
29 char hostname [MAXHOSTNAME] ;
30 struct sockaddr in w addr [MAXWORKERS] ; // used to keep t r a c k o f

workers
31 int w pid [MAXWORKERS] ; // s t o r e address and pid o f workers
32 int nw = 0 ; // and count how many d i f f e r e n t workers
33

34 int task = 0 ; // t a s k s are p o s i t i v e i n t e g e r e s , in t h i s case
35 int t a s k l i m i t = 5 ; // we ’ l l send t a s k l i m i t t a s k s b e f o r e s topp ing
36 int eos = −1; // s p e c i a l t a s k to denote End Of Stream
37

38 int loop = TRUE; // to determine loop end
39

40 // code needed to s e t up the communication i n f r a s t r u c t u r e
41 p r i n t f (” Dec la r ing socke t \n”) ;
42 s i = socke t (AF INET ,SOCK STREAM, 0) ; // s o c k e t f o r i n p u t s
43 i f (s i == −1) { pe r ro r (” opening socke t f o r input ”) ; return −1;}
44 s a i . s i n f a m i l y = AF INET ;
45 s a i . s i n p o r t = htons (a t o i (argv [1])) ;
46 gethostname (hostname ,MAXHOSTNAME) ;
47 memcpy(& s a i . s in addr , (gethostbyname (hostname)−>h addr) ,
48 s izeof (sa . s i n addr)) ;
49 p r i n t f (” Binding to %s \n” , i n e t n t o a (s a i . s i n addr)) ;
50 r e t code = bind (s i , (struct sockaddr ∗) & sa i , s izeof (s a i)) ;

D
ra
ft

32 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

51 i f (r e t code == −1) {
52 pe r ro r (” whi l e c a l l i n g bind ”) ; return −1; }
53 p r i n t f (” L i s t en ing socke t \n”) ;
54 r e t code = l i s t e n (s i , 1) ;
55 i f (r e t code == −1) {
56 pe r ro r (” whi l e c a l l i n g l i s t e n ”) ; return −1; }
57

58 while (loop) {
59 int found = FALSE;
60 s a l en = s izeof (sa) ;
61 p r i n t f (” Accepting connec t i ons \n”) ;
62 s = accept (s i , (struct sockaddr ∗)&sa ,& sa l en) ; // accept a

connect ion
63 i f (s == 1) {
64 pe r ro r (” whi l e c a l l i n g an accept ”) ; return −1; }
65 p r i n t f (”Accepted connect ion from %s porta %d (nw=%d i=%d) \n” ,
66 i n e t n t o a (sa . s i n addr) , sa . s i n po r t , nw, i) ;
67 r e t code = read (s ,&pid , s izeof (int)) ; // read r e q u e s t from worker
68 i f (r e t code == −1) {
69 pe r ro r (” whi l e read ing task from worker ”) ; return −1; }
70 // s t o r e worker data i f not a l ready present . . .
71 for (k=0; k<nw; k++) {
72 i f (memcmp((void ∗)&w addr [k] , (void ∗)&sa . s in addr , s izeof (struct

sockaddr in))==0
73 && w pid [k]==pid) {
74 p r i n t f (”Old worker ask ing task \n”) ;
75 found = TRUE;
76 break ;
77 }
78 }
79 i f (! found) {
80 memcpy((void ∗) &w addr [nw] , (void ∗) &sa . s in addr ,

s izeof (struct sockaddr in)) ; ;
81 w pid [nw] = pid ;
82 nw++;
83 p r i n t f (”New worker ask ing task from %s pid %d port

%d\n” , i n e t n t o a (sa . s i n addr) , pid , sa . s i n p o r t) ;
84 }
85

86 p r i n t f (” >> %d ” , pid) ; f f l u s h (stdout) ;
87 i f (task < t a s k l i m i t) { // send a t a s k to the r e q u e s t i n g worker
88 wr i t e (s ,& task , s izeof (task)) ;
89 p r i n t f (” sent task %d to worker %s

%d\n” , task , i n e t n t o a (sa . s i n addr) , pid) ;
90 task++; // next t a s k to be sent
91 } else { // i f no more tasks , then send an EOS
92 wr i t e (s ,& eos , s izeof (task)) ;
93 p r i n t f (” sent EOS %d to worker %s

%d\n” , task , i n e t n t o a (sa . s i n addr) , pid) ;
94 // check worker l i s t and decrease worker count
95 for (i =0; i<nw; i++) {
96 i f (memcmp((void ∗) & w addr [i] , (void ∗) &sa . s in addr ,

s izeof (struct sockaddr in))==0
97 && w pid [i] == pid) {
98 w pid [i]=0; // n u l l i f y entry
99 nw−−;

100 i f (nw==0) // no more workers −> s top l o o p i n g
101 loop = (1==0) ;
102 }
103 }
104 }
105 c l o s e (s) ;
106 }
107 // a f t e r sending EOS to a l l the workers , we can send an EOS a l s o to

the c o l l e c t o r ,
108 // we assume workers , b e f o r e ask ing a t a s k (and g e t t i n g eos) a l ready

sent the l a s t
109 // r e s u l t computed to the c o l l e c t o r

D
ra
ft

IMPLEMENTING PARALLEL PROGRAMS THE “CLASSICAL” WAY 33

110 p r i n t f (” Clos ing ope ra t i on s \nSending EOS to c o l l e c t o r . . . \n”) ;
111 cs = socket (AF INET ,SOCK STREAM, 0) ; // s o c k e t to access e m i t t e r
112 i f (cs == −1) {
113 pe r ro r (” whi l e c r e a t i n g the socke t to emi t t e r ”) ;
114 return (−1) ; }
115 sa . s i n f a m i l y = AF INET ;
116 sa . s i n p o r t = htons (a t o i (argv [3])) ;
117 memcpy(&sa . s in addr , (gethostbyname (argv [2])−>h addr) ,
118 s izeof (sa . s i n addr)) ;
119 r e t code = connect (cs , (struct sockaddr ∗)&sa , s izeof (sa)) ;
120 i f (r e t code == −1) {
121 pe r ro r (” whi l e connect ing to emi t t e r ”) ; return(−1) ;}
122

123 wr i t e (cs ,& eos , s izeof (int)) ; // sends a r e q u e s t to the em i t t e r
124 c l o s e (cs) ;
125 p r i n t f (” Terminating\n”) ;
126 return 0 ;
127 }

Lines 34–36 define the tasks we will compute and the value we will use to terminate the

processes when no more tasks must be computed. Lines 41–56 declare and bind a server

socket using as the port number a parameter taken from the command line. Emitter loop is

started at line 58 . Loop termination is controlled by the boolean variable loop initialized

to true and set to false when the last “termination” task (EOS) has been sent to the last

worker. Line 62 accepts (blocking call) a connection. The number of active workers is

updated in lines 71–84. For each one of the incoming connections we check the IP address

of the client (the worker) along with process id sent through the socket. This identification

method allows to put more workers on the same node. When a previously unseen worker

appears, it inserted in the list of already seen workers and the number of workers (nw) is

updated. If there are more tasks to be executed (lines 87–90) a task is sent to the requesting

worker using the bidirectional socket resulting from accept, the socket is closed (line 105)

and the loop is restarted. If there are no more tasks, a special EOS tasks is sent (lines

93–103) the socket is closed and the loop restarted. Actually, at each EOS the number of

active workers is decremented. When it reaches zero, the emitter loop is terminated. At this

point, lines 107–126, the emitter sends a termination message also to the collector process,

thus terminating the whole parallel computations, and terminates itself.

The collector process is defined through the following code:

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 #include <un i s td . h>
4 #include <s t d l i b . h>
5 #include <sys / types . h>
6 #include <sys / socke t . h>
7 #include <n e t i n e t / in . h>
8 #include <netdb . h>
9

10 // r e c e i v e s r e s u l t s from the workers and d i s p l a y s them on the conso le
11 // usage :
12 // a . out portno
13 // number o f the por t f o r the r e s u l t s o c k e t
14

15 #define MAXHOSTNAME 80
16

17 int main (int argc , char ∗ argv []) {
18 int s , s i , retcode , i ;
19 unsigned int s a l en ;
20 struct sockaddr in sa , s a i ;
21 char hostname [MAXHOSTNAME] ;
22

23 s i = socke t (AF INET ,SOCK STREAM, 0) ; // s o c k e t to r e c e i v e the
r e s u l t s

24 i f (s i == −1) {

D
ra
ft

34 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

25 pe r ro r (” whi l e opening socke t ”) ; return −1;}
26 s a i . s i n f a m i l y = AF INET ;
27 s a i . s i n p o r t = htons (a t o i (argv [1])) ;
28 gethostname (hostname ,MAXHOSTNAME) ;
29 memcpy(& s a i . s in addr , (gethostbyname (hostname)−>h addr) ,
30 s izeof (sa . s i n addr)) ;
31 r e t code = bind (s i , (struct sockaddr ∗) & sa i , s izeof (s a i)) ;
32 i f (r e t code == −1) {
33 pe r ro r (” whi l e b inding socke t to addr”) ; return −1; }
34 r e t code = l i s t e n (s i , 1) ;
35 i f (r e t code == −1) {
36 pe r ro r (” whi l e c a l l i n g l i s t e n ”) ; return −1; }
37

38 while(1==1) {
39 s a l en = s izeof (sa) ;
40 p r i n t f (” Accepting connec t i ons \n”) ;
41 s = accept (s i , (struct sockaddr ∗)&sa ,& sa l en) ; // accept a

connect ion
42 i f (s == 1) {
43 pe r ro r (” whi l e accept ing a connect ion ”) ; return −1;
44 }
45 r e t code = read (s ,& i , s izeof (int)) ; // read a res from one o f the

Worker
46 i f (r e t code == −1) {
47 pe r ro r (” whi l e read ing a r e s u l t ”) ; return −1; }
48 i f (i ==(−1)) {
49 p r i n t f (”EOS −> te rminat ing \n”) ;
50 break ;
51 }
52 p r i n t f (”Read r e s u l t : %d ” , i) ; f f l u s h (stdout) ; // and p r i n t i t on

conso le
53 c l o s e (s) ;
54 }
55 c l o s e (s i) ;
56 return 0 ;
57 }

It is very similar to the emitter code, so we will not comment it further. Eventually, each

worker process is defined through the following code:

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 #include <s t d l i b . h>
4 #include <sys / types . h>
5 #include <sys / socke t . h>
6 #include <n e t i n e t / in . h>
7 #include <netdb . h>
8 #include <un i s td . h>
9

10 /∗
11 ∗ f u n c t i o n to be computed on the s i n g l e t a s k
12 ∗ t h i s i s a c t u a l l y the only ” b u s i n e s s l o g i c ” code
13 ∗/
14

15 int f (int task) {
16 s l e e p (1) ; // j u s t to s imu la te some work . . .
17 return (task ∗ task) ;
18 }
19

20 /∗
21 ∗ r e c e i v e s i n t e g e r t a s k s and d e l i v e r s i n t e g e r r e s u l t s , up to the r e c e p t i o n
22 ∗ o f an EOS (a −1)
23 ∗ t h i s ve r s i on opens/ c l o s e s the s o c k e t s at each task , which i s not
24 ∗ d e f i n i t e l y e f f i c i e n t . . .
25 ∗
26 ∗ usage :
27 ∗ a . out e m i t t e r a d d r e s s e m i t t e r p o r t c o l l e c t o r a d d r e s s c o l l e c t o r p o r t
28 ∗/

D
ra
ft

IMPLEMENTING PARALLEL PROGRAMS THE “CLASSICAL” WAY 35

29

30 int main (int argc , char ∗ argv []) {
31 int s , r e t code ;
32 struct sockaddr in sa ;
33 int pid = 0 ;
34

35

36 pid = getp id () ; // g e t my POSIX process id
37 p r i n t f (” This i s worker %d\n” , pid) ;
38 while(1==1) {
39 int task , r e s u l t ;
40

41 s = socket (AF INET ,SOCK STREAM, 0) ; // s o c k e t to access
e m i t t e r

42 i f (s == −1) {
43 pe r ro r (” whi l e c r e a t i n g the socke t to emi t t e r ”) ;
44 return (−1) ; }
45 sa . s i n f a m i l y = AF INET ;
46 sa . s i n p o r t = htons (a t o i (argv [2])) ;
47 memcpy(&sa . s in addr , (gethostbyname (argv [1])−>h addr) ,
48 s izeof (sa . s i n addr)) ;
49 r e t code = connect (s , (struct sockaddr ∗)&sa , s izeof (sa)) ;
50 i f (r e t code == −1) {
51 pe r ro r (” whi l e connect ing to emi t t e r ”) ; return(−1) ;}
52

53 wr i t e (s ,&pid , s izeof (pid)) ; // sends a r e q u e s t to the em i t t e r
54 r e t code = read (s ,& task , s izeof (task)) ; // g e t a t a s k
55 i f (r e t code != s izeof (task)) {
56 pe r ro r (” whi l e r e c e i v i n g a task ”) ; return −1; }
57

58 // check f o r EOS
59 i f (task < 0) {
60 p r i n t f (” Received EOS\n”) ;
61 break ; // i f EOS terminate loop i t e r a t o n s
62 } else {
63 p r i n t f (” Received task %d\n” , task) ;
64 // o therwi se process the incoming t a s k
65 r e s u l t = f (task) ;
66 p r i n t f (”Computed %d −> %d\n” , task , r e s u l t) ;
67

68 // send r e s u l t to the c o l l e c t o r
69 s = socket (AF INET ,SOCK STREAM, 0) ; // c r e a t e s o c k e t

to c o l l e c t o r
70 sa . s i n f a m i l y = AF INET ;
71 sa . s i n p o r t = htons (a t o i (argv [4])) ;
72 memcpy(&sa . s in addr ,

(gethostbyname (argv [3])−>h addr) ,
73 s izeof (sa . s i n addr)) ;
74 r e t code = connect (s , (struct sockaddr

∗)&sa , s izeof (sa)) ;
75 i f (r e t code == −1) {
76 pe r ro r (” connect ing to the c o l l e c t o r ”) ;
77 return(−1) ;}
78

79 // send the r e s u l t and c l o s e connect ion
80 wr i t e (s ,& r e s u l t , s izeof (r e s u l t)) ;
81 c l o s e (s) ;
82

83 // then c y c l e again
84 }
85 }
86 c l o s e (s) ;
87 return 0 ;
88 }

An infinite loop is entered at line 38. The loop will terminate only when an EOS ter-

mination task will be received, via the break at line 61. In the loop body, first a socket is

D
ra
ft

36 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

connected to the emitter server socket (lines 41–51), then the process id of the worker is

sent as a “task request” to the emitter process and a task is read from the emitter server

socket (lines 53–55). If the received task is an EOS, the loop is immediately terminated

(line 61). Otherwise, a result is computed out of the received task (line 65) and sent to

collector processor (line 80) after connecting a client socket to the collector server socket

(lines 67–77).
This code may be compiled using standard tools (see the following makefile).

1 CC = gcc
2 CFLAGS =
3 LDFLAGS = −l p thread
4 TARGETS = emit t e r c o l l e c t o r worker
5

6 a l l : $ (TARGETS)
7

8 c l ean :
9 rm −f $ (TARGETS)

10

11 worker : worker . c
12 $ (CC) −o worker $ (CFLAGS) worker . c $ (LDFLAGS)
13

14 c o l l e c t o r : c o l l e c t o r . c
15 $ (CC) −o c o l l e c t o r $ (CFLAGS) c o l l e c t o r . c $ (LDFLAGS)
16

17 emi t t e r : emi t t e r . c
18 $ (CC) −o emi t t e r $ (CFLAGS) emi t t e r . c $ (LDFLAGS)
19

20 d i s t : $ (SOURCES)
21 rsync −avz . . / FarmSocket o t t a v i n a r e a l e :
22 rsync −avz . . / FarmSocket backus : Downloads/
23 rsync −avz . . / FarmSocket pianosau :

This is not the only code needed to run our program, actually. We need some scripting

code to deploy the code on the target architecture nodes, to run it and to clean up possible

processes left after an unexpected termination of the parallel computation.

In order to deploy the code on the remote nodes, we may use the bash script below.

1 #! / bin /bash
2 for m in $@
3 do
4 rsync −avz /home/marcod/Documents/ Codice /FarmSocket $m:
5 done

In this case we perform an rsync on all those machines named in the script command line

arguments.

We eventually need also some code to run the remote emitter, collector and worker

processes. The following listing presents a Perl script compiling and running the processes

on the remote machines. Emitter is run on the first machine passed in the argument list,

with the port number taken from the argument list as well. Collector is run on the second

machine passed in the argument list, with the port number taken again from the argument

list. Eventually, all the other machine names are used to run worker processes. The run

script also stores the names of the machines where a process has been started in the file

machines.used in the current working directory.

1 #! / usr / bin / p e r l
2

3 ### launcher emitter machine e m i t t e r p o r t c o l l e c t o r m a c h i n e c o l l e c t o r p o r t
w machine∗

4

5 $emachine = s h i f t @ARGV;
6 $eport = s h i f t @ARGV;
7 $cmachine = s h i f t @ARGV;
8 $cport = s h i f t @ARGV;

D
ra
ft

IMPLEMENTING PARALLEL PROGRAMS THE “CLASSICAL” WAY 37

9

10 open FD, ”>machines . used ” or d i e ”Cannot open log f i l e ” ;
11 system (” ssh $emachine \”\(cd FarmSocket \ ; make emi t t e r \ ; . / emi t t e r $eport

\) \” & ”) ;
12 pr in t FD ”$emachine\n” ;
13 s l e e p (5) ;
14 system (” ssh $cmachine \”\(cd FarmSocket \ ; make c o l l e c t o r \ ; . / c o l l e c t o r

$cport \) \” & ”) ;
15 pr in t FD ”$cmachine\n” ;
16 s l e e p (5) ;
17

18 f o r each $w (@ARGV) {
19 system (” ssh $w \”\(cd FarmSocket \ ; make worker \ ; . / worker $emachine

$eport $cmachine $cport \) \” & ”) ;
20 pr in t FD ”$w\n” ;
21

22 }
23 c l o s e FD;
24 e x i t ;

The machines.used file is used in the “terminator” script killing all the processes

possibly left running on the machines used to run our parallel application (see code below).

1 #! / usr / bin / p e r l
2 open FD, ”<machines . used ” or d i e ”Cannot open log f i l e f o r read ing ” ;
3 while(<FD>) {
4 $m = $;
5 chop $m;
6 system (” ssh $m k i l l −9 −1”) ;
7 }
8 c l o s e FD;
9 system (”rm −f machines . used ”) ;

10 e x i t ;

Functional and non functional code. In this implementation, the only functional code

present in the C programs listed above is

• the code generating the tasks in the emitter code (lines 34, 35, 87 and 90)

• the code reading and writing tasks and results on sockets; in particular the sizeofs

in read and writes depend on task and results data types.

• the code computing the result in the worker (lines 15–18 and 65).

All the rest of the code is non functional code, needed to set up and run the concurrent

activities graph. As you can see, functional and non functional code are completely mixed

up. As a consequence, debugging, fine tuning and maintenance of the application may be

difficult.

2.6.6 Adding fault tolerance (partial)

In order to add a very simple for of fault tolerance, that is the possibility to detect a fault in

a worker process and to reschedule the task last scheduled to the faulty worker to another

worker, we have to modify the code presented and commented in the previous section quite

a lot.

First of all, we need a way to detect worker failures. We can use standard mechanisms,

such as heartbeats38, but due to the fact that a TCP connections reveals the closing of one

38a technique such that active entities send periodical messages to the controller entity. In case of fault,
the controller perceives a sudden stop in the messages and may detect the entity failure.

D
ra
ft

38 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

of the two connections ends to the other hand attempting to read/write to the connection

socket, we may use a simpler mechanisms:

• we modify the worker process code in such a way the worker permanently connects

to the emitter process,

• then the emitter process gets a particular retcode when reading a request from the

worker connected socket in case of worker termination (the read returns 0 as the

number of bytes actually read in the buffer).

• once the emitter has detected the connection error, it assumes that the task previously

scheduled to faulty worker may have been aborted before actually sending a result

to the collector process. Therefore it has to be somehow rescheduled on a different

worker. However, we must take care of the possibility that the worker died after

sending the result to the collector. In this case, if the task is rescheduled for execution

the collector will see two results for the same task.

• due to the necessity to keep a connection open for each one of the wokers, however,

the emitter has to be implemented in a multi threaded way. A thread is started at

each connection from one of the workers, gets the connected socket as a parameter and

starts a loop reading requests and sending tasks. In turn, this means that more threads

will access our dummy “task list” (the variables task and tasklimit), which must

be protected with a pthread mutex to ensure concurrent access correctness.

We need therefore to define more complex task, result and service message (request

message) data types, as we will need to associate task ids to each one of the tasks, and

copy the id to results, in such a way collector may signal the emitter whose tasks have been

completed. This is needed to avoid duplication of computations relative to tasks sent to

a faulty worker that indeed succeed sending a result for that task to the collector before

dying. These data structures are defined as follows (file task.h):

1 //
2 // data s t r u c t u r e t a k i n g care o f the t a s k s to compute . We need to push
3 // back t a s k s t h a t have not presumably been computed due to f a i l u r e s
4 //
5

6 #define TAG EOS (−1)
7 #define TAG TASK REQUEST (−2)
8 #define TAG COMPLETED (−3)
9

10 typedef struct s e r v i c e {
11 int v ;
12 int tag ;
13 } SERVICE;
14

15 typedef struct t a sk {
16 int v ; // the ” va lue ” o f the t a s k
17 int tag ; // the tag (to r e c o g n i z e t a s k / r e s u l t and to reorder
18 struct t a sk ∗ next ; // i t ’ s a l i n k e d l i s t
19 } TASK;
20

21 typedef struct r e s u l t {
22 int v ; // the ” va lue ” o f the r e s u l t
23 int tag ; // the tag (to r e c o g n i z e t a s k / r e s u l t +

reorder)
24 struct r e s u l t ∗ next ; // i t ’ s a l i n k e d l i s t
25 } RESULT;

The next listing shows a possible code of a worker process adapted to the new concurrent

process schema.

D
ra
ft

IMPLEMENTING PARALLEL PROGRAMS THE “CLASSICAL” WAY 39

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 #include <s t d l i b . h>
4 #include <sys / types . h>
5 #include <sys / socke t . h>
6 #include <n e t i n e t / in . h>
7 #include <netdb . h>
8 #include <un i s td . h>
9

10 #include ” task . h”
11

12 /∗
13 ∗ f u n c t i o n to be computed on the s i n g l e t a s k
14 ∗ t h i s i s a c t u a l l y the only ” b u s i n e s s l o g i c ” code
15 ∗/
16

17 int f (int task) {
18 s l e e p (1) ; // j u s t to s imu la te some work . . .
19 return (task ∗ task) ;
20 }
21

22 /∗
23 ∗ r e c e i v e s i n t e g e r t a s k s and d e l i v e r s i n t e g e r r e s u l t s , up to the r e c e p t i o n
24 ∗ o f an EOS (a −1)
25 ∗ t h i s ve r s i on opens/ c l o s e s the s o c k e t s at each task , which i s not
26 ∗ d e f i n i t e l y e f f i c i e n t . . .
27 ∗
28 ∗ usage :
29 ∗ a . out e m i t t e r a d d r e s s e m i t t e r p o r t c o l l e c t o r a d d r e s s c o l l e c t o r p o r t
30 ∗/
31

32 int main (int argc , char ∗ argv []) {
33 int s , cs , r e t code ; // t a s k socket , r e s u l t socket , error r e t
34 struct sockaddr in sa ;
35 int pid = 0 ;
36

37

38 pid = getp id () ; // g e t my POSIX process id
39 p r i n t f (” This i s worker %d\n” , pid) ;
40 // connect permanently to the em i t t e r process
41 s = socket (AF INET ,SOCK STREAM, 0) ; // s o c k e t to access e m i t t e r
42 i f (s == −1) {
43 pe r ro r (” whi l e c r e a t i n g the socke t to emi t t e r ”) ;
44 return (−1) ; }
45 p r i n t f (”Opened E socket %d\n” , s) ;
46 sa . s i n f a m i l y = AF INET ;
47 sa . s i n p o r t = htons (a t o i (argv [2])) ;
48 memcpy(&sa . s in addr , (gethostbyname (argv [1])−>h addr) ,
49 s izeof (sa . s i n addr)) ;
50 r e t code = connect (s , (struct sockaddr ∗)&sa , s izeof (sa)) ;
51 i f (r e t code == −1) {
52 pe r ro r (” whi l e connect ing to emi t t e r ”) ; return(−1) ;}
53

54 while(1==1) {
55 TASK task ;
56 RESULT r e s u l t ;
57 SERVICE reques t ;
58 // sends a r e q u e s t to the em i t t e r
59 r eque s t . tag = TAG TASK REQUEST;
60 r eque s t . v = pid ;
61 r e t code = wr i t e (s ,& request , s izeof (SERVICE)) ;
62 i f (r e t code == −1) { pe r ro r (” sending a reque s t ”) ; return −1; }
63 r e t code = read (s ,& task , s izeof (TASK)) ; // g e t a t a s k
64 i f (r e t code != s izeof (TASK)) { // t h i s cou ld be c o r r e c t e d in

case
65 // o f l a r g e t a s k s (w h i l e (l en != s i z e o f) read)
66 pe r ro r (” whi l e r e c e i v i n g a task ”) ; return −1; }

D
ra
ft

40 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

67

68 // check f o r EOS
69 i f (task . tag < 0) {
70 p r i n t f (” Received EOS\n”) ;
71 break ; // i f EOS terminate loop i t e r a t o n s
72 } else {
73 p r i n t f (” Received task %d\n” , task . tag) ;
74 // o therwi se process the incoming t a s k
75 r e s u l t . v = f (task . v) ;
76 r e s u l t . tag = task . tag ;
77 r e s u l t . next = NULL;
78 p r i n t f (”Computed %d −> %d\n” , task . v , r e s u l t . v) ;
79

80 // send r e s u l t to the c o l l e c t o r
81 cs = socket (AF INET ,SOCK STREAM, 0) ; // c r e a t e s o c k e t

to c o l l e c t o r
82 sa . s i n f a m i l y = AF INET ;
83 sa . s i n p o r t = htons (a t o i (argv [4])) ;
84 memcpy(&sa . s in addr ,

(gethostbyname (argv [3])−>h addr) ,
85 s izeof (sa . s i n addr)) ;
86 r e t code = connect (cs , (struct sockaddr

∗)&sa , s izeof (sa)) ;
87 i f (r e t code == −1) {
88 pe r ro r (” connect ing to the c o l l e c t o r ”) ;
89 return(−1) ;}
90

91 // send the r e s u l t and c l o s e connect ion
92 wr i t e (cs ,& r e s u l t , s izeof (RESULT)) ;
93 c l o s e (cs) ;
94 p r i n t f (” Sent to C socket , E sock %d\n” , s) ;
95

96 // then c y c l e again
97 }
98 }
99 c l o s e (s) ;

100 return 0 ;
101 }

Eventually, the emitter process program may be defined as follows:

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 #include <un i s td . h>
4 #include <s t d l i b . h>
5 #include <sys / types . h>
6 #include <sys / socke t . h>
7 #include <n e t i n e t / in . h>
8 #include <netdb . h>
9 #include <arpa / i n e t . h>

10 #include <pthread . h>
11

12 // on demand s c h e d u l i n g o f t a s k s to workers
13 // r e c e i v e r e q u e s t from worker i −> send t a s k to compute to worker i
14 // when no more t a s k s are a v a i l a b l e , send an EOS terminat ion
15 //
16 // usage i s :
17 // a . out portno
18 // number o f the por t used to g e t worker t a s k r e q u e s t s
19 //
20 // t h i s i s the v e r s i o n check ing worker f a i l u r e (e m i t t e r s i d e)
21 // and j u s t s i g n a l i n g a worker f a i l u r e
22 //
23

24 // the s t r u c t u r e h o s t i n g the t a s k s
25 #include ” task . h”
26 // t h i s h o s t s t a s k s i n i t i a l l y schedu led f o r execu t ion
27 TASK ∗ t a s k l i s t = NULL;

D
ra
ft

IMPLEMENTING PARALLEL PROGRAMS THE “CLASSICAL” WAY 41

28 // t h i s h o s t s t a s k s to be re sc he du l e d (p o s s i b l y)
29 TASK ∗ task l imbo = NULL;
30

31 // to manage t a s k l i s t
32 pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
33 pthread mutex t mutex limbo = PTHREAD MUTEX INITIALIZER;
34 // moved o u t s i d e main : g l o b a l
35 int task = 0 ; // t a s k s are p o s i t i v e i n t e g e r e s , in t h i s case
36 int t a s k l i m i t = 10 ; // we ’ l l send t a s k l i m i t t a s k s b e f o r e s topp ing
37 TASK eos ; // s p e c i a l t a s k to denote End Of Stream
38

39

40 void ∗ worker handler (void ∗ vs) {
41 int s = ∗ ((int ∗) vs) ;
42 int retcode , i ;
43 TASK ∗ t a s k t o s e n d ;
44 int ∗ taskNo = (int ∗) c a l l o c (s izeof (int) , 1) ; // hos t t a s k s

computed
45 // s t a r t reading t a s k s
46 p r i n t f (” worker handler %ld s t a r t e d \n” , p t h r e a d s e l f ()) ;
47 while(1==1) {
48 SERVICE reques t ;
49 p r i n t f (”Waiting f o r a r eque s t \n”) ;
50 // read r e q u e s t : t a s k r e q u e s t from woker or t a s k complet ion msg from c o l l
51 r e t code = read (s ,& request , s izeof (SERVICE)) ;
52 i f (r e t code != s izeof (SERVICE)) { // shou ld be != 0 (read can be s p l i t)
53 pe r ro r (” whi l e read ing task from worker ”) ; f f l u s h (s t d e r r) ; }
54 i f (r e t code == 0) { // connect ion broken
55 p r i n t f (”NEED TO RUN A SUBSTITUTE WORKER AFTER THIS DIED ! ! ! \n”) ;
56 // you shou ld know which i s the l a s t t a s k sent , in such a way i t can
57 // be res ch ed u l ed onto a d i f f e r e n t worker
58 p r i n t f (”TASK PRESUMABLY NOT COMPLETED i s TASK

<%d>\n” , ta sk to send−>tag) ;
59 pthread mutex lock(&mutex limbo) ; // add t a s k to l imbo f o r r e s c h e d u l e
60 {
61 TASK ∗ t = (TASK ∗) c a l l o c (1 , s izeof (TASK)) ;
62 t−>v = task to send−>v ;
63 t−>tag = task to send−>tag ;
64 t−>next = task l imbo ;
65 task l imbo = t ;
66 p r i n t f (”Task <%d,%d> −> LIMBO\n” , t−>v , t−>tag) ;
67 }
68 pthread mutex unlock(&mutex limbo) ;
69 return (NULL) ;
70 }
71 i f (r eque s t . tag == TAG COMPLETED) { // t h i s i s from c o l l e c t o r
72 // cance l r e q u e s t . v tag from limbo
73 TASK ∗ p , ∗pp ;
74 p = pp = task l imbo ;
75 pthread mutex lock(&mutex limbo) ;
76 while (p!=NULL) {
77 i f (p−>tag == reques t . v) { // completed : to be removed
78 i f (p == pp) { // f i r s t e lement to be removed
79 p = p−>next ;
80 } else {
81 pp−>next = p−>next ; // TODO: f r e e unused one !
82 }
83 }
84 }
85 p r i n t f (”Computed task tag=%d removed from LIMBO\n” , r eque s t . tag) ;
86 pthread mutex unlock(&mutex limbo) ;
87 return (NULL) ; // e v e n t u a l l y terminate the thread
88 } // e l s e : emit a t a s k to the worker and c y c l e (t h i s i s a worker manager)
89 p r i n t f (”Got r eque s t from %d ” , r eque s t . v) ; f f l u s h (stdout) ;
90 pthread mutex lock(&mutex) ;
91 i f (t a s k l i s t != NULL) { // send a t a s k to the r e q u e s t i n g worker
92 TASK ∗ t = t a s k l i s t ;
93 t a s k l i s t = t−>next ;

D
ra
ft

42 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

94 t a s k t o s e n d = t ;
95 taskNo++;
96 pthread mutex unlock(&mutex) ;
97 } else { // i f no more tasks , then check l imbo or send EOS
98 pthread mutex unlock(&mutex) ;
99 pthread mutex lock(&mutex limbo) ;

100 i f (task l imbo != NULL) {
101 t a s k t o s e n d = task l imbo ;
102 task l imbo = task l imbo−>next ;
103 p r i n t f (”Task pool i s empty but sending task from Limbo\n”) ;
104 } else {
105 t a s k t o s e n d = &eos ;
106 }
107 pthread mutex lock(&mutex limbo) ;
108 }
109 wr i t e (s ,& task to send , s izeof (TASK)) ; // send e i t h e r t a s k or eos
110 i f (t a s k t o s e n d != &eos) {
111 p r i n t f (” sent task %d to worker %d\n” , task , i) ;
112 } else {
113 p r i n t f (”Send EOS to worker %d\n” , i) ;
114 c l o s e (s) ;
115 return ((void ∗) taskNo) ;
116 }
117 }
118 }
119

120 #define MAXHOSTNAME 80
121 #define MAXTHREADS 16
122

123 int main (int argc , char ∗ argv []) {
124 int s , s i , retcode , i ;
125 unsigned int s a l en ;
126 struct sockaddr in sa , s a i ;
127 char hostname [MAXHOSTNAME] ;
128 pthread t t i d s [MAXTHREADS] ; // thread hand lers
129 int tNo = 0 ; // thread to a l l o c a t e
130

131

132 // s e t up t a s k s t r u c t u r e
133 for (i =0; i<t a s k l i m i t ; i++) {
134 TASK ∗ t = (TASK ∗) c a l l o c (1 , s izeof (TASK)) ;
135 t−>next = t a s k l i s t ;
136 t−>v = i ;
137 t−>tag = i ;
138 t a s k l i s t = t ;
139 }
140 // s e t up eos
141 eos . v = −1;
142 eos . tag = −2;
143 eos . next = NULL;
144

145 // code needed to s e t up the communication i n f r a s t r u c t u r e
146 p r i n t f (” Dec la r ing socke t \n”) ;
147 s i = socke t (AF INET ,SOCK STREAM, 0) ; // s o c k e t f o r i n p u t s
148 i f (s i == −1) { pe r ro r (” opening socke t f o r input ”) ; return −1;}
149 s a i . s i n f a m i l y = AF INET ;
150 s a i . s i n p o r t = htons (a t o i (argv [1])) ;
151 gethostname (hostname ,MAXHOSTNAME) ;
152 memcpy(& s a i . s in addr , (gethostbyname (hostname)−>h addr) ,
153 s izeof (sa . s i n addr)) ;
154 p r i n t f (” Binding to %s \n” , i n e t n t o a (s a i . s i n addr)) ;
155 r e t code = bind (s i , (struct sockaddr ∗) & sa i , s izeof (s a i)) ;
156 i f (r e t code == −1) {
157 pe r ro r (” whi l e c a l l i n g bind ”) ; return −1; }
158 p r i n t f (” L i s t en ing socke t \n”) ;
159 r e t code = l i s t e n (s i , 1) ;
160 i f (r e t code == −1) {
161 pe r ro r (” whi l e c a l l i n g l i s t e n ”) ; return −1; }

D
ra
ft

IMPLEMENTING PARALLEL PROGRAMS THE “CLASSICAL” WAY 43

162

163 while(1==1) {
164 int ∗ s = (int ∗) c a l l o c (s izeof (int) , 1) ;
165

166 s a l en = s izeof (sa) ;
167 p r i n t f (” Accepting connec t i ons \n”) ;
168 ∗ s = accept (s i , (struct sockaddr ∗)&sa ,& sa l en) ; // accept a

connect ion
169 i f (∗ s == 1) {
170 pe r ro r (” whi l e c a l l i n g an accept ”) ; return −1; }
171 // now f o r k a thread to permanently handle the connect ion
172 pthr ead c r ea t e (& t i d s [tNo] ,NULL, worker handler , (void ∗) s) ;
173 p r i n t f (” Created worker handle No %d\n” , tNo) ;
174 tNo++;
175 }
176 p r i n t f (” Clos ing ope ra t i on s \n”) ;
177 return 0 ;
178 }

The task limbo structure defined at line 29 is used to keep all those tasks that were

sent to a worker that failed after receiving the task. When the emitter finishes scheduling

“normal” tasks, he will attempt to reschedule the ones in the “limbo” whose tags have not

been received from the collector as tags of “successfully computed” tasks.

Eventually, the code of the collector process is the following:

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 #include <un i s td . h>
4 #include <s t d l i b . h>
5 #include <sys / types . h>
6 #include <sys / socke t . h>
7 #include <n e t i n e t / in . h>
8 #include <netdb . h>
9

10 #include ” task . h”
11

12 // r e c e i v e s r e s u l t s from the workers and d i s p l a y s them on the conso le
13 // usage :
14 // a . out portno e m i t t e r h o s t e m i t t e r p o r t
15 // number o f the por t f o r the r e s u l t s o c k e t
16 // then address o f e m i t t e r (to send f e e d b a c k s on t a s k complet ion)
17

18 #define MAXHOSTNAME 80
19

20 int main (int argc , char ∗ argv []) {
21 int s , e i , s i , retcode , i ;
22 RESULT r e s u l t ;
23 unsigned int s a l en ;
24 struct sockaddr in sa , sa i , e a i ;
25 char hostname [MAXHOSTNAME] ;
26 char ∗ emi t t e rhos t = argv [2] ;
27 int e m i t t e r p o r t = a t o i (argv [3]) ;
28

29 s i = socke t (AF INET ,SOCK STREAM, 0) ; // s o c k e t to r e c e i v e the
r e s u l t s

30 i f (s i == −1) {
31 pe r ro r (” whi l e opening socke t ”) ; return −1;}
32 s a i . s i n f a m i l y = AF INET ;
33 s a i . s i n p o r t = htons (a t o i (argv [1])) ;
34 gethostname (hostname ,MAXHOSTNAME) ;
35 memcpy(& s a i . s in addr , (gethostbyname (hostname)−>h addr) ,
36 s izeof (s a i . s i n addr)) ;
37 r e t code = bind (s i , (struct sockaddr ∗) & sa i , s izeof (s a i)) ;
38 i f (r e t code == −1) {
39 pe r ro r (” whi l e b inding socke t to addr”) ; return −1; }
40 r e t code = l i s t e n (s i , 1) ;
41 i f (r e t code == −1) {

D
ra
ft

44 PARALLEL PROGRAMMING: INTRODUCING THE CONCEPT

42 pe r ro r (” whi l e c a l l i n g l i s t e n ”) ; return −1; }
43

44 while(1==1) {
45 SERVICE feedback ;
46 s a l en = s izeof (sa) ;
47 p r i n t f (” Accepting connec t i ons \n”) ;
48 s = accept (s i , (struct sockaddr ∗)&sa ,& sa l en) ; // accept a

connect ion
49 i f (s == 1) {
50 pe r ro r (” whi l e accept ing a connect ion ”) ; return −1;
51 }
52 // read a res from one o f the Worker
53 r e t code = read (s ,& r e s u l t , s izeof (RESULT)) ;
54 i f (r e t code != s izeof (RESULT)) { // AGAIN, shou ld be c o r r e c t e d
55 pe r ro r (” whi l e read ing a r e s u l t ”) ; return −1; }
56 i f (r e s u l t . tag < 0) {
57 p r i n t f (”EOS −> te rminat ing \n”) ;
58 break ;
59 }
60 p r i n t f (”Read r e s u l t : <%d,%d> ” , r e s u l t . v , r e s u l t . tag) ;
61 f f l u s h (stdout) ; // and p r i n t i t on conso le
62 c l o s e (s) ;
63 // now send a feedback to e m i t t e r process with the tag o f the
64 // r e c e i v e d t a s k : in case i t was s e l e c t e d f o r re−s c h e d u l i n g
65 // i t w i l l be removed , o therwi se i t w i l l be r e s ch ed u l ed a f t e r
66 // complet ing ”normal” t a s k s
67 e i = socket (AF INET ,SOCK STREAM, 0) ; // s o c k e t to r e c e i v e the

r e s u l t s
68 i f (e i == −1) {
69 pe r ro r (” whi l e opening socke t ”) ; return −1;}
70 e a i . s i n f a m i l y = AF INET ;
71 e a i . s i n p o r t = htons (e m i t t e r p o r t) ;
72 memcpy(& e a i . s in addr , (gethostbyname (emi t t e rhos t)−>h addr) ,
73 s izeof (e a i . s i n addr)) ;
74 r e t code = connect (e i , (struct sockaddr ∗)&eai , s izeof (e a i)) ;
75 i f (r e t code == −1) {
76 pe r ro r (” whi l e connect ing to emi t t e r ”) ; return(−1) ;}
77 // send feedback on computed t a s k
78 f eedback . tag = TAG COMPLETED;
79 f eedback . v = r e s u l t . tag ;
80 r e t code = wr i t e (e i ,& feedback , s izeof (SERVICE)) ;
81 i f (r e t code != s izeof (SERVICE)) {
82 pe r ro r (” whi l e wr i t i ng feedback to emi t t e r ”) ; return (−1) ; }
83 c l o s e (e i) ; // one shot : TODO use permanent connect ion on de d ic a t e d

ss
84 }
85 c l o s e (s i) ;
86 return 0 ;
87 }

We leave the reader the possibility to evaluate the amount of code needed to introduce

such a limited form of fault tolerance in our trivial parallel application. The reader may

easily imagine how the code design, coding and code debug and tuning activities could

be in case a real application is taken into account and complete fault tolerance is to be

implemented.

D
ra
ft

CHAPTER 3

ALGORITHMIC SKELETONS

Researchers studying how to implement efficient parallel applications on parallel target

architectures observed that the patterns used to exploit parallelism in efficient parallel

applications are not a large number.

They observed that there are just a small number of common patterns that model com-
mon parallelism exploitation forms and that are used and re-used in different places,
possibly nested to model the more complex parallelism exploitation strategies.

These researchers also observed further and–possibly–more important facts:

• The correct and efficient programming–that is the design, coding, debugging and

fine tuning–of these parallel patterns constitutes the major programming effort when

implementing efficient parallel applications.

• The knowledge needed to implement efficient parallel patterns is completely different

from the knowledge needed to program the functional logic of the application39.

• Applications clearly separating the code used to implement parallel patterns from the

application functional code were much more easy to develop, debug and tune, with

respect to the applications were parallelism implementation code and functional code

was completely intermingled.

As a consequence, these researchers started asking themselves if some benefit could be

achieved from the design and development of parallel patterns per se, that is parallelism

exploitation patterns studied without taking into account the final application functional

code. In turn, this led–in different times and within different research communities–to the

development of two distinct research branches:

39that part of the application code actually computing the result of the application

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

45

D
ra
ft

46 ALGORITHMIC SKELETONS

1. In late ’80s, Cole introduced the algorithmic skeleton concept and a community of

researchers started working and improving the algorithmic skeleton concept. This

research community was mainly build by researchers coming from High Performance

Computing community. Their major concern was the development of programming

frameworks suitable to support efficient parallel programming, in particular with re-

spect to the performance achieved in parallel programs. The community evolved and

the concept of algorithmic skeleton evolved as well. Nowadays there are several re-

search groups building on this concept around the world. Algorithmic skeletons are

the main subject of this book and they will be thoroughly discussed from this Chapter

on.

2. In the ’00s, software engineering researchers evolved the design pattern concept into

parallel design patterns. The parallel design patterns has been and are currently

investigated by a community which is fairly disjoint from the one investigating al-

gorithmic skeletons. This notwithstanding the research on parallel design patterns

produced (and it is currently producing) results that are similar to those produced in

the algorithmic skeleton framework. Sometimes the results only differ in the “jargon”

used to illustrate them. In more interesting cases they are similar but the different–

more software engineering oriented–perspective used in investigating the results may

provide useful hints to algorithmic skeleton designers as well. Despite the fact this

book aims at providing an “algorithmic skeleton perspective” on structured parallel

programming, parallel design patterns will be discussed in detail in Chap. 11 to point

out similarities and synergies between these two worlds.

3.1 ALGORITHMIC SKELETONS: DEFINITION(S)

Algorithmic skeleton concept has been introduced by Murray Cole with his PhD thesis in

1988 [36]. Cole defined a skeleton programming environment as follows:

The new system presents the user with a selection of independent “algorithmic skele-
ton”, each of which describes the structure of a particular style of algorithm, in the
way in which higher order functions represent general computational frameworks in
the context of functional programming languages. The user must describe a solution
to a problem as an instance of the appropriate skeleton.

Algorithmic skeletons were defined as pre-defined patters encapsulating the structure of

a parallel computation that are provided to user as building blocks to be used to write

applications. Each skeleton corresponded to a single parallelism exploitation pattern. As

a result, a skeleton based programming framework was defined as a programming frame-

work providing programmers with algorithmic skeletons that may be used to model the

parallel structure of the applications at hand. In a skeleton based programming framework

the programmer has no other way (but instantiating skeletons) to structure his/her paral-

lel computation. In the original definition of Cole, there was no mention to the fact that

skeletons could be nested. Therefore any skeleton application was the result of the instanti-

ation of a single algorithmic skeleton and thus, in turn, of a single parallelism exploitation

pattern.

Algorithmic skeletons were introduced as Cole recognized that most of the parallel ap-

plications exploit well know parallelism exploitation patterns. Rather that requiring the

application programmers to rewrite from scratch all the code needed to implement these

parallelism exploitation patterns when a new application has to be implemented, it was

D
ra
ft

ALGORITHMIC SKELETONS: DEFINITION(S) 47

The term “‘business logic” usually denotes the functional code of the application, distinct from

the non functional code modelling, as an example, the implementation of parallelism in the

application. In an application processing a set of images to apply to each one of the images a

filter f , the code for the filter is business logic code, while the code needed to set up a number

of parallel/concurrent/distributed agents that altogether contribute to the parallel computation

of the filtered images is not.

Figure 3.1 Business logic

therefore more natural to provide the patterns as building blocks that the programmers

could instantiate by providing the “business logic”40 of their application.

e.g.� As a motivating example, consider parameter sweeping applications. A parameter sweeping

application is an application where a single code is run multiple times to evaluate the effect

of changes in input parameters. Each run of the code on a different input parameter set

is completely independent of the other runs. Therefore a parameter sweeping application

may be easily implemented adopting a master/worker (see Sec. 7.4.1 for the definition of the

master/worker pattern) parallelism exploitation pattern. A master schedules different input

parameter sets to a set of workers running the application code and gathers the result items

produced by these workers in such a way the user may evaluate the effects of “parameter

sweeping” and possibly iterate the process up to the point he/she finds the proper parameter

set (the one providing the expected results). Now all the code needed to implement the

master, to properly schedule input parameter sets to the workers and to gather the results

is independent of the actual code used to implement the “function” computed by the appli-

cation. The only dependency is on the types of the input parameter set and of the output

results, actually. Therefore, an algorithmic skeleton can be provided to the user that accepts

parameters such as the input and output types and the code needed to compute output out

of the input data. The skeleton completely takes care of the implementation of the master/-

worker parallelism exploitation pattern needed to implement the overall parameter sweeping

application. Being the code of the skeleton designed and implemented by (presumably) ex-

pert system programmers, well aware of the features of the target architecture at hand, the

application programmers will succeed developing an efficient parameter sweeping application

without being required to have any kind of knowledge related to target architecture or to

the techniques needed to efficiently implement a master worker schema. C

Later on, Cole published his “skeleton manifesto” [37] where skeletons are described in a

fairly more abstract way:

many parallel algorithms can be characterized and classified by their adherence to one
or more of a number of generic patterns of computation and interaction. For example,
many diverse applications share the underlying control and data flow of the pipeline
paradigm. Skeletal programming proposes that such patterns be abstracted and pro-
vided as a programmer’s toolkit, with specifications which transcend architectural
variations but implementations which recognize these to enhance performance.

Eventually, the “Skeletal parallelism” home page maintained by Murray Cole41 gives a more

general definition of algorithmic skeletons:

40see business logic definition in Fig. fig:txt:business logic
41http://homepages.inf.ed.ac.uk/mic/Skeletons/

D
ra
ft

48 ALGORITHMIC SKELETONS

There are many definitions, but the gist is that useful patterns of parallel computation
and interaction can be packaged up as ‘framework/second order/template’ constructs
(i.e. parameterized by other pieces of code), perhaps presented without reference to
explicit parallelism, perhaps not. Implementations and analyses can be shared between
instances. Such constructs are ‘skeletons’, in that they have structure but lack detail.
That’s all. The rest is up to us.

As we see, Cole’s definition of algorithmic skeleton evolved in time. In the meanwhile,

several research groups working on algorithmic skeletons contributed to the evolution of the

algorithmic skeleton concept. Eventually, a new definition of algorithmic skeletons has been

elaborated, which is nowadays commonly accepted. This new definition may be summarized

as follows:

An algorithmic skeleton is parametric, reusable and portable programming abstraction
modelling a known, common and efficient parallelism exploitation pattern.

Such definition embeds several different, fundamental concepts:

• it models a known, common parallelism exploitation pattern. We are not interested in

patterns that are not commonly found in working parallel applications. Possibly, un-

common patterns could be anyway used with those skeleton frameworks that provide

some degree of extensibility (see Sec. 9.6).

• it is portable, that is an efficient implementation of the skeleton should exists on a

range of different architectures.

• it models efficient parallelism exploitation patterns. Skeletons only model those pat-

terns that have some known, efficient implementation on a variety of target architec-

tures.

• it is reusable, that means it could be used in different applications/contexts without

actually requiring modifications

• it is parametric in that it accepts parameters that can be used to specialize what is

computed by the skeleton, rather than how the parallel computation is performed.

3.1.1 The skeleton advantage

What are the advantages provided by a programming framework based on algorithmic

skeletons? Let us assume that a skeleton programming framework is available, providing

the programmer with a convenient number of skeletons.

The implementation of parallel applications using such a framework requires the following

steps:

1. the possible parallel structures of the application42 are evaluated

2. the available skeletons are evaluated and a skeleton (nesting) is individuated as the

one modelling the application parallel structure

3. the parallel application code is produced by instantiating the skeleton (nesting) cho-

sen, providing the suitable functional (e.g. the business logic parameters) and non

functional (e.g. parallelism degree of the skeleton(s) used) parameters

4. the application is compiled

5. the application is run on the target architecture

42that is the possible ways to exploit application internal parallelism

D
ra
ft

ALGORITHMIC SKELETONS: DEFINITION(S) 49

6. the application results are analyzed:

• for functional correctness: functional correctness of skeleton implementation is

guaranteed by the framework, but the correctness of the instantiation of the

skeletons, as well as of the business logic code has to be checked anyway

• for non functional correctness: performance has to measured, looking for poten-

tial bottlenecks or inefficiencies.

7. in case of inefficiencies, refinements of the current skeleton structure of the application

as well as alternative skeletons (or skeleton nestings) are considered, and the process

is restarted from phase 3.

This process is radically different from the process used to develop parallel applications

with traditional programming frameworks, such as MPI for instance. In that case, the

application programmer must go through the whole process of managing all the details

relative to parallelism exploitation, while in this case all the implementation details relative

to parallelism exploitation patterns are managed by the skeleton framework.

This has several consequences, that represent the fundamental advantages of program-

ming frameworks based on algorithmic skeleton43:

• the abstraction level presented to the programmer by the programming framework is

higher than the one presented by traditional parallel programming frameworks. This

in turn has two consequences:

– The whole process of parallel programming is simplified. Parallelism exploitation

mainly consist in properly instantiating the skeleton abstractions provided by

the framework rather than programming your own parallel patterns using the

concurrency, communication and synchronization mechanisms available.

– Application programmers may experiment rapid prototyping of parallel applica-

tions. Different application prototypes may be obtained by instantiating (that is

by providing the proper functional/business logic code) different skeletons among

those available or, in case this is allowed, different compositions of existing skele-

tons.

• The correctness and the efficiency of the parallelism exploitation is not a concern of

the application programmers. Rather, the system programmers that designed and

implemented the skeleton framework guarantee both correctness and efficiency.

• Portability on different target architectures is guaranteed by the framework. An algo-

rithmic skeleton application can be moved to a different architecture just by recompil-

ing44. Portability has to be intended in this case not only as “functional portability”,

but also as “performance portability” as the skeleton framework usually exploits best

implementations of the skeletons on the different target architectures supported.

• Application debugging is simplified. Only sequential code (that is business logic code)

has to be debugged by the application programmers.

• Possibilities for static and dynamic optimizations are much more consistent than in

case of traditional, unstructured parallel programming frameworks as the skeleton

structure completely exposes to the programming tools the parallel structure of the

application.

• Application deployment and (parallel) run, that notably represent a complex activity,

is completely in charge of the skeleton framework

43as clearly pointed out in Cole’s manifesto[37]
44if the algorithmic skeleton framework supports the new target architecture, of course.

