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Objective
– To understand the OpenACC programming model

– basic concepts and pragma types
– simple examples
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OpenACC
– The OpenACC Application Programming Interface provides a set of

– compiler directives (pragmas)
– library routines and 
– environment variables 
that can be used to write data parallel Fortran, C and C++ programs that 
run on accelerator devices including GPUs and CPUs
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OpenACC Pragmas
– In C and C++, the #pragma directive is the method to provide to the 

compiler information that is not specified in the standard language.
– These pragmas extend the  base language
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Vector Addition in OpenACC

void VecAdd(float * __restrict__ output, const float * input1, const float * input 2, int inputLength)
{
#pragma acc parallel loop copyin(input1[0:inputLength],input2[0:inputLength]),  

copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];
}

}
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Simple Matrix-Matrix Multiplication in OpenACC

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }
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Some Observations (1)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }

5
The code is almost identical to the sequential version,
except for the two lines with #pragma at line 3 and line 5. 
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Some Observations (2)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }

5
The #pragma at line 3 tells the compiler to generate code for the ‘i’ 
loop at line 4 through 15 so that the loop iterations are executed at 
the first level of parallelism on the accelerator. 
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Some Observations (3)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }

5
The copyin() clause and the copyout() clause specify how the compiler 
should arrange for the matrix data to be transferred between the host 
and the accelerator. 
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Some Observations (4)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3.  #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw]) 
4.  for (int i=0; i<Mh; i++) {
5.    #pragma acc loop 
6.      for (int j=0; j<Nw; j++) {
7.          float sum = 0;
8.          for (int k=0; k<Mw; k++) {
9.               float a = M[i*Mw+k];
10.               float b = N[k*Nw+j];
11.               sum += a*b;
12.          }
13.          P[i*Nw+j] = sum;
14.      } 
15.  } 
16. }

5
The #pragma at line 5 instructs the compiler to map the inner ‘j’ loop 
to the second level of parallelism on the accelerator. 
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Motivation
– OpenACC programmers can often start with writing a sequential version 

and then annotate their sequential program with OpenACC directives. 
– leave most of the details in generating a kernel, memory allocation, and data transfers to 

the OpenACC compiler. 

– OpenACC code can be compiled by non-OpenACC compilers by ignoring 
the pragmas.
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Frequently Encountered Issues
– Some OpenACC pragmas are hints to the OpenACC compiler, which may or may not 

be able to act accordingly
– The performance of an OpenACC program depends heavily on the quality of the compiler.
– It may be hard to figure out why the compiler cannot act according to your hints
– The uncertainty is much less so for CUDA or OpenCL programs
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OpenACC Device Model

Currently OpenACC does not expose synchronization 
across threads to the programmers.
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OpenACC Execution Model
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