Randomized Protocols for Asynchronous Consensus

Alessandro Panconesi
DSI - La Sapienza
via Salaria 113, piano III
00198 Roma, Italy

One of the central problems in the Theory of (feasible) Computation is
to ascertain to what extent, if any, randomization makes algorithms more
powerful. This broad question is the motivation behind several very chal-

lenging open problems such as P Z BPP- whether randomization expands

the class of problems solvable in polynomial time— or N'C z RN C— whether
randomization helps to compute problems fast in parallel in the PRAM
model. While these problems appear today to be as unfathomable as they
were the first time that they were formulated a couple of decades ago, the
question randomization is more powerful than determinism can be settled
in the more restricted setting of distributed computation.

We saw in the last lecture that no 1-resilient protocol for consensus
exists. If we use randomization however, consensus can be solved. In fact,
we shall give an f-resilient protocol for f < n/2! This is an instance where
randomization makes a computation model more powerful. As usual, we
shall consider only crash failures.

1 A Randomized Protocol for Consensus

We describe a protocol which was originally proposed by Ben Or [3].! The
protocol runs forever but every non-faulty process makes a decision in finitely
many steps. With high probability this number of steps is huge. In spite
of the fact that Ben Or’s protocol is not practical the result is important
because it indicates that by using randomization the impossibility of con-
sensus can be circumvented. Indeed, after Ben Or’s protocol the search for

IThe protocol presented here is a simplified version of that given in the book of Nancy
Lynch [4]. There it is claimed that the protocol needs the asumption f < n/3 but this is
incorrect. As we shall see, f < n/2 suffices.



feasible randomized solutions for the consensus problem has been an active
area of research. Recent solutions for the shared-memory model- where
a set of n processes access asynchronously a common shared memory via
read and write operations— require as few as O(nlog?n) expected opera-
tions per process. Furthermore, these solutions are (n — 1)-resilient (see, for
instance, [1, 2]). In fact, by using randomization a protocol can cope even
with Byzantine failures! (see, for example, [5]).

Let us now turn to Ben Or’s protocol, which is illustrated in Figure 1.
In the protocol v stands for any value different from 1 and a), := (§) means
that the value of a), is set at random to be 0 or 1 with uniform probability.
Although the protocol goes on forever the decision value of a process is
unique— once a decision is made it cannot be changed. We can assume that
the decide instruction has the property that once the first value is output,
all subsequent invocations output the same value. The protocol is f-resilient
as long as f < n/2 and assumes that channels are FIFO. It consists of an
infinite repetition of “asynchronous rounds”. During round r only messages
which are timestamped with round number r are processed. The protocol
consists of an endless broadcast of a-values and b-values. The initial a-value
of a process is set to be equal to the input bit and can therefore be either
0 or 1. Thereafter, the a— and b—values can be in the set {0,1, L} and are
determined as follows. During phase 1 of round r, each process waits for
the first n — f a-values with timestamp r and sets its own new b-value as
a function of these. During the second phase of round r each process sends
its own b-value timestamped with r to all, including oneself, and waits for
the first n — f b-values with timestamp r. Depending on these, it then sets
its own new a-value and decides whether to commit to a final value. If the
set of b-values does not satisfy a certain condition, the new a-value is set
at random. Once the new a-value is determined it is sent to all (including
oneself) with the new timestamp. And so on.

We now prove that the three requirements of Non Triviality, Agreement
and Limited Dithering are satisfied.

We start with Non Triviality. Suppose that all input bits are 0. Then, all
processes decide 0 at round 1. To see this just follow the protocol through
round 1. Each process starts by sending 0 to all. Therefore every correct
process will set the b-value to 0 and send it to all. Then, every process still
running will receive 0’s with timestamp 1 from n — f distinct processes and
hence will decide 0. The same reasoning holds for the case when all inputs
are 1.

Let a,, and by, denote the a-value and b-value of process p at round r,
respectively. To establish Agreement and Limited Dithering we shall make



ap = input-bit; r 1= 1;
repeat forever

phase 1
Send the message (ap,r) to all. Let A be the multiset of the first n — f
a-values received with timestamp r. If A contains n— f identical values
equal to some v then set b, := v. Otherwise set b, := L.
phase 2
Send the message (by, r) to all. Let B be the multiset of the first n — f
b-values received with timestamp 7.