D
ra
ft

50 ALGORITHMIC SKELETONS

Figure 3.2 Two stage pipeline

3.1.2 The skeleton weakness

Of course, in addition to the advantages of algorithmic skeleton based programming frame-

works with respect to traditional, unstructured parallel programming frameworks as listed

in the previous section, there are also disadvantages than must be taken into account. The

principal drawbacks are related to both “user” (i.e. application programmer) and “system”

(i.e. system programmer) views:

• In case none of the skeletons provided to the programmer (or none of the possible

skeleton nestings) suits to model the parallel structure of the application the applica-

tion could not be run through the skeleton framework (see also Sec. 9.6).

• Functional and performance portability across different target architectures requires a

huge effort by the skeleton framework designers and programmers. The effort required

may be partially reduced by properly choosing the sw target architecture targeted by

the skeleton framework, e.g. by considering some “higher level” target to produce the

“object” code of the skeleton framework45.

3.2 SKELETONS AS HIGHER ORDER FUNCTIONS WITH ASSOCIATED
PARALLEL SEMANTICS

Following Cole’s last and more general perspective, algorithmic skeletons can be defined as

higher order functions encapsulating/modelling the parallelism exploitation patterns, whose

functional parameters provide the “business logic” of the application. The parallel semantics

of the skeletons defined in this way is usually given with a short statement detailing how

parallelism is exploited in the computation of the higher order function.

As an example, having defined46 the data type stream as

type ’a stream = EmptyStream | Stream of ’a * ’a stream;;

we can define a pipeline skeleton using the higher order function:

let rec pipeline f g =
function

EmptyStream -> EmptyStream
| Stream(x,y) -> Stream((g(f x)),(pipeline f g y));;

The type of the pipeline skeleton is therefore

pipeline :: (α→ β)→ (β → γ)→ α stream→ γ stream

45as an example, targeting MPI rather than UDP sockets + Pthreads. MPI provides a virtualization layer
that takes care of handling differences in the data representation among different systems/processors, as
an example. Therefore less non functional code is needed to run an MPI application than a Pthread/UDP
application. In turn, this means the task of the skeleton compiler is easier.
46we’ll use Ocaml notation through this notes, see [69] for the syntax

D
ra
ft

SKELETONS AS HIGHER ORDER FUNCTIONS WITH ASSOCIATED PARALLEL SEMANTICS 51

Figure 3.3 Task farm

The function definition perfectly captures the functional semantics of the skeleton: a

pipeline computes the second stage (function g in this case) on the results of the appli-

cation of the first stage (function f, in this case) to the input data. The parallel semantics

of the skeleton is defined by some text, a kind of “metadata” associated to the function,

such as:

the pipeline stages are computed in parallel onto different items of the input stream.
If xi and xi+1 happen to be consecutive items of the input stream, than f(xi+1) and
g(f(xi)) will be computed in parallel, for any i

In order to get a working application, whose parallelism is modelled as a pipeline, the user

may instantiate the second order pipeline function by passing the parameters modelling

first and second stage “functions” f and g.

e.g.� As an example, if users want to write an application to filter images and then recognize

characters string appearing in the images, provided it has available two functions filter ::

image→ image and recognize :: image→ string list, he can simply write a program such

as:

let main =
pipeline filter recognize;;

and then apply the main to the input stream to get the stream of results. C

Despite the fact the parameters of a skeleton should only model the business logic of the

applications (e.g. the pipeline stages), some non functional parameters are also required by

skeletons in some well known skeleton frameworks. A notable example of non functional

parameters is the parallelism degree to be used to implement the skeleton.

As an example, take into account the farm skeleton, modelling embarrassingly parallel

stream parallelism exploitation pattern:

let rec farm f =
function

EmptyStream -> EmptyStream
| Stream(x,y) -> Stream((f x),(farm f y));;

whose type is

farm :: (α→ β)→ α stream→ β stream

The parallel semantics associated to the higher order functions states that

the computation of any items appearing on the input stream is performed in parallel

D
ra
ft

52 ALGORITHMIC SKELETONS

The parallelism degree that may be conveniently used was evident in pipeline. Having two

stages, a parallelism degree equal to 2 may be used to exploit all the parallelism intrinsic

to the skeletons. In the farm case, according to the parallel semantics a number of parallel

agents computing function f onto input data items equal to the number of items appearing

onto the input stream could be used. This is not realistic, however, for two different reasons:

1. items of the item stream do not exist all at the same time. A stream is not a vector.

Items of the stream may appear a different times. Actually, when we talk of consec-

utive items xi and xi+1 of the stream we refer to items appearing onto the stream

at times ti and ti+1 with ti < ti+1. As a consequence, it makes no sense to have a

distinct parallel agent for all the items of the input stream, as at any given time only

a fraction of the input stream will be available.

2. if we use an agent to compute item xi, presumably the computation will end at some

time tk. If item xj appears onto the input stream at a time tj > tk this same agent

can be used to compute item xj rather than picking up a new agent.

As a consequence, the parallelism degree of a task farm is a critical parameter: a small

parallelism degree do not exploit all the parallelism available (thus limiting the speedup),

while a large parallelism degree may lead to inefficiencies as most of the parallel agents will

be probably idle most of time.

In some skeleton frameworks, therefore, the parallelism degree is given as a parameter of

the skeleton. The task farm skeleton is therefore defined as an high order function having

(also) an integer as a parameter. This parameter represent their intended parallelism degree

of the implementation of the skeleton. However it has no effect on the “function” computed

by the skeleton. It has only effect on the “parallel semantics” metadata.

A task farm skeleton with a parallelism degree parameter may therefore be defined with

the high order function

let rec farm f n:int =
function

EmptyStream -> EmptyStream
| Stream(x,y) -> Stream((f x),(farm f y));;

whose type is now

farm :: (α→ β)→ int→ α stream→ β stream

with the parallel semantics defined as follows:

the computation of consecutive items of the input stream is performed in parallel on
n parallel agents.

These non functional parameters of skeletons generated quite a huge debate within the

skeleton community. On the one side, as skeletons pretend to abstract all the aspects related

to parallelism exploitation, non functional parameters such as the parallelism degree should

not be left under application programmer responsibility. Rather, they should be properly

handled by the skeleton implementation, possibly being computed using some performance

model of the skeleton (see Chap. 5). On the other side, such parameters can be used by

expert programmers to express the fact they want to use exactly that amount of resources.

As an example, they may want to experiment different parallelism degrees according to the

type of the execution constrains of the applications. If the computation of the results is

not urgent, smaller parallelism degrees may be required, whereas, in case of very urgent

computations, higher parallelism degrees may be asked through non functional parameters.

Consistently with the idea a skeleton is a programming abstraction hiding all the details

related to parallelism exploitation pattern implementation, we agree on the idea that the

D
ra
ft

SKELETONS AS HIGHER ORDER FUNCTIONS WITH ASSOCIATED PARALLEL SEMANTICS 53

better choice is to leave to the skeleton implementation the management of all the non

functional skeleton parameters. In case the programmer is allowed to provide such kind of

parameters, they will be only taken as loose requirements on the execution of the skeleton:

the implementation of the skeleton will try to accommodate user requests, but in case

the implementation could figure out the requests are not reasonable or that better choices

could be made, these better choices will be actually taken and the user will be consequently

informed.

3.2.1 Stream modelling

An alternative way of defining stream parallel algorithmic skeletons assumes pipeline and

farm just operate on a global input stream of data to produce a global stream of results. In

this case, we may define pipelines and farms with much simpler higher order functions that

do not operate on streams, actually, and then use these functions as parameters of another

higher order function implementing stream parallelism. In this case, the pipeline skeleton

will basically correspond to functional composition:

let pipeline f g =
function x -> (g (f x));;

while task farm skeleton corresponds to identity:

let farm f =
function x -> (f x);;

The higher order function taking care of exploiting parallelism can then be defined as follows:

let rec streamer f x =
match x with

EmptyStream -> EmptyStream
| Stream (v,s) -> Stream ((f v), (streamer f s));;

such that, to define the filter/recognize program defined in Sec. 3.2 we can now write:

let main =
streamer (pipeline filter recognize);;

Clearly, the parallel semantics associated to skeletons changes in this case, with respect

to the parallel semantics we had when pipeline and farms actually processed streams. A

parallel semantics is only associated to the streamer function as:

the processing of independent input stream data items is performed in parallel

whereas pipeline and farm have do not have associated any kind of parallel semantics.

This way of modelling stream parallelism corresponds to the idea of structuring all stream

parallel applications as farms47 with more coarse grain computations as functional param-

eter.

Again, consider the filter/recognize example. Let’s suppose that the recognize phase is

much more computationally expensive with respect to the filter phase. Using the explicit

stream handling versions of pipeline and farm skeletons, we would write the program as

let main =
pipeline (filter) (farm recognize);;

47recall the parallel semantics previously given for the farm and look at the analogies in between the streamer
function and the former definition of the farm higher order function

D
ra
ft

54 ALGORITHMIC SKELETONS

Recalling the parallel semantics of these skeletons we can easily understand that given a

stream with data items x1, . . . , xm (with xi appearing on the stream after xi−k for any k)

the computations of

recognize(yi) recognize(yi+k)

(being yi = filter(xi)) happen in parallel, as well as the computations of

recognize(yi) filter(xi+k)

If we use the alternative modelling of stream parallelism described in this section, the

program instead is written as

let main =
streamer (pipeline filter recognize);;

and in this case the only computations happening in parallel are the

recognize(filter(xi)) recognize(filter(xi+k))

3.3 A SIMPLE SKELETON FRAMEWORK

Although different programming frameworks based on skeletons have been developed that

sport each different algorithmic skeletons, a subset of common skeletons may be found in

most of these frameworks. These common subset contains skeletons from three different

classes of skeletons: stream parallel skeletons, data parallel skeletons and control parallel

skeletons.

3.3.1 Stream parallel skeletons

Stream parallel skeletons are those exploiting parallelism among computations relative to

different, independent data items appearing on the program input stream. Each indepen-

dent computation end with the delivery of one single item on the program output stream.

Common stream parallel skeletons are the pipeline and task farm skeletons, whose definition

in terms of higher order functions and parallel semantics has already been given in Sec. 3.2.

The pipeline skeleton is typically used to model computations expressed in stages. In

the general case, a pipeline may have more than two stages. The restriction to two stages

as given by the definition in Sec. 3.3.4 guarantees strong typing and the ability to define

pipelines with more than two stages as pipelines of pipelines. Given a stream of input tasks

xm, . . . , x1

the pipeline with stages

s1, . . . , sp

computes the output stream

sp(. . . s2(s1(xm)) . . .), . . . , sp(. . . s2(s1(x1)) . . .)

The parallel semantics of the pipeline skeleton ensures all the stages will execute in

parallel. In Chap. 5 we will see that this guarantees that the total time required to compute

a single task (pipeline latency) is closed to the sum of the times required to compute the

different stages. Also, it guarantees that the time needed to output a new result is close to

time spent to compute a task by the longer stage in the pipeline.

D
ra
ft

A SIMPLE SKELETON FRAMEWORK 55

The farm skeleton is used to model embarrassingly parallel computations, instead. The

only functional parameter of a farm is the function f needed to compute the single task.

Given a stream of input tasks

xm, . . . , x1

the farm with function f computes the output stream

f(xm), . . . , f(x1)

Its parallel semantics ensures it will process tasks such that the single task is processed in

a time close to the time needed to compute f sequentially. The time between the delivery

of two different task results, instead, can be made close to the time spent to compute f

sequentially divided by the number of parallel agents used to execute the farm, i.e. its

parallelism degree48.

3.3.2 Data parallel skeletons

Data parallel skeletons are those exploiting parallelism in the computation of different sub-

tasks derived from the same input task. In other words, the data parallel skeletons are

used to speedup a single computation by splitting the computation into parallel sub-tasks.

Data parallel computation do not concern, per se, stream parallelism. It may be the case

that a data parallel computation is used to implement the computation relative to a single

stream item in a stream parallel program, however. In this case, data parallelism is used to

speedup the computation of all the items belonging to the input stream.

Typical data parallel skeletons considered in the skeleton based programming frameworks

include map, reduce and parallel prefix skeletons. Those skeletons can be (or are) defined

to work on different kinds of data collections. For the sake of simplicity, we consider their

definition relatively to vectors.

Given a function f and a vector x the map skeleton computes a vector y whose elements

are such that ∀i yi = f(xi). The map skeleton is defined as follows49:

let map1 f x =
let len = Array.length x in
let res = Array.create len (f x.(0)) in

for i=0 to len-1 do
res.(i) <- (f x.(i))

done;
res;;

and its type is therefore

map :: (α→ β)→ α array → β array

The parallel semantics of the map states that

each element of the resulting vector is computed in parallel.

It is worth to be pointed out that the same kind of reasoning relative to the farm parallelism

degree also apply to the map parallelism degree. The only difference is in the kind of input

data passed to the parallel agents: in the farm case, these come from the input stream; in

the map case, these come from the single input data.

48under certain conditions. See again Chap. 5
49Ocaml provides a map function on Array data type, whose functional semantics is the same of our map
skeleton. Using that function, we could have simply defined the map skeleton as let map f = function
x -> Array.map f x;;

D
ra
ft

56 ALGORITHMIC SKELETONS

Figure 3.4 Computation performed by a reduce

The reduce skeleton computes the “sum” of all the elements of a vector with a function

⊕ (see Fig. 3.4). That is, given a vector x it computes

x1 ⊕ x2 ⊕ . . .⊕ xlen

The reduce skeleton is defined as follows50:

let rec reduce f x =
let len = Array.length x in

let res = ref x.(0) in
for i=1 to len-1 do

res := (f !res x.(i))
done;
!res;;

and has type

(α→ α→ α)→ α array → α

In the most general form, the function f passed to the reduce skeleton is assumed to be

both associative and commutative, and the parallel semantics of reduce states that:

the reduction is performed in parallel, using n agents organized in a tree. Each agent
computes f over the results communicated by the son agents. Root agent delivers the
reduce result. Leaf agents possibly compute locally a reduce over the assigned partition
of the vector.

The parallel prefix skeleton computes all the partial sums of a vector, using a function

⊕ (see Fig. 3.5). That is, given a vector x it computes the vector whose elements happen

to be

x1, x1 ⊕ x2, x1 ⊕ x2 ⊕ x3, . . . , x1 ⊕ x2 ⊕ x3 ⊕ . . .⊕ xlen

The paralell prefix skeleton is defined as follows

let parallel_prefix f x =

50Again, Ocaml provides fold right and fold left functions on Array, with the same functional semantics of
reduce skeleton

D
ra
ft

A SIMPLE SKELETON FRAMEWORK 57

Figure 3.5 Computation performed by a parallel prefix

let len = Array.length x in
let res = Array.create len x.(0) in

res.(0) <- x.(0);
for i=1 to len-1 do

res.(i) <- (f x.(i) res.(i-1))
done;

res;;

and has type

(α→ α→ α)→ α array → α array

The parallel semantics states that

the parallel prefix is computed in parallel by n agents with a schema similar to the
one followed to compute the reduce. Partial results are logically written to the proper
locations in the resulting vector by intermediate nodes.

There are many other data parallel skeletons. In particular, those computing the new

item in a data structure as a function of the old item and of the neighboring items (these

are called stencil data parallel computations).

As an example, let us consider the stencil skeleton on vectors. This skeleton may be

defined with the following higher order function51:

let stencil f stencil_indexes a =
let n = (Array.length a) in
let item a i = a.((i+n) mod n) in
let rec sten a i =

51in this case the “stencil” set is defined by defining the list of indexes that make up the stencil. The
stencil indexes list hosts increments to be added to the current item position to get the different elements
belonging to the stencil. The array is considered circular, therefore the “successor” of the last array element
is actually the first array item.

D
ra
ft

58 ALGORITHMIC SKELETONS

Figure 3.6 Computation performed by a simple stencil data parallel

function
[] -> []

| j::rj -> (item a (i+j))::(sten a i rj) in
let res = Array.create n (f a.(0) (sten a 0 stencil_indexes)) in
for i=0 to n-1 do

res.(i) <- (f a.(i) (sten a i stencil_indexes))
done;
res;;

whose type is

(α→ α list→ β)→ int list→ α array → β array

The skeleton processes an input array with items

x0, . . . , xn

computing an array

y0, . . . , yn

whose elements are obtained as follows :

yi = f(xi, l)

where l is the list of the array elements xk ∀k ∈ stencil.
The parallel semantics of this stencil can be stated as follows:

each one of the yi items of the resulting vetctor is computed in parallel

A sample stencil computation is summarized in Fig. 3.6. Stencil skeletons are important

as they can be exploited in a number of different “numerical” applications. In particular, a

number of differential equation systems may be solved iterating a computation structured

after a stencil pattern.

The last data parallel skeleton we consider is divide&conquer . This skeleton recursively

divides a problem into sub problems. Once a given “base” case problem has been reached,

it is solved directly. Eventually, all the solved sub-problems are recursively used to build

the final result computed by the skeleton.

The high order function capturing the divide&conquer semantics may be written as

follows:

let rec divconq cs dc bc cc x =
if(cs x) then (bc x)
else (cc (List.map (divconq cs dc bc cc) (dc x)));;

where cs is the function deciding whether input problem has to be split, dc is the function

splitting the input problem into sub problems, bc is the function computing the base case

and cc is the function “conquering” sub problem solutions, that is the function computing

D
ra
ft

A SIMPLE SKELETON FRAMEWORK 59

the solution of a problem out of the solutions ot its sub problems. The type of the skeleton

high order function is therefore

(α→ bool)→ (α→ α list)→ (α→ β)→ (β list→ β)→ α→ β

The parallel semantics associated to the divide&conquer skeleton states that

computation of Sub problems deriving from the “divide” phase are computed in parallel.

This is a very popular algorithmic skeleton. It is classified as data parallel as in the general

case parallelism comes from the decomposition of some particular data structure.

e.g.� Sorting is the classical example used to explain divide&conquer. In order to sort a list of
integers, we may split the list in two sub-lists, order the two sub lists and then merge the
ordered sub lists. If we take care of splitting the list into sub lists in such a way elements of
the first sub list happen to be smaller or equal to the elements appearing in the second sub
list, the merge phase is reduced to juxtaposition of the two ordered sub lists. Therefore we
can define this sort as

divconq (singleton) (pivotSplit) (identity) (juxtappose)

where singleton returns true if the argument list is of length equal to 1, pivotSplit
takes a list, extracts the first element (the pivot) and returns the two lists made of all the
original list elements smaller that the pivot plus the pivot itself and of the original list
elements larger than the pivot, the identity returns its parameter unchanged and eventually
juxtapose takes two lists and return the list made of the elements of the first list followed
by the elements of the second one.

C

3.3.3 Control parallel skeletons

Control parallel skeletons actually do not express parallel patterns. Rather, they express

structured coordination patterns and model those parts of a parallel computation that are

needed to support or coordinate parallel skeletons.

Control parallel skeletons typically include:

Sequential skeleton which is used to encapsulate sequential portions of code in such a

way they can be used as parameters of other (parallel) skeletons.

Conditional skeleton which is used to model if-then-else computations. Such a skeleton

can be expressed by the following higher order function:

let ifthenelse c t e x =
match(c x) with

true -> (t x)
| false -> (e x);;

whose type is

ifthenelse : (α→ bool)→ (α→ β)→ (α→ β)→ α→ β

Iterative skeleton which is used to model definite or indefinite iterations. As an example,

a skwhile iterative skeleton may be represented through the higher order function

let rec skwhile c b x =
match(c x) with

true -> (skwhile c b (b x))

D
ra
ft

60 ALGORITHMIC SKELETONS

| false -> x;;

whose type is

skwhile : (α→ bool)→ (α→ α)→ α→ α

These skeletons do not model any parallelism exploitation patterns, although some of

them may lead to parallel computations. As an example:

• A conditional skeleton if-condition-then-else may be implemented in such a way the

computation of the condition, then and else parts are started concurrently. Once the

condition is evaluated, either the then termination is awaited and the else compu-

tation is aborted or vice versa, depending on the result given by the computation of

condition (this parallel semantics implements a kind of speculative parallelism).

• An iterative skeleton may be implemented in such a way a number (possibly all) the

iterations are executed concurrently, provided that there are no data dependencies

among the iterations (this is a kind of forall skeleton, actually, which is very similar

to the map one. The only difference concerns the way the parallel computations are

derived: in the map, they come from the decomposition of the compound input data

structure; in the forall they come from different iterations of the same loop).

3.3.4 A skeleton framework

With the definitions given up to now, we can imagine a skeleton programming framework

as a system providing at least:

1. a number of skeletons, described by a grammar such as:

Skel ::= StreamParallelSkel |
DataParallelSkel | ControlParallelSkel

StreamParallelSkel ::= Farm | Pipe | ...
DataParallelSkel ::= Map | Reduce |

ParallelPrefix | ...
ControlParallelSkel ::= Seq | Conditional |

DefiniteIter |
IndefiniteIter | ...

Seq ::= seq(<sequential function code wrapping>)
Farm ::= farm(Skel)
Pipe ::= pipeline(Skel,Skel)
Map ::= map(Skel)
Reduce ::= reduce(Skel)
ParallelPrefix ::= parallel_prefix(Skel)
Conditional ::= ifthenelse(Skel,Skel,Skel)
DefiniteIter ::= ...
...

The framework provides application programmers with the API to write Skel expres-

sions denoting the skeletal program as well as some statement invoking the execution

of the skeletal program. As an example, in Muskel [13] a Skel program can be

declared as:

Skeleton filter = new Filter(...);

D
ra
ft

A SIMPLE SKELETON FRAMEWORK 61

Skeleton recon = new Recognize(...);
Skeleton main = Pipeline(filter, recon);

2. a way to invoke the execution of the skeleton program. As an example, in Muskel this

can be demanded to an Application Manager by passing it as parameters i) the

program to execute, ii) the input stream and iii) the output stream manager52:

Manager mgr =
new Manager(main,

new FileInputStreamManager("datain.dat"),
new ConsoleOutputStreamManager());

mgr.start();

Alternatively, the skeleton framework may provide library calls directly implementing

the different skeletons. As an example, in frameworks such as SkeTo [78] the skeletons are

declared and executed via suitable library calls: to use a map skeleton followed by a reduce

skeleton the user may write a code such as

dist_matrix<double> dmat(&mat);
dist_matrix<double> *dmat2 =

matrix_skeletons::map(Square<double>(), &dmat);
double *ss =

matrix_skeletons::reduce(Add<double>(),
Add<double>(), dmat2);

In both cases, provided the framework is properly set up, the evaluation of the skeleton

program leads to the proper exploitation of the parallel patterns modelled by the skeletons

used. In the former case (Muskel, which is based on Java), the execution of the program

through a plain Java interpreter will lead to the execution of the first and second pipeline

stages on two different computing resources interconnected using TCP/IP sockets and Java

RMI protocols. This, in turn, implements the pipeline parallel semantics as defined in

Sec. 3.3.4. In the latter case (SkeTo, which is based on C++), the execution of the program

compiled using a C++ compiler and linked with an MPI library leads to the execution in

parallel, onto the available processing elements of both the map and the reduce skeletons,

in sequence.

3.3.5 Skeleton programs

Skeleton programs written using a framework such as the one envisioned in the previous

section have a well defined structure, that is usually represented by a skeleton tree.

The skeleton tree has nodes representing algorithmic skeletons and leaves representing

sequential portions of code (the business logic code). Skeleton parameters are represented

in node leaves (Fig. 3.7 shows an example of skeleton tree).

We will use in the following skeleton trees in different contexts: as an example, to rep-

resent parallel program classes, to expose the parallel structure of an application or to

represent compiler data.

With a framework such as the one outlined in the previous sections, a skeleton tree may

be defined according to the following grammar53:

52input and output stream managers are de facto iterators producing the items of the input stream and
consuming the items of the output stream, respectively
53The grammar abstracts all non skeleton parameters, that are not significant when representing the parallel
structure of the skeleton program.

D
ra
ft

62 ALGORITHMIC SKELETONS

Figure 3.7 Sample skeleton tree

Sk ::= Seq(Code)
| Farm(Sk) | Pipe(Sk,Sk)
| Map(Sk) | Reduce(Sk) | Stencil(Sk)
| While(Sk) | For(Sk) | ...

As an example, the skeleton tree of a program filtering a stream of images by means of

two filters, with one of the two filters being data parallel, may be represented by the term

Pipe(Map(Seq(dpFilter)),Seq(secondFilter)

or, in case the second filter is parallelized through a farm, by the term

Pipe(Map(Seq(dpFilter)),Farm(Seq(secondFilter))

These expressions only expose the parallel structure of the two programs. There is no

parameter modelling the parallelism degree of the map and farm, as an example, nor there

are parameters modelling the data types processes by dpfilter or secondFilter.

3.4 ALGORITHMIC SKELETON NESTING

Algorithmic skeletons, as proposed by Cole in his PhD thesis [36] were conceived as patterns

encapsulating a single parallel pattern. In the thesis these patterns were used alone. There-

fore, an algorithmic skeleton based application exploited just a single, possibly complex

form of parallelism.

The algorithmic research community immediately started to investigate the possibili-

ties offered by algorithmic skeleton composition. For a while, two perspectives have been

investigated:

“CISC” skeletons Several researchers imagined to provide users with a large number of

algorithmic skeletons [51], each modelling a particular parallelism exploitation pat-

tern54. These skeletons were derived analyzing existing applications and looking for

any pattern that demonstrated to be useful and efficient (e.g. scalable, performant,

54We introduce the terms “CISC” and “RISC skeletons” although this terminology has never been used
before in the skeleton community. However, we think that CISC and RISC perfectly summarize the two
approaches discussed here.

D
ra
ft

ALGORITHMIC SKELETON NESTING 63

etc). Due to the large amount of different parallel applications, and due to the large

number of significantly or slightly different parallelism exploitation patterns, eventu-

ally CISC skeleton set became huge. In turn, this implied that possible users (the

programmers) were forced to dig into the skeleton set the one matching their needs.

The effort needed to individuate the “best” algorithmic skeleton matching the par-

allelism to be exploited in the user application was sensible, due to large number of

similar items in the skeleton set.

Furthermore, in case of CISC skeletons, nesting of skeletons was in general not allowed.

This means that if you succeeded to model your application with one of the available

skeletons and later on you realized the achieved performance was not satisfactory, you

were not allowed to refine the skeleton structure of the program introducing further

skeletons as arguments of the existing ones. Instead, you were forced to remove

the (single) skeleton used and to pick up another skeleton in the set provide to the

programmers. In turn, this could require changes in the parameters passed, that is

in the business logic code, which is usually something we want to avoid as much as

possible55.

“RISC” skeletons Other researchers imagined to follow a RISC approach in the design of

the skeleton set provided to the application programmers. That is, they investigated

skeleton sets with a small number of items. These skeletons modelled very basic

parallelism exploitation patterns. Each of the “code” parameters of the skeletons,

however, could be recursively provided as skeletons. The envisioned scenario behind

this design choice allowed complex parallelism exploitation patterns to be defined as

composition of primitive parallelism exploitation patterns.

In this case, the application programmer were required to know only a small set of

base skeletons plus another small number of “composition rules”. It is clear that

composition rules play a significant role in this case.

After a while, most of the researchers working on algorithmic skeletons opted for some

kind of variant of the second approach and most of the algorithmic skeleton framework

developed so far include the possibility to nest skeletons. However, different frameworks

offer different composition/nesting possibilities. To understand the different cases, we start

discussing how (possibly existing) sequential portions of business code may be included in

a algorithmic skeleton program (Sec. 3.4.1). Then we will discuss the problems related to

implementation of full algorithmic skeleton compositionality (Sec. 3.4.2) and eventually we

will discuss the more common “non full” composition rules, namely those based on a two

tier approach (Sec. 3.4.3).

3.4.1 Sequential code wrapping

In an algorithmic skeleton program sequential portions of code are needed to implement

the application business code.

e.g.� As an example, in an application whose parallelism exploitation is modelled after a two

stage pipeline skeleton, the functions computed by the two stages represent business logic

code and may be supplied re-using existing code, already proven correct and fine tuned,

properly wrapped in a form suitable to be used within the pipeline skeleton. C

Different algorithmic skeleton frameworks chose different approaches to support re-use of

sequential portions of (business) code.

55Any change in the business logic code requires proving correctness by the application programmer. Cor-
rectness of the skeleton implementation, instead, does not need to be proved by the application programmers.

D
ra
ft

64 ALGORITHMIC SKELETONS

Some of typical design choices concerning sequential code re-use are related to the pos-

sibility to reuse the following kind of code:

• code written in a single sequential programming language vs. code written in a lan-

guage of a given class of enabled sequential languages.

• side-effect free, function code vs. generic code, including static variables

• source code vs. object code

• source language level wrapping in functions/procedures vs. object code wrapping

Let us analyze pros and cons of these different possibilities:

Single vs. multiple languages. Restricting the possibility to use existing code written in

a single sequential programming language allows to implement simpler and possibly faster

skeleton programming frameworks, as there is no need to set up particular, multi language

procedures. However, when different languages provide object code interoperability, that is

when programming language Ci allows to seamlessly call procedures/functions written in

language Cj , then considering the possibility to wrap both Ci and Cj code does not require

additional efforts.

Functions vs. generic code. In most cases, code with side effects may hardly be safely

integrated into algorithmic skeletons. Although nothing prevents in principle the possibility

to use side effect code as a pipeline stage or as a map worker, the side effects determine a

number of problems. As an example

• you cannot in general move (e.g. to improve the computation performance) a skeleton

component (e.g. a map worker or a pipeline stage) from one machine to another one

preserving the semantics of the application (side effects could have modified data

which has not been comparably modified on the target machine);

• in case of fault of one of the concurrent activities relative to a skeleton, you are not

able to restore the computation status, as you don’t know which was the exact current

status (side effect status is not known).

• you cannot guarantee in general the functional correctness of the implementation

of the skeleton framework (you cannot guarantee that two runs with the same input

data return the same output results, as different sub computations contributing to the

global algorithmic skeleton computation may take place in different runs on different

machines).

Algorithmic skeleton frameworks usually require that the application programmer guaran-

tees that the sequential portions of code used as skeleton parameters are pure functions.

Source vs. object legacy code. In general the business code that programmers wish to

re-use is constituted by some source code possibly calling some external libraries. In case

only re-use of source code is allowed, this may exclude the possibility to use well know and

effective libraries.

Therefore, algorithmic skeleton frameworks usually allow to use legacy libraries in the

wrapped business code, provided that this dependency is somehow declared. The declara-

tion of the dependency allows the framework to ensure the presence of the called library

in all places where the wrapped code calling the library will be eventually executed, as an

example, or, in case of fault, to restore a good “restart point” for the computation on a

different processing node.

D
ra
ft

ALGORITHMIC SKELETON NESTING 65

Source vs. object code wrapping. Wrapping source code is generally easier than wrapping

object code. In particular, to wrap source code standard compiler tools can be exploited (e.g.

pre-processing, annotations, source-to-source compilers). In case object code is considered

for wrapping the “structure” of the code must be known or at least the way input and

output parameters are managed must be known.

3.4.2 Full compositionality

Full compositionality in a skeleton framework means that a skeleton56 may be used as

actual parameter for any code parameter of any skeleton. This property is also known as

flat nesting , and it has several important implications:

1. Full compositionality implicitly assumes that any skeleton composition actually makes

sense, as an example that a map used as a pipeline stage represents a notable and

useful parallelism exploitation pattern, as well as a pipeline used as a map worker. As

we will discuss in Sec. 3.4.3 some skeleton compositions do not make sense, actually.

2. If we allow any skeleton to appear as a code parameter in another skeleton we assume

that the type of the function of the skeleton is the same of the function used as

parameter in the second skeleton. This, in turn, raises two different problems:

• All function parameters must have the same generic type. Then we can use this

type as type of all the skeletons in the framework. As an example, we can use

the generic type f : α→ β.

• We must find a way to conciliate stream parallel skeletons with function pa-

rameters. A pipe will have type pipe : (α → β) → (β → γ) → (α stream) →
(γ stream). Therefore in order to be able to use a pipe as a stage of another pipe

we must conciliate the fact α→ γ is not the same type as α stream→ β stream.

3. The support of full compositionality implies that, given two skeletons ∆1 and ∆2

modelling two different kind of parallelism exploitation patterns, the techniques used

to implement the two patterns must be compatible. In other words we must ensure

that the joint exploitation of the two parallelism exploitation patterns in ∆1(∆2) (or

in ∆2(∆1)) does not lead to any kind of conflict or inefficiency.

These problems represents an obstacle to the support of full compositionality. In par-

ticular, the third point above is the critical one. We don’t know at the moment how to

implement efficiently compositions of arbitrary parallelism exploitation patterns. As a con-

sequence, limitations are considered related to algorithmic skeleton composition. The more

common limitation is to allow only certain skeleton composition, as detailed in the next

Section.

3.4.3 Two tier model

During the design of P3L [21] in early ’90, the group of the Dept. of Computer Science in

Pisa come out with a well defined composition rule for algorithmic skeletons, that was able

to solve most of (possibly all) the problems related to algorithmic skeleton composition.

P3L provided a small set of skeletons, including both stream parallel and data parallel

skeletons. Each one of the P3L skeletons could use another skeleton in a code parameter.

Skeletons could be used to instantiate pipeline stages as well as map, reduce or farm workers.

However, the resulting skeleton tree57 were valid if and only if stream parallel skeletons were

56with all its parameters properly instantiated
57the tree with skeletons at nodes and parameters in the skeleton node leaves

D
ra
ft

66 ALGORITHMIC SKELETONS

Figure 3.8 Two tier skeleton nesting

used in the upper part of the tree, data parallel ones in the lower part and sequential skeleton

(i.e. wrapping of sequential, business logic code) in the leaves.

The upper part of the skeleton tree represents the first stream parallel tier and the lower

part (excluding the leaves) the second, data parallel tier (see Fig. 3.8).

This choice was operated observing that:

• data parallelism with internal stream parallel patterns does not offer substantial per-

formance improvements over the same kind of data parallelism with sequential pa-

rameters only

• data parallelism may be refined structuring its data parallel computations as further

data parallel patterns

• both stream parallel and data parallel patterns eventually should be able to use se-

quential code parameters.

This model is still in use in several programming frameworks supporting skeleton com-

position, including Muesli and (in a more restricted perspective) SkeTo.

3.5 STATELESS VS. STATEFULL SKELETONS

Classical skeleton frameworks always considered, designed and provided the final user/pro-

grammer with stateless skeletons, that is skeletons whose functional behaviour may be

completely modelled through higher order functions. This is mainly due to the class of

parallel architectures available when the first skeleton frameworks were conceived and im-

plemented. At that time, “parallel” architectures was a synonym of “distributed memory”

architectures. Clusters, as well as ad hoc multiprocessors did not provide any kind of shared

memory mechanisms and therefore separate processing elements had to be programmed with

programs accessing disjoint rather than shared data structures. This situation has changed,

as nowadays a number58 of multi/many core architectures provide quite efficient shared

memory mechanisms.

Moreover, it is known that a number of cases exists where a concept of shared state may

be useful to model parallel computations. In some cases, it may be useful to maintain in a

state variable some counters relative to the current parallel computation. In other cases it

is worth allowing concurrent activities to (hopefully not frequently) access some centralized

and shared data structure.

58the vast majority, actually

D
ra
ft

STATELESS VS. STATEFULL SKELETONS 67

e.g.� A stencil data parallel computation looking for solutions of some differential equation system

will iteratively proceed up to the moment the difference between the current and the the

previously computed solution approximation is smaller than a given ε. A parallel application

with this behaviour can be programmed as a map reduce, with the map computing the

new approximated solution as well as the “local” difference among the current and the old

approximate solution and the the reduce computing the maximum absolute “local” distance.

The computation ends when this value happens to be below the threshold ε. A much more

natural way of expressing the same computation will be one where the data parallel workers

update a globally shared maxDiff variable. This requires, of course, that each worker in

the data parallel template is able to perform an atomic update-with-local-value-if-larger-than-

the-global-shared-one operation.

C

e.g.� A parallel ray tracer application may be programmed in such a way all the “rays” may be

computed in parallel, provided that the scene parameters (shapes, positions, surface feature

of the objects, light position, etc.) may be accessed concurrently. A natural solution consists

in programming a data parallel skeleton providing a copy of the scene data to all the workers

in the data parallel template. A possibly more efficient solution–e.g. in case of large scene

data–consists in programming the data parallel workers in such a way they can access–read

only–the scene data. C

Managing and scheduling complex access patterns to a shared data structure represents

a complicate and error prone activity, requiring proper planning of shared data access

scheduling and synchronization. It also represents one of the classical source of bottlenecks

in existing parallel applications: when shared data structures must be accessed concurrently,

the concurrent activities rarely may achieve ideal speedup. The accesses to the shared data

structure, in fact, make up the serial fraction that limits the speedup achieved in the parallel

application (see Amdhal law in Sec. 2.3). Therefore, shared data access has always been

prohibited in structured parallel programming models based on the algorithmic skeleton

concept (remember that an algorithmic skeleton has to be a well known, efficient parallelism

exploitation pattern, according to the skeleton assessed definition).

With the growing and ubiquitous presence of shared memory multi/many core architec-

tures, however, the problem of being able to manage some kind of shared global state is
becoming again more and more interesting.

All the skeleton based programming frameworks listed in Chap. 12 that have been labeled

as supporting multi/many core architectures, exploit multi cores to support a number of

parallel activities, actually, but they do not–at the moment and with the exception of
mettere
uncheck
SMFastFlow–exploit the existence of a shared memory support to provide the user/programmer

with some kind of shared state abstraction available to the existing skeletons.

However, the structure of the parallel computation exposed through the skeleton compo-

sition used to model parallel applications may be used to improve the efficiency in dealing

with shared state within parallel computation.

We illustrate in the following sections some principles and techniques useful to provide

such shared state support in skeleton based frameworks.

3.5.1 Shared state: structuring accesses

We start distinguishing the different kind of accesses performed on shared state data struc-

tures. The particular features of each kind of access will then be used to determine the better

techniques supporting the implementation of the shared state in the skeleton framework.

The kind of accesses we distinguish include:

D
ra
ft

68 ALGORITHMIC SKELETONS

Readonly This is not actually a shared state, as no modification is made to the shared

structure. The only concurrent accesses are those aimed at reading (parts of) the

shared structure.

Owner writes This is another particular and quite common kind of shared state access:

a number of concurrent entities access the data structure for reading but only one of

the concurrent entity is allowed to modify a single sub-partition of the shared state

structure.

Accumulate In this case, the shared state data is accessed for writing by all (more than

one of) the concurrent entities accessing the state, but the only kind of write operation

is such that each write turns out to be a

xnew = xold ⊕ y

were ⊕ is a commutative and associative operator and y is a parameter provided by

the concurrent entity requiring the update of the shared state variable.

Resource This is the kind of shared state access that mimics an exclusive access to a

shared resource. It corresponds in obtaining a lock on the shared state variable, then

modifying the variable and eventually releasing the lock.

These kind of accesses allow different strategies to be implemented to support shared state

implementation. These strategies vary depending on the kind of architectural support

available for shared memory accesses. In particular:

• Readonly state may be handled by copying. In case the data structure is large and

shared memory is supported, accesses to the shared data structure do not need any

kind of synchronization nor cache coherence needs to be ensured on the cache copies

of the shared data structure (parts).

• Owner writes state variables may be handled in such a way the “owner” concurrent

entity has allocated in its private memory59 the “owned” state variables and other

concurrent activities must access these values accessing the “owner” memory. This

means implementing remote accesses in case of distributed architectures or imple-

menting some kind of cache coherence algorithm in case of shared memory target
architectures.

• Accumulate shared state may be implemented by encapsulating the accumulated state

in a concurrent activity that receives asynchronous requests accumulate(y) by the

computation concurrent activities and applies the accumulate operation on a local

copy of the state. Read request relative to the accumulated value may be implemented

in the same way, may be causing a flush of all the write requests pending before

actually reading the value to be returned back to the requesting concurrent activity.

In case of target architectures providing support for shared memory, this kind of

state may be implemented in a more distributed way, profiting of cache coherence

mechanisms. The value of the accumulate state will therefore migrate to the places

where the accumulate write requests will be generated.

• Resource state variables should be handled with full synchronization in order to guar-

antee the exclusive access to the state values.

The consequences of the usage of state variables within structured parallel computations

depend on the kind of shared state and, with a relatively smaller weight, on the kind of

59we refer to memory as main memory or caches in this case, depending on the kind of target architecture

D
ra
ft

STATELESS VS. STATEFULL SKELETONS 69

parallel pattern used. Let us assume the kind of pattern used only impacts the number of

concurrent activities accessing the shared state60. Then:

• Accesses to readonly shared stated does not impact parallelism exploitation. A little

overhead may incur in the access to readonly state variables with respect to the

overhead needed to access regular variables61.

• Accesses to owner writes shared state will behave like accesses to readonly state.

No parallel activities are serialized due to state access as only the owner concurrent

activity may write (its part of) the state variable. A possible, small overhead may be

measured when accessing–reading–shared variables if at that time the same (part of

the) state variable is being written by its owner concurrent activity.

• Accesses to accumulate shared state will be implemented mostly asynchronously.

Again, these accesses will not impair the potential parallelism: no logically concurrent

activities will be serialized unless specific “flush/barrier” operations are provided to

synchronize the accesses.

• Accesses to resource state variables may completely serialize potentially parallel/con-

current activities, due to the full synchronization ensured in the shared state accesses.

e.g.� Consider a farm, and assume we want to count the number of tasks computed by the string
of workers in the farm. We may use an accumulate integer shared variable. The accumulator
operator ⊕ is the actual addition operator, which is commutative and associative. Each farm
worker will issue a accumulate(1) request after completing the current task computation.
The shared state variable will only be read at the end of the computation, possibly by the
farm collector or by some other concurrent activity taking place after farm termination. No
serialization is imposed on worker activity due to access to this simple shared state.

C

e.g.� Consider a pipeline and assume each state uses a resource shared state to compute the stage
function. We have to distinguish two cases:

1. the access to the shared state represents a small fraction of the stage computation, or

2. it represents a consistent fraction of the computation.

In the former case, each stage access to the shared state is serialized. As a consequence,
only the remaining fraction of stage computation may be actually performed in parallel.
Therefore, pipe parallelism is reduced according to the Amdhal law (see Sec. 2.3).

In the latter case, the computation of the stages of the pipeline are de facto serialized. The
whole pipeline behaves therefore as a sequential stage with latency equal to the sum of the
latency of the stages (see Chap. 5).

C

3.5.2 Shared state: parameter modeling

State modeling at the skeleton syntax level may be implemented using labelling. We there-

fore first declare the kind of shared state we want to use, then we use the name of the

shared state variable as any other variable/parameter. The implementation will take care

of planning the correct kind of accesses to the shared variables.

Consider our sample skeleton framework introduced in Sec. 3.3.4. That framework may

be extended with some additional syntax to declare state parameters:

60this is a quite simplistic assumption, but relatively to the classification of shared states used in this
Section, it makes sense
61non state ones

D
ra
ft

70 ALGORITHMIC SKELETONS

Id ::= <valid identifier>
Ids ::= Id | Id, Ids
StateParams ::= readonly Ids; | ownerwrites Ids; |

accumulate Ids; | resource Ids;

Then the Ids used to declare state parameters may be used in all places where normal

parameters are used as skeleton parameters.

In our higher order function description of skeletons we can for instance assume to have,

in addition to what already introduced in previous sections, the state data type defined as:

type ’a state = ReadOnly of ’a
| OwnerWrites of ’a
| Accumulate of ’a
| Resource of ’a;;

Then we can define a stateful farm, accumulating the number of tasks computed by the

worker as follows:

let a = Accumulate(ref 0);; (* declare state *)

let accumulate a y = (* define accumulate function *)
match a with

(Accumulate i) -> i:=(!i+y)
| _ -> failwith ("shared state kind not allowed");;

let rec farmWithAcc f a =
function

EmptyStream -> EmptyStream
| Stream(x,y) -> (accumulate a 1);

Stream((f x),(farmWithAcc f a y));;

This obviously models functional semantics of the farm with state62. In fact, the function

computed by the program is the one resulting from the sequential computation of all the

tasks. As the accumulation on the shared variable happens via an associative and commu-

tative operator, the final result is the same achieved in case of any other, non sequential

scheduling of the farm workers.

However, other kind of “stateful” skeletons may be more hardly modeled following this

approach. As an example, a farm skeleton using a resource kind of shared state could be

easily written as

let rec farm f ssr =
function
EmptyStream -> EmptyStream

| Stream(x,y) -> Stream((f ssr x),(farm f ssr y));;

Then we can define some auxiliary functions as follows:

let ssr = Resource (ref 0);;

let inc ssr =
match ssr with

Resource r -> r:=(!r +1)

62this particular kind of state

D
ra
ft

STATELESS VS. STATEFULL SKELETONS 71

| _ -> failwith("shared stated kind not allowed in inc");;

let dec ssr =
match ssr with

Resource r -> r:=(!r -1)
| _ -> failwith("shared stated kind not allowed in inc");;

let f ssr x =
if(x > 100) then ((inc ssr);x*2)
else ((dec ssr); x/2);;

Eventually, a farm computing function f above can be defined as:

farm f;;

having type:

int ref state− > int stream− > int stream

However, this only computes the function computed by the sequential schedule of all the

farm tasks. Therefore it cannot be used anymore as functional semantics of the statefull

skeleton.

We can summarize the problems related to shared state managing in skeletons as follows:

• In order to model stateful skeletons, the shared variables must be exposed in the

skeleton code. Then depending on the skeleton parallel pattern and on the accesses

made to the shared variables suitable implementation policies may be devised.

• However, different access patterns lead to different implementation strategies. There-

fore also the access patterns should be exposed.

• In the general case, shared state modelling requires much more complicated high level

functions to capture concurrent access properties.

D
ra
ft

D
ra
ft

CHAPTER 4

IMPLEMENTATION OF ALGORITHMIC
SKELETONS

Algorithmic skeleton frameworks can be implemented according to different models. A first,

important alternative is among implementations introducing new programming languages

and implementations actually introducing only libraries for well know, sequential program-

ming languages. In both cases, skeleton programming frameworks may be implemented

using different software technologies. Traditionally, algorithmic skeleton frameworks have

been implemented exploiting implementation templates. Most of the early implementation

of skeleton frameworks actually exploit this technology. In late ’90s, a macro data flow

based implementation model has been proposed. More recently, implementations of skele-

ton frameworks exploiting AOP (Aspect Oriented Programming), annotations and software

components have been designed and implemented. In the following sections, we will discuss

these different approaches.

4.1 LANGUAGES VS. LIBRARIES

Algorithmic programming frameworks may be provided to the application programmers in

two fundamentally different flavors:

• As a brand new programming language, hosting skeletons as proper language

constructs and compiled (or interpreted) in such a way the skeleton programs may be

suitably executed on the target parallel architecture at hand, or

• as a library written in a particular host language.

4.1.1 New language

In case of skeleton frameworks implemented as new programming languages, the application

programmer is exposed to a new language sporting skeletons as primitive constructs. No-

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

73

D
ra
ft

74 IMPLEMENTATION OF ALGORITHMIC SKELETONS

table examples of this approach are the P3L [21] and ASSIST [80] programming frameworks.

In these cases, the programmer writes programs that include particular statements/decla-

rations declaring skeletons as well as the main program to be executed. As an example, in

P3L, a skeleton program looks like:

seq filter in(Image x) out(Image y)
$c++{

// ... c++ code producing y out of x here
$c++}

seq recon in(Image x) out(String y[])
$c{

/* C code producing the array of strings
y out of the Image x here */

$c}

pipeline main in(Image a) out(String c[])
filter in(a) out(Image b)
recon in(b) out(c)

end pipeline

The program, once compiled through the p3lcc compiler may be run as a plain Unix filter

processing inputs from the standard input and delivering outputs to the standard output.

The sequential pieces of code wrapped into the filter and recon sequential skeletons

are compiled using plain C++ or C compilers, as indicated among the $ and { characters

introducing the sequential code. The program is defined by the topmost skeleton, i.e. the

skeleton not parameter of any other skeleton, which turns out to be the pipeline main
in our case. Proper variable scoping is defined in such a way the variables named across

different skeleton calls (e.g. variable c used as output of filter and input of recon)

model communication channels among skeletons63.

When a new programming language is introduced to provide skeletons, a set of compil-

er/interpreter tools are provided such as those of Fig. 4.1. A compiler translates source

code into intermediate/object code. This object code is then linked with proper libraries

(e.g. communication libraries) and eventually run on the parallel computing resources at

hand by the linker/launcher tool.

The compiler and the linker/loader tools may be implemented by orchestrating different

compiler/linker tools, actually. In most cases, the new programming languages providing

skeletons are not compiled directly to object code. Rather, they are compiled to some

intermediate “source + library call” code in some host sequential programming language

that is then compiled to object code using the host sequential language compiler. This

happens to avoid re-writing sequential compilers when these are already available. The

“library calls” here are usually calls to some communication library. As an example, in P3L

the p3lcc compiler produced C + MPI “object code”. This code was eventually compiled

with the mpicc compiler. The resulting code was eventually run on the parallel computing

elements with the mpirun command.

4.1.2 Library

When the algorithmic skeletons are provided as libraries, a completely different approach

is followed.

63In case of P3L, these channels were implemented using MPI channels [31]

D
ra
ft

LANGUAGES VS. LIBRARIES 75

Source
code

Compiler
(skel)

Intermediate/
object
code

Linker/
Launcher

PE1

PEn

Libraries

Compiler
(seq)

Object
code

1

2 2

2

Figure 4.1 Tool chain for skeleton frameworks providing a new language (workflow ¬ and

represent alternatives)

Source
code

Compiler
(host language)

Object
code

Linker/
Launcher

PE1

PEn

Skel
library

Comm
libraries

Figure 4.2 Tool chain for skeleton frameworks implemented as libraries

D
ra
ft

76 IMPLEMENTATION OF ALGORITHMIC SKELETONS

Skeleton programs are written in some “host sequential” programming language (host

source code). Skeletons are either declared or simply called via host language library calls.

The library implementation, in turn, implements the skeleton functional and parallel se-

mantics. The skeleton library implementation may use different kinds of communications

libraries (e.g. MPI, POSIX/TCP, JXTA) as it happens in the case of skeleton frameworks

implemented as new programming languages. In this case the tool chain to be implemented

looks like the one in Fig. 4.2.

The distinction among “declaration” and “call” of skeletons is worth to be explained

in more detail. Several skeleton frameworks (e.g. Muesli[54] and Muskel[13]) declare the

skeleton program and than a specific statement is inserted in the program to actually

compute the skeleton program.

The Muskel code shown in Sec. 3.3.4 shows how this approach works. First a main
skeleton is declared, using proper composition of objects of class Skeleton. Then an

ApplicationMananager object is used to start the computation of the program.

Other skeleton frameworks, instead, use library calls to directly execute skeleton code.

The SkeTo code in Sec. 3.3.4 shows an example of map and reduce skeletons which are called

for execution. In fact, the philosophy of SkeTo is such that the programmer may intermingle

skeleton calls to sequential code as if they were plain, sequential library calls[76, 62].

4.2 TEMPLATE BASED VS. MACRO DATA FLOW IMPLEMENTATION

Two quite general models have been used to implement parallel programming frameworks

based on algorithmic skeletons:

• implementation templates, and

• macro data flow.

The former is the model used in the firsts algorithmic skeleton framework implementations.

It has been used later on and it is currently used in the implementation of the vast majority

of skeleton based parallel programming frameworks (e.g. in eSkel, Muesli, SkeTo, ASSIST).

The latter has been introduced in late ’90. It is radically different both in the techniques

used to implement the algorithmic skeletons and in the possibilities opened in terms of

optimizations, fault tolerance and portability. With several variants, it has been adopted

in different frameworks, including Muskel (where it has been developed first), Skipper,

Calcium and Skandium64.

In the following subsections we outline the two implementation technique and we point

out the main similarities and differences.

4.2.1 Template based implementations

In a template based implementation of a skeleton framework, each skeleton is eventually

implemented by instantiating a “process” template65. Historically, we use the term process

template as the typical concurrent entity run in parallel in the first skeletons frameworks

was the process. Currently, we should better refer to the templates as concurrent activity

templates to denote the fact the concurrent activities implementing a given skeleton actually

may be a mix of processes, threads, GPU kernels etc.

A process template is a parametric network of concurrent activities, specified by means
of a graph G = (N,A). Each node Ni in the graph represents a concurrent activity.

64actually both Calcium and its successor Skipper, use an implementation based on evaluation stacks.
This notwithstanding the execution mechanism eventually looks like the one used in macro data flow
implementations.
65In literature, the term “implementation template” has been used as well

D
ra
ft

TEMPLATE BASED VS. MACRO DATA FLOW IMPLEMENTATION 77

An arc 〈i, j〉 from node Ni to node Nj denotes a communication moving data (or
pure synchronization signals) from node Ni to node Nj . Each node has associated an
informal “behaviour”, that the program executed on that node. Parameters in the
specification of a process template vary.

