
Introduction to OpenACC
Lecture 21.1 - Related Programming Models: OpenACC

GPU Teaching Kit
Accelerated Computing

2

Objective
– To understand the OpenACC programming model

– basic concepts and pragma types
– simple examples

2

3

OpenACC
– The OpenACC Application Programming Interface provides a set of

– compiler directives (pragmas)
– library routines and
– environment variables
that can be used to write data parallel Fortran, C and C++ programs that
run on accelerator devices including GPUs and CPUs

3

4

OpenACC Pragmas
– In C and C++, the #pragma directive is the method to provide to the

compiler information that is not specified in the standard language.
– These pragmas extend the base language

4

5

Vector Addition in OpenACC

void VecAdd(float * __restrict__ output, const float * input1, const float * input 2, int inputLength)
{
#pragma acc parallel loop copyin(input1[0:inputLength],input2[0:inputLength]),

copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];
}

}

5

6

Simple Matrix-Matrix Multiplication in OpenACC

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5

7

Some Observations (1)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The code is almost identical to the sequential version,
except for the two lines with #pragma at line 3 and line 5.

8

Some Observations (2)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The #pragma at line 3 tells the compiler to generate code for the ‘i’
loop at line 4 through 15 so that the loop iterations are executed at
the first level of parallelism on the accelerator.

9

Some Observations (3)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The copyin() clause and the copyout() clause specify how the compiler
should arrange for the matrix data to be transferred between the host
and the accelerator.

10

Some Observations (4)

1. void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)
2. {
3. #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Mw*Nw]) copyout(P[0:Mh*Nw])
4. for (int i=0; i<Mh; i++) {
5. #pragma acc loop
6. for (int j=0; j<Nw; j++) {
7. float sum = 0;
8. for (int k=0; k<Mw; k++) {
9. float a = M[i*Mw+k];
10. float b = N[k*Nw+j];
11. sum += a*b;
12. }
13. P[i*Nw+j] = sum;
14. }
15. }
16. }

5
The #pragma at line 5 instructs the compiler to map the inner ‘j’ loop
to the second level of parallelism on the accelerator.

11

Motivation
– OpenACC programmers can often start with writing a sequential version

and then annotate their sequential program with OpenACC directives.
– leave most of the details in generating a kernel, memory allocation, and data transfers to

the OpenACC compiler.

– OpenACC code can be compiled by non-OpenACC compilers by ignoring
the pragmas.

7

12

Frequently Encountered Issues
– Some OpenACC pragmas are hints to the OpenACC compiler, which may or may not

be able to act accordingly
– The performance of an OpenACC program depends heavily on the quality of the compiler.
– It may be hard to figure out why the compiler cannot act according to your hints
– The uncertainty is much less so for CUDA or OpenCL programs

8

13

OpenACC Device Model

Currently OpenACC does not expose synchronization
across threads to the programmers.

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread
execution unit

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread
execution unit

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread
execution unit

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread

vector

thread
execution unit

accelerator

14

OpenACC Execution Model

vector
operations

workers

launch

sync

Host Accelerator

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Lecture 21.1 - Related Programming Models: OpenACC
	Objective
	OpenACC
	OpenACC Pragmas
	Vector Addition in OpenACC
	Simple Matrix-Matrix Multiplication in OpenACC
	Some Observations (1)
	Some Observations (2)
	Some Observations (3)
	Some Observations (4)
	Motivation
	Frequently Encountered Issues
	OpenACC Device Model
	OpenACC Execution Model
	Slide Number 15