1. If B contains n — f identical values equal to some v # | then

decide v and set a, :=v.

2. Otherwise, if there exists v € B, v # L, then set a, = v.

3. Otherwise, set a, := @).
Set r:=7r+1.

end-repeat

Figure 1: BenOr’s protocol for process p

use of a simple but important observation.

Proposition 1.1. For all r, either by, € {1, L} for all p or b, € {0, L} for
all p.

Proof. Suppose to the contrary that, at some round r, there are two
processes p and ¢ such that b, = 0 and by = 1. From the b-value deciding
rule of phase 1 it follows that p received 0’s from n — f distinct processes
and q received 1’s from n — f distinct processes. This means that there are
at least 2(n — f) < m processes in the system. But this is a contradiction
since n > 2f.

To establish Agreement, suppose that at round r process p decides on
some value v. Suppose also that round r is the first round where a decision
is made. We want to show that every correct process decides v by round
r + 1. Suppose without loss of generality that p decides on 0. First, it is
impossible that two processes p and ¢ deciding at round r decide on different
values. If this were not the case some b-values would be 0 and others would
be 1, violating Proposition 1.1. Since p decides on 0 it has received 0’s from
n — f distinct processes. This means that every other process at round r
receives 0’s from at least n —2f > 1 processes. By clause 2 of phase 2, every



process still running will set its new a-value for round r + 1 to 0 (including
p). Therefore at the beginning of phase 1 of round r + 1 every process sends
0 to all. At this point, the same reasoning used in the case of Non Triviality
allows us to conclude that every process which has not already decided on
0 at round r will do so at round r + 1.

It then remains to prove Limited Dithering. It is here that randomization
enters into the picture.

In order to get an intuition of how randomization is used, suppose that
the inputs are split in half; half of them being zeroes and half of them
being ones. In this case, every process will set its b-value to L. Since all
b-values are L, each process will set the next a-value at random. With high
probability, about half of the new a-values will be zeroes and about half will
be ones. Which again will force a random determination of all new a-values,
and so on.

It is conceivable that this goes on indefinitely but this event has proba-
bility zero. How long can this go on? It follows from Proposition 1.1 that if
A, = (a1r, a2y, . .., an,) denotes the vector of the new a-values then, either
A, is of the kind

Ar=(v, .., ®,.. ot T 1, @)
or of the kind

A=, tt @0, 1 ®)).

where a;- = §) means that the value is set at random and a; =  means
that process ¢ is dead (and hence it can be ignored). In other words, it is
never the case that a;. = v and a; = v. This implies that there is always a
positive probability that all new proposal coincide, i.e. that either a; = v
for all ¢ still running or a; = v for all ¢ still running. Since processes flip
coins independently, this probability is at least 27". When this happens we
say that a landslide takes place. The argument for Non Triviality already
seen shows that in case of a landslide every non faulty process will decide
by the end of the next round. Now, for any round r

1
Pr[no landslide at ] <1 — o

Since the coin flips are independent, the probability of having no landslide
for k consecutive rounds is then

1\*
Pr[no landslide for first k rounds] < <1 - 2—n> .

4



This probability goes to zero as k goes to infinity. It takes however, ex-
ponentially many steps before the value is very small. The value is about
1/e when k = 2™ which is exponential in n. So, if we run the protocol for
k = ¢2™ rounds then

1\" 1
Pr[landslide within k rounds] > 1 — (1 - —) >1——.
27’1/ ec
This probability goes very quickly to 1 as ¢ grows. A slightly more sophis-
ticated analysis shows that an exponential number of rounds is, with high
probability, both necessary and sufficient.

References

[1] J. Aspnes and M. Herlihy, Fast Randomized Consensus using Shared
Memory, Journal of Algorithms 11 (3):441-461, Sep 1990

[2] J. Aspnes and O. Waarts, Randomized Consensus in Expected
O(N log? N) Operations per Processors, SIAM J on Comp, 25(5):1024-
1044, October 1996.

[3] M. Ben Or, Another advantage of free-choice: ~Completely asyn-
chronous agreement protocols, Proceedings of the 2nd annual ACM
symposium on Principles of Distributed Computing (PODC 1983) pp.
27-30, Montreal, Canada

[4] N. Lynch, Distributed Algorithms, Morgan Kaufmann, San Francisco

[5] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge
University Press 1995