As an example, the parallelism degree of the template is normally a parameter, as well as

the business code to be executed on the node or the type and number of the channels (links)

insisting on the node.

Each process template is associated with some further metadata. The metadata provide

further information needed to make a proper usage of the template. Examples of metadata

associated to the template include:

Target architecture : a description of the target architecture(s) were the template may

be conveniently and efficiently used.

Skeletons supported : a description of the skeletons that can be possibly implemented

in terms of the template.

Performance model : a description of the performance achievable with the template,

parametric with respect to both application dependent parameters (e.g. the execution

times of the sequential portions of business logic code used in the template) and system

dependent parameters (such as communication latency and bandwidth relative to the

target architecture).

Let us suppose a process template is described by a tuple such as:

〈name, {Sk}, {Arch}, P erfMod,G = (N,A)〉

and that at least one template exist for any skeleton provided by the skeleton framework.

Then the compilation of a skeleton application can be obtained as follows:

Phase 1: skeleton tree The source code of the application is parsed and a skeleton tree,

such as those described in Sec. 3.3.5, is derived

Phase 2: template assignment The skeleton tree is visited and a template is assigned

to each one of the nodes in the tree. The template Tj assigned to a node of type66

Ski is such that

C1 the template Tj is a template suitable to implement skeleton Ski

C2 the template Tj is suitable to be implemented on the target architecture consid-

ered

C3 possibly, the performance model of the template Tj demonstrates better perfor-

mance than those of any other template Ti satisfying the conditions C1 and C2
above.

Phase 3: optimization The annotated skeleton tree67 is visited again and the parameters

of the templates are filled up, using either heuristics or the performance models to

devise correct actual parameter values.

Phase 4: code generation The “object” code for the parallel application is generated.

The object code is usually built of a set of programs in a high level language with calls

to suitable communication and synchronization libraries, such as C/C++ with MPI

calls or OpenMP pragmas. During code generation usually makefiles and metadata

needed for code deployment on the target architecture are produced.

66modeling a skeleton
67each node is annotated with a template

D
ra
ft

78 IMPLEMENTATION OF ALGORITHMIC SKELETONS

It is worth pointing out that the very same process may be implemented in a library,

rather than in a set of compiling tools. In this case:

• Phase one derives from the fact skeletons are declared as library objects, and therefore

there is no need to parse source code to get the skeleton tree

• Phases 2, 3 and 4 are executed on-the-fly when the execution of the skeleton appli-

cation is started, via the proper library call. In general, this means the “execute”

call sets up a number of concurrent activities that then specialize according to the

different processes needed to implement the templates. As an example, Muesli skele-

tons are implemented as a library and Muesli uses a template based approach. The

skeletons composing the program are declared as C++ objects. Then a execution is

invoked. The execution starts an MPI run. MPI process identifiers are used to spe-

cialize each MPI process to perform as expected by the template used to implement

the application skeleton (skeleton nesting).

Considering the whole process leading to the generation of the skeleton application object

code we can make the following considerations.

4.2.1.1 Template selection In many cases, only one template–the “best” one–exists for

each skeleton supported by the framework. In that case the selection phase is clearly void.

When more than a single template exists for a given skeleton and a given target architecture,

the selection may rely on information provided by the performance models associated to

the template, as we detailed in the phases listed above. Two alternative approaches may be

followed, however: i) heuristics may be used (such as “template Tj is preferable in case of

nestings, while Tj′ has to be preferred for standalone skeletons), or ii) a random template

may be selected from those available for the skeleton and architecture at hand, but then the

optimization phase may substitute the template with another one, if the case. In a sense,

this second approach moves duties from the first skeleton visit to the optimization visit.

4.2.1.2 Optimization phase The optimization phase may be relatively large with respect

to the other phases. Optimization activities may include computation of the optimal paral-

lelism degree, evaluation of alternative skeleton nestings providing the same semantics with

different non functional features, fine tuning of the template compositions. We mention

here just three examples of these optimization activities.

Parallelism degree computation. The skeleton tree may be annotated with the templates

without actually specifying their parallelism degree. Once the number of processing ele-

ments available for the application execution is known, the annotated skeleton tree may

be processed to assign part of the available resources to each one of the templates. P3L

implemented this phase in two steps: during the first step, the skeleton tree was visited

bottom up and each template was assigned an “optimal” number of resources. Optimality

was defined with respect to the template performance models. Then a cyclic process was

initiated aimed at taking away the minimum amount of resource from the assignment that

leave a balanced assignment (i.e. a resource assignment such that there are no bottleneck

skeletons). The process was iterated up to the point the number of assigned resources was

smaller or equal to the number of available resources. An alternative approach could consist

in generating all the feasible assignments of the available resources to the templates in the

skeleton tree, then to evaluate all the assignments with the performance models and eventu-

ally keep the one(s) getting the best results. This process is much more complex, as all the

possible assignments are considered. The other alternative (the P3L one mentioned above)

only works on “good” assignments: it starts from an optimal assignment and reduces to the

number of resources actually available moving through assignments that are not optimal,

but keep balanced assignment of resources to the skeleton/template tree assignments.

D
ra
ft

TEMPLATE BASED VS. MACRO DATA FLOW IMPLEMENTATION 79

Figure 4.3 Farm template for complete interconnection architectures

Skeleton nesting rewriting. Well know functional equivalences exists between skeleton trees

(see also Sec. 9.1). As an example a

Pipe(Farm(Seq(s1)),Farm(Seq(s2)))
is functionally equivalent to a

Farm(Pipe(Seq(s1),Seq(s2)))
Now it is clear that optimization phase my decide to rewrite a skeleton tree into a func-

tionally equivalent skeleton tree, provided that some advantage is achieved in terms of non

functional properties of the skeleton tree. It is also clear that, for any rule stating the

functional equivalence of skeleton tree Si and Sj , it could be the case that with respect to

a non functional concern it is better to use the first form while with respect to another non

functional concern it is better to use the second form.

Template composition tuning. As it will be clearer later on, template composition may

turn out into having a template Ti delivering data to template Tj such that Tj processes

this data with a function f = fn ◦ . . . ◦ f1, Ti delivers data resulting from the application of

g = gm ◦ . . . ◦ g1 and gm ≡ f−1
1 . A typical example is the case of two templates where the

first one builds an array out of the single rows computed in parallel by the template worker

processes and the second template unpacks any matrix received in rows to submit the rows

to another set of worker process68. In this cases, the composition of the two templates may

be optimized simply taking away the gm computation from the first template and the f1

computation from the second template.

4.2.1.3 Code generation Code generation depends a lot on the target environment con-

sidered. Algorithmic skeletons frameworks usually target environments with high level

languages and communication libraries (C/C++ with MPI or OpenMP, Java with TCP/IP

sockets). In this case, the concurrent activities used to implement the templates are pro-

cesses or threads whose body may be produced using simple macros as well as instantiating

objects and providing the properly wrapped business logic code parameters. In case lower

level programming environments are targeted, the code generation may be sensibly larger.

As an example, if assembly language + communication libraries were assumed as the target

environment, this would require a considerable effort relative to the code generation and

optimization.

4.2.1.4 Commonly used templates There are several process templates that are used in

different skeleton frameworks. We describe a couple of templates to further clarify the

process template concept.

68this case may arise when we compute a Pipe(Map,Map) application, as an example

D
ra
ft

80 IMPLEMENTATION OF ALGORITHMIC SKELETONS

Farm template for complete interconnection architectures. A farm skeleton models embar-

rassingly parallel computation over streams. One common template used to implement the

farm skeleton uses an emitter process, a collector process and a string of worker processes

(see Fig 4.3).

• The emitter takes care of receiving the tasks from the farm input stream and to

schedule them–in a fair way–to the worker processes.

• Worker processes receive tasks, compute them and deliver results to the collector

process.

• The collector process simply gathers results from the workers and delivers those results

onto the farm output stream.

The performance model of the process template establishes that the farm service time is

given by the maximum among the time spent by the emitter to schedule a task to one of

the workers, the time spent by the collector to gather a result from one of the workers and

to deliver it to the farm output stream and by the time spent by one of workers to process

a task divided by the number of the workers in the farm.

This farm template has several parameters:

• the parallelism degree nw, denoting how many workers are actually included in the

process template.

• the scheduling function implemented by the emitter (e.g. round robin or on demand)

• whether or not the input task ordering has to be preserved onto the output stream

results (this is possibly implemented by the collector)

• the type of input tasks

• the type of output tasks

• the computation performed by each one of the workers, expressed as another, possibly

sequential, skeleton

This template may be used on any architecture supporting full interconnection among

processing elements. A “companion” task farm template may be obviously defined using

threads instead of processes. In that case, symmetric multiprocessors can be targeted.

Farm template for mesh architectures (version 1). When targeting mesh interconnected

architectures, a farm template may be defined in terms of an emitter process, a string of

emitter routers, a string of workers, a string of collector routers and a collector process.

The interconnection among those elements is such that the mesh interconnection available

is used:

• the emitter process is placed at position (i, j) in the mesh

• the nw emitter routers are placed at positions (i, j + k) with k ∈ {1, nw}

• the nw worker processes are placed at positions (i+ 1, j + k) with k ∈ {1, nw}

• the nw collector routers are placed at positions (i+ 2, j + k) with k ∈ {1, nw}

• the collector process is placed at position (i+ 3, j + nw + 1)

as shown in Fig. 4.4. The behaviour of the different processes in the mesh is the following:

D
ra
ft

TEMPLATE BASED VS. MACRO DATA FLOW IMPLEMENTATION 81

Figure 4.4 Farm template for mesh connected architectures

• the emitter process receives tasks from the task input stream and outputs passes these

tasks to the first emitter router

• emitter router of index i receives nw − i tasks and passess them to the next emitter

router. Then it receives another tasks and passes this tasks to the worker of index i.

Eventually it starts again receiving and passing tasks.

• worker processes receive tasks to be computed from the emitter routers, compute them

and deliver tasks to the corresponding collector routers

• collector routers receive tasks either from the upper worker or from the left collector

router and deliver them to the right collector router (or to the collector, in case the

router is the last one in the chain)

• the collector process receives results from the nw collector router and delivers these

results to the farm output stream.

The performance model of this template states that its service time is

Ts = max{Te,
Tw
nw

, Tc}

where Te Tw and Tc are respectively the time spent to route a task, to compute a task or to

route a result. The parameters of the template include the parallelism degree nw as well as

the parameters related to the computation performed: types of tasks and results, skeleton

to be computed in the workers.

Farm template for mesh architectures (version 2). This second template is built of a number

of processes arranged in a pipeline. Process i receives data from process i− 1 and delivers

data to process i+ 1. Each process behaves as follows:

• it receives nw − i tasks, and passes these tasks to next process, then

• it receives one task, computes it and passes the results to next process

• it receives i−1 results from previous process and delivers these results to next process

This template works in three phases: during the first phase (taking nwTe units of time)

all processes receive a task to compute; in the second phase, all processes compute a task

D
ra
ft

82 IMPLEMENTATION OF ALGORITHMIC SKELETONS

(spending Tw units of time); in the last phase all processes route results to the last process

(in nwTc units of time), the one in charge of delivering results onto the farm output stream.

As a result the template processes nw tasks in nwTe+Tw+nwTc units of time thus delivering

a service time of approximately

TS =
nwTe + Tw + nwTc

nw

Taking into account that the time spent to route a task or a result (Te or Tc) is small, the

service time in this case can be further approximated with

TS =
nwTe
nw

+
Tw
nw

+
nwTC
nw

∼=
Tw
nw

4.2.2 Macro Data Flow based implementation

In late ’90, an alternative implementation method for programming frameworks providing

algorithmic skeletons has been introduced [43]. Rather than compiling skeletons by instan-

tiating proper process templates, the skeleton application are first compiled to macro data

flow graphs and then instances of this graphs (one instance per input data set) are evaluated

by means of a distributed macro data flow interpreter.

Let’s start defining macro data flow graphs.

A macro data flow grap (MDFG) is a graph G = (N,A) whose nodes N are macro
data flow instructions (MDFI). A macro data flow instruction, in turn, is a tuple

〈id, f, tokens, dests〉

where

• id is the instruction identifier,

• f represents the function computed by the instruction on the input tokens,

• tokens is a list of 〈value, presencebit〉 pairs, whose value field will eventually
host some data coming from another MDFI and presencebit is a boolean stating
whether or not the value item is significant (has already been received),

• dests is a list of 〈i, id, pos〉 representing the position pos in the the token list of
MDFI id to be filled by the i-th result produced from the computation of f on the
n = len(tokens) values of the input tokens f(value1, . . . , valuen)

The arcs of the MDFG G, ai = 〈si, di〉 ∈ A, model the fact that a data item (output
token) produced by MDFI with id = si is directed to a MDFI whose id = di.
A input token assignment of a MDGF G is a set of 〈value, dest〉 pairs, hosting the
data values used to initialize the dest tokens in the graph.

This is nothing different from usual data flow graphs used in sequential compilers to

conduct data flow analysis. The term macro distinguish our graphs as having instructions

whose function f is a coarse grain computation, while data flow analysis often use fine

grain data flow instructions (e.g. instructions whose functions represent simple arithmetic

operators). In case of macro data flow instructions used to support skeleton implementation,

the functions used are typically those computed by the sequential business code wrapped

into skeleton parameters.

The computation of a MDFG G with an input token assignment ITS proceeds as follows:

• the data items in the input token assignment are moved to the tokens identified by

their dest fields.

• while fireable instructions exists in the MDFG, these instructions are executed and

their results are directed to the proper token destinations. A fireable instruction is a

MDFI whose input tokens have all been received, that is, have all presencebits true.

D
ra
ft

TEMPLATE BASED VS. MACRO DATA FLOW IMPLEMENTATION 83

Figure 4.5 Recursive compilation of a pipeline skeleton to MDF graphs

Figure 4.6 Recursive compilation of a map skeleton to MDF graphs

When a macro data flow implementation is used, each skeleton is associated with a

MDFG. That graph implements the parallelism exploitation pattern embedded in the skele-

ton. As an example, a pipeline skeleton pipe(S1,S2) will be associated with a two in-

struction MDFG: the first instruction, with a single output token computes the function

denoted by S1 and delivers the result to the second instruction. This latter instruction

has again a single input token and computes the function denoted by S2. In case Si is

actually a sequential skeleton seq(Ci), the wrapped sequential code Ci will be used to

compute the function of the corresponding MDFI. In case Si is represented by another

skeleton (composition), then recursively the instruction computing Si will be recursively

substituted by the graph associated to the skeleton (composition) denoted by Si.

D
ra
ft

84 IMPLEMENTATION OF ALGORITHMIC SKELETONS

This process actually defines a formal recursive procedure translating a skeleton tree into

a MDFG:

• translate(Seq(Code)) returns a single MDFI computing the function defined in

terms of Code. The instruction has as many input tokens as the input parameters of

the function defined by Code, and has many destinations as the output parameters

(results) defined by Code

• translate(Skeleton(Param1,...,ParamN)) returns a graph G including as sub

graphs (one or more instances of) the graphs generated by translate(Param1) to

translate(ParamN) properly arranged according to the semantics of Skeleton (see

Fig. 4.5 and Fig. 4.6)

Once the translation of a skeleton tree to a MDFG has been defined, we can define how

a skeleton application may be executed:

• the application is compiled with the translate function defined above and a MDFG

G is obtained, then concurrently :

– Input data management For each input data item appearing on the input (stream)

of the skeleton application an input token assignment is derived and a copy of the

graph G is instantiated with that assignment. Then a “fresh”69 graph identifier

gid is computed and all the instructions in G are modified:

∗ their identifier id is substituted with the pair gid, id

∗ all destination 〈id, pos〉 in all instructions are substituted by 〈gid, id, pos〉

The resulting graph G′ is inserted into a MDFG repository.

– Computation The MDFG repository is scanned and the fireable instructions in

the repository are concurrently executed by means of a concurrent macro data

flow interpreter. Results computed by the fireable MDFI are either placed in

the proper tokens of the MDFG repository MDFIs or–in case of special “out-

put” destinations stored in dest fields of a MDFI–passed to the output data

management.

– Output data management The final results computed by the concurrent MDF

interpreter are delivered to application output–screen, disk file, etc.

This way of implementing skeleton frameworks has a clear advantage with respect to

the template based one. The process of implementing skeleton programs is split in two

parts: first, we devise efficient ways of compiling skeletons to MDFGs. Then we provide

an efficient way of executing instantiated MDFGs on the target architecture at hand. As a

consequence:

• The two steps may be separately optimized.

• Porting the skeleton framework to a different target architecture only requires porting

the concurrent MDF interpreter.

• Introduction of new skeletons only require the definition of the proper translation of

the skeleton to MDFGs and it can be easily integrated in an existing framework by

properly extending70 translate function.

69never user before
70i.e. adding a case clause in the translate implementation switch

D
ra
ft

TEMPLATE BASED VS. MACRO DATA FLOW IMPLEMENTATION 85

Figure 4.7 Concurrent MDF interpreter logical design

4.2.2.1 Concurrent MDF interpreter Clearly, the critical component of the skeleton frame-

work implemented using MDF is the concurrent MDF interpreter. In order to be effective:

• The interpreter must include a suitable number of concurrent activities (concurrent

interpreter instances), each being able to “interpret” (that is to compute) any of the

MDFI appearing in the MDFG repository. This number represents the parallelism

degree of the MDF interpreter and de facto establishes a bound for the maximum

parallelism degree in the execution of the skeleton application.

• Each concurrent interpreter instance must be able to access the logically global, shared

MDFG repository both to get fireable MDFI to compute and to store the computed

output tokens.

• The logically global and shared MDFG repository must be implemented in such a way

it does not constitute a bottleneck for the whole system. When a reasonably small

number of concurrent interpreter instances is used, the implementation of the MDFG

repository may be kept centralized. When larger numbers of concurrent interpreter

instances are used, the MDFG repository itself must be implemented as a collection

of concurrent and cooperating sub repositories.

The logical architecture of the concurrent MDF interpreter is outlined in Fig. 4.7.

4.2.2.2 Optimizations The efficient implementation of a distributed/concurrent (macro)

data flow interpreter is as challenging as the efficient implementation of a template based

skeleton framework. Several different optimizations may be introduced, aimed at improving

the efficiency of the interpreter:

Scheduling optimizations Instructions scheduled on remote nodes include the input to-

kens to be processed. In case of large tokens, scheduling of MDFI to the concurrent

interpreters may include special output tokens (dest) flags, telling the concurrent in-

terpreter to maintain a copy of the result token and to send a unique result identifier

as a result token instead of (or in addition to) sending the data back for proper deliv-

ery to the next MDFI input token. When an instruction is scheduled with this result

in the list of its input tokens, it is preferably scheduled on the concurrent interpreter

instance already having the input token data and therefore the communication over-

head is reduced. In case of frameworks targeting shared memory architectures, such

D
ra
ft

86 IMPLEMENTATION OF ALGORITHMIC SKELETONS

as SMP multicores, the same technique may be used to direct computations to cores

already having in their caches a valid copy of the input tokens71.

MDFG linear fragment scheduling In case a linear chain of MDFI is present in a

MDFG, once the first MDFI of the chain has been scheduled on concurrent inter-

preter i, all the subsequent instruction of the chain are also scheduled to the same

concurrent interpreter. This allows copies of output tokens to the MDFG repository

and subsequent copies of input tokens from the repository to the concurrent interpreter

to be avoided.

4.2.3 Templates vs. macro data flow

Template and macro data flow implementation of skeleton frameworks both show pros and

cons:

• Template based implementations achieve better performances when computing tasks

with constant execution time, as the template based implementation has less run time

overhead with respect to the macro data flow based implementations. On the other

side, computations with tasks with highly variable computing times are more efficient

on macro data flow based implementations as these implementations sport better72

load balancing properties with respect to template based implementations.

• Porting of macro data flow based frameworks to new target architectures is easier than

porting of template based implementations. In fact, MDF implementation porting

only requires the development of a new MDF concurrent interpreter, whereas port-

ing of template based implementations requires a complete rewriting of the skeleton

template library, including performance models of the templates.

• Template based implementation are more suited to support static optimization tech-

niques, such as those rewriting skeleton trees, as a substantial compile phase is anyway

needed to implement skeletons via templates. The very same optimizations in MDF

based implementations require some additional effort due to the fact the run time has

actually no more knowledge of the skeleton structure of the program it is executing:

it just sees MDFI from a MDFG.

4.3 COMPONENT BASED SKELETON FRAMEWORKS

Algorithmic skeletons may obviously be interpreted as building blocks for parallel appli-

cations. Therefore it is natural to try to migrate the algorithmic skeleton concept to the

software component scenario.

Software component are usually intended as black boxes with a well defined interface

defined in terms of provide ports–ports providing some kind of service–and use ports–ports

declaring some kind of needed, external service. Each software component has associated–

mostly informally–a semantics, defining the kind of services provided by provide ports in

terms of the services used through the use ports. A framework supporting software com-

ponents supports application development via composition of system-defined as well as

user-defined components. The user picks-up the components modelling the blocks of his

application and eventually links those components in a component “assembly” (a graph of

components, in the software component jargon) by properly pairing provide and use ports.

71in both cases, we refer this technique as affinity scheduling
72an also achieved more easily

D
ra
ft

COMPONENT BASED SKELETON FRAMEWORKS 87

Figure 4.8 Sample skeleton components (not composite)

Any algorithmic skeleton can therefore be viewed as a parallel component providing as

a service the higher order function modelled by the skeleton and using other the services

provided by components modelling its skeleton parameters.

The simpler skeleton component is clearly the one wrapping some legacy code. It only

has a provide port. Through this port, a computation of the wrapped code onto some kind

of input parameters may be asked. The computation happens sequentially. Then other

skeleton components may be defined. As an example, a pipeline component will have one

provide port and two use ports, as depicted in Fig. 4.8 (left). Or a farm component may

be defined with one provides port and a number of use ports, each interfacing the farm

component with a worker component, as depicted in Fig. 4.8 (right).

These components modelling algorithmic skeletons may be used as other more classical

components within the software component framework, provided the component framework

supports compositionality. In this case, the composite component pipeline is perceived as

a monolithic component from ay other component invoking the services provided by its

provide ports. Only the system programmer implementing the skeleton component actually

perceive the structured internals of the skeleton components.

Skeleton frameworks have rarely been provided as software component frameworks, with

a notable exception: GMC Behavioural Skeletons (GCM/BS see Sec. 9.5). GCM stands

for Grid Component Model and it is a component model specially designed to support grid

computing within the CoreGRID project73

GCM/BS exploited all the positive features of a software component framework to pro-

vide the programmer of parallel component applications with skeleton composite compo-

nents (the behavioural skeletons). These components not only implemented all the par-

allelism exploitation details related to the modelled skeleton in way that turns out to be

completely transparent to the component application programmer, but also included ad-

vanced features (see Chap. 9) that allowed non functional concerns such as performance

tuning and optimizations to completely managed by the skeleton component, without any

kind of support/intervention require to the component application programmer.

73CoreGRID is an EU funded Network of Excellence (NoE) that run in the years from 2005 to 2008 (see
www.coregrid.net). GCM has been developed within the Programming model Institute of CoreGRID.
The reference implementation of GCM has been developed within the GridCOMP EU funded project
(gridcomp.ercim.org) on top of the ProActive middleware.

D
ra
ft

88 IMPLEMENTATION OF ALGORITHMIC SKELETONS

PROBLEMS

4.1 Illustrate main differences between algorithmic skeleton frameworks:

a) Implemented as a library or as a language

b) Implemented using templates or macro data flow

4.2 Compile the following applications into Macro Data Flow graphs:

a) pipe(seq(C1), seq(C2))

b) pipe(farm(seq(C1)), farm(seq(C2)))

c) pipe(map(seq(C1)), reduce(seq(C2)))

d) farm(pipe(map(seq(C1)),map(seq(C2))))

4.3 Consider the MDF graphs of Prob. 4.2. Discuss which macro data flow instructions

in the graphs may happen to be concurrently fireable.

4.4 Design an implementation template suitable to support one of the skeletons listed be-

low. In particular, design and discuss i) the parallel activity graph, and ii) an approximated

performance model.

a) a map skeleton on a multicore

b) a map skeleton on a network of workstation (fully interconnected)

4.5 Consider the implementation templates resulting from Prob. 4.4. Explain in detail

the parameters needed to evaluate the performance model. Which of these parameters are

application dependent? Which are architecture dependent?

4.6 Assume a template based skeleton framework is available targeting cluster of work-

stations or–exclusive or–shared memory multicores.

Detail a minimun set of templates that must be included in the framework template

library.

4.7 Assume a matrix multiplication program is implemented using a single map skeleton

on top of a macro data flow based framework.

a) Discuss the different alternatives relative to the usage of a single map skeleton

b) Discuss impact of affinity scheduling in the different cases

4.8 Assume a skeleton framework is implemented on top a software component framework

supporting component compositionality. Suppose the skeleton framework provides pipeline,

farm and while skeletons. Describe the interfaces of the components modelling the skeletons

(use and provide ports).

D
ra
ft

CHAPTER 5

PERFORMANCE MODELS

When dealing with parallel computations we are in general interested in achieving “the best

performance” possible. This expectation may be read in several different and complemen-

tary ways:

• First of all, we are interested in knowing which kind of performance we can achieve

when using a given parallelism exploitation pattern–or skeleton composition–before

actually starting writing application code. In case expected performance of our pat-

tern doesn’t match our requirements we can simply avoid to go on implementing a

useless application.

• In case several different74 implementations are possible, we are interesting in knowing

which one will provide the better performances. Alternatively, we may be interested

in knowing which ones will eventually provide performance figures matching our per-

formance requirements, in such a way we can go on implementing the “simplest”–e.g.

the less expensive in terms of coding effort–one.

• Last but not least, we may be interested in knowing how much overhead is added

by our implementation, that is how much the measured performance will eventually

differ from the theoretic one.

In all cases, we need to have some kind of performance model of our application available.

The performance model measures the performance of an application on a given target ma-

chine in function of a full range of parameters depending either on the application features

(parallelism exploitation patterns used, time spent in the execution of the sequential por-

tions of code, dimensions of the data types involved, etc.) or on the target machine features

74different as far as parallelism exploitation is concerned, but functionally equivalent

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

89

D
ra
ft

90 PERFORMANCE MODELS

(communication times, processing power of the different processing elements, topology of

the interconnection network, features of the (shared) memory subsystem, etc.).

In other words, we need a function P mapping values of parameters p1, . . . , pn to values of

some performance indicator. More precisely we are interested in a set of functions P1, . . . ,Ph
each modeling a different performance indicator (e.g. service time, latency, completion time,

etc.).

Once this functions have been defined, we can use these performance model functions to

• predict performance of an application,

• compare alternative implementations of an application, or

• evaluate the overheads of an implementation of an application.

Of course, the evaluation of the overheads in the implementation of an application also re-

quires some methods to measure the performance values achieved on the target architecture

(see Sec. 5.6).

5.1 MODELING PERFORMANCE

We start taking into account which kind of performance indicators are useful. When dealing

with performance of parallel applications we are in general interested in two distinct kind

of measures:

• those measuring the absolute (wall clock) time spent in the execution of a given (part

of) parallel application, and

• those measuring the throughput of the application, that is the rate achieved in the

delivering of the results.

The first kind of measures include measures such as

Latency (L) the time spent between the moment a given activity receives input data and

the moment the same activity delivers the output data corresponding to the input.

Completion time (TC) the overall latency of an application computed on a given input

data set, that is the time spent from application start to application completion.

The second kind of measures include measures such as

Service time (TS) the time intercurring between the delivery of two successive output

items (or alternatively, the time between the acceptance of two consecutive input

items), and

Bandwidth (B) the inverse of the service time.

These are the basic performance measures of interest in parallel/distributed computing.

Applications with a very small service time (a high bandwidth) have a good throughput

but not necessarily small latencies. If we are interested in completing a computation within

a deadline, as an example, we will be interested in the application completion time rather

than in its service time.

However, when modeling performance of parallel applications we are also interested in

some derived75 performance measures such as:

75i.e. non primitive, expressed in terms of other base measures

D
ra
ft

MODELING PERFORMANCE 91

Speedup (s(n)) the ratio between the best known sequential execution time (on the target

architecture at hand) and the parallel execution time. Speedup is a function of n the

parallelism degree of the parallel execution.

s(n) =
Tseq

Tpar(n)

(here we denote with Tseq the best sequential execution time and with Tpar(n) the

parallel execution time with parallelism degree equal to n).

Scalability (scalab(n)) the ratio between the parallel execution time with parallelism de-

gree equal to 1 and the parallel execution time with parallelism degree equal to n.

scalab(n) =
Tpar(1)

Tpar(n)

Both these measures may be computed w.r.t. service time or latency/completion time, that

is the Tx in the formulas may be consistently instantiated by service times or by completion

times, provided we do not mix the two.

Another “derived” measure useful to model performance of parallel computations is ef-

ficiency:

Efficiency the ratio between the ideal execution time and actual execution time. Efficiency

is usually denoted with ε.

ε(n) =
Tid(n)

Tpar(n)

As the ideal execution time may be expressed as the sequential execution time divided by

parallelism degree76

Tid(n) =
Tseq
n

then we can express alternatively efficiency as follows:

ε(n) =
Tseq

nTpar(n)
=
s(n)

n

5.1.1 “Semantics” associated with performance measures

Each performance measure has an associated “semantics”.

L, TC the latency and the completion time represent “wall clock time” spent in computing

a given parallel activity. We are interested in minimizing latency when we want to

complete a computation as soon as possible.

TS , B service time represents (average) intervals of time incurring between the delivery of

two consecutive results (acceptance of two consecutive tasks). We are interested in

minimizing service time when we want to have results output as frequently as possible

but we don’t care of latency in the computation of a single result. As bandwidth is

defined as the inverse of the service time, we are interested in bandwidth maximization

in the very same cases.

76this is the best we can do with n parallel “executors”, actually: evenly divide the overall work among the
parallel executors, without adding any kind of additional overhead.

D
ra
ft

92 PERFORMANCE MODELS

s(n) Speedup gives a measure of how good is our parallelization with respect to the “best”

sequential computation. Speedup asymptote is given by f(n) = n. This because, if

s(n) > n then the portions of the algorithm executed in parallel on the n processing

elements will take a time tp <
Tseq

n and therefore we could have performed sequentially

the n computations taking tp on a single processing element, taking an overall time

t = ntp < n
Tseq

n < Tseq which is in contradiction with the assumption Tseq was the

“best” sequential time. Therefore we will never expect to have speedups larger than

the parallelism degree. Actually, there are several reasons that make possible the

achievement of super linear speedups77. In parallel computing we will be constantly

looking for higher speedups, of course.

scalab(n) Scalability looks slightly different than speedup. It measures how efficient is the

parallel implementation in achieving better performances on larger parallelism degrees.

As for the speedup, the asymptote is f(n) = n for the very same reasons. However,

scalability does not provide any comparison with the “best” sequential computation.

In fact, we can have optimal scalability and still spend more time than the time spent

computing sequentially the same program for any reasonable value of n.

ε(n) Efficiency measures the ability of the parallel application in making a good usage of

the available resources. Being the speedup bound by f(n) = n the efficiency is bound

by f(n) = 1. It must be clear that if we have two parallel implementations I1 and

I2 of the same application with efficiencies ε1 and ε2, provided that ε1 > ε2 we can’t

conclude that implementation I1 is “better” than implementation I2. This is for sure

true if “better” refers to efficiency. But if we are interested in completion time, as

an example, it may be the case that the more efficient implementation also gives a

larger completion time. We should not forget that a sequential implementation has

ε(n) = 1. In fact in this case n = 1 and therefore

ε(1) =
Tseq
nTseq

=
Tseq
1Tseq

= 1

Of course, if ε1 and ε2 refer to the same parallelism degree n, then ε1 > ε2 actually

means that I1 is “better” than implementation I2. In fact, in this case we have

ε1 > ε2

Tseq
n× T ′par(n)

>
Tseq

n× T ′′par(n)

1

T ′par(n)
>

1

T ′′par(n)

T ′par(n) < T ′′par(n)

5.2 DIFFERENT KIND OF MODELS

When using performance models with skeleton based parallel programming frameworks, we

are obviously interested in deriving usable performance models of the skeletons provided

77as an example, this may be due to the fact that input/processed data does not fit cache sizes in sequential
execution while it fits in each one of the parallel activities in which the sequential program is eventually
split. The gain due to the cache hits substituting the main memory accesses could be larger than the
overhead necessary to set up the parallel activities and to distribute then the data partitions.

D
ra
ft

DIFFERENT KIND OF MODELS 93

by the framework. These performance models will be hopefully compositional in such a

way the performance of a given application expressed in terms of a skeleton nesting can be

derived by properly composing the performance models of the skeletons appearing in the

nesting.

The skeleton performance models, in general, are strictly dependent on the implementa-

tion of the skeletons on the target architecture. In turn, the implementation of a skeleton

will probably have itself a performance model.

Therefore we can refine our concept of “skeleton performance model” by distinguishing

between several different performance models:

Skeleton performance models These are abstract models of the theoretic peak perfor-

mance we can get out of a skeleton. They are abstract in that they do not depend on

the implementation of the skeleton but rather depend only on the parallel features of

the parallelism exploitation pattern modeled by the skeletons.

e.g.� A performance model of the pipeline service time states that the service time of the

pipeline is the maximum of the service times of the pipeline stages, as it is known

that the slowest pipeline stage sooner or later78 becomes the one behaving as the

computation bottleneck.

If we consider a task farm, instead, the service time of the farm is given by the service

time of the workers (Tw) in the farm divided by the number of workers (nw), as hopefully

nw results will be output by the workers every Tw units of time. C

These performance models only take into account “abstract” measures, such as the

service time of a stage or of a worker. They to not take into account overheads

introduced by communications between pipeline stages, for instance. In other terms,

they do take into account actual implementation of the skeletons. They model the

theoretical performance provided by the skeleton.

Template performance models These are much more concrete models that express the

performance of a template implementing a skeleton on a given target architecture. As

we are considering implementation on a particular target architecture these perfor-

mance models assume to know details (parameters, actually) modeling typical mech-

anisms of the target architecture, such as latency and bandwidth of communications,

of accesses to memory, etc.

e.g.� The template performance model of a pipeline on a complete interconnection target
architecture (e.g. a cluster of workstations with an Ethernet interconnection network)
takes into account the communication overhead in addition to the other parameters
taken into account by the pipeline skeleton performance model. Therefore, while stating
that the service time of the template is the maximum of the service times of the pipeline
template stages, the service time of each stage is given79 by the latency of the stage
plus the time spent to complete the communication needed to receive the input data
plus the time spent to complete the communications needed to deliver results to next
pipeline stage. Now let us assume that our pipeline has two sequential stages only with
latencies L1 and L2 respectively. And let us assume that communication of input data
to stage one takes tc1 , of output from stage one to stage two tc2 and of final results tc3 .
Then the skeleton performance model for service times will state that80

T skSpipe
(2) = max{TS1 , TS2} = max{L1, L2}

78depending on the amount of buffering among the different pipeline stages
79we assume to have sequential stages only
80service time of a sequential stage is equal to its latency

D
ra
ft

94 PERFORMANCE MODELS

whereas the template performance model for the linear chain process template will state
that

T templSpipe
(2) = max{(TS1 + tc1 + tc2), (TS2 + tc2 + tc3) > T skSpipe

(2)

and therefore efficiency of the template is smaller than the efficiency (theoretic) of the
skeleton.

Now, in case the target architecture is such that communication and computation times
may be overlapped81 we will have

T templSpipe
(2) = T skSpipe

(2) = max{L1, L2}

as the communication costs are negligible82, in this case.

Last but not least, consider what happens in case the template is used in a context
where there is no chance to have two distinct processing elements available to support
the execution of the two stages. In this case, the template concurrent activities may be
“collapsed” on a single processing element and the consequent template performance
model will state that:

T templSpipe
(1) = TS1 + TS2

or, in case communications are exposed due to impossibility to overlap communications
with computation

T templSpipe
(1) = TS1 + TS2 + tc1 + tc3

C

In addition to the performance models related to parallelism exploitation–skeleton and tem-

plate models–performance models are also needed to model target architectures. Therefore

we introduce:

Architecture performance models These are the models exposing the time spent in the

different mechanisms implemented by the target architecture to the template perfor-

mance models. Typical architecture performance models are those modeling inter-

processing element communication or relative power of processing elements.

e.g.� Communication costs may be modeled as a linear combination of setup time and mes-
sage transfer time. With quite significant approximations, communication cost of a
message having length l on an distributed architecture with no overlap among commu-
nication and computation, may be modeled as:

Tcomm(l) = Tsetup +
l

B

being B the bandwidth of the communication links.

The same mechanisms, when considering many/multi cores with communications im-
plemented in memory may be modeled as

Tcomm(l) = Tsynchr

if and only if the communication fits a single producer single consumer schema. In

this case, one thread writes the message in main (shared) memory, and another thread

reads the message. The producer and consumer threads must synchronize in such a way

consumer does not consume “empty” messages and producer does not send messages

in buffers that still hold the previously sent message. However, if the communication

schema fits a different schema, the model changes. As an example, when a single

produce multiple consumer schema is used, then additional synchronization cost has

81this happens when interconnection network is implemented through dedicated “communication proces-
sors”, as an example. In that case, the communication time spent on the processor is negligible as the only
cost paid is the offloading (to the communication processor) of the message descriptor.
82masked by the computation times

D
ra
ft

ALTERNATIVE APPROACHES 95

to be added to take into account to model contention among consumers to read the

message. In general, these additional synchronization costs are proportional to both

the length of the message and to the number of consumers involved. C

5.3 ALTERNATIVE APPROACHES

When developing any performance model we are faced to the problem of deciding the level

of accuracy of the models. Depending on the number of the parameters taken into account,

as well as on the final “form” of the performance models looked for, different results may

be achieved. In particular, different approximation levels may be achieved, that is different

accuracies may be achieved in the predicted results.

Most of the skeleton based programming frameworks developed so far considered perfor-

mance models sooner or later. Some of them took into account performance models “ab

initio”, either to support template assignment or to compare achieved performances with

the theoretic ones. Others only introduce performance models after an initial development

that did not take them into account. Often, models are introduced and used to understand

what’s going wrong with templates that do not sport the expected behaviour.

In most cases, anyway, one of two distinct approaches is followed in the design of the

performance models:

Approximate model approach In this approach, most of the peculiar features of the

skeleton, template or architecture83 are “summarized” in global parameters or ne-

glected at all. The result consists in quite simple models (performance formulas)

than may indeed capture all the details actually impacting the performance modeling

process.

Detailed model approach This alternative approach, instead, tries to model any detail

of the skeleton, template or architecture as accurately as possible. The result is usually

a quite complex formula computing the performance value out of a large number of

parameters.

Both approaches have been followed in the past. The former promises to provide simpler

performance modeling and therefore to enhance the possibilities to exploit these models in

different contexts. The latter promises to be much more accurate at the expense of models

much more “difficult” to compute84.

Unfortunately, very often the detailed model approach explodes both in terms of the

parameters considered and in terms of the complexity of the final models. In addition, the

detailed model approach requires much more detailed verification and validation activities

than the approximate model approach. Eventually, the approximate model approach is the

one currently being followed in the waste majority of cases when performance models are

considered and used.

e.g.� Let us consider a classical farm template consisting of an emitter/collector process and of a
string of nw worker processes. The emitter/collector process gathers input tasks from the in-
put stream and schedules these tasks for execution on one of the available workers. Workers,
in turn, receive tasks to be computed, compute them and send back to the emitter/collec-
tor process the results. The emitter/collector process–concurrently to its task scheduling
activity–collects results, possibly re-order results in such a way the input task order is re-
spected in the output result sequence, and eventually delivers such re-ordered results onto the
farm output stream. This template is often referred to as master-worker pattern although–in

83depending on the model considered
84although this “difficulty” could appear negligible with respect to the complexity of the “optimization”
process of parallel programs

D
ra
ft

96 PERFORMANCE MODELS

our perspective–this is actually a template suitable to implement both the task farm and
map/data parallel skeletons.

In order to model service time of the master/worker template following the “approximate”
model approach we ignore as much details as possible while observing that:

– the emitter/collector is actually the result of merging of task scheduling and result
collection activities

– the string of worker processes dispatch an overall service time of Tw
nw

, being Tw the
service time of the single worker.

The three activities–task scheduling, task computation and results gathering and dispatching–
happen to be executed in pipeline. Therefore the service time of the master worker will be
the maximum of the service times of the three stages. However, first and third stages are
executed on the same processing element (the one hosting the emitter/collector concurrent
activity). Therefore the service time eventually will be modeled (and approximated!) by the
formula

TS(n) = max{Tw
nw

, (Te + Tc)}

possibly complicated by taking into account communication times.

If we follow a “detailed model” approach, instead, we should start considering that the
emitter/collector spends a time composed by 2 task communication times (one to receive a
task from the input stream and one to deliver it to one of the workers), plus a scheduling
time (to decide which worker should be given the task), plus 2 result communication times
(one to receive the result from a worker and the other one to deliver the result to the output
stream). In turn, these times will be modeled by using a kind of “setup + transmission time”
expression. Then we should consider that also service time of the worker includes a task and
a result communication time. Eventually we should evaluate how these expressions relate
to the overall functioning of the master worker template, that is to reason about matching
to be guaranteed between task scheduling, computation and result gathering times in order
to avoid bottlenecks in the master/worker computation. Possibly a much more complicated
formula will be obtained with a structure similar to the one listed above relative to the
“approximated” approach.

C

5.4 USING PERFORMANCE MODELS

Let us make the following assumptions:

• for each skeleton Ski provided by our programming framework, we have available a

set of skeleton performance models

MSki = 〈TSkiS (n), TSkiC (n), sSki(n), εSki(n), . . .〉

• for each template Tpli suitable to implement skeleton Ski we have a similar set of

template performance models

MTpli = 〈TTpliS (n), TTpliC (n), sTpli(n), εTpli(n), . . .〉

• for each measure of interest Mi and for each target architecture targeted Aj we have

a model

M j
i = f ji (p1, . . . , pk)

D
ra
ft

USING PERFORMANCE MODELS 97

where pk are the base parameters modeling the target architecture (e.g. communica-

tion setup time, communication bandwidth, etc.).

We already stated in the introduction section of this chapter that these performance models

will be eventually used to predict performance of applications, to compare different imple-

mentations of the same application or to evaluate how much an achieved performance is

close to the ideal one.

In the the following sections, we discuss how these activities exploit performance models

at compile time, at run time, or post-run time.

5.4.1 Compile time usage

At compile time different usages can be made of the performance models:

• in case of template based skeleton framework implementation performance models are

used to compare alternative template-to-skeleton assignment, as explained in Sec. 4.2.1

• again, with template based implementations performance models may be used to

predict the impact of accelerator usage (e.g. the impact of using a GPU to implement

a map skeleton). This could be also considered a variant of the “compare alternatives”

usage, as de facto this corresponds to evaluate whether the performance achieved when

using the accelerator turns out to be better than the one achieved when the accelerator

is not actually used.

• when using a MDF implementation, performance models may be used to decide which

kind of tasks are worth to be delegated for concurrent execution to a concurrent MDF

interpreter instance. As a matter of fact, tasks that require a computation time85

smaller than the time required to communicate the task to the remote interpreter and

to retrieve the result back from the remote interpreter are not worth to be scheduled

for concurrent execution.

• again, when using a MDF based implementation, the performance models may be used

to fine tune the template actually used to implement the distribute MDF interpreter.

However, the main and more important usage of performance models consists in auto-

matically deriving, without any kind of application programmer support, unspecified non

functional parameters relative to the execution of the skeleton/template at hand.

We stated in Sec. 3.2 that some non functional parameters are requested, in some skele-

ton based programming frameworks, that could be derived automatically86. The optimal

parallel degree of a template is one of such parameters.

In case we are implementing a parallel program modeled by a single skeleton, the optimal

parallelism degree may be obtained as follows:

s1 We start considering the number of processing elements available P . We identify this

as the maximum parallelism degree of our application.

s2 We evaluate the performance model of interest P(p) for the all parallelism degrees

p ∈ [0, P].

s3 We assign the template the parallelism degree pi | ∀j 6= i P(pj) ≤ P(pi)

Although the process is linear in the amount of processing elements/resources available, the

whole computation will not take a significant time, provided the formula expressing P is

reasonably simple and P is not huge.

85on the local node, that is on the processing element in charge of scheduling the task to a remote interpreter
86we mentioned the parallelism degree, as an example

D
ra
ft

98 PERFORMANCE MODELS

Figure 5.1 Computing resource assignment in a skeleton tree. Initially the two farms are given
5 and 15 processing elements. Then we visit the skeleton tree bottom up and we start taking away
one processing element from the first farm. According to the pipeline performance model this allows
to take away 2 resources from the second farm. The process is repeated until the number of required
resources happens to be smaller than the number of the available resources.

Alternatively, we can “solve” the performance model in such a way the exact values of

the parameters maximizing the performance with the given resource constrains are found.

In case our application is modeled using a skeleton nesting, a process such as the one

described in Sec. 4.2.1 may be used instead. In this case, performance models are used

• in the first phase (the bottom up assignment of “optimal” parallelism degree) to

compute the upper bound (if any) to the theoretic parallelism degree of the skeleton-

s/templates used, and

• in the second phase (the top down iterative process taking away resources from the

assignments in such a way balancing is preserved) to estimate the performance of the

“reduced” skeleton/templates, that is, of the skeletons/templates from which resources

have been removed in the tentative of coming to a parallelism degree matching the

resources actually available.

This process is exemplified in Fig. 5.1.

5.4.2 Run time usage

At run time, performance models are mainly used to verify the current behaviour of the

application with respect to the expected behaviour. This means that:

• we measure actual performance achieved by the application on the target machine.

This means we insert probes87 into the application code and through the probes we

gather the measures needed to assess the current application performance88.

• we measure the target architecture parameters needed to instantiate the (template)

performance model of our application

87methods used to fetch performance values. This may be implemented completely in software (e.g. by
invoking proper operating system calls) or with some degree of hardware support (e.g. fetching values of
proper “hardware counters” available on most modern processors.
88it is known that probe insertion perturbs the computation, therefore we must choose probes in such a way
a minimal intrusion is enforced and, therefore, a minimal perturbation of actual application performance is
achieved.

D
ra
ft

USING PERFORMANCE MODELS 99

• we evaluate the expected performance model of the application and we measure the

distance with respect to the performance values actually measured.

Two possibilities are open, once the actual and the expected performance measures have

been got.

• a former, simpler possibility is to report the application programmer of the differences

in between the measured and predicted performance values. No other action is taken

to correct possible mismatches between measured and predicted performance in this

case. Possibly, the application programmer may use the reported information to

improve89 the application.

• a second, more complex possibility consists in analyzing the differences in between

the measured and predicted performances and in operating–without programmer in-

tervention, actually–to restructure the parallel application in such a way the measured

performance is made closer to the predicted one. We will further discuss this possi-

bility in Sec. 9.5. At the moment being it is sufficient to mention that application

restructuring may involve rewriting the high level application code using different

skeletons or different skeleton compositions, as well as re-computing the template as-

signment to skeletons, in such a way more efficient templates are picked up instead

of the inefficient ones. It is worth pointing out that in this latter case, the choice of

the “better” templates to be used in spite of the currently used ones could not rely

on evaluation of the associated performance models. These models are the very same

that led to the current template choice. The discrepancies in between observed and

predicted performance should be due to inaccuracies in the performance model or

in temporary conditions arising on the target architecture which are not considered

in the model. Therefore some kind of “artificial intelligence” or heuristic reasoning

should be applied to get rid of the faulty situation.

5.4.3 Post-run time usage

The last way of exploiting performance models is the newest one in the algorithmic skeleton

scenario. It has been first introduced by Mario Leyton in his Calcium skeleton framework

built on top of the Java ProActive middle-ware [28].

In this case, performance models are used as follows (Leyton referred to this process as

codeblame):

• during application computation, current performance figures are collected on a per

skeleton basis.

• after the end of the application computation, predicted performance figures are com-

puted (again, per skeleton).

• the predicted values are compared to the measured ones and differences are individ-

uated.

• in case of sensible differences, an analysis is performed on the sub-terms constituting

the performance models in such a way a precise characterization of the causes of

skeleton (or template) under performing are individuated.

• eventually, such causes are exposed to the application programmer as “performance

summary” of the application execution, along with more general data such as overall

completion and service time.

89to fine tune the application varying some of the parameters used to instantiate the skeletons used, or
even, in case of large differences, to completely restructure–in terms of the skeletons or templates used–the
whole application.

D
ra
ft

100 PERFORMANCE MODELS

Figure 5.2 CodeBlame figure from M. Leyton paper [28] The output is relative to three different
runs (with parameters outlined in the comment lines) of a program solving the N-queens problem.

The programmer, looking at the causes of the inefficiencies found in the execution of the

current version of the application, may modify the application in such a way these ineffi-

ciencies are eventually removed (Fig. 5.2 shows the kind of output presented to the user by

the Calcium framework).

e.g.� Consider an application that can be implemented using data parallel skeletons, and suppose
the proper skeleton to use is a map. Suppose also that the map may be applied at different
items of a complex input data structure: as an example, a map may be applied either at
the level of singletons belonging to a matrix or at the level of the rows of the same matrix.
Now suppose the programmer chooses to exploit parallelism in the computation of the single
element of the matrix. It may be the case that the grain of these computations is too fine
and therefore the predicted performance happens to be far from the observed one. The
skeleton framework may analyze the map model and perceive the inefficiency is given by
the time needed to send data to remote processes (or to remote MDF interpreter instances)
higher than the time spent computing the single matrix item. It can therefore report to the
programmer a statement such as:

Map skeleton Ski: fine grained worker.
Please use coarser grain workers.

As a consequence, the application programmer has a clear hint on how to intervene to improve

application efficiency. C

5.5 SKELETON ADVANTAGE

When modeling performance of a parallel computation a number of different factors have

to be taken into account. Such factors depend on the kind of concurrent graph activities

involved, in general. In case we are considering the implementation of the parallel appli-

cation rather that the application in abstract terms, the factors depend also on the target

architecture features (both hardware and software). Therefore performance modeling turns

out to be a quite difficult task, possibly more difficult than the development of the parallel

application itself in the general case.

However, modeling algorithmic performance in skeleton programming frameworks is

somehow simplified by different factors:

• First of all, the exact parallel structure of the parallel computation is completely ex-

posed by the algorithmic skeletons used. No side, “hidden” interaction exist impacting

D
ra
ft

MONITORING APPLICATION BEHAVIOUR 101

the performance modeling process. This is not usually the case in classical parallel

programming frameworks were programmers work directly at the level of the base

mechanisms in order to develop a parallel application.

• Second, when using hierarchical composition of skeletons, the performance modeling

of the application may be incrementally build from the performance models of the

base skeletons. Composition of performance modeling is achieved through proper

development of modeling of a set of base measure–such as service time or latency–

for each one of the skeletons provided to the final user/the application programmer.

These base measures are the ones used in the definition of skeleton performance model

as well and therefore the skeleton models recursively compose.

• Last but not least, when dealing with implementations rather than abstract paral-

lelism exploitation patterns, the architecture modeling needed to support template

performance modeling is somehow simplified as we can reason in terms of abstract

components of the templates rather than of collections of very precise (base) mecha-

nisms eventually used to implement the template on the target architecture at hand.

5.6 MONITORING APPLICATION BEHAVIOUR

Monitoring application behaviour requires two kind of activities:

• measuring times relative to the execution of the application as a whole. This is needed

to be able to compute the actual completion time of the application as well as the

service time achieved in delivering the results, just in case the application processes

streams of tasks to produce streams of results.

• continuous measuring of the times relative to execution of different application parts.

This is needed to be able to check the correct90 execution of the application.

The former monitoring activity is simple and does not need actually too much modifications

of the application code. Completion time and service time may both be measured using

tools external to the application. In Linux/Unix the approximated wall computation time

of an application may be taken by launching the application as a parameters of a time
command rather than directly at the shell prompt. Once the completion time and the

number of items computed is known, it is easy to derive the service time.

e.g.� In order to know the time spent in compiling the PDF of this book from its latex code, we

can use the command shown below.

marcod@macuntu:$ time pdflatex main.tex > /dev/null

real 0m1.203s
user 0m1.156s
sys 0m0.044s
marcod@macuntu:$

The timed execution of pdflatex command with the output redirected to the null device

is requested. The results of the computation are discarded, and at the end a summary of

real, user and system time required to complete the command is show. “Real” time is the

wall clock time spent to compute the program, as perceived by the shell process executing

the command. “User” time is the one spent executing user code and eventually “sys” time

is the one spent executing syscalls on the behalf of the “user” code. C

90with respect to performance non functional concerns

D
ra
ft

102 PERFORMANCE MODELS

More precise time measures may be obtained reading time or clock cycles at the very

beginning of the application code, then at the very end and eventually computing the

differences among the measured values. Different system or library calls are available to the

purpose in the different operating systems. In Linux clock and gettimeofday may be

used as well as omp get wtime or MPI Wtime in case OpenMP or MPI are used.

The latter activity is a little more complicated. It requires the usage of the same library

calls possibly used to for the former monitoring activity. However, care has to be taken not to

introduce significant impact in the original computation due to the monitoring mechanisms

used and to the monitoring event frequency used.

This problem is known as the intrusion problem. The more probes you insert into the

application code, the less accurate measures you take. Inserting a probe usually requires

to perform some extra system call, which is quite expensive, in terms of time spent in

the call, or library call, which is less expensive than a system call but may be anyway

expensive. Moreover, the data read by the probes have to be stored somewhere, in order

to be usable at some point during the execution of the application or after the current

application execution. The memory footprint of the probe data is usually small, but it

could be anyway a problem at least for those applications using huge amounts of virtual

memory for their own “functional” data.

Care has to be taken also in reporting probe measures on the user terminal while the

parallel application is running. If you insert a printf to show some probe measure, the

resulting write system call is practically executed asynchronously with respect to the

application code, and therefore it may look like it will not introduce any delay but the one

relative to call to the write. However, the printf results will eventually be reported on

the user terminal through some kind of network transport protocol. The resulting traffic

will be supported by the same network supporting the parallel application communications

and synchronizations. And this eventually perturbs the application behaviour.

When reasoning about parallel applications executed on multi cores, rather than on

distributed architectures such as COW/NOWs, similar intrusion problems must be taken

into account, related to thread–rather than process–scheduling and interaction.

In any case, parallel application probing is even more complicated than sequential appli-

cation probing because the changes in relative timings of the concurrent activities due to

probes may be such that some deadlocks or some bottlenecks completely disappear from the

application run. When the probes are removed to run the application at its own maximum

speed, they may come back again with definitely unpleasant effects91.

Structured parallel programming helps in the implementation of application monitoring

in distinct ways:

• The placement of probes is clearly suggested by the skeletons used in the application.

In a pipeline, we can easily identify probe placement before and after the computation

of a single task on each one of the stages involved. These probes may accumulate

average service time for each one of the stages. Then pipeline termination procedure

may be used to gather the stage service times all together in such a way the pipeline

service time may be eventually computed, or the stage service times may be attached

to the partially computed tasks flowing through the pipeline in case the pipeline overall

service time has to be computed during the pipeline computation. In this case the

computation of the pipeline overall service time may be made on the last pipeline

stage.

91by the way Murphy law states this will happen when you’ll be demonstrating the application to the final
client paying for the application development :-)

D
ra
ft

PERFORMANCE MODEL DESIGN 103

• The implementation of the skeletons may be structured in such a way primitive mea-

sures are automatically gathered (may be depending on some skeleton configuration/-

compilation flag) and returned upon the invocation of proper skeleton library calls.

This is not a difficult task for the system programmer designing skeleton implemen-

tation, actually, as he/she has the complete knowledge related to the implementation

and therefore he/she may figure out the best probing strategies to gather these base

performance measures. This contributes to the separation of concerns between sys-

tem and application programmers enforced by the structured parallel programming

approach, actually.

• Due to the clear parallel structure of the skeletons, the perturbation effect of the

probes may be estimated/modeled–at least in an approximate way–in such a way the

measures returned by the probes actually estimate the performance of the application

without the probes. Again, consider a pipeline. If we measure the service time by

inserting a couple of probes reading time before a task computation is started and

after it has been completed, we can add to the measured computation time an estimate

of the communication overhead and return this value as the stage latency, which is

not including–de facto–the overhead relative to the time measure probes.

5.7 PERFORMANCE MODEL DESIGN

Performance models represent a critical resource associated to skeletons and templates.

Different approaches may be followed in order to design performance models that will be

discussed in the following sections.

5.7.1 Analytical performance models

Traditionally, skeleton and template performance models have been developed following an

“analytic” approach. This means that

• first performance modeling of the base mechanisms is designed such that we have

analytical formulas expressing all the base performances

• then the performance model of the skeleton (template) is designed as a proper com-

position of instances of the base mechanisms performance models.

In this case, no general theory has been used to support performance model development

but some quite usual mathematical background.

e.g.� The pipeline skeleton performance model may be developed, according to the analytical
performance modeling approach, as follows:

– we first consider communications costs, and we conclude the cost of the communication
of an item of type α and “sizeof” sizeof(α) among stages i and j is

Tcomm(i, j) = Tsetup +
sizeof(α)

B
being B the inter stage bandwidth.

– then we consider costs relative to the execution of the two stages (latencies) as L1 and
L2.

– eventually we conclude the slowest stage will determine the pipeline service time:

Ts(pipe(S1, S2, . . . , Sm)) =

max{(L0 + Tcomm(i, i+ 1)),

D
ra
ft

104 PERFORMANCE MODELS

Figure 5.3 Server modeling

∀i ∈ [1,m− 1] : (Li + Tcomm(i− 1, i) + Tcomm(i, i+ 1)),

(Lm + Tcomm(m− 1,m))}

Using the same approach, but ignoring communication overheads, we can design the perfor-
mance model of a farm skeleton as follows:

– we first consider the nw workers may compute nw tasks in a time equal to Tw (the time
spent computing a single task)

– then we consider the entity providing the tasks will have its own service time (te), as
well as the entity gathering the task computation results (tc).

– we look at the farm implementation as a three stage pipeline and therefore

Ts(farm(W)) = max{te, tc,
Tw
nw
}

In case we want to “solve” this model in such a way the optimal number of workers is
computed, we can reason as follows:

– the service time is given by a maximum.

– the only term of the maximum depending on nw is the Tw
nw

term

– therefore we will have the minimum service time when this term will not be the maxi-
mum

– and therefore

noptw = n ∈ N :
Tw
nw

= max{te, tc}

that is

noptw = d Tw
max{te, tc}

e

C

5.7.2 Queue theory

We can use some results from queue theory that basically model server systems in order

to design skeleton (template) performance models. Queue theory is a quite complex field

that has been extensively used in the past to model several distinct systems. Here we just

D
ra
ft

PERFORMANCE MODEL DESIGN 105

Figure 5.4 Multiple clients for the same server

mention a couple of results relative to M/M/1 queues92 that may be easily re-used to model

performance of skeletons and, more effectively, implementation templates. The interested

reader may refer to existing publications and books. In particular, our students may refer

to the notes for SPA course by M. Vanneschi available on line [79].

We introduce queue systems, such as the one represented in Fig. 5.3. A server S has

a service time equal to TS . It accepts server requests through an input queue. The inter

arrival time of service requests is TA. The utilization factor of the input queue Q is defined

as

ρ =
TS
TA

The inter departure time TP of results relative to service requests from the server S is given

by

TP =

{
TS iff ρ ≤ 1

TA iff ρ > 1

Two results are particularly useful, due to the kind of parallel patterns we are considering

in this book.

1. Consider a system made of a server a several clients, such as the one depicted in

Fig. 5.4. Suppose that each client Ci directs a service request to the server S each Ti.

Then the inter arrival time to server S will be

TA =
1∑n
1

1
Ti

Intuitively, each client contributes sending a request every 1
Ti

units of time. The

frequencies of the different clients accumulate. Time is the inverse of the frequency.

2. Consider a system made of one client interacting with some servers, as depicted in

Fig. 5.5. The client sends a service request towards server Si with probability pi. The

92queue systems differ depending on the features of servers and clients. Usually a queue system is named as
a triple “A/B/C”. A represents the kind of inter arrival time distribution, B represents the type of service
time for the server(s) and C the number of servers (refer to Fig. 5.3). In our case, we are interested in
results relative to queues M/M/1 and M/M/g where the M stands for “Markovian, that is stochastic, with
no memory.

D
ra
ft

106 PERFORMANCE MODELS

Figure 5.5 One client for the multiple servers

inter departure time of service requests from client C is TC . Then the inter arrival

time of requests to server S is

TA =
TP
pi

With these results, we can model several different aspects related to the performance of

a skeleton.

e.g.� The emitter-collector-worker implementation of a task farm (or equivalently, of a data parallel
map) may be modeled as a client (the emitter) directing task computation requests to nw
servers (the workers) and by a set of clients (the workers) directing “result” requests to a
single server, the collector.

Consider the first part of the system. The emitter has an inter arrival time T eA. Being
sequential, its inter departure time is T eP = T eA. Assuming a round robin scheduling of tasks
to workers, the probability to direct a request to a given worker will be given by

pi =
1

nw

Due to the second result listed above, the inter arrival time to generic worker will be therefore

TA =
T eA
1
nw

= nwT
e
A

The utilization factor of the input queue of the generic worker will therefore be

ρ =
Tw
nwT eA

In order to have the worker delivering its service time Tw, the utilization factor should be
smaller that 1. This means:

ρ =
Tw
nwT eA

< 1

D
ra
ft

PERFORMANCE MODEL DESIGN 107

and therefore:

Tw < nwT
e
A

nw >
Tw
T eA

which corresponds to the usual result we already mentioned several times relative to the

optimal number of workers in a task farm. C

D
ra
ft

D
ra
ft

CHAPTER 6

SKELETON DESIGN

In this Chapter we discuss the problems related to skeleton (set) design. In particular, we

want to answer two questions:

• How can we identify suitable skeletons/parallel design patterns?

• How can we design a good skeleton/parallel design pattern?

In order to answer these question we start considering again the definition of algorithmic
skeleton we gave in Chap. 3:

An algorithmic skeleton is parametric, reusable and portable programming abstraction
modeling a known, common and efficient parallelism exploitation pattern.

From this definition we can figure out the principles that should inspire the process of

identifying and designing new skeletons.

→ We should look for parallelism exploitation patterns. This means that parallelism is

the main subject, the kind of parallelism modeled has to be clearly identified and

described and, obviously, the pattern should be different from the patterns already

modeled by other already defined skeletons or by a composition of already defined

skeletons.

→ The skeleton should be parametric. It should be possible to specialize the skeleton

by passing a proper set of functional and/or non functional parameters. In particular

all the computations differing by features not relevant to distinguish the parallelism

exploitation pattern used must be expressible with the same skeleton by simply in-

stantiating it with different parameters.

→ The skeleton should be reusable: a number of different situations, possibly in different

application domains should exist suitable to be modeled by the skeleton. In case we

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

109

D
ra
ft

110 SKELETON DESIGN

have only one or two93 situations where the skeleton may be used to model parallelism

exploitation, the skeleton is not worth to be included in the skeleton set, unless it

results to be the only way to model that particular situation and the few cases where

the skeleton may be used cover very common application cases.

→ A skeleton is a programming abstraction. Therefore the new skeleton should clearly

abstract all the details of the modeled parallelism exploitation pattern. Moreover, it

must be provided to the final user94 in a way which is compliant to the general rules

used to define the other skeletons in the current skeleton set and respecting the syntax

rules inherited from the skeleton “host language”95.

→ The new skeleton should be portable and efficient : implementation should exist for

the main class of parallel architectures and these implementations should be efficient,

although efficiency may vary across different architectures. Take into account that we

are defining a new skeleton–which is a kind of abstract concept–while the portability

and efficiency are properties related to implementation, actually. The point here is

that when we design a new skeleton we should be able to imagine how it can be

implemented efficiently on a range of target architectures. This to avoid the situation

where we have a very nice “instruction set”–the algorithmic skeleton set–but this

instruction set could not be implemented efficiently and therefore no user will be

prone to adopt it and to use it.

→ Last but not least, the new skeleton should abstract a common parallelism exploitation

pattern. Here we have to make some distinction. Common parallel patterns are the

things we are actually looking for, when designing a new skeleton. However, the

adjective “common” may be interpreted in different ways. We can intend “common” as

“appearing in wide range of different applications from different application domains”,

or we can release the “different application domains” requirement while keeping the

rest of the sentence. In the former case, we will end up with true algorithmic skeletons.

In the latter, we will end up with more domain specific skeleton sets. In principle,

both true and domain specific skeleton sets are worth to be investigated and designed.

We must point out that several of the skeleton frameworks designed in the past (or

currently being maintained) were somehow “domain specific”, at least in their author

intentions: Skipper [73, 39] has been developed to support image processing and

MALLBA [2] is aimed to support optimization algorithm design, as an example.

6.1 COLE MANIFESTO PRINCIPLES

In his algorithmic skeleton “manifesto” [37] Cole lists four principles which “should guide

the design and development of skeletal programming systems”. These systems can be read

as principles dictating requisites on the skeletons that have to be eventually included in the

skeleton set provide to the application programmer. Here we recall the Cole principles and

we comment their impact on the skeleton design process.

1. Propagate the concept with minimal conceptual disruption. The principle, as illustrated

in the manifesto, states that “simplicity should be a strength”. If we also take into account

that following a RISC approach in the design of the skeleton set96 is definitely a good

93more in general, just a very few
94the application programmer
95the language used to express sequential portions of code and data types
96that is trying to define a small set of simple and efficient skeletons that may eventually be combined to
achieve more complex parallelism exploitation patterns

D
ra
ft

COLE MANIFESTO PRINCIPLES 111

practice, then it is evident that the development of simple, general purpose and composable

skeletons is the final goal we must try to achieve. In addition, these skeletons must be

provided to the application programmers in a way as compliant as possible with the rules

and conventions of the sequential programming framework used to embed/host the skeleton

framework.

2. Integrate ad-hoc parallelism. The principle was stated by Cole to point out that skeletons

should support the integration of parallel forms not originally provided by the skeleton set

designer. These parallel forms should be supported in such a way that they eventually

integrate in the rest of the skeleton set. As an example, the user must be enabled to

program its own parallel pattern and then the skeleton framework should allow the user

to use the pattern as a skeleton in all the places where one of the original skeletons could

be used. Cole’s eSkel skeleton framework [24], as an example, provided the user with

the possibility to autonomously manage a set of MPI processes allocated by the skeleton

system and linked with proper communication channels to the rest of the skeletons used in

the application. With respect to the different new skeleton design problems discussed in

this Chapter, this principle has no particular effect. However, when considering the design

of the overall skeleton set we must be careful to introduce some kind of escape skeleton

suitable to support user97 defined parallelism exploitation patterns and perfectly integrated

with the rest of the skeleton set. In Sec. 9.6 we discuss how skeleton set expandability may

be achieved in a macro data flow based implementation of a skeleton framework. In this

case, the “escape” skeleton is the one where the user may directly define the macro data

flow graph that constitutes the result of the compilation of the skeleton.

3. Accommodate diversity. The principle states that when designing skeletons “we must

be careful to draw a balance between our desire for abstract simplicity and the pragmatic

need for flexibility”, that is we have to consider that simple skeleton are worth provided the

simplicity of the skeleton does not impair the possibility to use the skeleton to model slightly

different parallelism exploitation patterns. Here we can assume that this principle has two

main consequences on the design process. On the one hand, the new skeletons should be

properly defined using a significant set of parameters. Possibly, some of the parameters may

be optional. The parameters should be used to differentiate the general skeleton behaviour

and clear semantics should be given (functional and parallel) that states the effect of the
combined usage of the parameters when instantiating the skeleton in a real application.

On the other hand the new skeleton should comply the rules defined when looking for the

possibility to “integrate ad-hoc parallelism”, in such a way the user may extend parts of the

skeleton to implement his/her slightly different pattern. As an example, when defining a

farm, the user may wish to implement some particular scheduling policy, different from the

system defined one, to support other kind of computations with respect to those supported

by the original farm.

4. Show the payback. This principle is more related to the design of the overall skeleton

set, actually. However, in order to build a skeleton framework able to “show the payback”

to the final user, we should include in the skeleton set only new skeletons that i) may be

used in a variety of well known situations, in different application fields, ii) should be high

level, that is they should not include (too much) implementation dependent details, and

iii) they should be easy to use, that is they should be perfectly integrated with the overall

programming framework.

97application programmer

D
ra
ft

112 SKELETON DESIGN

6.1.1 Summarizing ...

If we try to summarize what we discussed above, we can obtain the following set of requisites

for a new skeleton to be included in the skeleton set provided to the application programmer:

a) it must model a common, efficient parallel pattern

b) it must be easy to use

c) it must be defined in terms of a comprehensive set of parameters

d) it should tolerate/support user defined variations

e) it must be efficiently implementable on a range of parallel target architectures.

6.2 LOOKING FOR (NEW) SKELETONS

In this Section we consider a methodology for discovering and designing new skeletons.

Actually, we will distinguish two cases: one based on the analysis of existing parallel appli-

cations, and the other one based on the specific needs of a user implementing a particular

application. In reality the second one constitutes and adaptation of the first one with just

a different input/starting point.

6.2.1 Analysis

In this case, the idea is to look for new skeletons in existing parallel applications. Therefore

the procedure may be outlined as follows:

1. We decide whether to analyze applications from different domains or from a single

application domain. In the first case, the procedure will most likely terminate with

the individuation of new general purpose skeletons, whereas in the second case it

will most likely terminate with the individuation of domain specific skeletons. In

both case, we select a number of applications whose code is accessible and/or whose

parallel algorithm is clear.

2. We “distill” from the application individuated in the previous phase the parallel pat-

terns used to express and model parallelism. This activity may require some kind of

“reverse engineering” of the source code. In some cases some support by the appli-

cation designers could be necessary to avoid digging huge amounts of source code. It

has to be considered that in normal parallel applications the parallel structure of the

application is not exposed “per se” and therefore we need to look at the mechanisms

used to implement parallelism exploitation in order to be able to re-construct (reverse

engineer) the high level parallel structure of the application.

3. We select the candidate new skeletons among those distilled in the previous phase

that have no correspondent98 skeleton in the currently available skeleton set.

4. We perform a comprehensive analysis of the candidate new skeletons. In particular,

we try to understand whether the each new skeleton candidate is in case equivalent to

some composition of other, new and simpler skeletons. In case, we try to understand

whether these simpler skeletons are worth to be included in the skeleton set, that is

if they actually model significant parallel patterns (or, possibly, significant parallel

98that is, whose parallel exploitation pattern could not be modeled using the skeletons currently available
either alone or in proper nesting

D
ra
ft

SKELETONS VS TEMPLATES 113

pattern building blocks). If the new skeletons individuated cannot be further decom-

posed, we investigate if the new skeleton satisfies all the requirements listed at the

end of the previous section, derived from either the algorithmic skeleton definition or

from Cole’s manifesto.

5. We proceed with new skeleton refinement. We design the skeleton name, syntax,

parameter set and semantics. In the design of the skeleton parameter set we take into

account both functional (e.g. worker functions, task and result data types) and non

functional (e.g. parallelism degree, scheduling policies (if any)) parameters, and we

also take into account any optional parameter that may be used to further differentiate

the skeleton parallel pattern. When defining semantics, we define both functional and

parallel semantics, as usual.

6.2.2 Synthesis

In this case the idea is to proceed in the definition of new skeletons starting from the partic-

ular needs of an application programmer trying to implement a specific parallel application.

The process starts in case we verify that a pattern, significant and useful to implement (part

of) the parallel application we are considering, cannot be expressed by any of the existing

skeletons or by a composition of the existing skeletons. We then proceed as follows:

1. We perform an analysis phase such as the one listed in point 4 of the procedure

outlined in Sec. 6.2.1.

2. Then we look for other cases where such a skeleton may be used. We therefore follow

a procedure similar to the one listed in points 1 and 2 of the procedure outlined

in Sec. 6.2.1 to individuate the application parallel patterns and we look for equal

or “similar”99 patterns. If a number of situations are individuated where the new

pattern may be used (as is or slightly modified) we go on with the new pattern design

process, otherwise we stop here.

3. We refine the skeleton definition, also taking into account the needs evidenced by the

other situations where the new pattern could be eventually used, and we eventually

define the new skeleton name, syntax, parameters and semantics.

6.3 SKELETONS VS TEMPLATES

An algorithmic skeleton is fundamentally a programming abstraction. A template, as in-

troduced in this book, is an implementation of a skeleton on a given target architecture,

including a process template (or a thread template) and some kind of performance model.

When looking for new skeletons it is easy to be convinced that a recurring implementation

of some parallel pattern is a skeleton, especially during a process such as the one described

in 6.2.1. We should take care of not confusing the parallel programming abstraction with

the implementation, however.

e.g.� As an example, take into account a task farm skeleton. The programming abstraction pre-
sented to the user is such that the user can “submit” a set of independent tasks–possibly
available at different times–and get them computed in parallel, with a speedup hopefully
proportional to the number of parallel processing engines (processes on different processing
elements, threads on different cores) used.

The emitter and collector concepts we introduced and we used several times in the book are

not logically belonging to the task farm skeleton. Rather, they are related to a possible,

99with respect to our “new skeleton” candidate

D
ra
ft

114 SKELETON DESIGN

relatively efficient implementation of the task farm. In fact, we pointed out how a similar

implementation may also be used to implement a map skeleton, provided the emitter splits

the incoming “collection” data into items to be delivered to the workers for independent

computation and the collector gathers all the results from the workers and eventually “builds”

the map result. C

The point here is particularly important if we refer back to the discussion relative to CISC vs.

RISC skeleton sets we introduced in Sec. 3.4. When looking for RISC skeleton sets, we may

easily end up with the idea that the “elementary” building blocks are the simplest, possibly

recurring, patterns used to implement the skeletons rather that the skeletons themselves.

We may consider the emitter, a string of workers, a collector, a chain of workers, a tree of

workers as the base building blocks of our parallel computations. This may be reasonable

in perspective, but we have to take into account that:

• the “assembly” of these building blocks requires a deeper knowledge than the one

required to nest “true” skeletons. As an example, to build a map out of the emitter,

string of workers and collector building blocks, we need to be aware of the decompo-

sition level used to feed workers. In a map skeleton, this is a parameter usually left

in charge of the map implementation, and therefore under the responsibility of the

system programmer rather than the of the application programmer.

• the level of abstraction of these basic building blocks could not avoid taking into ac-

count the target architecture, as skeletons in principle may do. An emitter building

block for a complete interconnection architecture such as an workstation cluster or a

symmetric multiprocessor (multicore) will be different from the same building block

for another architecture not supporting complete interconnection, such as a mesh in-

terconnected network of workstations/cores or a NUMA multi core. In addition to

the already mentioned shift of responsibilities from system to application program-

mers this has also huge consequences on portability of parallel programs on different

architectures.

D
ra
ft

CHAPTER 7

TEMPLATE DESIGN

An implementation template is an implementation of a specific skeleton on a specific target

architectures. The designer of an implementation template is the “system programmer”.

The end user of the template will be the application programmer, although he/she will

never directly use the template. Rather, he/she will use an algorithmic skeleton and the

compiler tools (and/or the runtime) of the algorithmic skeleton framework will eventually

implement the skeleton through an instantiation of the template.

When designing a template, a system programmer goes through a number of different

phases, each requiring different kinds of “system” knowledge.

→ First of all, possible alternative templates should be individuated. All these alterna-

tives must be suitable to efficiently implement the target skeleton, and therefore the

system programmer has to keep in mind the precise semantics of the parallel pattern

modeled by the skeleton. As these alternatives will eventually use the mechanisms

and possibilities offered by the target architecture, the system programmer should be

also an expert programmer of the target architecture.

e.g.� We consider the design of an implementation for a reduce skeleton on a complete in-
terconnection architecture. Two alternatives may be considered (see Fig. 7.1):

1. a tree structured process/thread network where each node computes the reduction
of the results provided by the children nodes, and

2. a string of workers locally computing the reduction of a partition of the original
data and delivering the local result to a single node eventually computing the
global result of the reduce.

C

→ Then, before moving to the design of the template implementation, a performance

model has to be designed capturing the performance related aspects of the template.

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

115

D
ra
ft

116 TEMPLATE DESIGN

Figure 7.1 Alternative implementation templates for a reduce skeleton on a complete
interconnection architecture

Figure 7.2 A third alternative implementation template for a reduce skeleton on a complete
interconnection architecture

Not having yet started the implementation of the template, the performance model
considered here is an abstract performance model. However, it has to take into account

the “kind” of mechanisms used on the target architecture along with their general

costs.

e.g.� We consider the two templates of Fig. 7.1. The first one has log2(N) communications

+ log2(N) computations of the reduce operator ⊕ and needs N −1 processing elements

(N being the number of the items in the data structure to be reduced). The second

implementation uses M + 1 nodes and takes N
M
T⊕ + M(Tcomm + T⊕). An alternative

could be considered where the N
2

elements at the base of the tree are reused to per-

form the inner node computations (see Fig.7.2). The implementation is anyway taking

log2(N)(T⊕ + Tcomm). C

→ Looking at the performance modeling developed in the previous phase, an evaluation

of the alternatives has to be performed. The result of the evaluation process will be

such that either a single “better” implementation alternative exists–and therefore it

will be the only one considered for actual implementation–or there will be multiple al-

ternatives with close performance figures–and in this case, they could all be considered

for implementation.

D
ra
ft

TEMPLATE BUILDING BLOCKS 117

e.g.� Fig. 7.3 plots the curves relative to the abstract completion time for the two reduce

templates with varying parameters. From these performance models we may conclude

that the “tree” template is better suited in case of computationally intensive ⊕ compu-

tations, whereas the other one is more suitable in case of “light” computation and more

consistent–comparatively–communication times. Considering these results, we should

keep both alternatives as depending on the size of the input data and on the time spent

in communications and in the computation of the reduce operator ⊕ the first alterna-

tive may better than the second one or vice versa.

C

→ Before moving to actual implementation of the template–that is, to the coding phase–

the template interface has to be designed. This is the interface that will be eventually

exposed to the compiling tools. In a sense, the template interface contributes to the

definition of the “assembler” target by the skeleton framework compiler tools. The

interface should therefore be rich enough to allow a certain degree of freedom in the

usage of the template by the compiler tools and, in the meantime, simple enough to

avoid complicated compiler algorithms. Taking into account that an implementation

template is a parametric process (thread) network most of this phase is related to the

proper design of the template instantiation parameters.

e.g.� In case of the reduce templates we may simply include parameters to give the number of

parallel processing elements to be used, in both cases. The computation to be performed

(the ⊕ code) and the data types processes (the type of the ⊕ operator alpha, being

⊕ : α× α→ α) should also be included in the parameters. C

→ The last phase of the template design is the actual implementation of the template.

An implementation of the template is produced exploiting at best the tools and mech-

anisms available on the target architecture.

7.1 TEMPLATE BUILDING BLOCKS

An implementation template for a 〈skeleton, target architecture〉 pair is never designed

as a monolithic block. Usually, we design an implementation template composing some

template building blocks. These templates building blocks include:

• Process networks with given topologies

• Thread sets with given behaviour (e.g. producer/consumer configurations)

• Communication infrastructures

• Shared state configurations

• Synchronization infrastructures.

Is is clear that the availability of a set of efficient template building blocks for a given target

architecture covering all the aspects related to concurrent activity set up, as well as syn-

chronization and communication handling greatly enhances the possibilities to implement

efficient, correct and usable templates.

In general, when designing a template, the existing knowledge concerning implementa-

tion of non-structured parallel applications is used as much as possible, in such a way we

capitalize on already existing results and we avoid duplication of efforts to come to the same

results.

D
ra
ft

118 TEMPLATE DESIGN

Figure 7.3 Performance comparison of the two reduce templates mentioned in the text. Left:
input data structure of 1K items, right: input data structure of 2K items. T⊕ has been considered
the unit time. Tcomm is defined in terms of T⊕. Sample values plotted to show differences. The tree
template has been considered with a fixed parallelism degree (the ideal one). The string+collector
template has been considered with a varying number of workers in the string.

D
ra
ft

TEMPLATE BUILDING BLOCKS 119

Here we want to discuss three different template building blocks, to give an example of

how existing results may be exploited in the definition of an implementation template for

skeletons. These three techniques may be composed with other techniques to implement

different kind of skeletons.

7.1.1 Client-server paradigm

In a client server paradigm, a server provides some kind of services to a set of clients invoking

those services through properly formulated service requests. The client server paradigm is

pervasively present in computer science and networking. The DNS is structured after a

client server paradigm as well as NFS or Email and the whole WEB systems, just to name

a few examples.

The number of clients, the kind of the service (stateless, state-full), the kind of the server

(single or multiple threaded) as well as the communication protocols used to deliver service

requests and service results determine the performance of the client server paradigm.

In general, the performance of a client server system may be modeled using the queue

theory as sketched in Sec. 5.7.2.

In our perspective, the client-server paradigm is useful to model the interactions within

process template components. As we already pointed out, the interactions among a string of

worker processes and some collector process gathering the worker results may be interpreted

as a client-server paradigm, where the workers play the role of clients and the collector

process plays the role of server. In a dual way, the interaction between a task scheduler

and a string of workers computing the scheduled tasks can be interpreted as a client-server

paradigm where the scheduler plays the role of client with respect to a set of workers that

represent the servers.

More modern push/pull variants of the client-server systems may also be considered in

this scenario. The classical client-server paradigm is the pull one. In this case the client

sends a message with a service request to the server and the server answers back with the

service result. Therefore the client initiates the server activities.

When a push client-server paradigm is adopted, instead, the server sends service results

on its own initiative100. When designing templates, the push client-server paradigm can be

used to model worker interactions with the scheduler in case auto scheduling is implemented.

In this case, the scheduler process (the client, as we mentioned before) receives “push”

messages from servers (the workers in the worker string) signaling the server may proceed

computing a new task. As a consequence, the client sends back to the server a new service

request101.

All the existing technology used to implement servers for purposes different from struc-

tured parallel programming may be reused in templates. As an example, server multi

threading techniques may be used to implement workers partially able to hide communica-

tion latencies even in case of communications not completely overlapping with computations

(see Sec. 7.3.1).

7.1.2 Peer-to-peer resource discovery

In many cases, we face the problem of recruiting resources to be used in the implementation

of a given template. Processing resources may be looked up in proper resource data bases

or resource tables available from the system. More often we wish to be able to discover

100after an initial client “registration”, of course
101actually, this situation may also be interpreted as a reverse server-client setting: the workers behave as
clients with respect to the scheduled behaving as a server. Indeed, if the results have to be directed to a
different concurrent entity–such as a collector process/thread–the reversal of client and server roles only
moves the “push” paradigm to the collector side

D
ra
ft

120 TEMPLATE DESIGN

the resources currently available to be recruited to our parallel computation. Some kind of

parallel/distributed discovery mechanism is therefore needed.

A generally adopted discovery mechanism is based on (kind of) peer-to-peer techniques.

When looking for a resource, we start a process similar to the peer discovery process in

peer-to-peer computations:

• Either we flood the network with a proper discovery message–with its own Time To

Live field–and then we wait for answers coming from the (remote) processing elements

running the skeleton run time and available to support new computations, or

• Or we lookup a well known “service server” and we ask the server a list of the available

peers/resources.

In both cases we may rely on all algorithms developed for the classical peer-to-peer paradigm.

Therefore flooding may be organized in such a way i) flood messages do not survive a num-

ber of hops larger that the initial Time To Live, ii) flood messages are not forwarded back

to the sending node, and iii) the reached peers directly contact the originator of the flood

request rather than simply sending back a presence message to the host delivering them the

flood discovery request.

In case we use this discovery approach, we need to insert in the template run time proper

mechanisms to react to discovery flood messages, of course.

A variant of the pure peer-to-peer discovery may be used in networks supporting broad-

cast and multicast, such as all Ethernet variants. In this case, the host trying to dis-

cover resources to be recruited to the parallel computation may simply broadcast–or better

multicast–a discovery message on a given port. The resources running the template run

time will answer the discovery message. The order of arrival of the answers to the discovery

message may also be interpreted as a measure of the “health” of the answering machine:

answers coming late will be a symptom of poor network interconnection or of a very busy

resource, in most cases.

Again, all existing peer-to-peer results here may be re-used to design a proper “resource

discovery” template building block.

7.1.3 Termination

Termination of parallel programs is quite a non trivial tasks. If a number of parallel/concur-

rent/distributed activities are contributing to the computation of the very same final results

it must be the case they both interact–through messages or through some kind of shared

memory–and synchronize–again, either through messages or through proper synchronization

primitives.

When designing templates, we must be careful to support termination of all the activities

started, even in presence of errors–abnormal terminations.

A technique suitable for terminating all the activities in presence of normal termination

(no errors) will be such that a tree is build at some point, whose nodes cover all the parallel

activities eventually set up in the program and a node has as leaves all those activities

that have to terminate after the termination of the node itself. This tree may be used to

propagate messages from the root activity to the leave activities without incurring into the

unpleasant situation of terminating activities before they actually finished interacting with

other concurrent activities, and therefore leading to errors.

e.g.� In our stream parallel applications we can use the “end-of-stream” mark flowing through

the stream channels to implement termination. The end-of-stream mark is a conventional

message flowing through stream channels denoting the fact no more tasks/data items will

flow along that particular channel. We have to be careful to “count” the number of incoming

D
ra
ft

CROSS-SKELETON TEMPLATES 121

marks and to produce the correct number of out-coming marks. As an example a farm emitter

should emit nw EOS marks after receiving one input EOS. Workers in the farm should simply

propagate the received EOS. The collector in the farm should count nw marks and forward

only the last one. C

It has to be clear that the channels supporting the termination messages may in general

be different from the channels moving data (input tasks and results) across the template

activities.

e.g.� Consider again the termination of farm template just mentioned. A relatively more efficient

termination procedure will the one were the emitter sends the termination signal to the worker

processes after receiving from the workers requests of tasks to be computed that are no more

available. The workers simply terminate when they get the termination message. The emitter

also sends a termination message to the collector after having sent the termination message

to the last worker still requesting tasks to be computed. Eventually, the collector terminates

when it receives the termination message from the emitter. C

7.2 CROSS-SKELETON TEMPLATES

Implementation templates are designed to support a particular skeleton on a particular

target architecture. However some templates are particularly significant and they may be

used to support different skeletons. A typical case is given by the template implementing

the task farm skeleton. The very same template may be efficiently used to support also

data parallel skeletons such as the map one.

A different case is the one where a skeleton is implemented in terms of another (com-

position of) skeleton(s). Again the case arises when we consider data parallel skeletons.

In a data parallel skeleton, an input data structure is split in partitions–possibly in single

items–and then some kind of computation is performed on all these partitions. The data

parallel skeleton result is build gathering the results of the partition computations.

This parallel pattern may be easily transformed in a stream parallel pattern as follows:

i) A three stage pipeline is used

ii) The first stage decomposes the input data structure into partitions. As soon as a

partition has been created, it is delivered onto the stage output stream

iii) The second stage is a task farm, processing a stream of partitions to produce a stream

of partition results

iv) The third stage is again a sequential stage, “collapsing” its input stream of results into

the final result of the data parallel skeleton.

This corresponds to a skeleton-to-skeleton transformation, actually, even if the sequential

parameters of the data parallel skeletons must be completed with some ad hoc code to

produce a stream and to consume a stream in the pipeline of farm version.

If we implement a data parallel construct this way we are de facto using the stream

parallel skeletons as if they were implementation templates. This is the reason why we

mention this case in the template design chapter and we name it cross-skeleton template.

In many cases, especially when the target architecture has mechanisms providing good

support to stream parallelism, this implementation template technique may be very ef-

fective. FastFlow [77] only provides stream parallel skeletons including task farms and

pipelines. However, it may be used to implement data parallel skeletons as well as the

FastFlow task farm template is parametric and the scheduling of the emitter may be user

defined, as well as the gathering strategy of the collector process/thread. As a consequence,

D
ra
ft

122 TEMPLATE DESIGN

Figure 7.4 Implementing data parallel constructs in terms of stream parallelism

the stream parallel skeleton task farm may be used as cross-skeleton implementation tem-

plate of the map data parallel skeleton (see Fig. 7.4).

We insist here the usage of the farm template is used as an implementation of the map

skeleton rather stating that a map skeleton is provided because the details the user–i.e. the

application programmer–has to express to use the task farm as a map implementation force

him/her to think to the implementation rather than to reason only in terms of abstract

parallel patterns.

7.3 SAMPLE TEMPLATE MECHANISMS

We introduce here some techniques that could be useful to implement templates on both

shared memory and distributed memory architectures, such as multi cores and COW/NOWs.

These techniques may be used as mechanisms in the implementation of templates. They

are therefore template building blocks as the three listed in Sec. 7.1, but we discuss them

separately as they are building blocks abstracting lower level features with respect to the

other ones.

7.3.1 Double/triple buffering

When implementing communicating processes (or threads), a useful techniques consists

in implementing double or triple buffering, provided hardware supports at least partial

D
ra
ft

SAMPLE TEMPLATE MECHANISMS 123

Figure 7.5 Triple buffering

overlap of communications and computations. Triple buffering can be used to implement

any process receiving input data from and sending results to other processes. It works as

follows (see Fig. 7.5):

• at a given time, one concurrent activity is in charge of receiving the “next” data to

be used as input task, another concurrent activity is in charge of delivering the last

result computed and a third activity is in charge of computing the last input task

received. The three activities work on three different buffers: B1 to receive data, B2

to process data and B3 to send results.

• after having concurrently completed the three steps–a logical barrier synchroniza-

tion102 is needed here–the three concurrent activities exchange their role. Activity i

starts behaving as activity (i+ 1)%3 in the previous step. Therefore the activity hav-

ing received an input tasks starts computing it, the one that just computed a result

starts sending it, and the one that just sent a result starts receiving a new task. Of

course, each activity uses its own buffer for its new duty.

If there is complete overlap in between communication and synchronization, the triple

buffering works as an “in place pipeline” and the time spent to compute one step is the

maximum of the latencies of the three activities: computation, receiving a task, sending

a result. The idea of re-using the buffers this ways also avoids unnecessary–and source of

overhead–copying/sharing among the three concurrent activities.

Double buffering just uses two activities, one in charge of the computations and one in

charge of the communications–both sends and receives.

7.3.2 Time server

Very often in a parallel computation you need to know wall clock time of some events. This

may be needed for debugging as well as for fine tuning. However, events happening on

102in a barrier synchronization n activities wait each other. As soon as all the involved activities agree on
having reached the “barrier”, all the n activities may leave the barrier and continue their normal activity.

D
ra
ft

124 TEMPLATE DESIGN

different processing elements may have access to separate clocks and therefore any message

such as “the event ei happened at time ti” only makes sense with respect to over events

generated on the same processing element–that is reading the same global clock.

When the relative ordering of the events is important this is obviously not enough.

Several algorithms have been developed in the past to keep clocks of networked workstation

synchronized or to support partial ordering of events happening on different workstations.

One of the most popular algorithms suitable to establish a partial ordering among events

happening in a workstation network is due to Lamport [55] and dates back to 1978. The

algorithm is based on local logical clocks and computes a partial ordering among events

happening on communicating workstations. NTP, the Network Time Protocol based on

Marzullo’s algorithm [58], is used to keep clocks of a network of workstations synchronized

in modern operating systems (e.g. Linux).

In a number of cases, however, we may be interested in knowing an approximated estimate

of the time of an event. In these cases, the usage of a centralized time server may be useful.

Processes or threads wishing to signal/register an event, send messages to the centralized

time server through a TCP server socket published on a well know port. The messages

contain the time stamp of the event (i.e. the time when the event happened) registered using

the local clock. The centralized time server, receives the messages from all the distributed

participants to the parallel computation and stores the messages adding its own local time

stamp relative to the reception of the message. Events are eventually reported back to

the user/programmer sorted by their receiving time. As both local and time server time

stamps are shown, the user/programmer may eventually sort out an approximate relative

ordering of the distributed events as well as the time taken for a given activity to complete

by computing the difference between the starting and the ending event time. If the activity

has been performed locally to a single workstation, the difference will be computed on local

time stamps. Otherwise, it will be computed on the time server “receive” time stamps.

This approach works pretty fine in case i) the latency of the communications to the time

server is uniform (the same) for all the parallel computation partners and ii) the communica-

tions introduced to gather time stamps do not sensibly impact/disturb the implementation

of the communications needed to carry on the parallel application. As usual, the usage of a

centralized time server impacts scalability. In case a huge number of distributed actors are

involved, the parallelization of the time server has to be taken into account. As an example,

local time servers may be used that eventually103 direct the gathered data to a centralized

server.

7.3.3 Channel name server

When setting up a concurrent activity network on a distributed architecture we are faced

with the problems of setting up proper communication channels. In fact, in order to map

our concurrent activities we i) first need to assign each concurrent activity to one of the

computing resources available and then ii) we need to set up communications channels

interconnecting the interacting concurrent activities in the concurrent activity graph.

This second activity is referred as the “interconnection network setup” and takes place

at the very beginning of the parallel computation, actually before the parallel computation

starts. Therefore we can implement it using a centralized server as the bottleneck obviously

introduced only affects set up time of the parallel computation, not the time spent in

actually performing the computation itself.

A common technique consists in the following steps:

103at the end of the application, or during the application but implementing some kind of data compression
to reduce the network traffic

D
ra
ft

SAMPLE TEMPLATE MECHANISMS 125

i) a centralized channel server is created and run, providing two basic services: i) regis-

tration of a communication channel and ii) lookup of channel names. The registration

of a channel registers the address of the channel (e.g. an TCP socket address (IP +

port number), a SysV message queue (the queue id), etc.) associated with an appli-

cation dependent and global channel name. The lookup of a channel name consists in

sending back the associated address info or a lookup failure message in case no channel

has been registered with that name up to the moment the lookup request is processed.

ii) Any concurrent activity started on one of the distributed processing resources initializes

the input communication channels and register these channels to the channel server.

This initialization/registering phase happens right before the actual “body” of the

concurrent activity starts executing.

iii) Any concurrent activity that will eventually direct messages to another concurrent

activity looks up the proper channel address by sending a lookup request to the channel

server. In case the lookup fails, the lookup request is re-send after a short timeout and

the process is iterated until the address of the channel is eventually received or a number

or retries is reached such that the concurrent activity simply fails104.

e.g.� As an example, suppose we are implementing a concurrent activity graph such as the one
of Fig. 4.3 In this case, a number of concurrent activities will be deployed and started on a
number of available resources. Assume E activity is started on resource RE , C on RC and
Wi on RWi . Assume also we are targeting a cluster of workstations with communications
implemented using TCP sockets. All the activities have an input channel, actually. The
“names” of these channels are established in the concurrent activity graph 105. Therefore,
assuming the template name is “farm3”:

– E will initialize a server socket with name “farm3-tasks-E-in” and will register its IP
address and port to the channel server.

– C will initialize a server socket with name “farm3-results-C-in” and will register its IP
address and port to the channel server.

– each Wi will initialize a server socket with name “farm3-task-Wi-in” and will register
its IP address and port to the channel server.

– E will lookup for “farm3-task-W1-in”, “farm3-task-W2-in”, . . ., “farm3-task-Wnw-in”
on the channel server.

– each Wi will lookup “farm3-results-C-in” on the channel server.

– C will lookup for the address of the channel to use to deliver results (e.g. “pipe4-task-
in”).

and at this point all the concurrent activities will have all the necessary channel address.

C

7.3.4 Cache pre-fetching

When targeting shared memory architectures, such as the multi/many core architectures

discussed in Chap. 1, efficiency in memory management is the major concern to be taken

into account in order to be able to get performant implementations of parallel applications.

In particular, the highly parallel shared memory architectures106 often present a NUMA

(non uniform memory access) abstraction of the memory subsystem, and therefore it is

104this number has to be specified carefully, to avoid too early fails while other, complex or remote concurrent
activities are still initializing their input channels
105therefore eventually in the template
106those with a number of cores in the 10-100 (or more) range

D
ra
ft

126 TEMPLATE DESIGN

crucial to be able to map data into memory in such a way accesses are mostly performed

as local accesses.

Cache management, that is the main mechanism supporting local memory accesses, is

mostly in charge of the hardware/firmware architecture. A number of mechanisms and

techniques have been developed in the past to make caches as efficient as possible in main-

taining the application working set107 in cache during the application computation. These

techniques rely on properties of spatial and temporal locality of the memory accesses that

may be observed in most of the (well written) applications, either parallel or sequential.

Hardware/firmware cache management relies on two pillars: i) on demand data loading

from upper levels of the memory hierarchy into caches and ii) (approximated) least recently

used algorithms to select the “victim” cache lines to be substituted when new, fresh data

is to be loaded in caches.

Recently, different mechanisms has been exposed to the programmers to improve cache

management. One of this mechanisms is cache prefetching, that is the possibility to instruct

caches to pre-load data that have not yet been accessed but that will be accessed in the near

future. Different architectures offer different assembly instructions for data prefetching. In-

tel IA-32 and IA-64 micro architectures, as an example have different assembly instructions

(IA-32 has those instructions in the SSE set, actually) suitable to pre-fetch a cache line

containing a given address in all caches, or in part of the cache hierarchy (e.g. only from

level 2 on).

Compiler tool chains expose these instructions as library calls that may be invoked

by the programmers. As an example, the GCC compiler provides a “builtin” function

builtin prefetch(const void *addr, ...) taking an address as a parameter

and such that108:

This function is used to minimize cache-miss latency by moving data into a cache
before it is accessed. You can insert calls to builtin prefetch into code for which you
know addresses of data in memory that is likely to be accessed soon. If the target
supports them, data prefetch instructions will be generated. If the prefetch is done
early enough before the access then the data will be in the cache by the time it is
accessed.

The value of addr is the address of the memory to prefetch. There are two optional
arguments, rw and locality. The value of rw is a compile-time constant one or zero;
one means that the prefetch is preparing for a write to the memory address and zero,
the default, means that the prefetch is preparing for a read. The value locality must
be a compile-time constant integer between zero and three. A value of zero means that
the data has no temporal locality, so it need not be left in the cache after the access.
A value of three means that the data has a high degree of temporal locality and should
be left in all levels of cache possible. Values of one and two mean, respectively, a low
or moderate degree of temporal locality. The default is three.

It is clear that the correct (and performant) usage of this builtin requires both a deep

understanding of the algorithm at hand and some analogous deep understanding of how

the cache subsystem works and performs on the target architecture. If we try to pre-fetch

too much/early data we can impair the mechanisms used to keep the application current

working set instance in the cache. If we wait too much to issue the pre-fetch calls, the effect

will be null. Therefore the correct usage of this kind of primitive is difficult and errors in

its usage may lead to programs running worse than the original one.

When the structure of the parallel application is exposed, as in the algorithmic skeleton

frameworks, something better may be done. By analyzing the structure of the parallel

computation, we find out the data actually needed for the “immediately next” steps and

we can therefore ask for their pre-fetch, possibly in the higher levels of the cache hierarchy,

107the set of data currently needed to carry on the computation
108http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

D
ra
ft

SAMPLE TEMPLATE MECHANISMS 127

in such a way the current working set instance (usually in L1 cache) is left undisturbed but

the forthcoming accesses to the new data items may be solved in L2 cache rather than in

(NUMA) memory.

e.g.� As an example, consider a map skeleton. Assume the map workers are mapped to threads
“pinned”109 to different cores. The system programmer implementing the map template
knows both the scheduling used to dispatch sub-computations to the map workers and the
types and addresses of the input and output data relative to each one of the sub computation.
Assume we have an input vector X of N floating point data items and the program computes
a map(X,f), that is it applies f to all the items of X. Assume also that for some reason
worker Wj will be given the task to compute f(xi), f(xk) and f(xy)110. Then we may
implement the map template in such a way that a task 〈f, a, b〉 is scheduled to the workers
with an associated semantics such as

compute f(a) while prefetching b

to allow the worker to avoid waiting for b being fetched from NUMA memory into local
cache(s), and eventually schedule to the worker a sequence of tasks such as

〈f, xi, xk〉, 〈f, xk, xy〉, 〈xy, . . .〉

C

7.3.5 Synchronization avoidance

We consider another typical problem related to the correct implementation of parallel ap-

plications on shared memory architectures: concurrent accesses to shared data structures.

When accessing shared data structures proper synchronization primitives must be used

to guarantee that the data structure accesses are correct independently of the scheduling of

the concurrent activities that perform those concurrent accesses.

As an example, if a vector is accessed by a number of independent threads, usually the

vector is protected with semaphores (in case of “long” accesses) or locks (in case of “short”

accesses). Both semaphores and locks introduce overhead in the parallel computation.

Locks usually implement busy waiting, and therefore processing power is used just to test

that some concurrent access is finished. Semaphores may cause a context switch which is

even more expensive in terms of time spent in the de-scheduling of the process/thread and
of its subsequent re-scheduling once the conflicting concurrent access is actually finished.

Also in this case a deep knowledge of the algorithm and of the kind of concurrent accesses

performed on the shared data structure may help the programmer to implement efficient

synchronization mechanisms. As an example, such knowledge can be used to reduce the

amount of synchronizations required as well as the to reduce the impact of these synchro-

nization by picking up the more appropriate and efficient synchronization mechanisms.

Leaving the application programmer in charge of the complete responsibility for synchro-

nization management may lead to a number of different problems and errors, however, rang-

ing from inefficiencies in the parallel application to errors leading to deadlocks. In the past,

programming language designers introduced a number of high level concurrent constructs

capturing and encapsulating synchronization in concurrent accesses to data structures. We

mention here monitors, as an example, introduced since ’70s [49]. More recently, a kind

of monitor has been introduced with synchronized methods in Java111 and similar pro-

gramming abstractions may be found in many modern concurrent programming languages.

A monitor basically encapsulates a concurrently accessed data structure along with the

109i.e. bound, allocated on
110non adjacent items of the vector, otherwise the normal cache mechanism will be sufficient
111http://download.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

D
ra
ft

128 TEMPLATE DESIGN

Figure 7.6 Removing synchronization in a stencil computation

methods used to access it. These methods are automatically synchronized in such a way no

incorrect access to the data structure is allowed.

As algorithmic skeletons expose the structure of parallel computations and–as a consequence–

also the structure of the accesses performed on the shared data structures, synchronization

management may be easily left in charge of the system programmers implementing the

skeleton framework, rather than in charge of the application programmer. As a conse-

quence, the system designers–experts in both parallel programming techniques and in the

mechanisms supported by the target architecture–may easily overcome the problems related

to synchronization management.

e.g.� To illustrate the “skeleton advantage” in this case, we consider again the pure map skele-
ton. The collection processed by the map skeleton is logically shared among all the threads
actually implementing the map workers. Therefore we could be reasonably convinced that
accesses to the data collection must be synchronized. However, the map skeleton on col-
lection x1, . . . , xn

112 is such that only the thread computing item i is actually reading and
writing xi. Therefore no synchronization is required and we can avoid protecting the xi
accesses with locks or semaphores.

A slightly different case happens when a stencil map skeleton is being computed. In this

case, the worker computing element f(xi, stencil(xi)) reads xi and the whole related stencil,

actually. Those reads are concurrent with the reads performed by the worker computing

f(xi−1, stencil(xi−1)) probably. However only worker computing element f(xi, stencil(xi))

will eventually write yi, the i− th position of the output collection. Therefore we can easily

figure out that rather than protecting all the xj reads and writes with locks/semaphores

112recall that map(f, 〈xi, . . . , xn〉) = 〈f(x1), . . . , f(xn)〉

D
ra
ft

SAMPLE TEMPLATE DESIGN 129

Figure 7.7 Master worker template alternatives

we can leave all accesses unprotected provided that the results are written to a different

data structure, rather than “in place”. In other words we can substitute the sub tree com-

puting stencil(f,stencil,x)113 with the subtree computing stencil(f,stencil,x)

→ y114 provided that all subsequent accesses to x are properly renamed to access y instead.

(Fig. 7.6 explains the concept assuming vector map with stencil build of the current item

plus its two left and right neighbors.) C

7.4 SAMPLE TEMPLATE DESIGN

In this Section we present two samples of the template design methodology outlined at

the beginnig of this chapter, relative to a Master/worker template, suitable to implement

different kinds of skeletons, and of a “farm with feedback” template, suitable to support

divide and conquer like skeletons.

7.4.1 Master worker template

A master worker template is conceptually build of a master scheduling computations to a

set of identical workers and collecting from the workers the computed results. This template

may be used to implement, with small “variations” (possibly through proper parameters), a

number of different skeletons, including task farm, map and stencil data parallel skeletons.

Here we consider the master/worker template as an implementation of a task farm skele-

ton, and therefore we “formalize” the procedure leading to the template already mentioned

in several places in the previous Chapters.

113i.e. computing newxi = f(xi, stencil(xi))
114i.e. computing yi = f(xi, stencil(xi))

D
ra
ft

130 TEMPLATE DESIGN

Herbert Kuchen in [71] presents a detailed discussion of the implementation of a task

farm skeleton through different kinds of “master/worker-like” templates. In particular it

discusses templates with a unique master (scheduling tasks and gathering results), with

two masters (one for scheduling tasks and one for gathering results) and with no masters

at all (to model farms embedded in other skeletons, such as a pipeline. In this case the

scheduling is actually performed by the last process in the previous stage and the results

are immediately directed to the next stage, rather than being collected by the master.

We took inspiration from this work (although master/slave implementation of task farms

dates back to the beginning of the algorithmic skeleton history in early ’90s) to start the

first step in template design: identification of the alternatives.

Fig. 7.7 shows the alternatives we consider for the master/worker template after the

Kuchen paper. The Figure actually shows alternative implementation activity graphs rather

than complete templates. In fact, the process/thread network in Fig. 7.7 a) may be im-

plemented using different communications mechanisms and different concurrent entities

(processes, threads, lightweight GPU threads, etc.). We assume here to target a shared

memory architecture, such as a NUMA multi core. We therefore restrict to the range of the

mechanisms that can be conveniently used to implement the template.

As the second step, we design simple performance models for the alternatives chosen. In

our case, we can conclude that:

• In case of template a) of Fig. 7.7 the service time of the farm template will be given

by

TS(n) = max{(Tschedule + Tgather),
Tworker

n
}

as the master should gather a result from a worker and deliver another task to be

computed to the same worker in a single event.

• In case of the template b) of Fig. 7.7 the service time is the one we already mentioned,

that is

TS(n) = max{Tschedule, Tgather,
Tworker

n
}

• In case of the template c) of Fig. 7.7 the service time will be the same one of template

b) with the Tgather = 0, that is

TS(n) = max{Tschedule,
Tworker

n
}

Moving to the evaluation of the alternative phase, we must consider that in case of small

schedule and gather times (as it happens in most cases), the three models will give quite close

performance figures. Therefore we should conclude that all the three alternatives should

be considered. Of course, the second and third alternatives give much better performance

figures in case the cost of collecting worker results is not negligible.

Then we move to the template interface design phase. This activity basically consists

in determining which parameters are suitable to be included in the template interface. We

will consider the obvious ones:

i) the input types,

ii) the output types,

iii) the the function computed at the workers, and

D
ra
ft

SAMPLE TEMPLATE DESIGN 131

iv) the the parallelism degree.

Of course, we should consider even more parameters, to make the template more and

more malleable and therefore suitable to efficiently implement a larger number of skeleton

instances, namely:

a) the scheduling policy,

b) the reordering policy (i.e. whether or not the relative ordering of the input tasks has to

be considered to keep ordered in the same way the output results)115, and

c) any shared state variable accessed by the workers, with the relative shared access pattern.

The last phase of the design is the actual implementation. We do not discuss too much

details in this case. Taking into account we were targeting shared memory multi cores:

• We will use independent threads to implement master and worker activities.

• We will use some efficient implementation of a concurrent queue data structure to

support scheduling and result collection activities.

• We will limit synchronizations among workers and master process to the concurrent

access to these queues. In case of a single manager, we may also avoid to synchronize

the access to the task queue if we assume (and consequently implement it) that:

– the master is the only concurrent activity accessing the queue,

– when a worker needs a new task to be computed the master selects a task from

the queue and sends a pointer to the task descriptor to the requesting worker,

while marking the task as already scheduled in the queue.

7.4.2 Farm with feedback

We consider a template to implement divide and conquer like skeletons. The main feature

to be taken into account in this case is that the depth of the tree logically generated by the

divide and conquer skeleton may be unknown looking at the input data and therefore some
dynamic behaviour must be implemented in the template capable of running arbitrary dept

divide and conquer trees.

Here we do not go through discussing all the phases of the design template process,

actually, but we just point out the main decisions and achievements as follows:

• Among all possible alternatives we consider a tree structured template (e.g. one

modelling one-to-one the actual abstract computation performed in the divide and

conquer skeleton) and a slightly modified master worker template similar to the one

discussed in Sec. 7.4.1. In the tree template each node evaluates the termination

condition and, in case the base case has not been reached, recruits a number of

resources equal to the number of outputs of the divide phase and delivers them the

sub-blocks of the input data as returned by the divide to be computed. Then it waits

for the sub results to come back from the “forked” resources and eventually it conquers

the results and delivers the result to its “parent” node.

In the master/worker like template, instead, we arrange things in such a way the

master sends tasks to be computed to the workers and the workers may return either

115this seems obvious, but there are a number of situations were the asynchrony coming from unordered
result delivery to next computation stages may greatly improve the application overall performance

D
ra
ft

132 TEMPLATE DESIGN

Figure 7.8 Divide and conquer phases: the depth of the three as well as the relative balance is
unknown in general at the moment the input data is received

a result (when a base case has been reached) or a new (tuple of) task(s) to be com-

puted resulting from a divide phase. We call this template farm (or master/worker)

with feedback to evidence the fact tasks are either got from outside by the master or

feedback to the master by the workers, as depicted in Fig. 7.9.

• Evaluating the performance models of the two templates, we conclude the time spent

in recruiting new resources to support tree expansion in the tree template is too high.

We therefore keep the farm with feedback template only.

• While designing the interface of the template, we decide to keep as parameters: i) the

base case condition and the base case evaluation code, ii) the divide and the conquer

code, iii) the types of the input, output and intermediate results and iv) the number

of the workers in the master/worker. All parameters but the last one are functional

parameters.

Using this template, implemented on a shared memory multi core, we are able to process

a quick sort divide and conquer as follows:

1. the master sends the input list pointer to the first worker

2. the first worker evaluates the base case condition (false) and divides the list in two

parts. These two parts are sent back to the master, as new tasks to be computed,

along the feedback channels.

3. the master sends the two lists to first and second worker, that re apply the procedure

described for worker one above.

4. more and more workers get busy dividing or computing the base case sort

5. eventually, the masters starts receiving ordered sublists that he arranges in the proper

places of the final result.

D
ra
ft

SAMPLE TEMPLATE DESIGN 133

Figure 7.9 Farm with feedback template to implement divide and conquer skeleton.

It is worth pointing out that in case the “conquer” phase is not trivial, the master may

delegate also the conquer tasks to the workers. Also, it is worth pointing out that without

a proper memory support the feedback communications may represent a sensible overhead

in the template computation.

D
ra
ft

D
ra
ft

CHAPTER 8

PORTABILITY

Portability has different meanings at different abstraction levels. Application portability

refers to the possibility to port an existing application from a machine to another, possibly

different, machine. Portability is fully achieved in this case, when the application may

be run unchanged on the second architecture once it has been designed, developed and

debugged for the first architecture. Application portability may be achieved different ways,

including:

• recompiling of the source code, or

• simply re-running the original compiled code.

In the latter case, the two machines targeted will obviously be binary compatible, that is

they will accept the same kind of object code files.

When considering programming frameworks, instead, portability of the programming

framework across different architectures is fully achieved when the programming frame-

work running on machine A may be moved and operated on machine B. This in turn,

implies that application portability will be achieved, for all those applications running on

top of our programming framework.

As for application portability, programming framework portability may be achieved in

different ways:

• The easiest one is portability through recompiling. We take the source code of our

programming framework, written in a language Lx and we recompile the whole source

code of the programming environment on the second machine, provided a compiler

for Lx is available on the second architecture.

• A more complex way of porting a programming environment requires both recompi-

lation and rewriting of some parts of the programming framework implementation.

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

135

D
ra
ft

136 PORTABILITY

In particular, all those parts that were specifically implemented for solving problems

peculiar of architecture A and whose solutions do not apply to architecture B.

• In the worst case, portability could simply not be achieved, as the features of the

target architecture B are radically different from the features of target architecture

A. In this case, most of the programming environment parts must be re-written

almost from scratch. Probably, only the higher level tools, such as the parsers, may

be preserved unmodified.

Portability of programs is an issue typical of parallel programming. In the sequential

programming world it has a minor impact. The problem is mostly determined by the dif-

ferent features sported by different parallel and distributed architectures. These differences

may concern the interconnection network between parallel/distributed processing elements

(full interconnection, regular interconnection topology networks, etc.), the presence or the

absence of some level of sharing in the memory hierarchies of the processing elements, the

kind of accelerators available (e.g. GP-GPUs or FPGAs). This is not the case, or at least,

the differences between different architectures are not so evident, when sequential architec-

tures are considered. Most of the sequential architectures around116 support very similar

assembly code sets and as a result, the only significant differences between different archi-

tectures consist in the presence of particular functional units (e.g. SIMD units) speeding

up data parallel computations. As a consequence, porting an application from architecture

A to architecture B in most cases only requires a re-compilation of the source code of the

application and, in a smaller but consistent number of cases, the object code of the appli-

cation compiled on machine A may be simply moved and run to machine B without any

kind of (or with minor, performance related) issues.

We are ready now to introduce a distinction between two different kinds of portability:

Functional portability Functional portability concerns the portability of the functional-

ity of the application or programming framework. Functional portability of an image

filtering application means that we can move/recompile the application to the new

machine preserving the possibility to filter images obtaining the same set of filtered

images we previously get from the application running on the first architecture.

Performance portability In addition to functional portability, we may be interested in

portability of non functional properties of our applications/programming environ-

ments. Non functional features are those features that do not concur directly in the

result computed by our applications (the function of the input data) but rather concur

to the way these results are computed. As an example, performance, security, power

management, fault tolerance are all non functional features of applications/program-

ming environments. Performance portability guarantees that a program with a given

performance on machine A may be ported to machine B preserving a comparable

performance. The term “comparable”, in this case, may be considered modulo the

architectural differences between the two architectures. In other words, performance

portability must guarantee that the best performance possible for the algorithms used

relatively to the features of the target architecture are eventually achieved.

Now when considering performance portability in addition to functional portability new

issues must be taken into account. Simple recompilation of an application on a new target

architecture can give you functional portability but may be it does not guarantee perfor-

mance portability.

116it is worth pointing out that these architectures actually do not exists anymore as single chips, but we
refer here to usage of a single core as a sequential processing element

D
ra
ft

PORTABILITY THROUGH RE-COMPILING 137

Figure 8.1 Portability through recompiling

In the sequential programming world, we are used to get performance portability for free.

If you write a program for a PowerPC and then you recompile the very some code on an

Intel processor, you’ll get performance portability in addition to functional portability.

But in the parallel programming world things are a little bit different. If you write

an MPI program using barriers and you run it on a machine with hardware support for

broadcast117, in case you move that program to a machine without the hardware support

for broadcast, you will get definitely worst performances.

In the following sections we will discuss issues and solutions relative to both functional

and performance portability of skeleton based programming frameworks. We distinguish

two main approaches to portability, namely i) portability achieved through re-compiling

and ii) portability supported through virtual machines.

8.1 PORTABILITY THROUGH RE-COMPILING

Portability through re-compiling relies on the existence of a set of compiling tools that may

be used to re-compile the whole programming framework implementation on the new target

machine.

8.1.1 Functional portability

In order to be able to functionally port a skeleton framework from a target architecture to

another target architecture, what has to be guaranteed is that the programs running on the

first architecture also run on the second one and compute the same results.

Let us consider what happens of functional portability when using template or macro

data flow based implementations of skeleton programming frameworks.

Template based frameworks. In a template based skeleton framework, implementation of

skeletons is achieved by instantiating process templates. Provided that the new target

architecture:

117as an example, on a machine whose cores/nodes are interconnected using a mesh network plus a global
bus for synchronizations

D
ra
ft

138 PORTABILITY

• supports the language used to implement the framework,

• supports the same kind of concurrent activity abstractions (e.g. processes, threads or

kernels) used to implement the templates on the first architecture, and

• supports the communication and synchronization mechanisms used in the original

process templates

then functional portability through re-compiling may be achieved.

The first requisite above is obvious. If you can’t compile just a single component of the

programming framework because no compiler exists on the new target architecture for the

language used to write that component, the whole porting fails. Such a situation requires

re-writing the component in another language for which a compiler exists, instead.

The second and third requisite could be handled in a different way. If some base mech-

anisms essential for framework implementation is not present, some new component must

be designed, developed and integrated into the ported framework capable of emulating the

missing mechanisms. Alternatively, the templates using the missing mechanisms must be

completely rewritten in terms of the mechanisms presents on the new target architecture.

Macro data flow based frameworks. In a macro data flow based skeleton programming

framework, functional portability may be achieved if

• a compiler for the language used to implement the framework is available,

• the mechanisms used to implement the macro data flow interpreter are supported on

the new target architecture.

Therefore, as far as functional portability is concerned, we can conclude functional porta-

bility may be guaranteed if template implementation or concurrent MDF interpreter im-

plementation may be conveniently ported onto the new architecture in the two cases. As

a macro data flow concurrent interpreter will be in general modeled by a single parallelism

exploitation pattern, while the templates in a template library model more parallelism ex-

ploitation patterns, we can also conclude that functional portability is slightly easier in

MDF based skeleton frameworks with respect to template based frameworks

8.1.2 Performance portability

When dealing with performance portability, things are a little bit more complex.

Template based frameworks. In a template based skeleton framework performance porta-

bility is mainly achieved through proper restructuring of the templates used to implement

the skeletons and the skeleton compositions. The general structure of the programming

framework tools could be mostly left unmodified provided that new templates, or modi-

fied/adapted versions of the existing ones, are adopted for the new architecture targeted.

As an example, let us consider the “farm template for complete interconnection architec-

tures” of Sec. 4.2.1.4. In case we move to target an architecture with mesh interconnection

of internal cores such as the Tilera multi-core, we must take into account the farm templates

such as those discussed later on in the same Section (“farm templates for mesh architec-

tures”). This was not necessary in case functional portability is only considered. In that

case, we could have set up further communication library emulating the full interconnection

required by the first template on a mesh architecture. This introduces more overhead in

the implementation, but as we are only interested in functional portability, it is sufficient

to guarantee portability.

D
ra
ft

PORTABILITY THROUGH VIRTUAL MACHINES 139

Figure 8.2 Portability through virtual machines

It has to be taken into account that depending on the new architecture features the design

of a new template or the re-adaptation of an existing template for any one of the skeletons

provided by the framework may require a huge design and implementation effort.

MDF based frameworks. In this case performance portability is mainly guaranteed by an

efficient porting of the concurrent MDF interpreter. As again stated in Sec. 4.2.2, the

efficient implementation of a concurrent MDF interpreter does require a substantial effort.

However, once this effort has been spent, the whole framework may be ported seamlessly

to the new architecture, as the features of the MDF graphs generated when compiling

the skeletons will not impact performances on the new machine if the concurrent MDF

interpreter has been successfully “performance” ported.

Therefore, in case of performance portability, we can conclude that it is slightly easier to

achieve it in case of template based frameworks, as the general task is split into smaller

tasks (the implementation of the single templates) rather than being kept unique (the

implementation of an efficient concurrent MDF interpreter).

8.2 PORTABILITY THROUGH VIRTUAL MACHINES

Up to now, we have only considered portability assuming our programming frameworks

are recompiled when moving to a new target architecture. There is an alternative way of

implementing portability, however, which exploits virtual machines.

Let us assume that a skeleton programming framework exists targeting the Java Virtual

Machine. The framework itself may be a library based or a new language eventually com-

piled down to Java, template based or macro data flow based. It does not matter. The

important thing is that the skeleton applications eventually run as JVM byte-code. Alter-

natively, let us assume that a skeleton programming framework exists targeting C+MPI.

Again it does not matter how the framework is implemented nor the programming model

(library or new language) it exposes to the skeleton application programmer. The important

thing is that the skeletons applications are eventually run as MPI applications.

In both cases, the functional portability of the programming frameworks may be simply

guaranteed by the portability of JVM or MPI. What you need to port your programming

D
ra
ft

140 PORTABILITY

environment on a new target architecture is an implementation of the JVM or an imple-

mentation of MPI on the new target architecture.

What about performance portability, then? In general performance portability could

not be guaranteed for the very same reasons listed when discussing compiler based frame-

work portability. Virtual machine only guarantees portability and efficiency of the virtual

machine mechanisms. The efficiency achieved on a single architecture is the “best” avail-

able for those mechanisms. However, this does not guarantees that the final framework

efficiency is convenient. Again, let us consider porting of a programming framework from

a machine supporting hardware broadcast and multi-cast mechanisms to a machine that

does not support in hardware such mechanisms. Any template118 relying on the efficiency

of broadcast/multi-cast mechanisms will suffer from severe performance penalties on the

second machine. As a consequence, true performance portability will be achieved only by

rewriting the templates119 in such a way they properly exploit the mechanisms available on

the new target architecture.

8.3 HETEROGENEOUS ARCHITECTURE TARGETING

Targeting heterogeneous architectures poses problems similar to those arising when porting

programming environments across different architectures. An heterogeneous architecture is

such that at least two different kind of processing elements exist, that can be used to exe-

cute parallel/distributed activities. Sample heterogeneous architectures include multi-core

CPUs with attached GPUs as well as interconnections120 of different multi-core process-

ing elements, e.g. a mix of Intel Core and IBM PowerPC processors interconnected via

Ethernet.

Heterogeneity poses several problems, that partially overlap to those analyzed when

dealing with portability issues:

• Specialized compilers must be used to target different nodes in the heterogeneous

architecture. This means that the very same process template must be compiled with

different tools depending on the choices made in the mapping phase, that is when

“processes” are bound to processing elements.

• Specialized templates the templates used to compile/implement skeletons may differ

for different processing elements. As an example, a map template used on plain multi-

cores may radically differ from the one used on CPUs with an attached GPU. In this

latter case, data parallel kernel executions may be delegated to the GPU, achieving a

sensible speedup.

• Specialized concurrent MDF interpreter instances must be available to be run on the

different processing elements used to implement the overall MDF interpreter.

In addition to requiring specialized compiler and templates, however, heterogeneity also

raises some problems in the high level part of the compiling tools relative to template based

programming frameworks. In particular, when templates are chosen to be associated to the

skeletons appearing onto the application skeleton tree (see Sec. 4.2.1) decisions have to be

made relatively to the possibility to choose templates that only work on a given subset of

the target architecture. As template assignment has eventually direct consequences on the

final performance of the application, this is a critical point.

118but this is true also taking into account the implementation of the concurrent MDF interpreter
119or the concurrent MDF interpreter
120by means of standard interconnections networks

D
ra
ft

HETEROGENEOUS ARCHITECTURE TARGETING 141

e.g.� Consider the case of architectures build of the interconnection of multi-core nodes, where
only a part of the multi-core nodes are equipped with GPUs. Let us assume the application
to implement has a skeleton tree such as the following:

Pipe(Map(Seq(C1)),Map(Seq(C2)))

Let us suppose we have available map templates both for multicore only and for multi-
core+GPU processing elements interconnections. Whether or not the GPUs are more ef-
ficient of CPUs on a given computation could not be decided without actually looking at
the input data of the map skeletons. Regular data121 will probably better perform on GPUs
than multi-cores. Furthermore, in case of unbalance of the pipeline stages, it may be the case
that one of the stages does not need an extreme parallelization, as the other stage is actually
the pipeline slowest stage and therefore it is the other stage that eventually determines the
performance of the whole pipeline.

Now when compiling this program on the heterogeneous architecture, we have basically two
possibilities related to the template choice:

– We proceed as usual, looking at the performance models of the templates in order to
establish which template composition will best implement the skeleton tree at hand. In
other words, we completely implement the template assignment during the first phases
of the process leading to the generation of the skeleton application object code. Or
alternatively

– We perform a preliminary template assignment and later on, at run time, we possibly
change the choice made in such a way we succeed to exploit the behaviour data gathered
while executing the program122. This implements a kind of self -management of the
template assignment process. Further details on this will be given in Sec. 9.5.

C

A different set of problems arise when targeting heterogeneous architectures in a macro

data flow based framework. In this case, the compilation of the skeleton application to MDF

graphs should not be changed. What changes is the implementation of the concurrent macro

data flow interpreter. In particular:

• Different interpreter instances have to be developed, such that each instance is opti-

mized for one of the heterogeneous processing elements. It is possible that different

(heterogeneous) processing elements may run the same kind of interpreter instance

(e.g. processing elements with slightly different processors). In the general case, differ-

ent instances of the interpreter may support the execution of different subsets of MDF

instructions: as an example, GPU powered interpreter instances may support the ex-

ecution of data parallel macro data flow instructions, while more classical, non GPU

powered architectures only support such instructions through execution of explicitly

parallel MDF graphs (that is, not in the execution of a single MDF instruction).

• The scheduling of fireable MDF instructions to the concurrent interpreter instances

has to be consequently modified. Being functionally different instances of the inter-

preter running on different heterogeneous nodes, specialized scheduling functions must

be implemented as the set of remote interpreters is not anymore “anonymous”.

• In turn, the specialization of the scheduling policies to accomplish the diversity among

available concurrent interpreters may require a more complex management of the

logically centralized MDF graph repository. In case of distributed implementation of

121that is data that lead to identical executions in the subcomputations of the map
122such data may make evident that the GPU template was the best one or vice versa, as an example

D
ra
ft

142 PORTABILITY

the repository with load balancing guaranteed through fireable instruction stealing,

also the stealing strategies must be adapted in such a way the existence of different

interpreter instances is taken into account.

8.4 DISTRIBUTED VS MULTI-CORE ARCHITECTURE TARGETING

Historically, skeleton based programming frameworks have been developed to target dis-

tributed architectures123. The skeletons frameworks Muesli, Muskel, ASSIST, SkeTo (just

to name those still maintained) have all been designed and developed to target clusters and

network of workstations. Later on, some of these frameworks have been redesigned and

improved in such a way multi core architectures could also be exploited. At the moment

being, Muesli [33], Muskel [16] and Skandium [57] all support multicore machine targeting.

Multi core targeting is basically supported in two distinct ways:

Architecture modeling changes We assume that each multi core node in the target

COW/NOW architecture is itself a network of processing elements. As a consequence,

a number of processes–from the template composition implementing the skeleton

program–or of concurrent interpreters–in case a MDF implementation is used–equal

to the number of supported cores is placed on the single multi core.

This implies slight modifications in the skeleton framework implementation. Basically

only requires to expose different cardinalities for the processing elements hosted in the

target architecture, in such a way multiple cores are counted as multiple processing

elements.

Of course, in case the templates used may optimize communications depending on

the features of the links interconnecting nodes, the links between “virtual processing

elements” modeling cores of the same processor should be modeled as “fast” links124.

Template/MDF interpreted specialization Alternatively, and depending on the kind

of implementation adopted in the framework, either the implementation templates of

the skeletons, or the structure of the concurrent MDF interpreter instance should be

changed to take into account the existence of multi core nodes in the target architec-

ture.

When considering a single multi core as the target architecture of our skeleton framework,

similar choices may be taken, but in general, better optimization can be achieved using the

“specialization” strategy rather than the “architecture modeling” one.

In any case, the design of the templates or the design of the MDF interpreter must tackle

problems that are quite different from the ones significant when COW/NOW architectures

are targeted, as reported in Table 8.1.

In the following sections we briefly discuss the issues related to COW/NOW and multi-

/many core targeting.

123We refer in this section as “distributed architectures” those resulting from the interconnection through
some kind of interconnection network of complete processing elements, such as the cluster of workstations,
the network of workstations and the computational grids. We refer with the term “multi/many core” those
architectures build out of multiple cores, possibly on the same chip, sharing some level of the memory
hierarchy, such as Intel Core processor or symmetric multi processors (SMP) such as the shared memory
machines hosting different multi core chips on several distinct boards.
124that is links using specialized inter-thread communication mechanisms rather than slower inter-process
mechanisms

D
ra
ft

DISTRIBUTED VS MULTI-CORE ARCHITECTURE TARGETING 143

Distributed Multi/many cores

Templates or Process based Thread based
MDF interpreter

Communication Inter PE Inter Thread
& synchronization (TCP/IP) (Shared mem + locks & semaphores)

Exploiting locality Process mapping Thread pinning
Memory access

Optimization Communications Shared memory accesses
opportunities Process mapping Thread pinning

Communication grouping Memory layout (padding)

Table 8.1 Problems related to template/MDF interpreter implementation for
distributed/shared memory architectures

8.4.1 Template/MDF interpreter implementation

On distributed architectures, the main mechanism exploited to implement concurrent ac-

tivities is the process abstraction. Processes are used to implement concurrent activities in

templates as well as those related to MDF interpreter implementation. As a consequence,

no memory is shared among the different concurrent entities used to implement the skeleton

framework. All the interactions among the concurrent activities must be implemented via

explicit communications.

When targeting multi cores, instead, the main mechanisms exploited to implement con-

current activities is the thread abstraction. As a consequence, interactions among different

concurrent activities may be implemented through shared memory and/or via explicit com-

munications as in the case of concurrent activities implemented through processes.

Using processes may seem a little bit more complicate than using threads, due to the

fact no shared memory abstraction is present and all the interactions must be implemented

via explicit communications. However, while threads support “more natural” interactions

via shared memory, they also support default sharing of all the memory space. Therefore

it is easy to introduce errors and inefficiencies125.

e.g.� A simple example will better illustrate the case. When implementing a map template using

threads the naif implementation of accesses to the partitions of the original, collective data

may introduce false sharing that could impair the actual speedup achieved in the execution

of the map template. In particular, a map template with threads operating onto sub items

of a vector whose items are of size smaller that the cache line size implies the arising of a

false sharing situation. Items i and i+ 1 of the vector will be processed by different threads

but they will actually be allocated to the same cache block. As a consequence, two accesses

updating positions i and i + 1 at different cores will imply the start of a cache coherency

protocol which is actually useless, due to the fact that thread processing position i will never

need accessing position i+ 1 and vice versa126. C

125in this sense, inefficiencies can be seen as particular kind of “non functional errors
126after the termination of the map, of course, this may happen, but not within the execution of the map.
Within the map thread processing item i may at most require the access to current (not the new one) value
of position i+ 1, which does not require cache coherency.

D
ra
ft

144 PORTABILITY

8.4.2 Communication & synchronization

Communications and synchronizations represent a crucial matter in parallel and distributed

programming. Therefore they play a fundamental role in both template and MDF based

skeleton framework implementation.

When targeting distributed architectures, the main communication mechanisms are those

provided by the interconnection network used to host the target architecture processing

elements. In common COW/NOW architectures, either Ethernet or some kind of more

advanced interconnections such as Myrinet [67] or Infinibad [50] are used. When using stan-

dard Ethernet, the TCP/IP protocol stack is used for communications, either at the level

of transport protocols (TCP, UDP) or at the network level (IP). Streams and datagrams

are used to implement both communications and synchronizations. Synchronizations are

usually implemented via small messages127. When using more advanced interconnection

networks, proprietary communication and synchronization mechanisms are used instead.

TCP/IP protocol stack is also usually provided on top of these basic, proprietary mecha-

nism, often resulting in quite large overhead when using it to implement communications

or synchronizations128. It is worth pointing out that both Ethernet and the more modern

and performant interconnection networks support some kind of primitive broadcast or multi

cast communications. These mechanisms are fundamental for the design of both efficient

templates and optimized concurrent MDF interpreters. As an example, in the former case,

they can be used to support data distribution in data parallel templates, while in the latter

case, they can be used to support load balancing mechanisms in distributed MDF graph

pool implementation as well as different coordination mechanisms supporting the distribut-

ed/parallel implementation of the interpreter, such as fireable instruction stealing or fault

tolerance discovery mechanisms.

When targeting multi/many core architectures, instead, accesses to shared memory are

normally used to achieve an efficient implementation of both communications and synchro-

nizations. Communication is implemented writing and reading to properly synchronized

buffers in shared memory. Synchronization, including the one needed to implement the

communication buffers is implemented using locks, semaphores or any other synchroniza-

tion primitive available. In this case, it is fundamental that very efficient synchronization

mechanisms are used, due to huge amount of cases where this mechanisms are used and

to the relatively fine grain129 computations involved in many cases in the synchronization

operations. Some skeleton framework tackle this issue since the very beginning of the frame-

work design. Fastflow is entirely build on a very fast and efficient single producer single

consumer queue which has been demonstrated to be correct while being lock free and fence

free on common cache coherent multi cores such as the ones currently provided by Intel

and AMD. The implementation through shared memory of communication and synchro-

nization primitives naturally supports the implementation of the collective broadcast/multi

cast operations.

8.4.3 Exploiting locality

Locality is the property of algorithms of performing “near” data accesses during program

execution. In other words, very often algorithms are such that if a data structure or a

portion of code is accessed at time ti the probability of another access to the data/code

in the near future (time ti+∆) is very high (temporal locality) as well as the probability

127messages hosting a very small payload, may be just one byte, which is not significant as payload as the
send and receive of the message have associated the synchronization semantics.
128Windows support for Infiniband provides a TCP/IP stack implementation on top of Infiniband. The
stack introduces a sensible overhead with respect to the one introduced by primitive Infiniband mechanisms.
129that is small amount of computation in between successive synchronization operations

D
ra
ft

DISTRIBUTED VS MULTI-CORE ARCHITECTURE TARGETING 145

of accessing locations close130 to the ones just accessed (spatial locality). Locality is the

property that makes current architectures work. Without locality, caches will be useless.

Without locality most of the memory access131 would be in main memory, whose access

times are order of magnitude larger that the access times of caches. Ensuring locality ex-

ploitation is therefore fundamental for efficient implementation of algorithms and, therefore,

of sequential programs.

Locality is even more important in parallel programming. Considering the parallel/dis-

tributed/concurrent activities usually are performed on processing elements that are rela-

tively far from each other–in terms of the time spent to exchange data–it is clear that a

program not exploiting locality will never be efficient.

When considering process based implementations of skeleton frameworks this is particu-

larly evident. If we design a template were data is continuously moved to and from different

processing elements because of poor locality optimization, this program will spend a lot of

time moving data rather than actually computing results.

e.g.� As an example, suppose we implement a pipeline template where each stage gets tasks to

be computed from an emitter/collector process and delivers results to the same process. In

this case to compute a k stage pipeline on a stream of m tasks we need 2km communications

as each stage must first receive a task to compute and then send the result back to the

emitter/collector process. If we use the classical “linear chain” of k processes to implement

the stages, the communications needed to compute the same stream are just one half mk.

In the former template, we did not exploited the locality in the access of partially computed

result fh(fh−1(. . . (xi) . . .)) which is only accessed by stages Sh (the producer) and Sh+1 (the

consumer). C

However, also in case of thread based implementations, locality plays a fundamental role.

e.g.� When working with threads and shared memory, we can consider a different example. Let
suppose we want to implement a map template working on vectors. Therefore we distribute
over a thread pool the computation of

∀i : yi = f(xi)

If we distribute map iterations over threads such that iteration i is placed on thread t =
i%nthread we actually will achieve a much worse performance than in case we distribute
iterations on threads such that iteration i is scheduled on thread t = i/nthread, as this latter
distribution allows to achieve a much better cache management due to the higher locality in
the memory accesses132.

C

Therefore, when targeting both distributed COW/NOW and multi/many core archi-

tectures, preserving and exploiting the locality proper of the parallel skeletons used is a

fundamental issue. Many of the “optimizations” listed in the next section are de facto

aimed at exploiting locality in parallel computations.

8.4.4 Optimizations

Several optimizations may be taken into account when targeting (porting to) distribut-

ed/multi core architectures. Actually, being the parallel structure of our program being

completely exposed through the used skeletons, any known optimization technique relative

130whose address is not too different
131instruction fetches and data accesses
132as an exercise, try to imagine the trace of data addresses generated towards the caches from two different
threads (running on two different cores).

D
ra
ft

146 PORTABILITY

to the particular patterns modeled by the skeletons may be used. As already discussed

this is one of the fundamental advantages of the algorithmic skeleton approach to parallel

programming.

Locality preserving/exploiting optimizations are probably the most important ones. In

this context, we should mention different techniques:

• Allocation of the concurrent activities compiled from the application skeleton com-

position in such a way locality is preserved. This includes mapping communicating

processes on “near”–from the viewpoint of communication overheads–processing ele-

ments as well as pinning133 thread to cores in such a way threads accessing the same

data structures share the largest portion of memory subsystem (e.g. second level

caches).

• Grouping of concurrent activities on the same processing element, in case these ac-

tivities happen to be tightly coupled, that is they share a lot of data structures or

they send each other a large amount of data. This kind of grouping decreases the

parallelism degree of the application, in general, but may lead to advantages in terms

of a smaller number of communications or smaller overhead in shared data access that

possibly overcome the losses due to the smaller parallelism degree.

Other common optimization techniques impact the way concurrent activities interact.

Communication optimizations belong to this class of optimizations, as well as shared mem-

ory access optimizations.

Communication optimizations. Communication optimizations relate to the way communi-

cation among different concurrent activities are performed. In presence of a large number

of communication between two processing elements of the target architecture, for instance,

communication grouping may be used. With this technique, a number of communications

happening in the same time interval and moving data from processing element PEi to

processing element PEj are implemented as a single communication event with a larger

message body. As communications between separate processing elements usually require

some setup time plus a time directly proportional to the length of the message, this tech-

niques allows k−1 setup times to be spared when k communications are performed. Taking

into account that communication setup may be quite large (tens of microseconds when using

Ethernet) this represents a sensible advantage. Of course, this means communications must

be directed to a kind of “communication manager” that analyzes the traffic in pre-defined

time chunks and possibly decides to group different communications into a single one. This

also implies that the latency perceived by the single process may be larger than the one

achieved when not using grouping, although the performance of the overall communication

system is better.

Shared memory access optimizations. Shared memory access optimizations consist in a

quite different set of techniques. To avoid problems while accessing shared variables134

variable layout in memory may be optimized as well as the usage of names to denote

shared variables. Variable layout in memory may be optimized to avoid that items of the

same data structure accessed by concurrent activities of the same template share the same

cache line. This avoids the penalties of the cache coherence mechanisms while preserving

program fairness at the expense of a (slightly) larger memory footprint. The technique

mainly consists in inserting padding data between consecutive items (or blocks of items) of

the shared data structure in such a way accesses formerly referring to the same cache line

become accesses referring to different cache lines.

133pinning is the operation aimed at fixing thread execution on a given core
134we assume shared memory architectures support cache coherence

D
ra
ft

DISTRIBUTED VS MULTI-CORE ARCHITECTURE TARGETING 147

e.g.� Consider a vector of integers. Assume cache lines may host 8 integers (32 bytes). Assume

also the vector is processed by a map computing xi = f(xi) and that each one of the workers

in the map get chunks of 10 vector items to be processed. Worker 1 will process two cache

line of data: the first one–assuming the vector is cache aligned in memory–will be entirely

read and written. In the second line, worker 1 will just access the first and second elements,

while the rest of the vector items in the line will be accessed by worker 2. This situation is

a false sharing situation. When writing the new value for x8 (the first element of the second

cache line) worker 1 will probably cause the start of a cache coherency protocol aimed at

propagating the new value to the cache line hosted on the processor where worker 2 has been

scheduled, that in the meanwhile is processing x10, x11, . . . , x19 C

Renaming of variables is used instead to allow better optimizations to be implemented

in the sequential language compiler when accessing potentially shared data structures. By

properly renaming variables that will eventually be accessed–for writing–by different con-

current activities due to the template/skeleton semantics we avoid the renamed variables be

marked as “shared” and therefore accessed through time consuming access synchronization

mechanisms.

D
ra
ft

D
ra
ft

CHAPTER 9

ADVANCED FEATURES

In this Chapter, we discuss some “advanced” features algorithmic skeletons. The term “ad-

vanced” has two basic meanings, in this context: i) the features discussed here deal with

problems that are not commonly handled in parallel programming frameworks, or, at least,

they are not handled with the same efficiency and success typically achieved in skeleton

frameworks, and ii) these features were not included in the first algorithmic skeleton frame-

works, but represent and evolution in the implementation of these programming frameworks

towards more and more efficient implementation of the algorithmic skeleton concept.

The “advanced” features concern both program design (e.g. the possibility to transform

programs by rewriting during the design phase) and skeleton framework implementation

(e.g. adaptivity or fault tolerance). Indeed, most of these techniques do not represent

new concepts. Rather, the techniques apply existing concepts to the algorithmic skeleton

scenario that boosts the possibility to exploit the parallel computation structure knowledge

typical in algorithmic skeletons.

9.1 REWRITING TECHNIQUES

Rewriting techniques have been exploited in a variety of contexts. Functional programming

languages traditionally provide the necessary concepts to support program rewriting. Let us

take into account our second order modeling of skeletons introduced in Chap. 3. We defined

a map skeleton. Looking at the definition of this skeleton we can easily get convinced that

(being ◦ : (α→ β)→ (β → γ)→ (α→ γ) the functional composition and “ :′′: (α→ β)→
α→ β the operator applying a function to some input data135)

(map f) ◦ (map g) ≡ map(f ◦ g) (9.1)

135the first “:” is the apply operator, the second one (without quotes) is the usual “type” operator

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

149

D
ra
ft

150 ADVANCED FEATURES

In fact, when the left function is applied to a data structure such as 〈x0, . . . , xn〉 (let us

suppose the xi here are items in a vector, as an example), we get

(map f) ◦ (map g) : 〈x0, . . . , xn〉 = (map f) : 〈g(x0), . . . , g(xn)〉 =

= 〈f(g(x0)), . . . , f(g(xn))〉

whereas when the right function is applied to the same data structure, we get

map(f ◦ g) : 〈x0, . . . , xn〉 = 〈(f ◦ g) : x0, . . . , (f ◦ g) : xn〉 =

= 〈f(g(x0)), . . . , f(g(xn))〉

which is the same result.

More rewrite rules may be proved correct when considering skeletons as introduced in

this book. As an example, assuming we denote with ∆ skeletons or skeleton compositions,

we may simply verify that, for any skeleton ∆i

farm(∆i) ≡ ∆i (9.2)

The farm skeleton, in fact, does only impact the parallelism degree used to compute a

given program, not the functional semantics of the program computed through the farm.

For the very same reason, we can state that

pipe(∆1,∆2) ≡ pipe(farm(∆1),farm(∆2)) (9.3)

By further rewriting the last expression, using the 9.2 rule, we get another interesting

example of skeleton tree rewriting, namely:

farm(pipe(∆1,∆2)) ≡ pipe(farm(∆1),farm(∆2)) (9.4)

It is worth to point out that rewriting rules 9.1 and 9.2 are primitives while the rewriting

rule 9.3 and 9.4 are clearly derived applying rewriting rule 9.2.

The importance of rewriting rules such as 9.1 and 9.2 is mainly related to non functional

behaviour of your skeleton program.

e.g.� Let us assume a programmer has written a program, whose parallel structure is modeled by
the skeleton tree

pipe(Seq(C1),Seq(C2))

and let us suppose the monitored performance values state that TSC1
= t1 < t2 = TSC2

Then an easy way of improving the program “non functional” behaviour–the performance–is
to apply rule 9.2 and transform the program as

pipe(Seq(C1),farm(Seq(C2)))

Mostly likely, this could require some minor change in the source code of the skeleton pro-

gram but has a notable impact on program performance eventually achieved on the target

architecture136 C

The rewriting rules just discussed should be read also in a more structured way, depending

on the target architecture considered.

136We are assuming here that the inter arrival time of tasks to the pipeline is small enough in such a way
it does not constitute a bottleneck and that the farm implementation is feasible, that is, the time spent to
schedule tasks to the farm workers and to gather from these workers results is not larger than the time spent
to compute the single result. If either of these assumptions does not hold, than the rewriting is useless, of
course.

D
ra
ft

SKELETON REWRITING RULES 151

e.g.� Consider rule 9.1 and assume we want to implement a program operating on a stream of
input tasks by applying to each one of the tasks a data parallel skeleton, as an example
through the skeleton program

pipe(map(∆1),map(∆2))

If we assume:

1. that a “sequential composition” skeleton exist, comp(∆1,∆2) performing in sequence,
on the same processing elements, the computations of its parameter skeletons ∆1 and
∆2, and

2. that a single stage pipe may be used, representing the fact the computation modeled
by the single parameter skeleton of the pipe is to performed on a stream of input data,

then we can state that

pipe(map(∆1),map(∆2)) = pipe(map(comp(∆1), (∆2))) (9.5)

Now, either left hand side or right hand side expressions may be used to implement the
same computation. What are consequences on the non functional features of our skeleton
program?

– If left hand side expression is used:

∗ Computation of map(∆1) and map(∆2) happen concurrently on different items of
the input stream. As a consequence, we expect a better service time, being it
expressed as the maximum of the service times of the two maps rather than being
computed as the sum of the two

∗ More communication are involved. We have to distribute the input tasks to the
workers of the first map, than to distributed the results of the first map to the
workers of the second map and eventually to collect the final result from the workers
of this second map.

– If the right hand side expression is used:

∗ The computation of each input data item happens serially in a single map, therefore
the latency (and the service time) is higher, but

∗ Less communication overhead is needed to implement the parallel computation (we
omit the communications in between workers of the first map and second map, that
in this case happen to be the same).

All in all we can conclude that the left hand side program is finer grain than the right hand

side. Depending on the target architecture at hand and on the features of the surrounding

skeletons (if any), one of these two equivalent programs may result “better” than the other

one. C

9.2 SKELETON REWRITING RULES

We summarize in this Section the more common rewriting rules that can be used with

stateless skeletons such as those defined in Chap. 3. The rewriting rules are named, that is

we give each of them a conventional name. Moreover, part of them are given directionally,

that is instead of giving an equivalence such as ∆1 ≡ ∆2 they define a transformation from

one term to the other one, such as ∆1 → ∆2. The existence of both ∆1 → ∆2 and ∆2 → ∆1

rules gives the full equivalence between the two skeletons (∆1 ≡ ∆2), of course.

Farm introduction ∆→ farm(∆)

A farm can always be used to encapsulate any skeleton tree ∆

D
ra
ft

152 ADVANCED FEATURES

Farm elimination farm(∆)→ ∆

A farm may always be removed.

Pipeline introduction comp(∆1,∆2)→ pipe(∆1,∆2)

A sequential composition may always be substituted by a pipeline.

Pipeline elimination pipe(∆1,∆2)→ comp(∆1,∆2)

A pipeline may always be transformed into the sequential composition or its stages.

Map/comp promotion map(comp(∆1,∆2))→ comp(map(f),map(g))

The map of a composite may always be rewritten as a composite of maps.

Map/pipe promotion map(pipe(∆1,∆2))→ pipe(map(f),map(g))

The map of a pipeline may always be rewritten as a pipeline of maps.

Map/comp regression comp(map(f),map(g))→ map(comp(∆1,∆2))

The composite of maps may always be rewritten as a map of a composite.

Map/pipe regression pipe(map(f),map(g))→ map(pipe(∆1,∆2))

The pipeline of maps may always be rewritten as a map of a pipeline.

Pipe associativity pipe(∆1,pipe(∆2,∆3)) ≡ pipe(pipe(∆1,∆2),∆3)

Pipeline is associative.

Comp associativity comp(∆1,comp(∆2,∆3)) ≡ comp(comp(∆1,∆2),∆3)

Sequential composition skeleton is associative.

9.3 SKELETON NORMAL FORM

An important consequence of the rewriting rules discussed in the previous section is the

“normal form” concept for skeleton programs developed in late ’90.

When considering a skeleton rewriting system, such as the one defined by rewriting rules

listed in the previous section, we may be interested in defining the “better” rewriting–with

respect to some non functional feature of our program–possible of any given program ∆.

This “better” rewriting is called “normal form” to represent the fact that this is the

alternative137 program representation that would normally, that is in absence of special

situations, considered for the implementation.

A normal form for a small subset of stream parallel skeletons has been defined in [11].

The skeleton framework considered only includes pipeline, farm, sequential composition and

sequential wrapping skeletons, denoted, respectively, by pipe, farm, comp and seq, as

usual.

The rewriting rules considered basically only include farm elimination/introduction,

which is the rewriting rule 9.2 above.

Authors also consider a simple performance modeling for the skeletons included in the

framework. Their performance modeling states that

TS(pipe(∆1,∆2)) = max{TS(∆1), TS(∆2)}
TS(farm(∆)) = max{Temitter, Tcollector, Tworker

nw
}

TS(comp(∆1,∆2)) = L(∆1) + L(∆2)
TS(seq(C)) = L(C)

with L(x) being the latency of x and Temitter, Tcollector and Tworker being the service times

of farm emitter, collector and workers processes.

137with respect to the rewriting system considered

D
ra
ft

SKELETON NORMAL FORM 153

Under these assumptions, the “normal form” of any skeleton program ∆ is given as

follows:

• the set of the “leaves” of the skeleton tree ∆ is computed, as they appear left to

right in the skeleton tree. This set, C1, . . . , Cn is the set of the sequential wrapping

skeletons appearing in the skeleton program. This set is called fringe and it can be

recursively defined on the structure of the skeleton program as follows:

– fringe(seq(Ci)) = Ci

– fringe(comp(C1, . . . , Cn)) = {C1, . . . , Cn}
– fringe(pipe(∆1,∆2)) = append(fringe(∆1), fringe(∆2))

– fringe(farm(∆)) = fringe(∆)

with append defined as usual, appending at the end of the first parameter the items

relative to the second parameter.

• the “normal form” of the original program is given by

NF(∆) = farm(comp(fringe(∆)))

e.g.� Consider the program

pipe(seq(C1),farm(seq(C2)))

The left to right set of leaves is C1, C2 and therefore the normal form is

farm(comp(C1, C2))

C

Under the assumptions made by the authors in [11], the normal form guarantees the

“best” service time for a stream parallel skeleton composition. This means that the following

inequality holds, for any legal stream parallel skeleton composition ∆:

TS(NF(∆)) ≤ TS(∆)

The rationale behind the concept of normal form in this case138 is the reduction of the

overheads related to communications, taking into account that the coarser grain the workers

are in a farm, the best speedup and efficiency you can get out of it. The overall result of

applying the normal form can therefore be stated as follows:

whenever you have to parallelize a stream parallel program (skeleton composition) the
best thing you can do is to “glue up” the largest grain worker by merging all the se-
quential portions of code needed to produce the final result, and then you can “farm
out” the coarse grain worker.

It is clear that the normal form as defined above also minimizes latency. If we consider

the two equivalent skeleton programs ∆ and NF(∆) the absolute wall clock time spent to

compute f(xi), being f the function computed by ∆ and xi the generic input stream item

will be smaller when computing f as NF(∆) than as ∆, due to the smaller communication

overheads incurring.

e.g.� It is worth pointing out that the usage of the term “normal form” in this context does not

comply with the “normal form” definition in rewriting systems. In rewriting systems the

normal form is the term to which a given term may be reduced that could not be anymore

re-written. In our skeleton context, normal form represents the “more performant” rewriting

of a given term, which is the term that cannot be re-written any more without incurring in

some kind of performance penalty. C

138stream parallel skeletons only, stateless, with this particular performance model of the implementation
of the skeletons provided to the programmer

D
ra
ft

154 ADVANCED FEATURES

9.3.1 Model driven rewriting

Most of the rewriting rules given in Sec. 9.2 are bi-directional, that is, they can be used to

rewrite the left hand side skeleton expression into the right hand side one or vice versa.

If we consider a skeleton program ∆ and:

• the target architecture,

• the implementation of the skeletons appearing in ∆

• the performance models associated to the implementation of the skeletons appearing

in ∆

the problem of finding the “best” rewriting of ∆ (with respect to some performance measure

M is quite difficult.

If a set of rewriting rules R = {∆1 → ∆2,∆3 → ∆4, . . .} exist, a program ∆ may be

used to generate the rewriting tree RwTr(∆,R) such as:

• ∆ is the root of the tree RwTr(∆,R)

• if a rule ∆i → ∆j applies to node Nk ∈ RwTr(∆,R) (that is Nk is a skeleton

expression ∆Nk
with a sub term matching ∆i), then Nk is linked to a son node where

the occurrence(s) of ∆i in ∆Nk
have been replaced by ∆j .

The RwTr(∆,R) may be infinite. We therefore use the performance models relative to M
to restrict the number of nodes in the tree as follows139:

• we start with RwTr(∆,R) being made of the only node ∆ with no son nodes.

• we expand the leaves in the tree by one step, i.e. we consider, for each leaf node Nk
as many new son nodes as the number of rules in R matching the skeleton tree of Nk
and obtained rewriting the skeleton tree of Nk with these rules.

• we evaluate the performance measure of interest M on all the new leaves and we

flag all the new nodes with the corresponding M values. Then, for any new node Ni
added (with its associated performance measure pi)

– if pi ≥ min{pj | Nj ∈ {set of leaves in the previous iteration tree}} we stop

expanding Ni

– otherwise, we insert the new node Ni in the skeleton tree

• if the tree has at least one new node, we cycle expanding the tree leaves again.

The tree generated this way is finite as we assume to have available a finite number of

processing resources to implement the skeleton tree and any performance measure chosen

will be eventually bound by the amount of resources available. As the process of building tree

nodes is monotonic, we will eventually reach the performance limit and therefore terminating

the generation of the rewriting tree.

In the final tree, the leaf node Nj with the better associated performance value pj will

eventually represent our “best rewriting” of ∆ with respect to the set of rules R.

139this is a branch-and-bound like approach

D
ra
ft

ADAPTIVITY 155

Figure 9.1 General adaptation process

9.4 ADAPTIVITY

Most of times, parallel programs execution needs to take into account with variations of the

execution environment. These variations may be:

Endogenous that is depending on the parallel application features. As an example, a

parallel application may be such that computations phases have different “weights”

and therefore, in case they are executed on a constant number of processing resources,

in some phases the available resources are underutilized and in other phases they are

over utilized. This obviously leads to poor application performance, in general.

Exogenous that is depending on the target architecture features and/or behaviour, which

represent causes somehow “external” to the parallel application. This is the case of

non exclusive target architecture access, for instance. If another (parallel) application

is run on the very same resources our application is currently using, the load share

may lead to a poor performance of our application. Or, in case there is a kind of “hot

spot” in Operating System activities, the same kind of impact on the running parallel

application may be observed, even in case of exclusive target architecture access140.

Therefore, dynamicity in the conditions related to parallel application execution generates

two distinct kind of problems:

• resource under utilization, which is bad as unused resources may be dedicated to more

useful tasks instead, and

• resource over utilization, which is bad as more resources could greatly improve the

overall application performance, if available.

In turn, these two kind of problems have different effects on the execution of parallel appli-

cations:

• load unbalancing may be verified,

140this is the case of operating system activities scheduled at fixed times, such as backup activities, for
instance.

D
ra
ft

156 ADVANCED FEATURES

• performance is unsatisfactory,

• efficiency is poor.

Therefore it is natural to think to the implementation of some kind of adaptivity process that

could dynamically adapt the application execution to the varying features of the execution

environment or to the varying needs of the application itself.

e.g.� Adaptation has been included in some applications, not using skeletons, actually. As an
example multi-grid applications, i.e. those applications that analyze phenomena that happen
to have different effects in different space portions usually adapt the computation to space
portions features. Let suppose you want to compute the fluid dynamics of airflow on an
airplane wing. Simulation must be more accurate in the space portions where more complex
dynamics take place, such as on the front wing borders. Less accurate simulation is enough
on flat wing surface space portions, instead. Therefore, if we want to tackle the problem with
a kind of data parallel approach and we divide the wing space in equal portions, the portions
simulating airflow on the wing border will over stress the computing resources they have got
assigned while (comparatively) the portions simulating airflow on wing flat surface will under
utilize the (same dimension) resources assigned. This require some kind of adaptation. In
multi grid applications such as the one just mentioned this may consist in

Static adaptation The partition of the overall simulation space takes into account the
features of the computation and splits more deeply those areas subject to more intensive
computations, in such a way eventually all the partitions generated achieve a good load
balancing.

Dynamic adaptation The initial partitioning is uniform (a number of partitions with sim-
ilar dimensions) but then, at run time, in case a partition turns out to be “too compu-
tationally intensive”, it may be dynamically split in such a way the resulting partitions
use both the resources previously assigned to the original partition and further resources
dynamically recruited.

Now, when unstructured parallel programming models are used, the adaptation is actually

programmed by intermingling adaptation code with the application code (functional and

related to parallelism exploitation). This requires notable extra-knowledge to the application

programmer and also contributes to poor maintainability of the resulting code. C

The structure of general purpose adaptation process suitable to manage dynamicity in

parallel applications have been studied by different authors. A general adaptation schema

has been proposed in [7] which is represented in Fig. 9.1. In this case:

• The adaptation schema is clearly organized in two steps:

DS Decision step: the behaviour of the execution of the application is monitored

and analyzed. Possibly, decisions are taken concerning the adaptation of the

application, in case it does not perform as expected.

ES Execution step: a plan is devised to implement the decisions taken in the decide

step and this plan is eventually executed in such a way the decision could be

implemented.

In turn, the decision step may be logically divided into monitoring and analyze steps

and the execution step may be logically divide into plan and execute steps, with

obvious “semantics” associated to each one of these phases.

• The adaptation schema is also logically divided in two layers:

GL Generic layer. This encapsulates all the generic–i.e. non specific of the particular

application at hand–decisions and actions.

D
ra
ft

ADAPTIVITY 157

DSL Domain specific layer. This encapsulates all the details more specifically related

to the particular application domain.

• Eventually, the whole adaptation process has some parts that are application specific

and some that are implementation specific. In particular:

– The monitor, plan and execute phases are implementation specific. They rely on

the mechanisms provided to perceive application behaviour (called sensors) and

on those provided to actuate decisions (called actuators).

– The analyze phase is completely application dependent and de facto it embodies

all the details specific of the application at hand.

Let us analyze more in detail the two steps of the adaptation process.

9.4.0.1 Decision step In the first part of the decision step the current behaviour of the

application execution is monitored. The necessary monitoring activity is usually planned

at compile time by inserting proper monitor “probes” into the application parallel code.

This activity is usually referred to by the term code instrumenting. Code instrumenting

can be organized such that it is automatically handled by the compiling tools or performed

under user (the programmer, in this case) responsibility. In the former case, the compiling

tools must be exposed with the parallel structure of the application to be able to place the

probes in the more appropriate places within the application source code. In general, the

monitoring phase of the decision step is greatly impacted by the number and kind of probes

available on the target architecture.

e.g.� Most of modern architectures (CPUs) provide hardware counters that can be used to measure

clock cycles spent in a computation, as well as cache hits/misses and other measures of

interest to determine the performance of an application. In case these hardware counters are

not available, then more approximate measures can be obtained through operating system

probes. The quality of the monitoring results is consequently more approximated. C

In the second part of the decision step the current behaviour of the application–as exposed

by the monitoring phase–is analyses and decisions are possibly taken concerning adaptation

actions to be performed. This phase must be supported by some kind of abstract perfor-

mance modeling of the application at hand. The performance figures computed using the

abstract models should be compared to the performance figures actually gathered through

monitoring. In case the two measures do not match, adaptation is required.

Once established that adaptation is required, the analysis phases must be able to figure

out which abstract adaptation actions may be taken to handle the mismatch in between

observed and predicted performances. Possible abstract actions include increase/decrease

the parallelism degree and load re balancing, as an example, but also more complex actions

such as complete restructuring of the parallel application, that is changing the parallelism

exploitation pattern–or the pattern composition–used to implement the application.

The analysis phase may be implemented with one of two possible “general behaviours”

in mind:

• It can be implemented as a reactive process. The analysis phase reacts to the mon-

itored events not matching the expected application behaviour and decides to take

corrective actions impacting future application behaviour.

• It can be implemented as a proactive process. The analyze phase proactively takes

decisions that try to anticipate possible misfunctioning of the application. It digs

monitored events and performances to look for symptoms of future misfunctioning

and reacts to the symptoms–rather than to actual misfunctioning–in such a way the

appearance of misfunctioning is prevented.

D
ra
ft

158 ADVANCED FEATURES

Figure 9.2 Adding worker plan

9.4.0.2 Execution step The execution step is actually built out of two distinct activities.

The first activity is aimed at devising a suitable implementation plan for the decisions taken

in the decision step. The second one is aimed at actually implementing the decisions taken

on the running application according to the plan just devised.

During the plan devising phase, the ongoing computation may proceed without any kind

of interference. As a matter of fact, apart from the monitoring phase of the decision step

and the commit phase of the execution step, the current computation is not impacted by the

adaptation process. Also, during the devising phase the parallel structure of the application–

exposed through the skeleton tree actually used in the application–is exploited to devise

the precise points of intervention on the running application to be used to implement the

adaptation decision taken. In particular, solutions requiring a minimum downtime of the

running application will be taken into account.

e.g.� When implementing the decision to increase the parallelism degree of a farm, we both the
following implementation plans are feasible141:

1. stop farm template execution, then recruit a new processing resource, then deploy and
start worker code onto the recruited resource, then link the worker to the emitter and
collector processes, restart farm execution.

2. recruit a new processing resource, then deploy and start worker code onto the recruited
resource, then stop template execution, then link the worker to the emitter and collector
processes, restart farm execution (see Fig. 9.2).

Clearly, the second plan requires much smaller downtime than the first one as during all

the process of resource recruiting and of remote code deployment, the farm template may

continue its normal operations. C

At the end the plan devising phase, we may assume an ordered list of actions 〈a1; . . . ; ak〉
is devised that will implement the decisions taken in the decision phase. Each action ai is

defined in terms of the actuators provided by the implementation of the skeletons affected

by the adaptation decision. This means that in case of template based skeleton frameworks

the templates implementing skeletons should provide actuators to implement any reasonable

adaptation action. In case of a macro data flow based framework, the implications are

more relative to the possibility of change on-the-fly the template used to implement the

distributed macro data flow interpreter, instead.

141we assume the farm is implemented through an emitter-workers-collector template such as the one
discussed in Sec. 4.2.1

D
ra
ft

ADAPTIVITY 159

If we take a “template first” viewpoint, instead, the actuators provided by the templates

determine the kind of dynamic142 adaptation decision the system can actually implement.

It is clear, in fact, that if a the system does provide, as an example, mechanisms to stop the

execution of our template and to modify the mechanisms or the configuration used during

template execution, it will be impossible to actuate any kind of decision taken during the

adaptation process.

The second phase of the execution step simply scheduled and applies actions 〈a1; . . . ; ak〉
onto the current running application. At the moment being we are only considering con-

secutive actions, that is we assume that the sequence ai; ai+1 has to be executed as

first execute action ai and then execute action ai+1.

Nothing prevents to adopt a more structured action plan language. As an example, we

can assume that actions are defined by a grammar such as:

Action ::=
<simple action>

| Action then Action
| Action par Action

where we interpret the second clause as “do first action then do the second one” and the

third one as “do the first and the second action in parallel”.

Also, we should consider the possibility that each action corresponds to a finite sequence

of “actuator mechanisms calls”, as the actuator mechanisms provided by the system may

range from low level ones–simple, RISC style mechanisms–to high level ones–corresponding

to full actions or event to entire parts of actions plans.

e.g.� To illustrate how the adaptation process discussed in this section works, we consider a simple
data parallel computation and we discuss all the aspects related to adaptation in detail.

The application we consider is such that it can be expressed using a single data parallel
skeleton. Computation at the workers is sequential. The expected performance will be
roughly proportional to the number of workers used in the implementation of the data parallel
skeleton143.

During the monitoring phase we must gather information concerning the progress of our
application. If the data parallel skeleton actually worked on a stream of data parallel tasks,
it would be probably enough to gather data relative to the service time of the data parallel
skeleton. This needs only one kind of sensor, namely the one reporting the inter-departure
time of results from data parallel template “collector” process, that is from the process in
charge of delivering the results onto the output stream. However, if no stream is present144,
we must be able to monitor the progress in the computation of a single data parallel task, the
only one submitted for computation. In this case, all worker processes must be instrumented
in such a way they report the percentage completed of the task(s) they received. This is a
little bit more complex to be implemented, as a sensor. First of all, each worker must know
a way to devise the percentage of work already performed. This is clearly an application
dependent issue. Therefore only the programmer may probably be able to write this sensor.
In some simple cases, the sensor may be determined from the skeleton and from the template
structure. As an example, in embarrassingly parallel computations on arrays, each sub-item
yij of the result is computed applying some kind of f to the corresponding sub item xij of the
input data structure. The implementation template will probably assign a range of indexes
〈[imin, imax], [jmin, jmax]〉 to each one of the workers. Therefore each one of the workers will
execute a

for(i=imin; i<imax; i++){for(j=jmin; j<jmax; j++)

142and run time
143we assume to use a template based skeleton framework
144as in a pure data parallel computation

D
ra
ft

160 ADVANCED FEATURES

and as a consequence at each iteration it will be able to give the percentage of the iterations
already performed.

During the analyze phase we reason about the progress of our data parallel computation.
We may observe different situations that may possibly be corrected with a corrective action:

– workers computed sensibly different amounts of the assigned work. This denotes load
imbalance than in turn will eventually produce poor performance. Therefore the com-
putations assigned to the workers that have currently computed much less than the
other workers may be split and partially re-distributed to new workers, recruited to the
purpose. Alternatively, the computation assigned to these workers may be split and the
“excess” portions may be delegated to the workers currently performing better than
expected, if any.

It is worth pointing out that

∗ load imbalance may be due to extra load charged on the processing resources used
by the under performing workers, but also

∗ load imbalance may be due to intrinsically heavier work loads assigned to the
workers. Equal size partitioning of sub-items to workers is not the optimal choice in
case of sub-items requiring sensibly different times to be computed, as an example.

– workers computed fairly equal amounts of the assigned work, but this amount does
not correspond to the expected amount. In this case, we can assume that the target
architecture eventually is “slower” than expected and therefore we can assume to re-
distribute work among a larger number of workers, with extra workers recruited on-
the-fly to the computation.

– workers computed fairly equal amounts of the assigned work, but this amount sensibly
exceeds the expected amount. In this case, we can assume that the target architecture
eventually is “faster” than expected and therefore we can assume to re-distribute work
among a smaller number of workers, dismissing some of the workers currently used.

During the planning phase, several alternative decisions can be made. As an example:

– when working on an embarrassingly parallel data parallel skeleton, the plan should
include the actions:

∗ stop worker with excess load, split load still to be computed in two parts, then in
parallel

· re-assign the worker the first part, restart the worker and

· stop a worker with low load left to compute, re-assign the second partition to
the worker and restart it.

– when working on a stencil data parallel skeletons, the plan should include the actions:

∗ wait for a barrier to be executed145

∗ then proceed as in the case of the embarrassingly parallel skeleton, that is stop the
worker with excessive load, split load ... etc.

C

9.5 BEHAVIOURAL SKELETONS

Behavioural skeletons have been introduced in early 2000s with the aim of supporting

autonomic management of non functional features related to skeleton implementation. In

particular, the first non functional property taken into account was performance.

A behavioural skeleton is the result of the co-design of a parallelism exploitation pattern
and of an autonomic manager, taking care of some non functional feature related to
the parallelism exploitation pattern implementation.

145this is the mechanisms usually employed to synchronize workers before starting a new iteration, in such
a way all the workers start with a consisted “neighborhood to collect stencils

D
ra
ft

BEHAVIOURAL SKELETONS 161

Figure 9.3 A behavioural skeleton (abstract view)

The concept behind behavioural skeleton is simple. By exposing the parallel compu-

tation structure to the autonomic manager, the manager may quite easily implement the

adaptation schema discussed in Sec. 9.4. The complete separation of concerns between

pattern implementation–taking care of the details related to parallelism exploitation–and

manager–taking care of non functional features–allows very effective adaptation policies to

be implemented. Eventually, the separation of concerns allows very clean and effective inter-

faces to be implemented exposing parallel pattern implementation (monitoring/triggering

interface) and the parallel pattern mechanisms suitable to intervene on pattern implemen-

tation (actuator interface) to the autonomic manager.

Also, the complete separation of concerns between pattern implementation and pattern

non functional management allows management policy reuse across different skeletons with

similar implementations.

e.g.� As an example, once a proper performance management policy has been developed in an au-

tonomic performance manager controlling a task farm emitter-workers-collector implementa-

tion, the very same policy could probably be reused in the implementation of an autonomic

performance manager controlling an embarrassingly parallel skeleton, that will probably run

a very similar scatter-workers-gather implementation. C

A behavioural skeleton (see Fig. 9.3) is made out of separate and cooperating entities,

both active and passive, namely:

Parallel pattern (active+passive) This is actually the parallel pattern implementation

template , that is the part actually computing–in parallel–the function exposed to the

user/programmer by the behavioural skeleton.

Autonomic manager (active+passive) This is the manger taking care of non func-

tional features related to the pattern implementation. It implements the adaptation

policies as outlined in Sec. 9.4.

D
ra
ft

162 ADVANCED FEATURES

Autonomic controller (passive) This component of the behavioural skeleton embodies

the interfaces needed to operate on the parallel pattern execution, both the monitor-

ing/triggering and the actuator ones.

Active parts of the behavioural skeleton are implemented with their own control flow (e.g.

as threads, processes or components), while the passive parts are implemented in such a

way their services may be started from an external, independent control flow. In particular:

• the autonomic controller is passive in that it only provides services modeled by the

monitoring, triggering and actuator interfaces. Monitoring and actuator interfaces

may be invoked from the behavioural skeleton manager active part. Triggering inter-

face is usually invoked by the manager active part to register proper callbacks to be

invoked when a given event happens in the parallel patter execution.

• the parallel pattern passive part provides the interfaces needed to operate the pattern,

that is to submit task(s) to be computed and to retrieve the corresponding computed

result(s). These interfaces are known as the behavioural skeleton functional interfaces.

• the autonomic manager passive part provides instead the non functional interfaces,

that is those interfaces that may be used from outside to monitor behavioural skeleton

execution (that is to retrieve measures and parameters relative to the behavioural

skeleton execution progress) and/or to intervene on the behavioural skeleton manager

policies (that is to re-define the management policies of the manager).

The functional and non functional interfaces of behavioural skeletons may be imple-

mented in two different styles: in RPC/RMI style or in a more conventional146 send/receive

data flow channel style.

• In the former case, computing services offered by the behavioural skeleton may be in-

voked as we invoke a remote procedure or method. The invocation may be synchronous

of asynchronous. If synchronous, the invocation is blocking and we’ll eventually get

the result of the service as result of the remote procedure/method invocation. If asyn-

chronous, instead, we will immediately get an handle (usually a future) that represents

the result that will be eventually computed by the behavioural skeleton. Once the

result is actually needed the handle (future) reification may be invoked. This invo-

cation is synchronous and will only terminate when the handle (future) is actually

substituted by the actual computed value.

• In the latter case, instead, behavioural skeletons will implement ports (kind of com-

munication channels) and services may be invoked sending data items to proper ports

and receiving results from other ports.

The very first behavioural skeletons have been designed and implemented within the

reference implementation of the GCM, the CoreGRID Grid Component Model. In that

case:

• each behavioural skeleton was provided as a compound component

• the autonomic manager (AM) and the parallel pattern were components

• the autonomic controller (AC) was part of the interface of the parallel pattern com-

ponent

• the behavioural skeleton non functional interface was the interface of exposed by the

autonomic manager component

146at least from the parallel processing viewpoint

D
ra
ft

BEHAVIOURAL SKELETONS 163

Figure 9.4 Functional replication behavioural skeleton

• the behavioural skeleton functional interface was the interface exposed by the parallel

pattern component

• autonomic managers was only taking care of performance of the parallel patterns

• pipeline and functional replication behavioural skeletons were implemented. The func-

tional replication behavioural skeleton could be specialized to implement both stream

parallel and data parallel embarrassingly parallel computations.

9.5.1 Functional replication behavioural skeleton in GCM

Fig. 9.4 shows the structure of the functional replication behavioural skeleton. Functional

replication behavioural skeleton (FRbs) operates as follows:

• the functional server port accepts input stream data items and schedules them for

execution to the FRbs internal worker components.

– If the FRbs is configured as a stream parallel behavioural skeleton, each input

data item is scheduled one of the worker components in the FRbs. The schedul-

ing policy may be customized by the programmer instantiating the FRbs. The

default scheduling policy is “on demand”: the task is scheduled to the first worker

component asking for a new task to compute.

– If the FRbs is configure as a data parallel behavioural skeleton, each input task

is split into a set of partitions (one for each internal worker component) and this

partition set is scattered to the set of internal worker components.

• the worker components implement a loop. The loop body starts asking for a new task

to be computed, then proceeds computing the task and sending the results to the

client port delivering the FRbs results. Possibly double or triple buffering techniques

are used to hide communication latencies (see Sec. 7.3.1).

• the functional client port receives results from the internal worker components and

delivers them to the FRbs output stream.

– In case the FRbs is configured as a stream parallel behavioural skeleton, each

item received from an internal worker component is delivered to the FRbs output

D
ra
ft

164 ADVANCED FEATURES

stream, possibly after a reordering phase aimed at maintaining the input/output

ordering of tasks/results.

– In case the FRbs is configured as a data parallel behavioural skeleton, the client

port waits–in a sort of barrier–a result item from each one of the internal worker

components, then it rebuilds the global result and this result is eventually deliv-

ered to the FRbs output stream

• the autonomic controller AC implements the monitoring and actuator interfaces of the

pattern. Monitoring interface provides methods to read the amount of tasks already

computed (completed) by the FRbs, the current parallelism degree, the service time

delivered by and the inter arrival time measured at the FRbs. Actuator interface ba-

sically provides two services: one to increase and one to decrease the FRbs parallelism

degree.

• each FRbs is given a performance contract either by the user or by the upper level

behavioural skeleton in the behavioural skeleton nesting. The performance contract

establishes, in the form of a Service time, the non functional behaviour expected by

the user and therefore the goal to achieve through autonomic management policies in

the autonomic manager of the FRbs

• the autonomic manager includes a JBoss business rule engine147. Such engine pro-

cesses a set of pre-condition → action rules. The set of rules is processed in steps:

1. first, all the pre-conditions are evaluated. Pre-conditions, in our case, include

formulas on the values provided by the autonomic controller monitoring interface.

As an example, a pre-condition may be

AC.currentServiceTime()≤X AND AC.parDegree==Y

2. then the rules with a true pre-condition are considered. The Rete algorithm is

used to pick up one of these rules as the candidate rule

3. the candidate rule is executed, that is action part is executed. The action part

of the rule is made of a sequence of FRbs autonomic controller actuator interface

calls.

The autonomic manager of the GCM behavioural skeletons works in quantum dead-

lines. Each behavioural skeleton is associated with a quantum time. In a loop, a timer

is started with this quantum time. When the timer elapses, the JBoss rule engine is

run, and the loop is started again.

• Sample policies implemented in the FRbs manager include:

– augmenting the parallelism degree in case the inter arrival time is smaller than

the current service time

– lowering the parallelism degree in case the current service time is much better

than the user specified performance contract

– avoiding taking an increase/decrease parallelism degree decision in case a de-

crease/increase decision as just be taken. This avoid fast fluctuation of the FRbs

around a given parallelism degree value.

147The JBoss rule engine has been first used in a SCA based implementation of behavioural skeletons.
The very first behavioural skeletons in GCM used plain Java code to implement the autonomic manager
(policies)

D
ra
ft

BEHAVIOURAL SKELETONS 165

This kind of behavioural skeleton has been demonstrated effective in different situations,

including:

Computation hot spots In case a computation traverses an “hot spot”, that is a sit-

uation where the currently available resources are not sufficient to exploit all the

parallelism present, new resources are recruited and allocated to the computation

(e.g. as new workers) in such a way the hot spot effects are reduced. The recruited

resources are automatically released when the computation needs lower again after

the end of the hot spot.

Target architecture overload In case a computation is executed on a target architecture

whose nodes become overloaded by other applications, the autonomic manager suc-

ceeds recruiting more resources to the computation is such a way these new resources

supply the computing power missing from the overloaded resources. As before, the

recruited resources are automatically released when the target architecture nodes are

anymore overloaded.

Initial parallelism degree setup Long running applications may be started with an ar-

bitrary initial parallelism degree. The autonomic manager will recognize whether or

not this parallelism degree supports the user supplied performance contract and in-

tervene on the parallelism degree consequently. Eventually, the application will reach

a state such that the measured service time matches the user performance contract.

Some further points are worth to be mentioned, concerning GCM behavioural skeleton

implementation:

• the autonomic management policies implemented are best effort. In case the user asks

for a contract that could not be achieved due to limitation of the target architec-

ture or of the parallelization chosen for the application at hand, it will stop to the

closest performance that can be achieved with the parallel pattern and management

mechanisms available

• the autonomic management is actually reactive, in that it only reacts to situations,

rather than trying to anticipate problems.

9.5.2 Hierarchical management

Up to now, we only considered original behavioural skeletons, as defined within CoreGRID

and GridCOMP EU funded research projects. These behavioural skeletons were imple-

mented in such a way that they could be functionally composed (e.g. a pipeline stage could

be implemented with a FRbs) but no coordination among managers of different behavioural

skeletons was supported.

Later on, the possibility to implement hierarchical management in behavioural skeleton

nesting has been explored. The idea was to implement policies suitable to implement

performance (the first non functional concern considered) as a whole in the overall nesting

of behavioural skeletons used to implement the user application. This means:

• to have a single user defined performance contract. Formerly, each behavioural skele-

ton needed its own performance contract, not related to the contracts provided to the

other behavioural skeletons appearing in the application.

• to be able to derive from the unique, application related user provided contract con-

tracts and policies suitable to manage all the behavioural skeletons of the application

• to be able to coordinate manager policies according to the hierarchical composition of

managers deriving from the hierarchical composition of behavioural skeletons in the

user application.

D
ra
ft

166 ADVANCED FEATURES

Figure 9.5 Sample manager tree

e.g.� Consider the manager tree of Fig. 9.5. This tree corresponds to the managers appearing in
a behavioural skeleton tree (nesting) such as:

pipe(seq(C1),pipe(farm(seq(C2)),seq(C3)))

When designing coordinated, hierarchical autonomic management of performance in this
behavioural skeleton composition we wish:

– to be able to supply a single performance contract related to the overall application.
E.g. a single contract stating that the application must be implemented with a service
time of at most ts.

– to be able to derive, from the single performance contract, one “local” performance
contract for each one of the managers in the tree. These local contract are the ones
that, once satisfied, ensure the achievement of the overall, application performance
contract.

– in case of failure of one of the managers, i.e. in case the manager does not succeed en-
suring its local performance contract, the manager should inform its “parent manager”
of the failure, in such a way more global adaptation actions can be taken, possibly
involving issuing a new local contract for this manager.

C

We will now discuss the different problems related to hierachical, coordinated non func-

tional feature management in behavioural skeletons.

9.5.2.1 Contract propagation The first problem is contract propagation. How can we

derive local contracts for skeletons used as parameters of a parent skeleton, once the contract

relative to the parent skeleton is known? In general, the process depends on both the type

of the skeletons involved and in the type of non functional concern managed.

The specification of the contract propagation rules is therefore a task of the manager

designer that uses knowledge and expertise from the parallel pattern designer.
The main rule to implement while designing contract propagation can be stated as follows:

for any skeleton S(∆1, . . . ,∆k), given a contract CS k contracts CS1 , . . . , CSk have to
be derived. Each new contract CSi will be a function of CS, type(S) and type(∆i) and
it will be such that, if skeleton (manager of skeleton) ∆i ensures CSi , for any i ∈ {1, k}
then CS is automatically ensured.

D
ra
ft

BEHAVIOURAL SKELETONS 167

We assume, of course, that the user provided performance contract is actually the topmost

skeleton initial contract.

e.g.� To exemplify the process, we consider again performance contracts in the form of required
service times and and a (behavioural) skeleton framework supporting pipelines and farms,
that is, stream parallel only skeletons.

The contract propagation rule is defined by induction on the skeleton type as follows:

Pipeline In a pipeline with service time contract tS
148 the local contracts of all the pipeline

stages are the same as the pipeline contract. This follows from the performance model
of pipeline service time stating that the service time of a pipeline is the maximum
among the service times of the pipeline stages.

Farm In a farm with service time contract ts the service time of the workers is set to ts×nw,
with nw being the number of workers in the farm. This follows from the performance
model of the farm stating that the service time of the farm is the minimum among the
emitter service time, the collector service time and the worker service time divided by
the number of workers, under the assumption the the emitter and the collector are not
bottlenecks in the farm implementation.

Seq A sequential portion of code wrapped in a sequential skeleton inherits the service time
contract of its parent skeleton (as it happens for pipeline stages).

C

It is clear that although this rules must be eventually implemented by the manager designer,

they definitely require all the knowledge available from the managed parallel pattern de-

signer. The result of application of this contract propagation rule to the behavioural skeleton

composition of Fig. 9.5 is the one illustrated in Fig. 9.6.

e.g.� Consider now the same skeleton framework, but assume managers must take care of com-
putation security. In particular, assume that security in this contexts means ensuring confi-
dentiality and integrity of data and or code processed and used by the application. In this
case, the contract propagation rule may be simply stated as follows:

– the contract of the parent skeleton is inherited by nested skeletons.

This follows from the features of the particular security non functional concern considered.

It is a binary property: either it holds or it does not hold. Therefore if the user asks the

application to be secure, all the skeleton used must ensure “local” security. C

9.5.2.2 Manager coordination The second relevant problem related to coordinated and

hierarchical management of non functional features in a behavioural skeleton composition

is even more important. It consists in the design of the coordinated management policies

to be run among the different managers involved in the behavioural skeleton composition.

In this case we must devise proper policies to handle impossibility for a behavioural

skeleton manager to ensure its local contract. This is the only case of interest as when

all the managers succeed ensuring their local contract, the global contract is ensured “by

construction”, that is by the procedure used to derive the local contracts.

Once again, the handling of the manager fault in ensuring the local contract must be

properly set up by the autonomic manager deisgner and requires specific knowledge relative

to parallel pattern and to the particular non functional feature managed. The general policy

to handle local failures can be stated as follows:

A manager failing to ensure the local contract keeps maintaining its current configura-
tion and reports the local contract violation to the parent manager. “Keep the current

148that is required to guarantee at a service time TS(pipe) = ts

D
ra
ft

168 ADVANCED FEATURES

Figure 9.6 Sample performance contract propagation

configuration” means that no more adaptation decisions are taken up to the moment
a new contract will be received from the parent manager. This “wait” state is called
manager passive mode.

A manager receiving from a “son” manager a contract violation message will re-
formulate its own management policy in such a way the sub-manager local contract
violation could be accommodated. In case the re-formulation succeeds, the manager
will deliver new performance contracts to all of its “son” managers. In case it does not
succeed, the violation will be recursively reported to parent manager.

In case a contract violation is eventually reported by the top level manager, this is
simply exposed to the user that may decide whether to continue in the execution of the
“sub-performing” application or to stop it.

e.g.� To show how this policy may be implemented, we take again into account the behavioural
skeleton composition of Fig. 9.5 and the same stream parallel behavioural skeleton framework
considered when discussing contract propagation. Let us assume the manager of the first
sequential skeleton (the first pipeline stage) may vary the rate producing result items onto
the output stream, and let us assume an initial configuration of the program (that is an
initial parameter nw, the number of the workers in the second stage farm).

In case the processing elements that run the farm workers become overloaded because of some
external program run concurrently with our skeleton application, the farm would eventually
verify a service time no more ensuring the performance contract received.

The farm manager could apply the policy whose effect final effect is recruiting new resources
and allocating more farm workers on these resources. If these resources may be actually
recruited, the farm manager may locally re-ensure it contract. In case no new resources
may be recruited149, the performance manager of the farm will block any further adaptation
process and communicate the local contract violation to the parent manager, that is to the
manager of the pipeline skeleton.

The pipeline skeleton will therefore be made aware of a situation such that the first and the
last stages perform better than the second one. As this is not useful at all, as the performance
model of the pipeline states the pipeline service time is the maximum of the service times
of its stages, the pipeline manager may resend to all its stages a new performance contract
stating the service time should be the one currently provided by the second stage farm.

As a consequence, the first stage could decrease its delivery rate. Being a sequential stage,
this does not actually save any processing element resource as it will happen if the first stage
was a farm, as an example150. However, it may impact power consumption of the node or

149e.g. in case there are no additional resources available
150in case it was a farm, the decrease in the service time allowed by the new contract could lead to the
release of resources used for one or more workers

D
ra
ft

BEHAVIOURAL SKELETONS 169

Figure 9.7 Hierarchical management of a contract violation

even this may allow to move the node on a less performant–and therefore less “expensive”–
processing node151.

In case the farm manager could not cooperate with its parent manager, instead, the violation
of the contract would be confined to the farm and therefore no resource optimization could
have been achieved.

It is worth pointing out that the violation eventually observed by the pipeline manager must

be reported to the application user. The violation may be reported as a non functional

exception. As for any exception, it can be “trapped” and managed by the user or explicitly

ignored. C

The example just discussed only details what can be done by the manager hierarchy in

presence of a violation of a contract that cannot be solved. A much more interesting case is

the one discussed below, concerning a situation when a local contract violation may actually

be solved by the hierarchy of managers.

e.g.� We consider the same situation discussed in the last example. The user asked for a service
time TS = ts. After a while, all the three stages satisfy their “local” contract that happens
to be the same as the user supplied one, due to pipeline semantics.

Some overload on the node where the first stage is allocated makes the first stage unable to
match its local contract anymore.

The first stage autonomic manager enters the passive mode and raises a violation exception
to the pipeline manager. This happens as there is no way for a sequential code to improve
its performance152.

The violation of local contract by the first stage impacts also the second stage farm. In this
case the farm will not be able to deliver the service time ts required by its local contract as
the inter arrival time of the tasks to be computed will be at most t′s which is larger than ts
and no matter the number of workers included in the farm the farm service time will always
be bound by this t′s.

151the situation is shown in Fig.9.7
152we are taking the black-box approach here, that is we assume that no intervention is allowed on the
sequential code wrapped in skeleton parameters.

D
ra
ft

170 ADVANCED FEATURES

Figure 9.8 Skeleton tree rewriting in hierarchical management

Now the pipe manager will get the two violations from first and second stage. The first

one will be a simple ContractViolation(t′s) while the second one should be something

different expressing the fact the violation is due to the behaviour of the modules external

to the farm, such as a NotEnoughInput(t′s). The pipe manager may therefore decide

to improve the service time of the first stage by transforming this seq(C1) stage into a

farm(seq(C1)) stage. This eventually will lead to the full ensuring of the local contract

at the first stage and, consequently, at the second stage also. This situation is depicted in

Fig. 9.8. C

9.5.3 Multi concern management

When considering behavioural skeletons and autonomic management of non functional fea-

tures in parallel applications we should take into account that normally more than a single

non functional concern is of interest relatively to parallel applications.

Notable non functional concerns to be taken into account, along with the main manage-

ment goals are listed in Table 9.1. The question we must answer now is “can we design

manager policies that allow more than a single non functional concern to be managed by

the same manager hierarchy?” This would constitute a big improvement of the results dis-

cussed in the previous Section and relative to the autonomic management of a single non

functional concern coordinated through a hierarchy of managers.

However, if we take again into account separation of concerns, another question comes

immediately in mind: how may we force security and performance experts to work together

to implement a single manager (hierarchy) dealing with both security and performance

issues? It would be much better if complementary approach is followed: performance experts

design performance policies and security experts design security policies. The two sets of

policies are implemented in two independent manager hierarchies. The two hierarchies are

somehow coordinated in such a way no conflicting “adaptation” decisions are taken.

This will of course a better solution:

• experts will only be concerned by their own field of interest issues, and therefore they

will probably come out with excellent (the best possible?) policies.

D
ra
ft

BEHAVIOURAL SKELETONS 171

Non functional concern Main goals in management

Performance Best performance independently of the resources used
Security Code and data integrity and confidentiality
Fault tolerance Tolerate limited amount of faults
Power management Lowest power consumption

Table 9.1 Non functional concerns of interest

• independent managers may be built each monitoring (triggered by) non functional

concern specific values (events) and operating on the parallel pattern by non func-

tional concern specific actions. As the monitor/trigger and actuator interface are

independent, we expect a much simpler implementation.

However, completely independent manager hierarchies are not a good solution, nor coordi-

nating independently developed manager is a simple task.

e.g.� To illustrate the concept, assume two managers have been associated to each behavioural

skeleton pattern, one taking care of performance and one taking care of security. The per-

formance manger may decide a new resource is to be acquired to allocate a new worker that

hopefully will improve some functional replication behavioural skeleton performance. The re-

source will be looked for, recruited, the worker allocated and eventually linked to the current

computation. The computation happens to be the very same also controlled by the security

managers. In case the new resource has been recruited from some “secure” domain (e.g. a

cluster under the complete control of the user running the application, security requirements

may be satisfied at no further cost. No “alien” users are supported by the cluster and there-

fore no (new) risks arise related to security of user application code and data. However, in

case recruited resource belongs to some untrusted domain, or even in case it needs to be

reached through some non secure interconnection link, then these nodes should not be used,

in the perspective of the security manager of, if used, the communications to and from these

nodes should be performed in some secure way. This means that in this case the decision

taken by the performance manager is in contrast with the policies of the security manager.

C

e.g.� Another case illustrating the issues related to concurrent autonomic management of different

non functional concerns is the following one. Assume two manager take care of performance

and power management issues in a parallel computation. The power management will con-

stantly look for more power efficient processing elements to allocate parallel computation

activities. Notably, power efficient processing elements provide worst absolute performance

than power hungry processing elements. If you execute the same code on a Xeon or on an

Atom, you will probably eventually consume less power when using the Atom, but you also

spent much more time waiting for your application to complete. Therefore the performance

manager will constantly look for more powerful processing elements to allocate the parallel

computation activities. If the two managers are run concurrently on the same computation

this will result in one manager destroying the other manager decisions. In turn this repre-

sents a complete waste of resources (time and power).

C

In order to try to orchestrate different managers in such a way some globally “good”

behaviour is achieved aiming at reaching the goals of all the managers involved, we can

take two different ways:

W1 we use a super manager, that is a manager coordinating the decisions of the multi-

ple manager hierarchies used in our application. The situation is the one depicted in

D
ra
ft

172 ADVANCED FEATURES

Figure 9.9 Alternative manager orchestration alternatives

D
ra
ft

BEHAVIOURAL SKELETONS 173

Fig. 9.9 (upper part). In this case, the super manager should coordinate adaptation ac-

tions of the two manager hierarchies. This means that each manager hierarchy should

“ask permission” to the super manager to commit any adaptation action planned. In

turn, the super manager may ask consent to allow the commitment of a given planned

action to the other manager hierarchy.

W2 we don’t use a super manager, but we make managers instances relative to the same

parallel pattern to coordinate each other (layered coordination). The situation is the

one depicted in Fig. 9.9 (lower part). In this case, a manager deciding to take some

adaptation action should “ask permission” to the other(s) manager(s) taking care of

the same parallel pattern before committing the action execution.

In both cases, therefore, the key point consists in the establishment of some mutual agree-

ment protocol in order to avoid that adaptation actions are taken that impair management

policies of some of the involved managers (manager hierarchies).

9.5.4 Mutual agreement protocol

The mutual agreement protocol among a setM1, . . . ,Mm of managers should be designed

such that:

• no adaptation actions are taken by any Mj that may impair the policies of another

manager Mi

• in case, the manager Mi whose policies may be impaired by a decision taken by

manager Mj may grant Mj the permission to execute the planned action provided

it is modified to accomplish Mi policies too.

In case we adopt a layered coordination approach, a simple mutual agreement protocol may

therefore be designed as follows:

Decision step Manager Mi analyzes the current behaviour of the managed parallel pat-

tern and decides an action A should be executed. This decision is taken on the

exclusive basis of the policies implemented by manager Mi.

Consensus “ask” step ManagerMi communicates the decision taken to other managers

Mj (j 6= i) taking care of different non functional concerns for the same parallel

pattern. The decision should be communicated is such a way the other managers

could appreciate its effects. As the only common knowledge between managers is

represented by the parallel structure of the entities participating to the parallel pattern

computation, the decision may be suitably represented by the changes in the current

parallel activities graph. Therefore the communication from managerMi to the other

managers should include information such as

〈A,G,G′〉

where G represents current parallel activities graph and G′ represents the graph even-

tually resulting from the implementation of action A.

Consensus “answer” step Each manager Mj receiving the message from manager MI

analyzes the effects of decision A according to its own management policies and sends

an “answer” message to Mi. The message may be one of three different messages:

1. OK

This means that decision A does not anyway impact the management policies of

D
ra
ft

174 ADVANCED FEATURES

Mj . As far as manager Mj is concerned, action A may be safely committed by

manager Mi.

2. NOK

This means that decision A contradicts some management policy of Mj . As far

as manager Mj is concerned, action A should not be taken by manager Mi.

3. provide(P)

This is the most interesting case, actually. As far as manager Mj is concerned,

action A may be taken by by manager Mi provided that the action is taken in

such a way property P–of interest of manager Mj–is granted.

Commit step Manager Mi gathers all the answers from the other managers and then:

• in case the answers are all of type OK, it commits the action, that is it goes on

executing the planned action

• in case at least one answer of type NOK has been received, the action is aborted.

Possibly, the policies that led to the decision of taking action A are given a lower

priority, in such a way the very same decision is not chosen again in the immediate

future

• in case some provide(P) answers has been received, Mi tries to modify action

A in such a way property P is granted. This produces action A′, as a result. If

an A′ satisfying property P (or the collection of P1, . . . , Pk relative to k provide

messages received) may be computed, it is eventually committed, otherwise the

decision is aborted and the relative policy priorities lowered, as in the NOK

case.

In case we adopted a super manager approach, instead, a similar protocol may have been

implemented in the super manager. In that case, each local manager deciding to implement

adaptation action A will communicate the action plan to its parent manager. Eventually,

root manager will communicate the decision to the super manager. The super manager

will implement the mutual agreement protocol as described above, querying the other top

level managers and collecting answers, and eventually will communicate the decisions to

the querying top level manager. This, in turn, will propagate the decision to the manager

originally raising the request for agreement on action A.

e.g.� In order to better understand how this agreement protocol works, consider the following
example. Two manager hierarchies take care of the same behavioural skeleton composition
implementing a given parallel application. One manager hierarchy takes care of performance
and one of security. Performance contracts are such that:

– a service time of at least ts is required

– both code and data confidentiality and integrity is required

Let us suppose a farm performance manager decides it is under performing with respect to
the contract received and therefore a new worker may be added. Therefore it enters the
recruiting process. Suppose resource RWnew is found. If

G = (N,A)

with

N = 〈E,W1, . . . ,Wnw, C〉

and

A = 〈〈E,W1〉, 〈E,W2〉, . . . , 〈E,Wnw, 〉, 〈W1, C〉, 〈W2, C〉, . . . 〈Wnw, C〉〉)

D
ra
ft

BEHAVIOURAL SKELETONS 175

workerUp
sendAckErr

sendAckNoSec
sendAckSec

recAckOkSec
recAckOkNoSec

recErrAck
sendBroadReq
prepBroadReq

00:00 00:20 00:40 01:00

To
p

M
an

ag
er

s
Lo

gi
cs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

00:00 00:20 00:40 01:00

Fa
rm

 W
or

ke
rs

Adding a "non secure" worker

Adding a "secure" worker

Perf AM

Sec AM

Figure 9.10 Sample trace of mutual agreement protocol operation

was the current parallel activities graph, than the graph resulting from the actual implemen-
tation of the planned action will be

G′ = (A′, N ′)

with

N ′ = N ∪ {RWnew}

and

A′ = A ∪ {〈E,RWnew〉, 〈RWnew, C〉}

At this point the farm performance manager may send to all the other farm managers the
request

〈addWorker,G,G′〉

Now three cases may be given:

1. the security manager, according to its policies and node security property knowledge
decides it is sage to add the new resource RWnew, and therefore answers a OK message
to the farm performance manager, or

2. it decides the new resource RWnew is “nasty” for same reason and therefore it answers
a NOK message to the farm performance manager, or eventually

3. it decides the new resource may be used, provided secure data and code communications
are used. In this case it answers a provide(secureCodeData) message to the farm
performance manager.

Depending on the kind of answer received, the farm performance manager:

1. commits the action, adding RWnew to the farm

D
ra
ft

176 ADVANCED FEATURES

2. aborts the action and manages to avoid in the near future to try to recruit again resource
RWnew

3. manages to modify the action A in such a way secureCodeData is ensured. Now action
A is the high level action add worker. The corresponding plan could be something as

A = 〈deploy, start, link〉

where the deploy action deploys the worker RTS code to resource NRnew, the start
action starts a worker on that resource and eventually, the link action links the new
worker to collector and emitter in such a way it an be used for the farm computation.
Ensuring secureCodeData property, in this context, means different actions, including
at least:

– deploy code that eventually uses secure communication to interact with the emitter
and collector processes (e.g. SSL sockets rather than plain TCP/IP ones)

– use secure mechanisms to deploy the code to the remote resource

C

The mutual agreement protocol just discussed is a possible solution to the coordination

of multiple managers in behavioural skeletons. It is relatively simple, and it has been

demonstrated to be working with stream parallel behavioural skeleton applications with

two managers taking care of performance and security. Fig. 9.10 is relative to the execution

of a farm application whose performance contract was to have a constant parallelism degree

equal to 8. The application was started with a parallelism degree equal to 2. The farm

manager therefore started to plan adding more workers. Some of the resources recruited were

judged “secure” by the security manager, and therefore they are added without taking any

particular action to ensure security in communications, other were judged “not so secure”

and therefore a provide(secureCodeData) was answered (recAckOkSec in the graph) such

that the farm manager used secure worker set up (sendSecAck in the graph) to add the

worker to the farm.

However, the protocol has also some flaws. First of all, the provide(P) messages violate

somehow the separation of concerns principle. Our performance managed is forced to know

about secure deployment and communications, which is not in general something he should

know of, being a performance manager.

Second, in case more that a single provide(P) answer is collected the scheduling of the

modifications of the planned action may actually impair the feasibility of the modification

itself. More in detail, if P1 and P2 must be ensured ensuring first P1 and then P2 may have

different implications and feasibility with respect to ensuring first P2 and then trying to

ensure P1 on the resulting set of modified actions.

Last but not least, this protocol de facto gives priority to negative actions. The NOK

messages always lead to the abortion of the planned action. This ensures the achievement

of the policies of the “forbidding” manager–the one sending the NOK message–but may

be it impairs the achievement of the management policies of the “forbidden” manager–the

one receiving the NOK message–which could be in the situation of not having any more

alternative actions to take to achieve its goals.

However, this represents the only real agreement protocol studied up to know.

9.5.5 Alternative multi concern management

Actually, multiple concern management has also been studied from a completely different

perspective, in parallel programming contexts not using skeletons at all. The approach

followed in that case can be summarized as follows.

We consider a number of functionally equivalent application implementations A1, . . . , Aa.

Therefore Ai computes the same results of Aj but the results are computed differently as

far as non functional behaviours are concerned.

D
ra
ft

BEHAVIOURAL SKELETONS 177

Then we consider the non functional behaviour of interest NF1, . . . ,NFnf and we as-

sume a function fi(p1, . . . , pp) estimating “how much” NF i is being achieved when ap-

plication Ak is executed with a given set of parameters p1, . . . , pp (application or target

architecture related) is also available. We also assume that a linear combination of fi exists

F (p1, . . . , pp) =
∑
i=1,a

aifi(p1, . . . , pp)

that evaluates the collective “goodness” our set of implementations, that is a weighted sum

of the estimated of the goodness of the single non functional concerns achievements on

certain application and target architecture parameters.

Eventually, at each adaptation iteration, we evaluate F for each Aj considering the cur-

rent execution parameters p1, . . . , pp and we chose to adopt for the next step the application

whose F gives the “best” value.

e.g.� In this case, taking into account our sample

pipe(seq(C1),pipe(farm(seq(C2),seq(C3)))

application and performance and security non functional concerns, we will have:

– nf = 2 and with NF1 = performance and NF2 = security

– the set of equivalent applications including i) different versions of the original applica-
tion differing in the parallelism degrees relative to the farm, ii) different versions of the
original application modifies in such a way seq(C1) is rewritten as farm(seq(C1))
differing in the 〈nw1, nw2〉 parallelism degrees considered for the first and second stage
farms, iii) different versions of this last version of the application with seq(C3) rewrit-
ten as farm(seq(C3)) differing in the parallelism degrees 〈nw1, nw3, nw3〉, iv) differ-
ent versions of a farm(pipe(seq(C1),pipe(seq(c2),seq(C3))) differing in the
external farm parallelism degree, v) ...

– function f1 evaluating performance of a given application. The function evaluates the
application with respect to its parallel activities graph mapped on real resources. The
function returns, as an example, the service time of the applications.

– function f2 evaluating security of a given application. The function evaluates the ap-
plication with respect to its parallel activities graph mapped on real resources. The
function returns 1 in case of achievement of the security in the current application, or
0 otherwise.

– two weight parameters a1 and a2. The choice of these parameters is obviously critic.
We have to consider that smaller service times are the better ones and that security is
a “binary” valued function. As an example, we can pick a1 = 1 and a2 = −k being k
a value larger than the maximum service time possible.

– eventually, we can look for the smaller F among all the applications evaluated on the
currently available parameters. In case Aj is the application delivering the best F and
Ai is the current one, we should manage to run an adaptation step rewriting Ai as
Aj . This may simply mean that we have to increase/decrease the parallelism degree of
Ai, if Ai and Aj share the same skeleton tree but differ in the parallelism degree. It
can also require a complete rewriting of the application (e.g. to change the application
parallel patter from a pipe of farms to a farm of pipes). In this case the adaptation
phase will obviously take longer and possibly require an application checkpoint-stop-
transform-restart cycle.

C

It is evident that:

• the critical step in this case is the design of F : the choice of proper ai as well as the

choice of the way to evaluate “best” results (minimum, maximum)

D
ra
ft

178 ADVANCED FEATURES

• solutions like the one discussed above to handle “binary” concerns may be unfeasible

when multiple binary concerns are taken into account, and in general deciding weights

is again a critic issue

• at each adaptation step we must consider all the alternative possibilities. This space is

huge. When adopting the mutual agreement protocol discussed in Sec. 9.5.4 instead,

only the currently proposed application rewriting is to be considered and evaluated

by the other managers.

All this points make this alternative multi concern management strategy slightly less effec-

tive than the one discussed in Sec. 9.5.4.

9.6 SKELETON FRAMEWORK EXTENDIBILITY

One of the major criticisms made to algorithmic skeleton frameworks was related to their

poor or absent extendibility. Traditional algorithmic skeleton frameworks, in fact, do not

allow users to intervene on the skeleton set neither to add new skeleton nor even to slightly

modify the existing skeletons.

As a result, two kind of situations may arise:

• either the programmer succeeds modelling his/her application with (a composition

of) the existing skeletons, or

• there is no way to write the application using the skeleton framework.

This is very bad, actually. The set of skeletons implemented in an algorithmic skeleton

programming framework model most common and used parallelism exploitation patterns.

However it is quite frequent that in order to achieve the very last bit of performance,

programmers usually “fine tune” these patterns in such a way the computation at hand

can be perfectly a very efficiently modelled. A programmer that could not use its favorite,

super-optimized parallelism exploitation pattern would therefore dislike algorithmic skeleton

frameworks.
Cole recognized this problem as one of the most important aspect impairing diffusion

of algorithmic skeletons in the parallel programming community. In his “manifesto” paper
[37], in fact, he lists four principles that must be ensured in order to allow widespread
diffusion of the algorithmic skeleton concept (see Sec. 6.1). One of these principles exactly
states that we must

Integrate ad-hoc parallelism. Many parallel applications are not obviously express-
ible as instances of skeletons. Some have phases which require the use of less structured
interaction primitives. For example, Cannon’s well-known matrix multiplication algo-
rithm invokes an initial step in which matrices are skewed across processes in a manner
which is not efficiently expressible in many skeletal systems. Other applications have
conceptually layered parallelism, in which skeletal behaviour at one layer controls the
invocation of operations involving ad-hoc parallelism within. It is unrealistic to assume
that skeletons can provide all the parallelism we need. We must construct our systems
to allow the integration of skeletal and ad-hoc parallelism in a well-defined way.

Now in order to “construct our systems to allow the integration of skeletal and ad-hoc

parallelism in a well-defined way” we may follow different ways. Each different approach

must taken into account the way skeletons are provided to the user/programmer that is

both the kind of skeletons provided and the implementation model chosen to support these

skeletons.

We distinguish two alternative approaches, that are described in the following sections:

1. skeleton set extension in template based frameworks

D
ra
ft

SKELETON FRAMEWORK EXTENDIBILITY 179

2. skeleton set extension providing controlled user access to intermediate implementation

layer

The two approaches basically differ in the level of access granted to the user/programmer

to the internals of the skeleton framework.

9.6.1 Skeleton set extension in template based frameworks

When implementing a template based skeleton framework we basically have to implement

a set of distinct tools:

• a compiler (or a library), parsing source code (implementing skeleton declaration calls)

and building the abstract skeleton tree

• a template library (see Sec. 4.2.1)

• a compiler assigning templates to the skeletons in the skeleton tree and devising proper

parameters to instantiate all the templates assigned (e.g. parallelism degree)

• a tool compiling the annotated skeleton tree and deploying the resulting object code

onto the target architecture for execution

• a run time system to support execution on the target architecture.

In order to support skeleton set expandability we should guarantee the programmer with:

• the possibility to include new skeletons in the skeleton set

• the possibility to provide implementation templates for the new skeletons

Both points are quite complex to provide. The former requires full access to parsing facilities

of the compiler or, in case of implementation of the skeleton framework through a library,

the possibility to enter brand new entries in the skeleton library. In both cases, full access to

internal skeleton tree data structures must be granted. The latter requires the possibility to

access all the mechanisms of the target abstract machine used to implement the skeletons. If

this target machine is C++ with POSIX threads and TCP/IP sockets, then the programmer

should use these mechanisms to provide the new template(s) corresponding to the new
skeleton he wants to add to the system. Moreover, as the new template should be nestable

in other templates, full compliance to some general template composition model should be

ensured by the new template. All in all, this is a quite huge effort to add a new skeleton

into the system.

As far as we know, no algorithmic skeleton framework provides support to extension of

the skeleton–and as a consequence, of the template–set as discussed above. Indeed, most

algorithmic skeleton frameworks are template based and open source. Therefore nothing

prohibits to dig the skeleton framework source code and to add new skeletons and tem-

plates. But the no framework provides support for this activity and actually internals of

the framework implementation are in most cases completely undocumented. This means

the programmer wishing to extend the skeleton set must first reverse engineer the frame-

work implementation. This is probably much more than the work required to write a brand

new, non skeleton based implementation of the particular parallelism exploitation pattern

needed.

9.6.2 Skeleton set extension through intermediate implementation layer access

An alternative way of providing support for skeleton set extension may be designed when

non template based implementations are used. If a macro data flow based implementation

D
ra
ft

180 ADVANCED FEATURES

Skeleton inc1 = new Inc();
Dest d = new Dest(0, 2 ,Mdfi.NoGraphId);
Dest[] dests = new Dest[1];
dests[0] = d;
Mdfi i1 = new Mdfi(manager,1,inc1,1,1,dests);
Skeleton sq1 = new Square();
Dest d1 = new Dest(0,Mdfi.NoInstrId, Mdfi.NoGraphId);
Dest[] dests1 = new Dest[1];
dests1[0] = d1;
Mdfi i2 = new Mdfi(manager,2,sq1,1,1,dests1);
MdfGraph graph = new MdfGraph();
graph.addInstruction(i1);
graph.addInstruction(i2);
ParCompute userDefMDFg = new ParCompute(graph);

Figure 9.11 Custom/user-defined skeleton declaration.

is used we can provide the user/programmer with a controlled access to the intermediate

implementation layer–the macro data flow graph language. We must expose the user/pro-

grammer with the definition of “well formed MDFG”, i.e. of a MDFG that may be used

in a skeleton nesting. As discussed in Sec. 4.2.2 a macro data flow graph representing a

skeleton is basically any MDFG with a single input token and a single output token. Thencontrollare

the user/programmer should be given a “language” suitable to express these well formed

MDFG and a way to name the new MDFG modelling the particular parallelism exploitation

pattern needed. The Muskel skeleton library [13] provides such a possibility, and we will

described how this is supported in detail in the next section. For the moment being, we

want to point out that the process providing skeleton set expandability is much simpler

than the one discussed with template based implementations. All what the user needs to

know is how to “describe” a well formed MDFG and how to name it in standard skeleton

compositions. Then the MDF distributed interpreter takes care of executing the user sup-

plied MDFG with the same efficiency achieved in the execution of MDFGs deriving from

the compilation of standard, predefined skeletons.

9.6.3 User-defined skeletons in muskel

In order to introduce completely new parallelism exploitation patterns, muskel provides

programmers with mechanisms that can be used to design arbitrary macro data flow graphs.

A macro data flow graph can be defined creating some Mdfi (macro data flow instruction)

objects and connecting them in a MdfGraph object.

For example, the code in Fig. 9.11 is the one needed to program a data flow graph with two

instructions. The first computes the inc1 compute method on its input token and delivers

the result to the second instruction. The second computes the sq1 compute method on

its input token and delivers the result to a generic “next” instruction (this is modelled by

giving the destination token tag a Mdfi.NoInstrId tag). The Dest type in the code

represents the destination of output tokens as triples containing the graph identifier, the

instruction identifier and the destination input token targeted in this instruction. Macro

data flow instructions are built by specifying the manager they refer to, their identifier, the

code executed (must be a Skeleton object) the number of input and output tokens and a

vector with a destination for each of the output tokens.

We do not present all the details of arbitrary macro data flow graph construction here (a

complete description is provided with the muskel documentation). The example is just to

give the flavor of the tools provided in the muskel environment. Bear in mind that the sim-

ple macro data flow graph of Fig. 9.11 is actually the same macro data flow graph obtained

by compiling a primitive muskel skeleton call such as: Skeleton main = new Pipeline(new Inc(), new Sq())
More complex user-defined macro data flow graphs may include instructions delivering to-

D
ra
ft

SKELETON FRAMEWORK EXTENDIBILITY 181

3:gid:F1:Intok{(_ , false)}:OutTok{(4,1)(6,1)}

4:gid:G1:Intok{(_ , false)}:OutTok{(5,1)}

5:gid:G2:Intok{(_ , false)}:OutTok{(6,2)}

6:gid:H2:Intok{(_ , false)(_,false)}:OutTok{(1,1)}

Custom MDF graph

1:gid:F:InTok{(_ , false)}:OutTok{(2,1)}

2:gid:G:Intok{(_ , false)}:OutTok{(NoId,_)}

Compiled MDF graph (Pipeline(Farm,Farm))

.

Figure 9.12 Mixed sample macro data flow graph (left): the upper part comes from a user-defined
macro data flow graph (it cannot be derived using primitive muskel skeletons) and the lower part is
actually coming from a three stage pipeline with two sequential stages (the second and the third one)
and a parallel first stage (the user-defined one). GUI tool designing the upper graph (right).

kens to an arbitrary number of other instructions, as well as instructions gathering input

tokens from several distinct other instructions. In general, the mechanisms of muskel
permit the definition of any kind of graph with macro data flow instructions computing

sequential (side effect free) code wrapped in a Skeleton class. Any parallel algorithm

that can be modeled with a data flow graph can therefore be expressed in muskel153. Non

deterministic MDFi are not yet supported (e.g. one that merges input tokens from two

distinct sources) although the firing mechanism in the interpreter can be easily adapted to

support this kind of macro data flow instructions. Therefore, new skeletons added through

the macro data flow mechanism always model pure functions. skeletons in muskel pro-

grams gives the programmer the possibility to develop the same parallel programs he could

develop using more classic programming environments (e.g. MPI), but those explicitly using

data

MdfGraph objects are used to create new ParCompute objects. ParCompute objects

can be used in any place where a Skeleton object is used. Therefore, user-defined paral-
lelism exploitation patterns can be used as pipeline stages or as farm workers, for instance.

The only limitation on the graphs that can be used in a ParCompute object consists in

requiring that the graph has a unique input token and a unique output token.

When executing programs with user-defined parallelism exploitation patterns the process

of compiling skeleton code to macro data flow graphs is slightly modified. When an original

muskel skeleton is compiled, the standard MDF compilation (see Sec. 4.2.2) process is

applied. When a user-defined skeleton is compiled, the associated macro data flow graph is

directly taken from the ParCompute instance variables where the graph supplied by the

user is maintained. Such a graph is linked to the rest of the graph according to the rules

appropriate to the skeleton where the user-defined skeleton appears.

To show how the whole process works, let us suppose we want to pre-process each input

task in such a way that for each task ti a new task

t′i = h1(f1(ti), g2(g1(f1(ti))))

is produced. This computation cannot be programmed using the stream parallel skeletons

currently provided by muskel. In particular, current pre-defined skeletons in muskel

153Note, however, that common, well know parallel application skeletons are already modelled by pre-defined
muskel Skeletons.

D
ra
ft

182 ADVANCED FEATURES

allow only processing of one input to produce one output, and therefore there is no way

to implement the graph described here. In this case we wish to process the intermediate

results through a two-stage pipeline to produce the final result. To do this the programmer

can set up a new graph using code similar to the one shown in Fig. 9.11 and then use

that new ParCompute object as the first stage of a two-stage pipeline whose second stage

happens to be the post processing two-stage pipeline. When compiling the whole program,

the outer pipeline is compiled first. As the first stage is a user-defined skeleton, its macro

data flow graph is directly taken from the user-supplied one. The second stage is compiled

according to the standard (recursive) procedure (such as the one described in Sec. 4.2.2)

and eventually the (unique) last instruction of the first graph is modified in such a way

that it sends its only output token to the first instruction in the second stage graph. The

resulting graph is outlined in Fig. 9.12 (left).

Making good use of the mechanisms allowing definition of new data flow graphs, the

programmer can arrange to express computations with arbitrary mixes of user-defined data

flow graphs and graphs coming from the compilation of structured, stream parallel skeleton

computations. The execution of the resulting data flow graph is supported by the muskel
distributed data flow interpreter in the same way as the execution of any other data flow

graph derived from the compilation of a skeleton program. At the moment the muskel
prototype allows user-defined skeletons to be used as parameters of primitive muskel skele-

tons, but not vice versa. We are currently working to extend muskel to alow the latter.

There is no conceptually difficult step behind. In order to allow primitive muskel skeleton

usage as code to be executed in an instruction of a user-defined macro data flow graph it

is sufficient to compile “on the fly” the primitive skeleton and include in the user-defined

macro data flow graph the result (i.e. the macro data flow graph) of this compilation.

While the facility to include user-defined skeletons provides substantial flexibility, we

recognize that the current way of expressing new macro data flow graphs is error prone

and not very practical. Therefore we have designed a graphic tool that allows users to

design their macro data flow graphs and then compile them to actual Java code as required

by muskel and shown above. Fig. 9.12 (right) shows the interface presented to the user.

In this case, the user is defining the upper part of the graph in the left part of the same

Figure. It is worth pointing out that all that is needed in this case is to connect output

and input token boxes appropriately, and to configure each MDFi with the name of the

sequential Skeleton used. The smaller window on the right lower corner is the one used

to configure each node in the graph (that is, each MDFi). This GUI tool produces an XML

representation of the graph. Then, another Java tool produces the correct muskel code

implementing the macro data flow graph as a muskel ParCompute skeleton. As a result,

users are allowed to extend, if required, the skeleton set by just interacting with the GUI

tool and “compiling” the graphic MDF graph to muskel code by clicking on one of the

buttons in the top toolbar.

As a final example, consider the code of Fig. 9.13. This code outlines how a new Map2
skeleton, performing in parallel the same computation on all the portions of an input vector,

can be defined and used. It is worth pointing out how user-defined skeletons, once properly

debugged and fine-tuned, can simply be incorporated in the muskel skeleton library and

used seamlessly, as the primitive muskel ones, but for the fact that (as shown in the code)

the constructor needs the manager as a parameter. This is needed so as to be able to link

together the macro data flow graphs generated by the compiler and those supplied by the

user. data flow graph creation to the moment the graph needs to be instantiated after the

arrival of a new task to compute, as at that time all the information necessary to perform

graph “conjunction” is available. It is worth noting that skeletons such as a general form of

Map are usually provided in the fixed skeleton set of any skeleton system and users usually

do not need to implement them. However, as muskel is an experimental skeleton system,

we concentrate the implementation efforts on features such as the autonomic managers,

D
ra
ft

SKELETON FRAMEWORK EXTENDIBILITY 183

public class Map2 extends ParCompute {

 public Map2(Skeleton f, Manager manager) {
 super(null);
 // first build the empty graph
 program = new MdfGraph();
 // build the emitter instruction
 Dest [] dds1 = new Dest[2];
 dds1[0]=new Dest(0,2);
 dds1[1]=new Dest(0,3);
 Mdfi emitter =
 new Mdfi(manager, 1,
 new MapEmitter(2), 1, 2, dds1);
 // add it to the graph
 program.addInstruction(emitter);
 // build first half map Skeleton node
 Dest [] dds2 = new Dest[1];
 dds2[0] = new Dest(0,4);
 Mdfi if1 = new Mdfi(manager,2, f, 1, 1, dds2);
 program.addInstruction(if1);
 // build second half map Skeleton node
 Dest []dds3 = new Dest[1];
 dds3[0] = new Dest(1,4);
 Mdfi if2 = new Mdfi(manager,3, f, 1, 1, dds3);
 program.addInstruction(if2);
 Dest[] ddslast = new Dest[1];
 ddslast[0] = new Dest(0,Mdfi.NoInstrId);
 Mdfi collector = new Mdfi(manager,4,new
 MapCollector(), 2, 1, ddslast);
 program.addInstruction(collector);
 return;
 }
 ...
}

public class SampleMap {
 public static void main(String[] args) {
 Manager manager =
 new Manager();
 Skeleton worker = new Fdouble();
 Skeleton main =
 new Map2(worker,manager);

 InputManager inManager =
 new DoubleVectIM(10,4);
 OutputManager outManager =
 new DoubleVectOM();

 ParDegree contract =
 new ParDegree(10);
 manager.setInputManager(inManager);
 manager.setOutputManager(outManager);
 manager.setContract(contract);
 manager.setProgram(main);

 manager.compute();
 }
}

Figure 9.13 Introducing a new, user-defined skeleton: a map working on vectors and with a fixed,
user-defined parallelism degree.

D
ra
ft

184 ADVANCED FEATURES

portability, security and expandability rather than providing a complete skeleton set. As

a consequence, muskel has no predefined map skeleton and the example of user defined

skeleton just presented suitably illustrates the methodology used to expand the “temporary”

restricted skeleton set of the current version of muskel depending on the user needs. The

Map2 code shown here implements a “fixed parallelism degree” map, that is the number

of “workers” used to compute in parallel the skeleton does not depend on the size of the

input data. It is representative of a more general Mapskeleton taking a parameter specifying

the number of workers to be used. However, in order to support the implementation of a

map skeleton with the number of workers defined as a function of the input data, some

kind of support for the dynamic generation of macro data flow graphs is needed, which is

not present in the current muskel prototype. provide users a more handy way to build

the user-defined data flow graphs. With the tool, graphs can be built on the screen and

all the work needed to arrange Dest code in the instructions, which is definitely the more

cumbersome and error prone stuff related to graph designing, can simply be generated with

a few mouse clicks connecting with arrows source and destination tokens.

D
ra
ft

CHAPTER 10

SKELETON SEMANTICS

We already mentioned that algorithmic skeleton semantics has traitionally been provided

as a formal functional semantics plus an informal parallel semantics. This is in fact what

we adopted in Chap. 3 to introduce the skeleton framework used in this book.

In this Chapter we discuss an alternative, more formal approach to define algorithmic

skeleton semantics. The approach discussed here is mostly taken from [12]. In that work,

authors were referring to the Lithium skeleton framework [18]. Here we update the semantics

definition in such a way a skeleton system similar to the one introduced in Chap. 3 is

modeled.

10.1 FORMAL DEFINITION OF THE SKELETON FRAMEWORK

We consider a skeleton framework providing both task parallel and data parallel skeletons.

All the skeletons process a stream (finite or infinite) of input tasks to produce a stream of

results. All the skeletons are assumed to be stateless, that is static variables are forbidden

the sequential portions of code wrapped into sequential skeleton. No concept of “global

state” is supported by the implementation, but the ones explicitly programmed by the

user154. All our skeletons are fully nestable. Each skeleton has one or more parameters

that model the computations encapsulated in the related parallelism exploitation pattern.

Our skeleton framework manages the usual primitive types (integers, floats, strings, vectors,

arrays) plus two new types: streams and tuples. Streams are denoted by angled braces and

tuples by “ 〈◦ ◦〉” braces.

value ::= primitive data value
values ::= value | value , values

stream ::= 〈 values 〉 | 〈ε〉
tuplek ::= 〈◦ stream1, · · · , streamk ◦〉

154Such as external “servers” encapsulating shared data structures.

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

185

D
ra
ft

186 SKELETON SEMANTICS

A stream represents a sequence (finite or infinite) of values of the same type, whereas

the tuple is a parametric type that represents a (finite, ordered) set of streams. Actually,

streams appearing in tuples are always singleton streams, i.e. streams holding a single value.

The set of skeletons (∆) provided by our framework is defined as follows:

∆ ::= seq f | comp ∆1 ∆2 |
farm ∆ | pipe ∆1 ∆2 |
map fd∆ fc | d&c ftcfd∆ fc |
while ftc∆

where sequential functions (such as f, g) with no index have type α → β with α and

β primitive types as defined above and indexed functions (such as fc, fd, ftc) have the

following types: fc :tuplek → stream; fd :stream → tuplek; ftc :α → boolean. In particular,

fc, fd represent families of functions that enable the splitting of a stream in k-tuples of

singleton streams and vice-versa.

Our skeletons can be considered as a pre-defined higher-order functions. Intuitively, seq
skeleton just wraps sequential code chunks within the structured parallel framework; farm
and pipe skeletons model embarrassingly parallel and pipeline computations, respectively;

comp models pipelines with stages serialized on the same processing element (PE); map
models data parallel computations: fd decomposes the input data into a set of possibly

overlapping data subsets, the inner skeleton computes a result out of each subset and the

fc function rebuilds a unique result out of these results; d&c models Divide&Conquer com-

putations: input data is divided into subsets by fd and each subset is computed recursively

and concurrently until the ftc condition does not hold true. At this point results of sub-

computations are conquered via the fc function. while skeleton model indefinite iteration.

A skeleton applied to a stream is called a skeletal expression. Expressions are defined as

follows:

exp ::= ∆ stream | ∆ exp |
R` exp | fc (α∆) fd stream

The execution of a skeleton program consists in the evaluation of a ∆ stream expression.

10.2 OPERATIONAL SEMANTICS

We describe the semantics of our skeleton framework by means of a LTS. We define the label

set as the string set augmented with the special label “⊥”. We rely on labels to distinguish

both streams and transitions. Input streams have no label, output stream are ⊥ labeled.

Labels on streams describe where data items are mapped within the system, while labels on

transitions describe where they are computed. The operational semantics of our skeleton

framework is described in Figure 10.1. The rules of the semantics may be grouped in two

main categories, corresponding to the two halves of the figure. Rules 1–7 describe how

skeletons behave with respect to a stream. These rules spring from the following common

schema:

Skel params 〈x, τ〉`1
`1−→ F〈x〉`2 :: Skel params 〈τ〉`3

where Skel ∈ [seq, farm, pipe, comp,map, d&c,while], and the infix stream constructor 〈σ〉`i ::

〈τ〉`j is a non strict operator that sequences skeletal expressions. In general, F is a function

appearing in the params list. For each of these rules a couple of twin rules exists (not shown

in Figure 10.1):

α) Skel params 〈x, τ〉 ⊥−→ 〈ε〉⊥ :: Skel params 〈x, τ〉⊥
ω) Skel params 〈x〉`1

`1−→ F〈x〉`2

D
ra
ft

OPERATIONAL SEMANTICS 187

1. seq f 〈x, τ〉`
`−→ 〈f x〉` :: seq f 〈τ〉`

2. farm ∆ 〈x, τ〉`
`−→ ∆ 〈x〉O(`,x) :: farm ∆ 〈τ〉O(`,x)

3. pipe ∆1 ∆2 〈x, τ〉`
`−→ ∆2 RO(`,x) ∆1 〈x〉` :: pipe ∆1 ∆2 〈τ〉`

4. comp ∆1 ∆2 〈x, τ〉`
`−→ ∆2 ∆1 〈x〉` :: comp ∆1 ∆2 〈τ〉`

5. map fc ∆ fd 〈x, τ〉`
`−→ fc (α ∆) fd 〈x〉` :: map fc ∆ fd 〈τ〉`

6. d&c ftc fc ∆ fd 〈x, τ〉`
`−→ d&c ftc fc ∆ fd 〈x〉` :: d&c ftc fc ∆ fd 〈τ〉`

d&c ftc fc ∆ fd 〈y〉` =

{
∆ 〈y〉` iff (ftc y)
fc (α (d&c ftc fc ∆ fd)) fd 〈y〉` otherwise

7. while ftc ∆ 〈x, τ〉`
`−→

{
while ftc ∆ (∆ 〈x〉` :: 〈τ〉`) iff (ftc x)
〈x〉` :: while ftc ∆ 〈τ〉` otherwise

〈σ〉`1 :: 〈τ〉`2
⊥−→ 〈σ, τ〉⊥ join

〈ε〉⊥ :: 〈τ〉`2
⊥−→ 〈τ〉`2 joinε

∆ 〈x〉`1
`2−→ 〈y〉`3

R` ∆〈x〉`1
`2−→ 〈y〉`

relabel
E1

`−→ E2

∆ E1
`−→ ∆ E2

context

fd 〈x〉`
`−→ 〈◦ 〈y1〉`, · · · 〈yn〉` ◦〉 ∆〈yi〉`

`−→ 〈zi〉` fc 〈◦ 〈z1〉`, · · · 〈zn〉` ◦〉
`−→ 〈z〉`, i = 1..n

fc (α∆) fd 〈x〉`
`−→ 〈z〉`

dp

Ei
`i−→ E′i ∀i 1 ≤ i ≤ n ∧ ∃i, j 1 ≤ i, j ≤ n, `i = `j ⇒ i = j

〈ν〉⊥ :: E1 :: · · ·En :: Γ
⊥−→ 〈σ〉⊥ :: E′1 :: · · ·E′n :: Γ

sp

Figure 10.1 Lithium operational semantics. x, y ∈ value; σ, τ ∈ values; ν ∈ values ∪ {ε}; E ∈
exp; Γ ∈ exp∗; `, `i, . . . ∈ label ; O : label × value → label.

these rules manage the first and the last element of the stream respectively. Each triple

of rules manages a stream as follows: the stream is first labeled by a rule of the kind α).

Then the stream is unfolded in a sequence of singleton streams and the nested skeleton is

applied to each item in the sequence. During the unfolding, singleton streams are labeled

according to the particular rule policy, while the transition is labeled with the label of the

stream before the transition (in this case `1). The last element of the stream is managed
by a rule of the kind ω). Eventually resulting skeletal expressions are joined back by means

of the :: operator.

Let us show how rules 1–7 work with an example. We evaluate

farm (seq f)

on the input stream

〈x1, x2, x3〉

At the very beginning only the 2α can be applied. It marks the begin of stream by intro-

ducing 〈ε〉⊥ (empty stream) and labels the input stream with ⊥. Then rule 2 can be applied:

〈ε〉⊥ :: farm (seq f) 〈x1, x2, x3〉⊥
⊥−→ 〈ε〉⊥ :: seq f 〈x1〉0 :: farm (seq f) 〈x2, x3〉0

The head of the stream has been separated from the rest and has been re-labeled (from

⊥ to 0) according to the O(⊥, x) function. Inner skeleton (seq) has been applied to this

singleton stream, while the initial skeleton has been applied to the rest of the stream in a

recursive fashion. The re-labeling function O : label × value → label (namely the oracle)

is an external function with respect to the LTS. It would represent the (user-defined) data

D
ra
ft

188 SKELETON SEMANTICS

mapping policy. Let us adopt a two-PEs round-robin policy. An oracle function for this

policy would cyclically return a label in a set of two labels. In this case the repeated appli-

cation of rule 1 proceeds as follows:

〈ε〉⊥ :: seq f 〈x1〉0 :: farm (seq f) 〈x2, x3〉0
0−→ 1−→ 〈ε〉⊥ :: seq f 〈x1〉0 :: seq f 〈x2〉1 ::

seq f 〈x3〉0

The oracle may have an internal state, and it may implement several policies of label

transformation. As an example the oracle might always return a fresh label, or it might

make decisions about the label to return on the basis of the x value. As we shall see, in

the former case the semantics models the maximally parallel computation of the skeletal

expression.

Observe that using only rules 1–7 (and their twins) the initial skeleton expression cannot

be completely reduced (up to the output stream). Applied in all the possible ways, they

lead to an aggregate of expressions (exp) glued by the :: operator.

The rest of the work is carried out by the six rules in the bottom half of figure 10.1.

There are two main rules (sp and dp) and four auxiliary rules (context, relabel, joinε and

join). Such rules define the order of reduction along aggregates of skeletal expressions. Let

us describe each rule:

sp (stream parallel) rule describes evaluation order of skeletal expressions along sequences

separated by :: operator. The meaning of the rule is the following: suppose that each

skeletal expression in the sequence may be rewritten in another skeletal expression

with a certain labeled transformation. Then all such skeletal expressions can be

transformed in parallel, provided that they are adjacent, that the first expression of

the sequence is a stream of values, and that all the transformation labels involved are

pairwise different.

dp (data parallel) rule describes the evaluation order for the fc (α∆) fd stream expression.

Basically the rule creates a tuple by means of the fd function, then requires the

evaluation of all expressions composed by applying ∆ onto all elements of the tuple.

All such expression are evaluated in one step by the rule (apply-to-all). Finally, the

fc gathers all the elements of the evaluated tuple in a singleton stream. Labels are

not an issue for this rule.

relabel rule provides a relabeling facility by evaluating the meta-skeleton R`. The rule does

nothing but changing the stream label. Pragmatically, the rule imposes to a PE to

send the result of a computation to another PE (along with the function to compute).

context rules establishes the evaluation order among nested expressions, in all other cases

but the ones treated by dp and relabel. The rule imposes a strict evaluation of nested

expressions (i.e. evaluated the arguments first). The rule leaves unchanged both

transition and stream labels with respect to the nested expression.

join rule does the housekeeping work, joining back all the singleton streams of values to a

single output stream of values. joinε does the same work on the first element of the

stream.

Let us consider a more complex example. Consider the semantics of

farm (pipe f1 f2)

evaluated on the input stream

〈x1, x2, x3, x4, x5, x6, x7〉

D
ra
ft

OPERATIONAL SEMANTICS 189

farm (pipe (seq f1) (seq f2)) 〈x1, x2, x3, x4, x5, x6, x7〉 (10.1)

〈ε〉⊥ :: farm (pipe (seq f1) (seq f2)) 〈x1, x2, x3, x4, x5, x6, x7〉⊥ (10.2)

〈ε〉⊥ :: pipe (seq f1)(seq f2)〈x1〉0 :: pipe (seq f1)(seq f2)〈x2〉1 ::
pipe (seq f1)(seq f2)〈x3〉0 :: pipe (seq f1)(seq f2)〈x4〉1 ::
pipe (seq f1)(seq f2)〈x5〉0 :: pipe (seq f1)(seq f2)〈x6〉1 :: pipe (seq f1)(seq f2)〈x7〉0

(10.3)

〈ε〉⊥ :: seq f2R02 seq f1 〈x1〉0 :: seq f2R12 seq f1 〈x2〉1 :: seq f2R02 seq f1 〈x3〉0 ::
seq f2R12 seq f1 〈x4〉1 :: seq f2R02 seq f1 〈x5〉0 ::
seq f2R12 seq f1 〈x6〉1 :: seq f2R02 seq f1 〈x7〉0

(10.4)

〈ε〉⊥ :: seq f2 〈f1 x1〉02 :: seq f2 〈f1 x2〉12 :: seq f2R02 seq f1 〈x3〉0 ::
seq f2R12 seq f1 〈x4〉1 :: seq f2R02 seq f1 〈x5〉0 :: seq f2R12 seq f1 〈x6〉1 ::
seq f2R02 seq f1 〈x7〉0

(10.5)

〈ε〉⊥ :: 〈f2 (f1 x1) 〉02 :: 〈f2 (f1 x2) 〉12 :: 〈f2 (f1 x3) 〉02 ::
〈f2 (f1 x4) 〉12 :: 〈f2 (f1 x5) 〉02 :: 〈f2 (f1 x6) 〉12 :: 〈f2 (f1 x7) 〉02

(10.6)

〈f2 (f1 x1), f2 (f1 x2) f2 (f1 x3), f2 (f1 x4) f2 (f1 x5), f2 (f1 x6), f2 (f1 x7) 〉⊥ (10.7)

Figure 10.2 The semantic of a Lithium program: a complete example.

Let us suppose that the oracle function returns a label chosen from a set of two labels.

Pragmatically, since farm skeleton represent the replication paradigm and pipe skeleton the

pipeline paradigm, the nested form farm (pipe f1 f2) basically matches the idea of a multiple

pipeline (or a pipeline with multiple independent channels). The oracle function defines the

parallelism degree of each paradigm: in our case two pipes, each having two stages. As

shown in Figure 10.2, the initial expression is unfolded by rule 2α ((10.1) → (10.2)) then

reduced by many applications of rule 2 ((10.2) →∗ (10.3)). Afterward the term can be

rewritten by rule 3 ((10.3)→∗ (10.4)). At this point, we can reduce the formula using the

sp rule. sp requires a sequence of adjacent expressions that can be reduced with differently

labeled transitions. In this case we can find just two different labels (0, 1), thus we apply

sp to the leftmost pair of expressions as follows:

seq f1 〈x1〉0
0−→ 〈f1 x1〉0

R02 seq f1 〈x1〉0
0−→ 〈f1 x1〉02

relabel

seq f2R02 seq f1 〈x1〉0
0−→ seq f2 〈f1 x〉02

context

seq f1 〈x2〉1
1−→ 〈f1 x2〉1

R12 seq f1 〈x2〉1
1−→ 〈f1 x2〉12

relabel

seq f2R12 seq f1 〈x2〉1
1−→ seq f2 〈f1 x〉12

context

〈ε〉⊥ :: seq f2R02 seq f1 〈x1〉0 :: seq f2R12 seq f1 〈x2〉1 :: seq f2R02 seq f1 〈x3〉0 :: · · · ⊥−→
〈ε〉⊥ :: seq f2〈f1 x1〉02 :: seq f2 〈f1 x2〉12 :: seq f2R02 seq f1 〈x3〉0 :: · · ·

sp

Observe that due to the previous reduction ((10.4) → (10.5) in Figure 10.2) two new

stream labels appear (02 and 12). Now, we can repeat the application of sp rule as in the

previous step. This time, it is possible to find four adjacent expression that can be rewritten

with (pairwise) different labels (0, 1, 02, 12). Notice that even on a longer stream this oracle

function never produces more than four different labels, thus the maximum number of

skeletal expressions reduced in one step by sp is four. Repeating the reasoning the we can

completely reduce the formula to a sequence of singleton streams ((10.5)→∗ (10.6)), that,

in turn can be transformed by many application of the join rule ((10.6)→∗ (10.7)).

Let us analyze the whole reduction process: from the initial expression to the final stream

of values we applied three times the sp rule. In the first application of sp we transformed

two skeletal expression in one step; in the second application four skeletal expressions have

been involved; while in the last one just one expression has been reduced155.

155Second and third sp application are not shown in the example.

D
ra
ft

190 SKELETON SEMANTICS

The succession of sp applications in the transition system matches the expected behavior

for the double pipeline paradigm. The first and last applications match pipeline start-up and

end-up phases. As expected the parallelism exploited is reduced with respect to the steady

state phase, that is matched by the second application. A longer input stream would rise

the number of sp applications, in fact expanding the steady state phase of modeled system.

10.3 PARALLELISM AND LABELS

The first relevant aspect of the proposed schema is that the functional semantics is indepen-

dent of the labeling function. Changing the oracle function (i.e. how data and computations

are distributed across the system) may change the number of transitions needed to reduce

the input stream to the output stream, but it cannot change the output stream itself.

The second aspect concerns parallel behavior. It can be completely understood looking at

the application of two rules: dp and sp that respectively control data and stream parallelism.

We call the evaluation of either dp or sp rule a par-step. dp rule acts as an apply-to-all on a

tuple of data items. Such data items are generated partitioning a single task of the stream by

means of an user-defined function. The parallelism comes from the reduction of all elements

in a tuple (actually singleton streams) in a single par-step. A single instance of the sp

rule enable the parallel evolution of adjacent terms with different labels (i.e. computations

running on distinct PEs). The converse implication also holds: many transitions of adjacent

terms with different labels might be reduced with a single sp application. However, notice

that sp rule may be applied in many different ways even to the same term. In particular the

number of expressions reduced in a single par-step may vary from 1 to n (i.e. the maximum

number of adjacent terms exploiting different labels). These different applications lead

to both different proofs and parallel (but functional) semantics for the same term. This

degree of freedom enables the language designer to define a (functionally confluent) family

of semantics for the same language covering different aspects of the language. For example,

it is possible to define the semantics exploiting the maximum available parallelism or the

one that never uses more than k PEs.

At any time, the effective parallelism degree in the evaluation of a given term in a par-step

can be counted by inducing in a structural way on the proof of the term. Parallelism degree

in the conclusion of a rule is the sum of parallelism degrees of the transitions appearing

in the premise (assuming one the parallelism degree in rules 1–7). The parallelism degree

counting may be easily formalized in the LTS by using an additional label on transitions.

The LTS proof machinery subsumes a generic skeleton implementation: the input of

skeleton program comes from a single entity (e.g. channel, cable, etc.) and at discrete time

steps. To exploit parallelism on different tasks of the stream, tasks are spread out in PEs

following a given discipline. Stream labels trace tasks in their journey, and sp establishes

that tasks with the same label, i.e. on the same PE, cannot be computed in parallel. Labels

are assigned by the oracle function by rewriting a label into another one using its own

internal policy. The oracle abstracts the mapping of data onto PEs, and it can be viewed

as a parameter of the transition system used to model several policies in data mapping.

As an example a farm may take items from the stream and spread them in a round-robin

fashion to a pool of workers. Alternatively, the farm may manage the pool of workers by

divination, always mapping a data task to a free worker (such kind of policy may be used

to establish an upper bound in the parallelism exploited). The label set effectively used

in a computation depends on the oracle function. It can be a statically fixed set or it can

change cardinality during the evaluation. On this ground, a large class of implementations

may be modeled.

Labels on transformations are derived from label on streams. Quite intuitively, a pro-

cessing element must known a data item to elaborate it. The re-labeling mechanism enables

D
ra
ft

HOW TO USE THE LABELED TRANSITION SYSTEM 191

to describe a data item re-mapping. In a par-step, transformation labels point out which

are the PEs currently computing the task.

10.4 HOW TO USE THE LABELED TRANSITION SYSTEM

The semantics discussed in section 10.2 can be used to prove the correctness of our skeleton

programs, as expected. Here we want to point out how the transition system can be used

to evaluate analogies and differences holding between different skeleton systems and to

evaluate the effect of rewriting rules on a skeleton program.

Concerning the first point, let us take into account, as an example, the skeleton frame-

work introduced by Darlington’s group in mid ’90. In [46] they define a farm skeleton as

follows: “Simple data parallelism is expressed by the FARM skeleton. A function is applied

to each element of a list, each element of which is thought of as a task. The function also

takes an environment, which represents data which is common to all tasks. Parallelism is

achieved by distributing the tasks on different processors.

FARM : (α→ β → γ)→ α→ (〈◦ β ◦〉 → 〈◦ γ ◦〉)

FARM f env = map (f env)
where map f x = f x and map f x::rx = (f x)::(map f rx)”.

Darlington’s FARM skeleton happens to have the same name as the farm skeleton de-

veloped by our group [21, 22] and by other groups ([72, 54]) but it has a slightly different

semantics. It actually exploits data parallelism, in that parallelism comes from parallel

computation of items belonging to the same task (input data item), i.e. the list x param-

eter, whereas other farm skeletons express embarrassingly parallel computations exploiting

parallelism in the computation of disjunct, completely independent task items. This can be

easily expressed using our semantics by observing that the clause:

FARM fc ∆ fd 〈x〉`
`−→ fc (α ∆) fd 〈x〉`

exactly models both the functional and the parallel behavior of Lithium map provided that

fd is the function taking a list and returning a tuple of singletons, fc is the function taking

a tuple of singletons and returning a list and that ∆ is actually a sequential function f .

However, in order to make the FARM being “stream aware”, we must rather consider a

clause such as:

FARM fc ∆ fd 〈x, τ〉`
`−→ fc (α ∆) fd 〈x〉` :: FARM fc ∆ fd 〈τ〉`

recursive on the stream parameter. At this point we should immediately notice that this is

the same clause modeling our map skeleton (cf. rule 5 in Figure 10.1).

Concerning the possibility of using the LTS to prove correctness of skeleton rewriting

rules, let us take as an example the equivalence “farm ∆ ≡ ∆” (see [3, 6]). The equivalence

states that farms (stream parallel ones, not the Darlington’s ones) can be inserted and

removed anywhere in a skeleton program without affecting the functional semantics of the

program. The equivalence looks like to be a really simple one, but it is fundamental in

the process of deriving the skeleton “normal form” [3] (see Sec. 9.3. The normal form is

a skeletal expression that can be automatically derived from any other skeletal expression.

It computes the same results of the original one but uses less resources and delivers better

performance.

The validity of these equivalences can be evaluated using the labeled transition system

and the effects on parallelism degree in the execution of left and right hand side programs

D
ra
ft

192 SKELETON SEMANTICS

can be evaluated too. The validity of the equivalence can be simply stated by taking into

account rule 2 in Figure 10.1. It simply unfolds the stream and applies ∆ to the stream

items, as we can expect for ∆ applied to the same stream, apart for the labels. As the labels

do not affect the functional semantics, we can derive that the equivalence “farm ∆ ≡ ∆”

actually holds for any skeleton tree ∆. We can say more, however. Take into account

expression (10.1) in Figure 10.2. We derived its semantics and we concluded that four

different (non-bottom) labels can be obtained: 00, 01, 10, 11. Rewriting (10.1) by using the

equivalence from left to right we get: “pipe (seq f1) (seq f2) 〈x1, x2, x3, x4, x5, x6, x7〉”.

From this expression we can derive exactly the same output but holding only two distinct

labels: 0, 1. These two labels happen to be the two labels modeling the two stages of the

original pipeline. As a conclusion we can state that:

1. the equivalence “farm ∆ ≡ ∆” holds and functional semantics is not affected by it;

2. parallel semantics is affected by the equivalence in that the parallelism degree changes.156

The skeleton framework considered here only provides stateless skeletons, as well as most

of the other existing skeletons systems [21, 45, 72, 65]. A discussion about the opportunity

of introducing a state in a functional framework, as well as the effectiveness of different

approaches to implement it, goes beyond our aims. However, we want to point out that the

proposed operational semantics may effectively support both global and local state concept

with just few adjustments.

As labels can be used to represent the places where computations actually happen, they

can also be used to model/drive global and local state implementation. In particular, they

can be used to have a precise idea of where the subjects and objects of state operations (the

process/thread issuing the state operation and the process(es)/thread(s) actually taking

care of actually performing the operation) are running. This allows a precise modeling of

the operations needed to implement skeleton state.

156This just one case, of course, in order to complete the proof all the different possibles ∆ must be
considered. However the simple case of ∆= pipe should made clear how the full proof may work.

D
ra
ft

CHAPTER 11

PARALLEL DESIGN PATTERNS

Skeletons have been introduced to provide the programmer with simpler and effective ways

of denoting common parallelism exploitation patterns [36]. By recognizing that a limited

number of parallelism exploitation patterns appear in the majority of parallel applications,

different researchers designed programming environments that provide the programmer with

language constructs (skeletons) modeling these patterns. Two major advantages are offered

by skeletons: first, most or, in some case, the whole, code needed to derive object code

from skeleton source is produced by the skeleton support (compiler + run time support).

Second, the programmer is relieved of all the cumbersome and error prone programming

details related to parallelism exploitation: concurrent/parallel activity setup, mapping and

scheduling, implementation of communications and of accesses to shared data structures,

concurrent activity synchronization and termination are all handled by the skeleton support.

Design patterns have been introduced as a way of specifying recurrent (object oriented)

programming problems along with the solutions that can be used to solve them [47]. The

key point in design patterns is that a design pattern not only describes a problem and a

good solution to that problem; it also provides a good insight in the problem at hand by

specifying its motivations, fields of applicability, implementation related details, examples

of usage, etc. Therefore, the general idea of design pattern looks like to be very close to the

idea of skeletons, although the usage made of the two concepts by the programmer turns out

to be sensibly different. The idea of design pattern has evolved since its introduction. At

the very beginning, patterns have only been considered in the field of sequential program-

ming. Recently, some researchers migrated the concept of design pattern to the parallel

programming field [60, 65, 63]. In so doing, further contact points with skeletons come into

evidence.

In this Chapter, we discuss both the features that are shared among skeletons and parallel

design patterns and those that are peculiar of one of the two approaches, instead. Our thesis

is that the skeleton and the parallel design pattern concepts could be merged into a new

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

193

D
ra
ft

194 PARALLEL DESIGN PATTERNS

concept, inheriting the positive features of both worlds and providing the programmers of

parallel applications with a more effective programming tool.

11.1 SKELETONS

We already discussed the most relevant algorithmic skeleton features in the previous Chap-

ters of this book. In this small section we briefly recall the key items relative to algorithmic

skeletons that turn out to be interest to discuss relationships among algorithmic skeletons

and design patterns. An algorithmic skeleton is a common, reusable, efficient parallelism

exploitation pattern. Skeletons have been introduced by Cole in late ’80 [36], and different

research groups participated in research activities on skeletons [22, 20, 26].

Skeletons are usually given to the user/programmer as language constructs in a coordi-

nation language [22, 20] or as libraries [42]. In both cases the programmer using skeletons

develops parallel applications by instantiating skeleton parameters to specify the domain

specific code and parameters. The only knowledge exploited is the skeleton parallel and

functional semantics. No knowledge is required concerning the target hardware. The skele-

ton support takes care of generating/running all the code necessary to implement the user

code [70]. The key point is the declarative aspect of parallel programming using skeletons

and the clear separation between parallelism declaration and parallelism exploitation/im-

plementation. The programmer declares the kind of parallelism he wants to exploit in the

application, possibly using proper skeleton nesting. The skeleton support takes care of all of

the details we need to cope with in order to implement that parallelism exploitation pattern

matching the hardware features. This makes the strength and the weakness of skeletons:

on the one hand, writing efficient parallel applications requires a moderate programming

effort; on the other hand, it is difficult to implement parallel applications using parallelism

exploitation patterns not covered by the available skeletons.

11.2 DESIGN PATTERNS

A design pattern is a representation of a common programming problem along with a

tested, efficient solution for that problem [47]. Design patterns are usually presented in

an object oriented programming framework, although the idea is completely general and
it can be applied to different programming models. A design pattern includes different

elements. The more important are: a name, denoting the pattern, a description of the

problem that pattern aims to solve, and a description of the solution. Other items such as

the typical usage of the pattern, the consequences achieved by using the pattern, and the

motivations for the pattern are also included. Therefore a design pattern, per se, is not

a programming construct, as it happens for the skeletons. Rather, design patterns can be

viewed as “recipes” that can be used to achieve efficient solutions to common programming

problems.

In the original work discussed in Gamma’s book [47], a relatively small number of patterns

is discussed. The debate is open on the effectiveness of adding more and more specialized

patterns to the design pattern set [1]. This situation closely resembles the one found in

the skeleton community some years ago. Skeleton designers recognized that a small set

of skeletons may be used to model a wide range of parallel applications [20, 41] but some

authors claimed that specialized skeletons should be used to model application dependent

parallelism exploitation patterns [51].

Recently, some questions concerning design patterns have been posed, that still have

no definite answer: should design patterns become programming languages? Should they

lead to the implementation of programming tools that provide the programmer with more

efficient and “fast” OO programming environments?[30, 59] Again, this is close to what

D
ra
ft

SKELETONS VS PARALLEL DESIGN PATTERNS 195

happened in the skeleton community. After Cole’s work it was not clear whether skeleton

should have been made available as some kind of language constructs or they should have

been used only to enforce a well founded parallel programming methodology.

As a partial answer to the pattern/language question, the whole design pattern expe-

rience is being reconsidered in the parallel programming framework[60, 48, 65, 64]. The

idea is to provide the user with a parallel programming environment (or language) based

on design patterns. Most of the authors recognize many contact points with the skele-

ton work. The key point stressed is that parallel design patterns are presented, discussed

and implemented (in some cases) as abstractions modeling common parallel programming

paradigms, exactly in the same way skeletons have been traditionally presented. Common

parallel design patterns have been therefore identified that cover pipeline computations,

task farm (master/slave) computations, mesh (iterative, data parallel computations), di-

vide and conquer computations, and different implementation methods have been proposed

to provide the user with methods that can be used as parallel design patterns within a

consistent programming environment.[60, 48, 64]

11.3 SKELETONS VS PARALLEL DESIGN PATTERNS

In this section we outline the results of the comparison of parallel programming environ-

ments based on skeletons[21, 22, 20, 68] and on design patterns[60, 59, 48, 64, 65] with

respect to high level features and implementation related features. The features discussed

have been selected as they are of interest in the field of parallel programming and because

they can be used to formulate an overall judgment on the effectiveness of parallel program-

ming environments based on skeletons and/or design patterns. As an example, expandability

guarantees that the choices made by the programming environment designers do not repre-

sent an obstacle in case the applicative framework require slightly different parallelization

strategies; instead, user architecture targeting, i.e. the ability provided to the program-

mer to insert architecture specific code in order to enhance application performance, allows

more efficient code to be developed in all those cases where the implementation strategies

provided by the programming environment turn out to be scarcely effective. Other fea-

tures, usually discussed in this context, have been left out as they are too “low level” with
respect to the abstraction level we deal with in this work. E.g., we do not discuss which

computing models are supported by skeletons and design patterns (i.e. SPMD, MIMD,

etc.) as both skeleton and design patterns frameworks can perfectly implement any one of

the models, possibly embedded in more general (and higher level) parallelism exploitation

skeleton/pattern.

The comparison we performed (summarized in Table 11.1) on skeletons and patterns

allowed us to conclude that skeletons and parallel design patterns share a lot of positive

features, especially concerning the programming model presented to the user, but still have

some points that make the two approaches different. Such points mainly concern expressive

power, easy implementation and expandability of the two models.

Skeletons have a better expressive power due to their fully declarative essence, leading to a

better confinement of both parallelism exploitation and sequential code details. Some of the

parallel design patterns proposed require programmer intervention which is not completely

“high level”, instead. As an example, task handling (e.g. retrieval of tasks to be computed)

must be explicitly programmed by the programmer when using an embarrassingly parallel

pattern[60] whereas it is automatically handled by the farm skeleton, exploiting the same

kind of parallelism[21].

OO structure of parallel design pattern implementation represents a major advancement

with respect to existing skeleton environment implementations. In particular, porting a

D
ra
ft

196 PARALLEL DESIGN PATTERNS

Skeleton Parallel design pattern
Style completely declarative program-

ming style
OO style (declarative, but also requires some
code to complete automatically generated meth-
ods)

What ab-
stracts

common parallelism exploita-
tion patterns

common (OO) parallel/distributed program-
ming patterns

Level of abstrac-
tion

very high (qualitative descrip-
tion of parallelism exploitation
patterns)

high/medium (qualitative description of paral-
lelism exploitation patterns + high level imple-
mentation details/strategy)

Nesting allowed, encouraged allowed, encouraged
Code reuse allowed, encouraged allowed, encouraged
Sequential lan-
guage support

any sequential language may be
used to program sequential por-
tions of the code

OO languages must be used (Java, C++)

Expandability
(skeleton, pat-
tern set)

poor/none (new skeletons re-
quire direct intervention on the
implementation of the skeleton
support)

very high (protected user access to implementa-
tion layer + proper structure of the class hierar-
chy supporting the design pattern language)

Programming
methodology

structure parallelism exploita-
tion with skeletons then leave
the support to produce the “ob-
ject” code

structure parallelism exploitation with patterns
then leave the support to produce the “object”
code then patch implementation methods (per-
formance fine tuning)

Portability good (intervention required on
the compiling tools, both core
and back end)

very good (OO structure of the support make
easy to derive new classes matching new/differ-
ent hardware features)

User task to
complete code

programmer just supplies se-
quential portions of code used
within skeletons

programmer must complete sequential methods
generated by the support

present[64] or absent[48]. If present:
Layering skeleton layer declarative: user

responsibility
pattern layer almost declarative (some special-
ization code needed): user responsibility

runtime support layer machine
dependent, imperative, skeleton
support: designer responsibility

runtime support layer machine dependent, OO,
pattern support: designer responsibility + par-
tial user responsibility (or non-existing in some
cases[59])

Automatic per-
formance tuning

possible, demonstrated. Uses
target architecture or skeleton
code derived parameters + an-
alytical performance models +
heuristics

possible (class hierarchy structure of lan-
guage support should enhance the possibility)
Performance model usage: not demonstrated.

User arch. tar-
geting

difficult (using pragmas) possible, encouraged

Performance assessed poor experimental data, promises to be good

Figure 11.1 Skeleton vs. parallel design pattern based languages

D
ra
ft

SKELETONS ∪ PARALLEL DESIGN PATTERNS 197

parallel design pattern environment to a different machine should only require to properly

subclass the existing classes implementing the patterns that do not match the new target

hardware features. This should be a much easier process than the effort required to port

skeleton environments to a new machine (this usually requires to design a new compiler

core and back-end[70]).

Last but not least, parallel design patterns environments present a definitely good ex-

pandability (i.e. the possibility to use new parallelism exploitation patterns, not included

in the original pattern set)[64]. The protected access to the implementation layer classes

given to programmer guarantees that both slightly different and completely new patterns

can be added to the system by expert users. These new/modified patterns can be fully

integrated (documented and certified) in the pattern system once proved to be correct and

efficient.

11.4 SKELETONS ∪ PARALLEL DESIGN PATTERNS

As skeletons and parallel design patterns present features that are both desirable and com-

patible, we start thinking that a “merge” of the two worlds is worth to be studied. The

goal is the design of a parallel programming environment that allows all the advantages

presented by the two worlds to be achieved, while preserving the positive high level features

of both systems.

Such a programming environment should provide the user with high level parallel skele-

tons. In order to use skeletons, the programmer must only supply the code denoting the

sequential computations modeled by skeletons. The parallel skeleton support should be

implemented by using a layered, OO design, derived from the pattern research results

and similar to the one described in[64]. Parallel skeletons can be declared as members of

proper skeleton/pattern classes. Object code generation can be asked leading to the auto-

matic generation of a set of implementation classes, globally making up an implementation

framework. The framework should address hardware targeting in the same way traditional

skeleton implementation does[70]. Exploiting standard OO visibility mechanisms, part of

the implementation framework classes may be made visible to the programmer in such a

way he can perform different tasks: fine performance tuning (by overwriting some of the im-

plementation classes methods), introduction of new, more efficient implementation schemas

(sub-classing existing implementation classes) or either introduction of new skeleton/pat-

terns (introducing new skeleton classes, and using either existing or new implementation

classes for the implementation).

We claim that such a parallel programming environment will provide some definitely

positive features: high programmability and rapid prototyping features will be inherited

mainly from skeleton context. Code reuse, portability and expandability will all come from

features derived from both the skeleton and the design pattern contexts. Performance will

mainly come from clean implementation framework design but can also take advantage

of the adoption of analytical performance models such as the ones used in the skeleton

stuff. Last but not least, documentation of the skeleton provided in the style of design

patterns (motivation, applicability, structure, consequences, sample code, known uses [47])

will greatly help the programmers in the parallel code development. The ideas we just out-

lined relative to the skeleton/pattern merging will be further studied and exploited by our

research group within a couple of National Projects funded by Italian National Research

Council and Spatial Agency. Both in the design of a new skeleton based coordination lan-

guage (ASSIST-CL), that will be eventually provided to the user, and in the implementation

of the relative compiling tools and run time support we are planning to heavily use features

and concepts derived from both the skeleton & the design pattern world.

D
ra
ft

D
ra
ft

CHAPTER 12

SURVEY OF EXISTING SKELETON
FRAMEWORKS

In this Chapter we present a quick survey of existing skeleton frameworks. We do not pre-

tend to be exhaustive nor to discuss all the features of the skeleton frameworks we present.

However, we give an overview of the most important features of these frameworks. First, we

describe the criteria used to classify and comment the different skeleton frameworks, then

we will discuss each skeleton framework in detail. Frameworks will be presented as belong-

ing to different classes distinguishing the kind of “sequential” language used as the “host”

language of the skeleton framework. Eventually, we will shortly discuss some programming

environments that are not “true” skeleton based programming environments, although they

support a limited amount of features typical of skeleton frameworks.

12.1 CLASSIFICATION

We discuss in this Section the main features we will consider when presenting the different

skeleton frameworks. Some features are more related to the abstract programming model

supported, others are more related to the implementation features of the programming

framework or the mechanisms and policies provided to support/target different architec-

tures. All contribute to differentiate–or to make more similar–the different programming

environments discussed.

12.1.1 Abstract programming model features

These are the features we will take into account when surveying the skeleton frameworks

more related to the programming model presented to the framework users/programmers.

Supported skeleton classes. Different skeleton classes may be supported, including stream

parallel, data parallel and control parallel skeletons.

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

199

D
ra
ft

200 SURVEY OF EXISTING SKELETON FRAMEWORKS

State. Algorithmic skeletons are usually stateless, but some stateful kind of skeletons may

also be supported.

Extendability. Different levels of expandability are supported, ranging from no expand-

ability at all to limited or unlimited expandability.

Semantics. Formal or informal/semi-formal semantics may be defined relatively to the

algorithmic skeletons included in the framework.

Code reuse. Different code reuse options may be provided. Reuse of sequential, functional

code written in a single sequential programming language within a sequential skeleton wrap-

ping is supported by all the frameworks. Several frameworks support more than a single

sequential programming language. A few of them also support the usage of parallel lan-

guages/libraries in a seq skeleton.

Autonomic management of non functional features. Management of non functional features

may be supported or not supported at all. In case of support, different levels of support

may be provided, ranging from mechanisms to support user directed management up to

complete autonomic management of non functional features.

Fault tolerance. Fault tolerance may be supported natively by the skeleton programming

framework or by the abstract machine targeted when compiling skeletons either in a tem-

plate assembly or in MDGI to be executed within a distributed MDF interpreter. More

likely, the skeleton framework may not support any kind of fault tolerance, neither at the

mechanism nor at the policy level.

Support for application fine tuning. Some frameworks may support particular mechanisms

aimed at driving/assisting users/programmers in the fine tuning of a skeleton application.

Most likely, fine tuning is related to non functional properties tuning (e.g. performance

tuning).

12.1.2 Implementation related features

These are the features more related to the way the skeleton programming framework is

actually implemented on top of some other hardware virtualization layer.

Implementation model: user interface. This is the kind of interface presented to the user/pro-

grammer. It may be some kind of library interface or a new language syntax, or a mix of

the two.

Implementation model: internals. This is the kind of implementation model chosen to

implement the skeleton based programming framework: template based, macro data flow

based, other.

“Host” language. The “host” language in a skeleton framework is the sequential language

used to express the sequential portions of code or whose data types have been inherited to

define the data types of the skeleton programming framework.

“Object code” abstract machine. This is the abstract machine targeted by the skeleton

framework compiling tools back end or used to write the libraries implementing the frame-

work. It could be a true (parallel) abstract machine, but most likely it could be made out

D
ra
ft

C/C++ BASED FRAMEWORKS 201

of some kind of sequential programming environment paired with some kind of communi-

cation/synchronization library.

OSS. The skeleton based programming framework may be licensed as open source, free-

ware or even as copyrighted code. This mainly impacts diffusion of the programming frame-

work.

12.1.3 Architecture targeting features

These are those features that are more related to the kind of target architectures eventually

supported by the skeleton programming framework.

Multi/many core support. Most of the existing skeleton based programming frameworks

have been developed to target distributed architectures such as COWs, NOWs or GRIDs.

Some have been re-designed to be able to efficiently support also multi/many core architec-

tures.

Heterogeneous architecture targeting. The simplest skeleton based programming environ-

ments only support homogeneous networks/clusters/assemblies of processing elements. Is

is more and more important to be able to target with the same efficiency also architectures

hosting different kinds of processing elements.

12.2 C/C++ BASED FRAMEWORKS

12.2.1 P3L

The Pisa Parallel Programming Language (P3L) has been developed in early ’90 at the

Hewlett Packard Pisa Science Center in conjunction with the Dept. of Computer Science

of the Univ. of Pisa (I) [21]. It has been the first complete skeleton based programming

framework available after algorithmic skeletons had been introduced.

P3L supported stream, data and control parallel skeletons. All the P3L skeletons were

stateless, although extensions were designed157 that allowed skeletons to share some kind of

state. The skeleton set of P3L was fixed: no possibility was given to the user to extend it. It

included pipeline, farm, map, reduce, geometric158 and loop skeletons. The semantics of the

algorithmic skeletons provided was given in terms of HOF relatively to functional semantics

only. Parallel semantics was given informally, instead. The sequential wrapping skeleton

of P3L supported different host languages. Anacleto, the open source P3L compiler only

allowed C and C++ to be used in sequential skeletons. However SkIE, the “industrial”

version of P3L [22] also supported Fortran, HPF and eventually Java. The sequential

skeleton was conceived in such a way libraries and further object code modules may be

named to be linked with the sequential portions of code wrapped in the sequential skeleton.

P3L did not provide any kind of non functional feature management, nor it supported

any kind of automatic fault tolerance. It was designed as a new language159 and im-

plemented with a template based set of tools. The first version of the compiling tools,

completed in 1991, were written in Prolog and generated Occam code for Transputer based

architectures only. Later on the open source P3L compiler was written in C and tar-

geted MPI COW/NOW architectures. SkIE was also written in C/C++ and targeted MPI

157never implemented
158a particular skeleton modelling data parallel computation, possibly with stencils
159a coordination language, actually. Most of the syntax was inherited from C/C++. Skeleton declarations
closely looked like C/C++ function declarations.

D
ra
ft

202 SURVEY OF EXISTING SKELETON FRAMEWORKS

COW/NOW architectures, as well as Meiko/CS Transputer MPP. All these version only

target homogeneous collections of processing elements. Non homogeneous collections of

processing elements could be targeted exploiting MPI portability, but no specific imple-

mentation/optimizations had been designed to support heterogeneity.

P3L represents a milestone in the algorithmic skeleton framework scenario for at least

two different reasons:

• it constituted the “proof-of-concept” environment demonstrating that algorithmic

skeleton frameworks were feasible and could achieve performance figures compara-

ble to those achieved when running hand written parallel code

• P3L introduced the “two-tier” composition model (see Sec. 3.4.3) that later on has

been adapted by other skeleton based programming frameworks (e.g. Muesli [32]).

P3L is no longer maintained although an ML version of P3L (OcamlP3L, see Sec. 12.4.2)

is maintained in France.

12.2.2 Muesli

Muesli160 has been introduced in early ’2000 at the Univ. of Muenster (D) by the group of

Prof. Kuchen [54]. Kuchen built Muesli on the experience gained with Skil [25] in the late

’90s.

Muesli represents a very nice implementation of an algorithmic skeleton framework on top

of an existing sequential programming environment. It provides stream and data parallel

skeletons as C++ template classes. In order to use a skeleton, you must simply instantiate

an object in the corresponding class. The C++ technique and tools have been properly

stressed to provide a very clean implementation of the skeletons. By the way the usage made

of C++ features requires some care when compiling the Muesli library. Muesli skeletons

are stateless and there is no way to expand the skeleton set. Code reuse is guaranteed by

the adoption of C++ as the host programming language. Muesli does not support non

functional feature management nor fine grain application tuning or fault tolerance.

The Muesli programming framework is provided as a C++ library. The skeleton tree

is build instantiating objects in the template classes provided by Muesli and then a spe-

cific method of the top level skeleton may be used to start the actual computation. The

implementation is template based, although one template per skeleton is only provided.

Muesli eventually generates code for MPI COW/NOW architectures. Recently, it has been

improved in such a way both multi core architectures and COW/NOW hosting multicore

workstations may be targeted. Targeting of multi cores is achieved by generating OpenMP

code in addition to the MPI code when multi cores are addressed [34]. We can there-

fore state that Muesli supports both multi/many core architectures and heterogeneous161

architectures.

The big merit of Muesli is its ability to provide algorithmic skeletons with the OO C++

typical programming techniques. This, in turn, makes conventional programmers more

comfortable with skeleton based parallel programming.

12.2.3 SkeTo

SkeTo162 is being maintained by the Tokio University [61, 62]. It has been introduced in

early ’00s. Although in some intermediate version SkeTo supported also stream parallel

160http://www.wi.uni-muenster.de/PI/forschung/Skeletons/
161to a limited amount, at least
162http://www.ipl.t.u-tokyo.ac.jp/sketo/

D
ra
ft

C/C++ BASED FRAMEWORKS 203

skeletons, it is a framework mainly providing data parallel skeletons. Its current version

(1.10) only provides data parallel skeletons operating on arrays (vectors) and lists. Skeletons

are stateless and the skeleton set could not be extended by the user/programmer. The

semantics of the skeletons is formally given in terms of homomorphisms and homomorphism

transformations according to the founding Birt-Meertens theory. In Sketo C and C++ code

can be reused to implement the sequential skeletons. There is no management of either non

functional features or fault tolerance and fine tuning of skeleton applications is completely

in charge of the user/programmer.

SkeTo is provided as a C/C++ library and the skeletons are implemented using tem-

plates. The framework targets any C/MPI abstract machine and therefore some partial sup-

port for heterogeneous architectures is achieved via MPI portability. It is OSS distributed

under the open source MIT license. Actually, the main interesting and distinguishing point

of SkeTo consists in providing the skeletons as library calls to be spread across “sequen-

tial” code. Differently from other frameworks, where parallel program are entirely build

around skeletons, SkeTo authors propose to use their skeletons as plain library calls is-

sued within sequential C/C++ programs that–as a side effect–actually improve application

performance.

At the moment begin, there is no explicit support for multi/many core architectures, nor

explicit support for heterogeneous architectures, but the one provided by MPI.

12.2.4 FastFlow

FastFlow163 is a stream parallel programming framework introduced in late ’00s and main-

tained by the Dept. of Computer Science of the Univ. of Torino and Pisa by the group of

Dr. Aldinucci [17, 19]. FastFlow is a layered programming framework and stream parallel

skeletons happen to be the abstractions provided by the upper layer. Lower layers provide

much more elementary cooperation mechanisms such as single producer single consumer

data flow channels164 and memory allocators.

FastFlow is implemented as a C++ library and is basically a template based framework.

C/C++ code may be reused to program the sequential parts of the skeleton application. A

limited form of expandability is granted by the possibility offered to the user/programmer

to extend the base skeleton classes provided by the library and by using the very efficient

FastFlow communication mechanisms to implement new skeletons by writing the corre-

sponding template in a proper C++ template class. No support for non functional feature

management, fault tolerance or application fine tuning is present at the moment (version

1.0).

The abstract machine architecture targeted by FastFlow is any Posix compliant cache

coherent shared memory architecture, such as those currently supported by Intel and

AMD. Therefore it fully supports multi/many core architectures while not supporting at

all COW/NOW or heterogeneous architectures.

The main strengths of FastFlow lie in the excellent efficiency while dealing with fine grain

computations–derived from the very efficient lock and fence free165 implementation of the

base communication mechanisms–and in the possibility to exploit data parallelism as well

by implementing data parallel computations through stream parallel skeletons as detailed

in Sec. 7.2. FastFlow is distributed under OSS license LGPL.

163http://calvados.di.unipi.it/dokuwiki/doku.php?id=ffnamespace:architecture
164as well as single producer multiple consumer and multiple producer single consumer
165actually, the implementation is not such in case of PowerPC, due to the different architecture of the
memory hierarchy. In case of Intel and AMD processors, the implementation is lock and fence free according
to the classical semantics of the term: normal operation incurs in no fences and locks when normal operation
is performed (i.e. read from non empty and write to non full queue).

D
ra
ft

204 SURVEY OF EXISTING SKELETON FRAMEWORKS

12.2.5 ASSIST

ASSIST166 (A Software development System based on Integrated Skeleton Technology) has

been developed in early ’00s at the Univ. of Pisa by the group of Prof. Vanneschi. ASSIST

is a coordination language providing a programming environment rather different from the

environments provided by the other skeleton frameworks. It basically provides a single,

highly configurable parallel skeleton–the parmod–that can be used to instantiate nodes in

an arbitrary data flow graph of parmods. Parmods may be used to model both stateful and

stateless parallel computations and expandability of the skeleton set is partially guaranteed

by the possibility to use any combination of the parmod parameters to implement parallel

patterns not originally used in ASSIST. Sequential code reused is allowed for C/C++.

Some support for fault tolerance and autonomic management of non functional features is

included as well. Actually, ASSIST hosted in 2005 the very first autonomic reconfiguration

support in a skeleton based framework [8]. An ASSIST program was able to perform an

autonomic reconfiguration of its parallelism degree when changes in the performances of

the targeted processing nodes were observed.

ASSIST is exposed to the user as a new programming language. The semantics is pro-

vided informally through textual description of the functional and parallelism aspects. The

implementation is based on templates and it is written in C/C++. It targets COW/NOW

architectures compiling code for a POSIX TCP/IP abstract machine. ASSIST supports

heterogeneous architecture targeting although it does not provide any special support for

multi/many core nodes.

The main strength of ASSIST consists in its unique and configurable skeleton that can

be used to model a variety of different situations. It is distributed under GPL OSS license.

12.3 JAVA BASED FRAMEWORKS

12.3.1 Lithium/Muskel

Lithium has been introduced in early ’00s [18]. Later on a subset of Lithium has been re-

implemented and the name has been changed in Muskel167, due to the poor maintainability

of the original Lithium code. Muskel only supports stateless stream parallel skeletons

(pipeline and farms). The semantics of Muskel has been first provided informally and then

in formal way through labeled transition systems [12]168. Muskel supports both autonomic

management of non functional feature and some limited fault tolerance is provided as well.

In particular, Muskel introduced the autonomic manager concept that has been later on

inherited by other skeleton programming frameworks. The autonomic manager of Muskel

is able to ensure performance contracts in the form of required parallelism degree and can

solve problems related to the failure of nodes used to implement the skeleton application.

Muskel is implemented as a Java library. Reuse of Java code is therefore supported

in the sequential parts of the parallel application. It is implemented using macro data

flow technology169 and provides possibility to expand the skeleton set providing a MDFG

implementation of the new skeleton as detailed in Sec. 9.6. No fine tuning support is

provided to the Muskel user/programmer, however.

Muskel supports automatic normal form reduction (see Sec. 9.3). It targets COW/NOWs

supporting Java/RMI. It is distributed under GPL OSS code license. Recently, multi/many

core support has been introduced [16].

166http://www.di.unipi.it/Assist.html
167http://backus.di.unipi.it/ marcod/wiki/doku.php?id=muskel
168Actually this is the semantics exposed in Chap. 10
169Lithium has been the first skeleton programming framework using this technology

D
ra
ft

JAVA BASED FRAMEWORKS 205

The main strength of Muskel consists in the support of seamless extension of the skeleton

set as well as of automatic normal form execution of stream parallel applications.

12.3.2 Calcium

Calcium170 has been introduced in late ’00s by M. Leyton. Calcium provides stream,

data and control parallel stateless skeletons. The semantics of Calcium has been formally

provided [27]. Calcium provides no support for skeleton set expandability. It allows reuse of

Java code in sequential “muscles”–sequential portions of code in Calcium jargon. Calcium

first provided support for application fine tuning, as mentioned in Sec. 5.4.3. Users get

reports about the possible bottlenecks in their applications along hints on how to solve

the problem [29]. On the other side Calcium does not provide any particular support for

autonomic management of non functional features.

Calcium is built on top of the ProActive middleware171. It is provided as a Java li-

brary and the implementation is based on macro data flow, although in Calcium stacks are

used instead of MDFG to compile skeletons. It may target two different abstract architec-

tures, namely ProActive on COW/NOW architectures and ProActive on shared memory

multicores. The targeting is explicitly programmed in the source code by using either

the distributed or the multicore Calcium “execution environment”. As a result, Calcium

both supports multi/many core–through execution environment choice–and heterogeneous

architectures–exploiting ProActive features. Calcium does not explicitly support fault tol-

erance, although ProActive natively supports it.

Calcium is released as part of the ProActive middleware suite under INRIA GPL OSS

license.

The main innovative features of Calcium consists in the stack based implementation

and in the fine tuning support exposing the user/programmer with possible sources of

inefficiencies monitored in current application execution.

12.3.3 Skandium

Skandium172 represents a kind of evolution of the Calcium framework. It is always main-

tained by M. Leyton, the creator of Calcium, that now moved to the NIC labs173 in Chile.

Skandium offers the very same features of Calcium, with a few notable differences:

• it is a full Java implementation, that is it does not require any kind of additional

library or middleware

• it only supports multi/many core architectures, exploiting Java thread facilities

• it provides controlled access to exceptions raised by the implementation in such a way

they can be understood as referred to the skeleton by the user/programmer [56]

• it supports a quite unusual fork skeleton representing “data parallelism where a data

element is subdivided, each sub-element is computed with a different code, and then

results are merged.”

170http://docs.huihoo.com/proactive/3.2.1/Calcium.html
171http://proactive.inria.fr/
172http://skandium.niclabs.cl/
173http://www.niclabs.cl/

D
ra
ft

206 SURVEY OF EXISTING SKELETON FRAMEWORKS

12.4 ML BASED FRAMEWORKS

12.4.1 Skipper

Skipper [75] has been developed by J. Serot in late ’90s. It represented the evolution of

previous skeleton frameworks contributed by the same author [74]. Skipper includes both

stream parallel and data parallel stateless skeletons. Being mainly aimed at the support of

vision applications, the data parallel skeletons included in Skipper were quite different from

common data parallel skeletons. In particular, a Split-Compute-Merge and a Data Farming

data parallel skeletons were included in the skeleton set. The semantics of the skeletons

was given in terms of functions (Ocaml code) for the functional part and informally for the

parallel semantics. Reuse of sequential Ocaml code was allowed but no expandability of the

skeleton set nor autonomic management of non functional features or fault tolerance was

supported.

Skipper was implemented as an Ocaml library according to the macro data flow imple-

mentation model [39]. The abstract machine targeted was COW/NOW Posix Ocaml archi-

tecture. There was no explicit support for multicore architectures nor particular support

for heterogeneous architectures, but those regularly supported by the Ocaml programming

environment. Skipper has been demonstrated effective to support a variety of computer

graphics applications, including “artificial vision” applications. It was released under OSS

license.

Skipper is no more supported but it has been mentioned here as it has been important

for two main reasons:

• it first adopted the macro data flow implementation model outside the research frame-

work where this model has been designed, and

• it was explicitly targeting a specific application domain (graphics and vision) and

therefore it represents a quite unusual, in some sense non general purpose skeleton

framework.

12.4.2 OcamlP3L

OcamlP3L174 [40, 38, 35] has been designed in mid ’90s as an Ocaml library implementation

of P3L (the skeleton framework discussed in Sec. 12.2.1). OcamlP3L supported the skele-

tons supports in P3L, that is both stream parallel and data parallel skeletons. However,

differently from P3L it is implemented as a library rather than as a new language. The

skeleton set provided cannot be easily expanded. Adding a new skeleton requires a simple

extension of the Ocaml syntax for skeletons but also the full implementation of a template

implementing the skeleton. The functional semantics of the OcamlP3L skeletons is given

in term of HOF, while their parallel semantics is given informally. OcamlP3L allow reuse

of code written in Ocaml wrapped into OcamlP3L sequential skeleton. It does not support

autonomic management of non functional feature nor fault tolerance.

The implementation of OcamlP3L follows the template model. Templates are written

using POSIX processes/threads and TCP/IP sockets. Therefore any COW/NOW support-

ing the Ocaml programming environment may be targeted and heterogeneous architectures

are also supported exploiting the Ocaml bytecode virtual machine.

OcamlP3L does not support specifically multi core architectures, even if multi core nodes

may de facto used as multiple processing elements anyway175. It is releases under OSS

174http://ocamlp3l.inria.fr/eng.htm
175but this is true for most skeleton based frameworks, actually

D
ra
ft

COMPONENT BASED FRAMEWORKS 207

license. From 2010, OcamlP3L is no longer maintained and CamlP3L176 is maintained

instead.

The main contribution of OcamlP3L was the usage of functional closure transmission

across distributed Ocaml interpreters used to specialize the different processing elements

used in such a way they behave as specific processes of the specific templates used to compile

the skeletons of the user application.

12.5 COMPONENT BASED FRAMEWORKS

12.5.1 GCM Behavioural skeletons

Behavioural skeletons (BS) have been introduced in late ’00s177 by the researchers at the

CoreGRID Programming model Institute178 [9, 10, 44]. A reference implementation was

produced by the EU funded STREP project GridCOMP179. Behavioural skeletons provide

stream parallel and data parallel components. In the last version of their implementation,

farm, pipeline and data parallel (with or without stencil) were provided. Those skeletons

were equipped (therefore the name “behavioural” skeletons) by autonomic managers taking

care of skeleton non functional features as described in Sec. 9.5.

The behavioural skeletons included in the reference implementation are stateless. They

can be arbitrary composed. The non functional concern managed in an autonomic way is

performance. The semantics is provided on an informal basis. Code reuse is guaranteed as

any GCM[23] component may be used as “sequential” building block of BS components and

Java code may be re-used to model sequential parts of the components. There is no explicit

support for fault tolerance in BS. Application fine tuning is supported via the possibility to

customize the JBoss rules constituting the “program” of the autonomic managers associated

to the skeletons.

The abstract machine targeted is the ProActive 4.0.1180 middleware platform that runs

on most distributed architecture, including COW/NOWs and GRIDs. There is no explicit

support for multi/many core architectures. The implementation of BS is template based

and the host language is definitely Java. The BS implementation is released under LGPL

OSS.

The main strengths of BS can be individuated in two aspects:

• On the one hand, in the autonomic manager implementation careful and appropriate

design, including programmability through abstract rule in the business rule engine in-

cluded in each one of the BS managers. The autonomic manager design in BS opened

perspective in the management of several different and important non functional con-

cerns, including performance, security, fault tolerance and power management.

• On the other hand, in the evolution of the manager concept in such a way that both

hierarchies of autonomic managers all taking care of the same non functional concern

[14] and multiple (hierarchies of) autonomic managers taking care of different non

functional concerns can be used [15].

176http://camlp3l.inria.fr/eng.htm
177http://gridcomp.ercim.eu/content/view/26/34/
178http://www.coregrid.net
179http://gridcomp.ercim.eu/
180http://proactive.inria.fr/

D
ra
ft

208 SURVEY OF EXISTING SKELETON FRAMEWORKS

12.5.2 LIBERO

LIBERO181 is a Lightweight Implementation of BEhaviouRal skeletOns [5, 4]. It has been

developed by the designers of the behavioural skeletons discussed in Sec. 12.5.1 to make

available a much more compact and manageable framework to support experimentation

with BS than the one provided by the reference implementation on top of ProActive/GCM.

LIBERO supports stream parallel only skeletons, at the moment, namely pipeline and

farm. It has been designed and implemented to make easy the introduction of other be-

havioural skeletons, but no facility is provided to user/programmer to support expandability.

The semantics of the skeletons is given on an informal basis. Being the whole implementa-

tion in Java, Java code re-used is ensured in sequential skeleton wrappings. At the moment

there is no support for application fine tuning nor to fault tolerance although fault toler-

ance policies can be seamlessly integrated in manager rules. LIBERO uses the same JBoss

business rule engine used in reference implementation of BS on top of ProActive/GCM, ac-

tually. LIBERO does not implement traditional component, however. Rather it uses Java

POJOs as components and relies on a small RMI based run time to support deployment of

these POJO components and to support component life cycle operations.

LIBERO provides behavioural skeletons as a Java library and targets any architecture

supporting Java, RMI and TCP/IP sockets. It is distributed as open source. As in BS

reference implementation, there is no explicit support for multi/many core architectures.

The main strength of LIBERO is in its lightweight implementation providing anyway a

complete behavioural skeleton framework. LIBERO design has been conceived to support

expandability, as stated above, and this also constitutes a strength of this framework even

if the expandability is not actually exposed to the user/programmer182.

12.6 QUASI -SKELETON FRAMEWORKS

We just outline here some notable programming frameworks that have been developed

completely outside the algorithmic skeleton community, that are very popular and that

somehow support a little bit of the skeleton technologies.

12.6.1 TBB

TBB is the Threading Building Block library by Intel183. The library is aims at supporting

multi-core programmers in taking advantage of multi-core processor performance without

having to be a threading expert.

In the initial versions of the library a few entries could be regarded as a kind of algo-

rithmic skeletons, namely those using thread to express parallelism in loop iterations and

therefore implementing a kind of map skeleton and those modelling variable length pipelines

(tbb::pipeline).

From version 3.0 (released in May 2010), a set of design patterns have been included

in TBB. These design patterns include a reduction, a divide and conquer and a wavefront

pattern. Some of these patterns may be implemented using primitive skeletons library calls

of TBB. As an example, the reduction pattern implementation is described in terms of the

tbb::parallel_reduce library entry. Implementations of other patterns is described in

terms of other basic TBB mechanisms (library entries) which look like more as templates (or

templates building blocks) than as skeletons if our perspective is adopted. As an example,

181http://backus.di.unipi.it/ marcod/wiki/doku.php?id=libero#libero
182but this is a consequence of the design of LIBERO that has been conceived as an experimental BS
framework to test improvements and advanced in BS implementation.
183http://threadingbuildingblocks.org

D
ra
ft

QUASI -SKELETON FRAMEWORKS 209

these mechanisms include tbb::parallel_invoke to fork a new thread computing a

function/procedure call or the tbb::parallel_for to compute for iterations in parallel.

The interested reader may refer to the documentation appearing on the “Intel Threading

Building Blocks 3.0 for Open Source web site”184.

12.6.2 TPL

Microsoft provides different tools to support parallel programming in the .NET framework,

including the Task Parallel Library (TPL). TPL provides some support for creating and

executing concurrent tasks (suitable to support stream and control parallel skeletons) as well

as for executing in parallel loop iterations (suitable to implement data parallel skeletons)185.

The kind of support provided by TPL looks like more basic than the one provided by TBB

although some clear functional style inspiration of the interface seems to promise an higher

level of abstraction with respect to TBB C++ style methods and classes.

12.6.3 OpenMP

OpenMP is the de facto standard as far as multi core programming frameworks are con-

cerned186. Despite the fact OpenMP only provides loop parallelization and some kind of

task parallelism, it has gained an outstanding popularity as it is provided as an annota-

tion (pragma) extension of C++ (and FORTRAN) languages. Parallelizing a loop using

OpenMP is as trivial as adding a line such as

#pragma omp parallel for
immediately before the for statement of the loop. However, writing efficient OpenMP

programs is much more difficult, as it requires deep understanding of all the additional

parameters of the OpenMP pragmas as well as a complete understanding of the concurrent

accesses performed on shared data structures.

This notwithstanding OpenMP may be used to implement both stream parallel and data

parallel programs with a moderate programming effort. Fine tuning–especially the tuning

activities related to performance tuning–are much more difficult than having an OpenMP

program running.

184http://threadingbuildingblocks.org/documentation.php
185http://msdn.microsoft.com/en-us/library/dd460717.aspx
186http://openmp.org/wp/

D
ra
ft

D
ra
ftLIST OF FIGURES

1.1 Moore’s rule (Figure taken from Wikipedia) 2

1.2 Von Neumann Architecture 3

1.3 Pollack’s rule 4

1.4 Different architectures for multicore SMP 5

1.5 Typical architecture of many core chips 6

1.6 Top ten positions in the Top500 list, Nov. 2010 7

1.7 Summary figures relative to Top500 Nov. 2010 list (sample) 8

1.8 Historic/trend charts relative to Top500 (sample) 9

2.1 Unbalanced computation. Three concurrent activities (a1, a2, a3) on

three different processing elements, spend unbalanced amount of times

to complete. The application completes when al the activities have been

completed. Idle times on the processing elements computing a1 and a3

reduce application efficiency. 22

2.2 Implementation graph of the sample application 30

3.1 Business logic 47

3.2 Two stage pipeline 50

3.3 Task farm 51

3.4 Computation performed by a reduce 56

3.5 Computation performed by a parallel prefix 57

3.6 Computation performed by a simple stencil data parallel 58

211

D
ra
ft

212 LIST OF FIGURES

3.7 Sample skeleton tree 62

3.8 Two tier skeleton nesting 66

4.1 Tool chain for skeleton frameworks providing a new language (workflow

¬ and represent alternatives) 75

4.2 Tool chain for skeleton frameworks implemented as libraries 75

4.3 Farm template for complete interconnection architectures 79

4.4 Farm template for mesh connected architectures 81

4.5 Recursive compilation of a pipeline skeleton to MDF graphs 83

4.6 Recursive compilation of a map skeleton to MDF graphs 83

4.7 Concurrent MDF interpreter logical design 85

4.8 Sample skeleton components (not composite) 87

5.1 Computing resource assignment in a skeleton tree. Initially the two farms

are given 5 and 15 processing elements. Then we visit the skeleton tree

bottom up and we start taking away one processing element from the first

farm. According to the pipeline performance model this allows to take

away 2 resources from the second farm. The process is repeated until the

number of required resources happens to be smaller than the number of

the available resources. 98

5.2 CodeBlame figure from M. Leyton paper [28] The output is relative to

three different runs (with parameters outlined in the comment lines) of a

program solving the N-queens problem. 100

5.3 Server modeling 104

5.4 Multiple clients for the same server 105

5.5 One client for the multiple servers 106

7.1 Alternative implementation templates for a reduce skeleton on a complete

interconnection architecture 116

7.2 A third alternative implementation template for a reduce skeleton on a

complete interconnection architecture 116

7.3 Performance comparison of the two reduce templates mentioned in the

text. Left: input data structure of 1K items, right: input data structure

of 2K items. T⊕ has been considered the unit time. Tcomm is defined

in terms of T⊕. Sample values plotted to show differences. The tree

template has been considered with a fixed parallelism degree (the ideal

one). The string+collector template has been considered with a varying

number of workers in the string. 118

7.4 Implementing data parallel constructs in terms of stream parallelism 122

7.5 Triple buffering 123

7.6 Removing synchronization in a stencil computation 128

7.7 Master worker template alternatives 129

D
ra
ft

LIST OF FIGURES 213

7.8 Divide and conquer phases: the depth of the three as well as the relative

balance is unknown in general at the moment the input data is received 132

7.9 Farm with feedback template to implement divide and conquer skeleton. 133

8.1 Portability through recompiling 137

8.2 Portability through virtual machines 139

9.1 General adaptation process 155

9.2 Adding worker plan 158

9.3 A behavioural skeleton (abstract view) 161

9.4 Functional replication behavioural skeleton 163

9.5 Sample manager tree 166

9.6 Sample performance contract propagation 168

9.7 Hierarchical management of a contract violation 169

9.8 Skeleton tree rewriting in hierarchical management 170

9.9 Alternative manager orchestration alternatives 172

9.10 Sample trace of mutual agreement protocol operation 175

9.11 Custom/user-defined skeleton declaration. 180

9.12 Mixed sample macro data flow graph (left): the upper part comes from a

user-defined macro data flow graph (it cannot be derived using primitive

muskel skeletons) and the lower part is actually coming from a three

stage pipeline with two sequential stages (the second and the third one)

and a parallel first stage (the user-defined one). GUI tool designing the

upper graph (right). 181

9.13 Introducing a new, user-defined skeleton: a map working on vectors and

with a fixed, user-defined parallelism degree. 183

10.1 Lithium operational semantics. x, y ∈ value; σ, τ ∈ values; ν ∈ values

∪ {ε}; E ∈ exp; Γ ∈ exp∗; `, `i, . . . ∈ label ; O : label × value → label. 187

10.2 The semantic of a Lithium program: a complete example. 189

11.1 Skeleton vs. parallel design pattern based languages 196

D
ra
ft

D
ra
ftLIST OF TABLES

8.1 Problems related to template/MDF interpreter implementation for

distributed/shared memory architectures 143

9.1 Non functional concerns of interest 171

215

D
ra
ft

D
ra
ftACRONYMS

AC Autonomic Controller

AM Autonomic Manager

AOP Aspect Oriented Programming

BS Behavioural Skeletons

CISC Complex Instruction Set Computer

COW Cluster Of Workstations

DNS Domain Name Service

EU European Union

FPGA Field Programmable Gate Array

FRbs Functional Replication Behavioural Skeleton

GCM Grid Component Model

GP-GPU General Purpose Graphic Process Unit

HOF High Order Functions

HPF High Performance Fortran

JVM Java Virtual Machine

LTS Labelled Transition System

MDF Macro Data Flow

MDFG Macro Data Flow Graph

MDFi Macro Data Flow Instruction

MIMD Multiple Instruction Multiple Data

MPI Message Passing Interface

217

D
ra
ft

218 ACRONYMS

MPP Massively Parallel Processor

NFS Network File System

NOW Network Of Workstations

NUMA Non-Uniform Memory Access

OO Object Oriented

OSS Open Source Software

P3L Pisa Parallel Processing Language

PE Processing Element

POJO Plain Old Java Object

RISC Reduced Instruction Set Computer

RMI Remote Method Invocation

RPC Remote Procedure Call

RTS Run Time Support

SIMD Single Instruction Multiple Data (programming model)

SMP Symmetric Multi Processor

SSI Single System Image

TBB Thread Building Block (library)

TC Completion time

TS Service time

UMA Uniform Memory Access

VLIW Very Long Instruction Word

D
ra
ftINDEX

abstract adaptation actions, 157
accept syscall, 28
accumulate shared access, 68
actuators, 158
adaptivity

endogenous motivations, 155
exogenous motivations, 155

ad hoc parallelism, 111
affinity scheduling, 85
algorithmic skeleton

advantages, 49
application development methodology, 48
concept introduction, 46
data parallel, 55
definition, 48

Cole’s manifesto, 47
Cole’s original definition, 46
Cole’s skeleton home page, 47

discovery
analysis, 112
synthesis, 113

distinguishing features, 48
domain specific sets, 110
functional semantics, 51
implementation

implementation templates, 76
library, 74
new language, 73

macro data flow interpreter, 84
MDF compile function, 84
non functional parameters, 52
parallel semantics, 51
portability, 49, 110

algorithmic skeletons
RISC approach, 110

algorithmic skeleton
stream parallel, 54

theoretical performance, 93
weakness, 50

Amdhal law, 20
asymptotic speedup, 20
serial fraction, 20

application portability, 135
ASSIST, 204
authentication, 24
autonomic controller, 161
autonomic managemnet

local failure, 167
autonomic manager, 161
auto scheduling, 119
bandwidth, 90
barrier, 123
behavioural skeleton

definition, 160
Behavioural skeletons, 207
binary compatibility, 135
binary portability, 3

builtin prefetch, 126
business logic code, 26
cache prefetching, 126
Calcium, 205
checkpoint, 23
CISC skeleton set, 62
client server paradigm, 119
clock synchronization, 124
close syscall, 28
cloud computing, 10

definition, 10
on demand resources, 10

code blame, 99
code instrumenting, 157
code reuse, 13
code reuse (sequential), 63
Cole’s principles, 110

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

219

D
ra
ft

220 INDEX

collector
farm template, 80

communication cost modeling, 94
communication grouping, 146
completion time, 90
concurrent activites, 15
concurrent activities

coordination, 15, 17
data access, 17
synchronization, 17

implementation, 17
methodology to find conc. act., 17

concurrent activity graph, 18
critical path, 18
input activities, 18
output activities, 18

concurrent vector item access, 127
connect syscall, 28
contract propagation, 166
control dependencies, 18
control parallel skeletons

conditional, 59
iterative, 59
sequential skeleton, 59

core
definition, 4

cross-skeleton template, 121
Cuda, 26
data dependencies, 18
data parallel skeletons

divide&conquer, 58
map, 55
parallel prefix, 56
reduce, 56
stencil, 57

design pattern definition, 194
design patterns, 193
distfile, 29
divide&conquer

definition, 58
dynamic adaptation, 13
dynamic adaptation (sample), 156
efficiency, 91
emitter

farm template, 80
end of stream, 120
eos, 120
escape skeleton, 111
exec syscall, 27
farm

definition, 55
parallelism degree, 52

farm skeleton
stateful, 70

farm template
complete interconnection architectures, 80
mesh interconnected architectures

version 1, 80
version 2, 81

FastFlow, 121, 144, 203
fault tolerance, 23
fireable instruction, 82
flat nesting, 65
fork syscall, 27
FPGA, 12
full compositionality, 65
functional code, 19
functional portability, 136

gettimeofday, 102
GP-GPU, 5

co-processor, 5
power consumption, 25

grouping communications, 146
hardware counters, 157
heartbeats, 37
heterogeneous architecture, 140
heterogeneous architectures, 12

FPGA, 12
hierarchical management, 165
high performance computing, 6
IaaS

infrastructure as a service, 11
implementation template

definition, 115
design methodology, 115
push/pull client server usage, 119
reduce, 115

input token
assigment, 82

interconnection network setup, 124
intrusion problem, 102
kill, 29
latency, 90
LIBERO, 208
listen syscall, 28
Lithium, 204
load balancing

dynamic techniques, 22
static techniques, 21

load unbalance, 21
locality, 144
macro data flow distributed interpreter, 85
macro data flow graph, 82
macro data flow instruction, 82
many core

definition, 5
GPU, 5

map
definition, 55

mapping, 18
Marzullo’s algorithm, 124
master/worker template

performance model, 95
MDFG, 82
MDFI, 82
model driven rewriting, 154
monitor, 127
Moore’s law, 3

multicore version, 4
MPI, 26
msgget syscall, 28
msgrcv syscall, 28
msgsend syscall, 28
MTFB, 24
Muesli, 202
multi concern management, 170
multicore

definition, 4
traditional, 5

muskel, 204
mutual agreement protocol, 173

alternative, 176
non functional code, 19
normal form, 152
NUMA, 5, 18
OcamlP3L, 206

D
ra
ft

INDEX 221

OpenCL, 26
OpenMP, 26, 209
optimization phase, 78
overhead, 20
owner write shared access, 68
P3L

the Pisa Parallel Programming Language, 201
PaaS

platform as a service, 11
parallel computing

definition, 15
parallel design patterns

concept genesis, 46
parallelism degree

computation, 78
parallel prefix

definition, 56
parallel programming models

classical, 25
parallel software urgencies, 11
parameter sweeping, 47
patterns, 45
peer-to-peer discovery, 120
performance

expected, 20
performance measures

basic performance measures, 90
performance model

accuracy level, 95
“approximate” approach, 95
architecture model, 94
definition, 77, 89
“detailed” approach, 95
reduce, 116
skeleton, 93
template, 93
usages, 90

performance portability, 136
pipeline

definition, 54
pipe syscall, 27
Pollack’s law, 4
portability

general issue, 12
re-compiling, 137
virtual machines, 139

POSIX command line interface, 28
deployment, 28
lifecycle control, 29

POSIX
pipes, 27

POSIX syscalls
communications, 27

sockets, 27
processes, 27
sycnhronization, 28
threads, 27

power management, 25
proactive adaptation, 157
process template

definition, 76
programming framework

portability, 135
ps, 29
pthread create syscall, 27
pthread join syscall, 27
pthread mutex lock syscall, 28
pthread mutex unlock syscall, 28

rapid prototyping, 49
rdist, 28
reactive adaptation, 157
readonly shared access, 67
read syscall, 27
reduce

definition, 56
reliability

definition, 23
resource shared access, 68
rewriting rules, 151
rewriting tree, 154
RISC skeletons, 63
rsync, 28
SaaS

software as a service, 11
scalability, 91
scheduling, 18
scheduling optimizations, 85
scp, 28
securing code deployment, 25
securing data, 24
security, 24
semget syscall, 28
semop syscall, 28
sem post syscall, 28
sem wait syscall, 28
serial fraction, 20
service time, 90
shared state access

accumulate, 68
owner writes, 68
readonly, 67
resource, 68

shmat syscall, 28
shmget syscall, 28
shutdown syscall, 28
single system image, 24
Skandium, 205
skeleton nesting

rewriting, 79
skeleton programming framework, 60
skeleton rewriting rules, 151
skeleton semantics

operational semantics, 186
skeletons vs. templates, 113
skeleton tree, 61
SkeTo, 202
Skipper, 206
socket syscall, 28
socket types, 28
speedup, 90

asymptote, 92
ssh, 29
state modeling

syntax, 69
static adaptation (sample), 156
stencil

definition, 57
streamer stream parallel function, 53
stream parallel skeletons

farm, 55
pipeline, 54

SysV syscalls, 28
TBB, 208
template composition

tuning, 79
template

D
ra
ft

222 INDEX

divide&conquer
master/worker with feedback template, 131
tree template, 131

master worker, 129
template selection, 78
termination

farm, 121
termination with end-of-stream messages, 120
Thread Building Block, 208
Tilera, 5
time command, 101
time stamp, 124
token, 82

top500, 6
trends, 9
urgencies, 10

TPL, 209
triple buffering, 123
two tier composition model, 66
UMA, 5, 18
uptime, 29
Von Neumann architecture, 3
wait syscall, 27
worker

farm template, 80
write syscall, 27

D
ra
ftREFERENCES

1. E. Agerbo and A. Cornils. How to preserve the benefits of Design Patterns. In Proceedings of
OOPSLA’98, pages 134–143, 1998.

2. Enrique Alba, Gabriel Luque, Jose Garcia-Nieto, Guillermo Ordonez, and Guillermo Leguiza-
mon. MALLBA a software library to design efficient optimisation algorithms. Intl. Journal of
Innovative Computing and Applications, 1(1):74–85, 2007.

3. M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In Proc. of the 11th
IASTED Intl. Conference on Parallel and Distributed Computing and Systems (PDCS’99),
pages 955–962, Cambridge, Massachusetts, USA, November 1999. IASTED/ACTA press.

4. M. Aldinucci, M. Danelutto, P. Kilpatrick, and V. Xhagijka. LIBERO: a framework for au-
tonomic management of multiple non-functional concerns. In Proceedings of Euro-Par 2010
workshops, number 6586 in LNCS. Springer Verlag, 2011.

5. M. Aldinucci, M. Danelutto, P. Kilpatrick, and V. Xhagjika. LIBERO: a LIghtweight BE-
haviouRal skeletOn framework, 2007. available at http://compass2.di.unipi.it/TR/
Files/TR-10-07.pdf.gz.

6. M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting structured
parallel programming in Java. Future Generation Computer Systems, 19(5):611–626, 2003.

7. Marco Aldinucci, Francoise André, Jérémy Buisson, Sonia Campa, Massimo Coppola, Marco
Danelutto, and Corrado Zoccolo. Parallel program/component adaptivity management. In
G. R. Joubert, W. E. Nagel, F. J. Peters, O. Plata, P. Tirado, and E. Zapata, editors, Parallel
Computing: Current & Future Issues of High-End Computing (Proc. of PARCO 2005, Malaga,
Spain), volume 33 of NIC, pages 89–96, Germany, December 2005. John von Neumann Institute
for Computing.

8. Marco Aldinucci, Carlo Bertolli, Sonia Campa, Massimo Coppola, Marco Vanneschi, Luca
Veraldi, and Corrado Zoccolo. Self-configuring and self-optimizing grid components in the
GCM model and their ASSIST implementation. In Proc of. HPC-GECO/Compframe (held in
conjunction with HPDC-15), pages 45–52, Paris, France, June 2006. IEEE.

9. Marco Aldinucci, Sonia Campa, Marco Danelutto, Patrizio Dazzi, Peter Kilpatrick, Domenico
Laforenza, and Nicola Tonellotto. Behavioural skeletons for component autonomic management
on grids. In Marco Danelutto, Paraskevi Frangopoulou, and Vladimir Getov, editors, Mak-
ing Grids Work, CoreGRID, chapter Component Programming Models, pages 3–16. Springer,
August 2008.

SPM notes 2010–2011. By M. Danelutto
DRAFT – version 1.0 – April 2011

223

D
ra
ft

224 REFERENCES

10. Marco Aldinucci, Sonia Campa, Marco Danelutto, Marco Vanneschi, Patrizio Dazzi, Domenico
Laforenza, Nicola Tonellotto, and Peter Kilpatrick. Behavioural skeletons in GCM: autonomic
management of grid components. In Didier El Baz, Julien Bourgeois, and Francois Spies,
editors, Proc. of Intl. Euromicro PDP 2008: Parallel Distributed and network-based Processing,
pages 54–63, Toulouse, France, February 2008. IEEE.

11. Marco Aldinucci and Marco Danelutto. Stream parallel skeleton optimization. In Proc. of
PDCS: Intl. Conference on Parallel and Distributed Computing and Systems, pages 955–962,
Cambridge, Massachusetts, USA, November 1999. IASTED, ACTA press.

12. Marco Aldinucci and Marco Danelutto. Skeleton based parallel programming: functional and
parallel semantic in a single shot. Computer Languages, Systems and Structures, 33(3-4):179–
192, October 2007.

13. Marco Aldinucci, Marco Danelutto, and Patrizio Dazzi. Muskel: an expandable skeleton envi-
ronment. Scalable Computing: Practice and Experience, 8(4):325–341, December 2007.

14. Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Autonomic management of non-
functional concerns in distributed and parallel application programming. In Proc. of Intl.
Parallel & Distributed Processing Symposium (IPDPS), pages 1–12, Rome, Italy, May 2009.
IEEE.

15. Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Autonomic managenemt of multi-
ple non-functional concerns in behavioural skeletons. In Grids, P2P and Services Computing
(Proc. of the CoreGRID Symposium 2009), CoreGRID, Delft, The Netherlands, August 2009.
Springer.

16. Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Skeletons for multi/many-core sys-
tems. In Parallel Computing: From Multicores and GPU’s to Petascale (Proc. of PARCO 2009,
Lyon, France), volume 19 of Advances in Parallel Computing, pages 265–272, Lyon, France,
September 2009. IOS press.

17. Marco Aldinucci, Marco Danelutto, Massimiliano Meneghin, Peter Kilpatrick, and Massimo
Torquati. Efficient streaming applications on multi-core with FastFlow: the biosequence align-
ment test-bed. In Parallel Computing: From Multicores and GPU’s to Petascale (Proc. of
PARCO 09, Lyon, France), volume 19 of Advances in Parallel Computing, pages 273–280. IOS
press, September 2009.

18. Marco Aldinucci, Marco Danelutto, and Paolo Teti. An advanced environment supporting
structured parallel programming in Java. Future Generation Computer Systems, 19(5):611–
626, July 2003.

19. Marco Aldinucci, Massimiliano Meneghin, and Massimo Torquati. Efficient Smith-Waterman
on multi-core with fastflow. In Proc. of Intl. Euromicro PDP 2010: Parallel Distributed and
network-based Processing, pages 195–199, Pisa, Italy, February 2010. IEEE.

20. P. Au, J. Darlington, M. Ghanem, Y. Guo, H.W. To, and J. Yang. Co-ordinating heterogeneous
parallel computation. In L. Bouge, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Proc.
of Euro-Par 1996, pages 601–614. Springer-Verlag, 1996.

21. B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Structured High
level programming language and its structured support. Concurrency Practice and Experience,
7(3):225–255, May 1995.

22. B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: a heterogeneous environment
for HPC applications. Parallel Computing, 25:1827–1852, December 1999.

23. Françoise Baude, Denis Caromel, Cédric Dalmasso, Marco Danelutto, Vladimir Getov, Ludovic
Henrio, and Christian Pérez. Gcm: a grid extension to fractal for autonomous distributed
components. Annales des Télécommunications, 64(1-2):5–24, 2009.

24. A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Flexible skeletal programming with eSkel.
In J. C. Cunha and P. D. Medeiros, editors, Proc. of 11th Euro-Par 2005 Parallel Processing,
volume 3648 of LNCS, pages 761–770, Lisboa, Portugal, August 2005. Springer.

25. G. H. Botorog and H. Kuchen. Efficient high-level parallel programming. Theoretical Computer
Science, 196(1–2):71–107, April 1998.

D
ra
ft

REFERENCES 225

26. H. Burkhart and S. Gutzwiller. Steps Towards Reusability and Portability in Parallel Pro-
gramming. In K. M. Decker and R. M. Rehmann, editors, Programming Environments for
Massively Parallel Distributed Systems, pages 147–157. Birkhauser, April 1994.

27. Denis Caromel, Ludovic Henrio, and Mario Leyton. Type safe algorithmic skeletons. Parallel,
Distributed, and Network-Based Processing, Euromicro Conference on, 0:45–53, 2008.

28. Denis Caromel and Mario Leyton. Fine tuning algorithmic skeletons. In 13th International
Euro-par Conference: Parallel Processing, volume 4641 of Lecture Notes in Computer Science,
pages 72–81, Rennes, France, 2007. Springer-Verlag.

29. Denis Caromel and Mario Leyton. Fine tuning algorithmic skeletons. In Anne-Marie Ker-
marrec, Luc Bougé, and Thierry Priol, editors, Euro-Par, volume 4641 of Lecture Notes in
Computer Science, pages 72–81. Springer, 2007.

30. C. Chambers, B. Handerson, and J. Vlissides. A Debate on Lnaguage and Tool Support for
Design Patterns. In Proceedings of POPL 2000.

31. S. Ciarpaglini, M. Danelutto, L. Folchi, C. Manconi, and S. Pelagatti. ANACLETO: a template-
based P3L compiler. In Proceedings of the PCW’97, 1997. Camberra, Australia.

32. P. Ciechanowicz, M. Poldner, and H. Kuchen. The Munster skeleton library Muesli – a com-
prehensive overview. In ERCIS Working paper, number 7. ERCIS – European Research Center
for Information Systems, 2009.

33. Philipp Ciechanowicz and Herbert Kuchen. Enhancing Muesli’s Data Parallel Skeletons for
Multi-Core Computer Architectures. In Proc. of the 10th Intl. Conference on High Performance
Computing and Communications (HPCC), pages 108–113, Los Alamitos, CA, USA, September
2010. IEEE.

34. Philipp Ciechanowicz and Herbert Kuchen. Enhancing muesli’s data parallel skeletons for
multi-core computer architectures. In HPCC, pages 108–113. IEEE, 2010.

35. François Clément, V. Martin, A. Vodicka, Roberto Di Cosmo, and Pierre Weis. Domain
decomposition and skeleton programming with ocamlp3l. Parallel Computing, 32(7-8):539–
550, 2006.

36. Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computations. Re-
search Monographs in Par. and Distrib. Computing. Pitman, 1989.

37. Murray Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel
programming. Parallel Computing, 30(3):389–406, 2004.

38. Roberto Di Cosmo, Zheng Li, Susanna Pelagatti, and Pierre Weis. Skeletal parallel program-
ming with ocamlp3l 2.0. Parallel Processing Letters, 18(1):149–164, 2008.

39. Rémi Coudarcher, Jocelyn Sérot, and Jean-Pierre Dérutin. Implementation of a skeleton-
based parallel programming environment supporting arbitrary nesting. In Proceedings of the
6th International Workshop on High-Level Parallel Programming Models and Supportive Envi-
ronments, HIPS ’01, pages 71–85, London, UK, 2001. Springer-Verlag.

40. M. Danelutto, R. Di Cosmo, X. Leroy, and S. Pelagatti. Parallel functional programming with
skeletons: the OCAMLP3L experiment. In ACM Sigplan Workshop on ML, pages 31–39, 1998.

41. M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A methodology for
the development and support of massively parallel programs. Future Generation Computer
Systems, 8(1–3):205–220, July 1992.

42. M. Danelutto and M. Stigliani. SKElib: parallel programming with skeletons in C. In A. Bode,
T. Ludwing, W. Karl, and R. Wismüller, editors, Proc. of Euro-Par 2000, number 1900 in
LNCS, pages 1175–1184. Springer-Verlag, September 2000.

43. Marco Danelutto. Efficient support for skeletons on workstation clusters. Parallel Processing
Letters, 11(1):41–56, 2001.

44. Marco Danelutto and Giorgio Zoppi. Behavioural skeletons meeting services. In Proc. of
ICCS: Intl. Conference on Computational Science, Workshop on Practical Aspects of High-
level Parallel Programming, volume 5101 of LNCS, pages 146–153, Krakow, Poland, June
2008. Springer.

45. J. Darlington, A. J. Field, P.G. Harrison, P. H. J. Kelly, D. W. N. Sharp, R. L. While, and
Q. Wu. Parallel programming using skeleton functions. In A. Bode, M. Reeve, and G. Wolf,

D
ra
ft

226 REFERENCES

editors, Proc. of the Parallel Architectures and Langauges Europe (PARLE’93), number 694 in
LNCS. Springer-Verlag, June 1993.

46. J. Darlington and H. W. To. Building parallel applications without programming. In Leeds
Workshop on Abstract Parallel Machine Models 93, 1993.

47. E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1994.

48. D. Goswami, A. Singh, and B. R. Preiss. Using Object-Oriented Techniques for Realizing
Parallel Architectural Skeletons. In Proceedings of the ISCOPE’99 conference, pages 130–141.
Springer Verlag, 1999. LNCS No. 1732.

49. C. A. R. Hoare. Monitors: an operating system structuring concept. Commun. ACM, 17:549–
557, October 1974.

50. Infiniband web page, 2011. http://www.infinibandta.org/.

51. C. W. Kessler. Symbolic Array Data Flow Analysis and Pattern Recognition in Numerical
Codes. In K. M. Decker and R. M. Rehmann, editors, Programming Environments for Massively
Parallel Distributed Systems, pages 57–68. Birkhauser, April 1994.

52. Khronos Compute Working Group. OpenCL, November 2009. http://www.khronos.org/
opencl/.

53. David Kirk. NVIDIA CUDA software and GPU parallel computing architecture. In Proc. of
the 6th Intl. Symposium on Memory Management (ISMM), pages 103–104, New York, NY,
USA, 2007.

54. Herbert Kuchen. A skeleton library. In B. Monien and R. Feldman, editors, Proc. of 8th Euro-
Par 2002 Parallel Processing, volume 2400 of LNCS, pages 620–629, Paderborn, Germany,
August 2002. Springer.

55. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21:558–565, July 1978.

56. Mario Leyton, Ludovic Henrio, and José M. Piquer. Exceptions for algorithmic skeletons.
In Pasqua D’Ambra, Mario Rosario Guarracino, and Domenico Talia, editors, Euro-Par (2),
volume 6272 of Lecture Notes in Computer Science, pages 14–25. Springer, 2010.

57. Mario Leyton and José M. Piquer. Skandium: Multi-core programming with algorithmic
skeletons. In Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed
and Network-based Processing, PDP ’10, pages 289–296, Washington, DC, USA, 2010. IEEE
Computer Society.

58. Keith Ansel Marzullo. Maintaining the time in a distributed system: an example of a loosely-
coupled distributed service (synchronization, fault-tolerance, debugging). PhD thesis, Stanford,
CA, USA, 1984. AAI8506272.

59. B. L. Massingill, T. G. Mattson, and B. A Sanders. A Pattern Language for Parallel Application
Languages. Technical Report TR 99-022, Univeristy of Florida, CISE, 1999.

60. B. L. Massingill, T. G. Mattson, and B. A. Sanders. A Pattern Language for Parallel Ap-
plication Programs. In Bode, Ludwig, Karl, and Wismuller, editors, Euro-Par 2000 Parallel
Processing, LNCS, No. 1900, pages 678–681. Springer Verlag, August 2000.

61. Kiminori Matsuzaki, Hideya Iwasaki, Kento Emoto, and Zhenjiang Hu. A library of construc-
tive skeletons for sequential style of parallel programming. In InfoScale ’06: Proc. of the 1st
Intl. Conference on Scalable Information Systems, page 13, New York, NY, USA, 2006. ACM.

62. Kiminori Matsuzaki, Kazuhiko Kakehi, Hideya Iwasaki, Zhenjiang Hu, and Yoshiki Akashi. A
Fusion-Embedded Skeleton Library. In Euro-Par 2004 Parallel Processing, 10th International
Euro-Par Conference, pages 644–653. LNCS Springer, 2004.

63. Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel programming.
Addison-Wesley Professional, first edition, 2004.

64. S. McDonald, D. Szafron, J. Schaeffer, and S. Bromling. From Patterns to Frameworks to
Parallel Programs. submitted to Journal of Parallel and Distributed Computing, December
2000.

D
ra
ft

REFERENCES 227

65. S. McDonald, D. Szafron, J. Schaeffer, and S. Bromling. Generating parallel program frame-
works from parallel design p atterns. In A. Bode, T. Ludwing, W. Karl, and R. Wismüller,
editors, Proc of. 6th Intl. Euro-Par 2000 Parallel Processing, volume 1900 of LNCS, pages
95–105. Springer, August 2000.

66. M.P.I.Forum. Document for a standard message-passing interface. Technical Report CS-93-214,
University of Tennessee, November 1993.

67. Myricom. Myrinet overview, 2011. http://www.myri.com/myrinet/overview/.

68. S. Newhouse, A. Mayer, and J. Darlington. A Software Architecture for HPC Grid Applications.
In A. Bode, T. Ludwig, W. Karl, and R. Wismüller, editors, Euro-Par 2000 Parallel Processing,
LNCS, no. 1900, pages 686–689. Springer Verlag, August-September 2000.

69. Ocaml web page, 2011. http://caml.inria.fr/ocaml/.

70. S. Pelagatti. Structured Development of Parallel Programs. Taylor&Francis, 1998.

71. Michael Poldner and Herbert Kuchen. On implementing the farm skeleton. Parallel Processing
Letters, 18(1):117–131, 2008.

72. J. Serot and D. Ginhac. Skeletons for parallel image processing: an overview of the skipp er
project. Parallel Computing, 28(12):1685–1708, 2002.

73. J. Serot, D. Ginhac, and J.P. Derutin. SKiPPER: A Skeleton-Based Parallel Programming
Environment for Real-Time Image Processing Applications. In Proceedings of the 5th Interna-
tional Parallel Computing Technologies Conference (PaCT-99), September 1999.

74. Jocelyn Sérot. Embodying parallel functional skeletons: An experimental implementation on
top of mpi. In Christian Lengauer, Martin Griebl, and Sergei Gorlatch, editors, Euro-Par,
volume 1300 of Lecture Notes in Computer Science, pages 629–633. Springer, 1997.

75. Jocelyn Sérot, Dominique Ginhac, and Jean-Pierre Dérutin. Skipper: A skeleton-based parallel
programming environment for real-time image processing applications. In Victor E. Malyshkin,
editor, PaCT, volume 1662 of Lecture Notes in Computer Science, pages 296–305. Springer,
1999.

76. SkeTo project home, 2011. http://www.ipl.t.u-tokyo.ac.jp/sketo/.

77. Sourceforge. FastFlow project, 2009. http://mc-fastflow.sourceforge.net/.

78. Haruto Tanno and Hideya Iwasaki. Parallel skeletons for variable-length lists in sketo skeleton
library. In Euro-Par ’09: Proceedings of the 15th International Euro-Par Conference on Parallel
Processing, pages 666–677. Springer-Verlag, 2009.

79. M. Vanneschi. Course Notes: High Performance Computing Systems and Enabling Platforms,
2010. Department of Computer Science, University of Pisa, available at http://www.di.
unipi.it/˜vannesch/ASE2007-08/ASE07_08%20-%202.html.

80. Marco Vanneschi. The programming model of ASSIST, an environment for parallel and dis-
tributed portable applications. Parallel Computing, 28(12):1709–1732, December 2002.

