© JPK

CTL Model Checking
Lecture #20 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

January 13, 2009

#20: CTL model checking Model checking

Overview Lecture #20

=- Existential normal form
e Basic CTL model-checking algorithm
e Algorithms for 3(® U &) and 30 ¢

e Time complexity

© JPK

#20: CTL model checking Model checking

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:

O = true | a | Oy A B ‘ - ‘ 30 @ ‘ 3(®, U ®s) ‘ 50

For each CTL formula, there exists an equivalent CTL formula in ENF

VO P -3 ~®
V((DU\I/) = —13(—|\IJU(—ICI>/\—|\I/)) A —3d0 =¥

© JPK 2

#20: CTL model checking Model checking

Overview Lecture #20

e Existential normal form
= Basic CTL model-checking algorithm
e Algorithms for 3(® U &) and 30 ¢

e Time complexity

© JPK

#20: CTL model checking Model checking

Model checking CTL
e How to check whether TS satisfies CTL formula ®?

— convert the formula & into the equivalent ® in ENF
— compute recursively the set Sat(®) = {s € S| s =}
— TS |= @ if and only if each initial state of TS belongs to Sat(P)

e Recursive bottom-up computation of Sat(®):

— consider the parse-tree of ®
— start to compute Sat(a;), for all leafs in the tree
— then go one level up in the tree and determine Sat(-) for these nodes

e.g.,. Sat(¥; AN ¥,) = Sat(¥y) N Sat(¥,)

N
node at level ¢ node at node at
level 141 level 141

— then go one level up and determine Sat(-) of these nodes
— and so on....... until the root is treated, i.e., Sat(®) is computed

© JPK

#20: CTL model checking Model checking

Basic algorithm

Input: finite transition system TS and CTL formula & (both over AP)
Output: TS = &

(* compute the sets Sat(®) = {se S|s|=P}*
forall ¢ < |®|do
forall W € Sub(®) with | ¥ | = i do
compute Sat(¥) from Sat(¥’) (* for maximal proper ¥’ € Sub(¥) *)
od
od
return I C Sat(®P)

© JPK 5

#20: CTL model checking Model checking

Sat(¥v) (30

© JPK

#20: CTL model checking Model checking

Characterization of Sat (1)

For all CTL formulas &, ¥ over AP it holds:

Sat(true) = S
Sat(a) = {se€S|aecL(s)}, foranyac AP
Sat(P A V) = Sat(®) N Sat(V)
Sat(—-®) = S\ Sat(?)
Sat(30O®) = {se€ S| Post(s)NSat(®) # <}

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK

#20: CTL model checking Model checking

Characterization of Sat (2)

e Sat(d(® UW)) is the smallest subset T" of S, such that:

(1) Sat(¥) C T and (2) (s € Sat(®)andPost(s) NT #2) = se&T

e Sat(dOd) is the largest subset T" of S, such that:

(3) T C Sat(®) and (4) s € T implies Post(s) N T # @

where TS = (S, Act, —, I, AP, L) is a transition system without terminal states

© JPK

#20: CTL model checking Model checking

Proof

© JPK

#20: CTL model checking

Model checking

switch (®):

a
30T
(P U &y)

J0 &

end switch

Computation of Sat

return {s € S| a € L(s)};

return {s € S | Post(s) N Sat(V) # @ };

T := Sat(®5); (* compute the smallest fixed point *)
while {s € Sat(®1) \ T | Post(s) N T # @ } # @ do
let s € {s e Sat(®y)\ T |Post(s) NT # & };

T:=T U {s};

od;
return 7T;
T := Sat(P); (* compute the greatest fixed point *)

while { s € T' | Post(s) N T = @ } # @ do
let se {se T |Post(s) NT =2}

T:=T\{s}

od;

return 17

© JPK

10

#20: CTL model checking

Model checking

Overview Lecture #20

e Existential normal form
e Basic CTL model-checking algorithm
= Algorithms for 3(® U ¥) and 30 ¢

e Time complexity

© JPK

11

#20: CTL model checking Model checking

Computing Sat(3(¢ U ¥)) (1)

e Sat(d(® U V)) is the smallest set ' C S such that:

(1) Sat(¥) C T and (2) (s € Sat(®)andPost(s) NT #2) = se&T

e This suggests to compute Sat(3(® U V)) iteratively:

To = Sat(V) and T;.1 = T; U {s € Sat(®) | Post(s) N T; # @ }

e 1) = states that can reach a W-state in at most ¢ steps via a ®-path

e By induction on j it follows:

© JPK 12

#20: CTL model checking Model checking

Computing Sat(3(® U ¥)) (2)

o TSisfinite, so forsome j > 0we have: T, = T;11 = Tj42 = ...
e Therefore: T; = T, U {s e Sat(®) | Post(s) N T; # & }

e Hence: {s € Sat(®) | Post(s) N1 # 2} C T;

— hence, T; satisfies (2), i.e., (s € Sat(®) and Post(s) N T; # @) = s € Ty
— further, Sat(V) = T, C 7T so, T satisfies (1), i.e. Sat(¥) C Tj

e As Sat(d(® U W)) is the smallest set satisfying (1) and (2):
— Sat(3(¢UWw)) C Tjandthus Sat(3(PUW)) =T

e Hence: Tongngg;Tj:TjH::Sa’[(EI(CI)U\I!))

© JPK 13

#20: CTL model checking Model checking

Computing Sat(3(® U W)) (3)

Input: finite transition system TS with state-set S and CTL-formula 3(® U W)
Output: Sat(3(dUV)) ={se S|sl=IFI(PUD)}

E = Sat(V); (* E administers the states s with s = 3(® U) *)
T .= F; (* T contains the already visited states s with s = 3(® U ¥) *)
while E # @ do

let s’ € E;

E:=FE\{s'};
forall s € Pre(s’) do
if se Sat(®)\Tthen E:=FE U {s}hT:=T U {s}; endif
od
od
return T

© JPK 14

#20: CTL model checking Model checking

Example
{r} 9
Q< A
{p.a.r) O
{q} /O{pﬂ“}
e {p,q}

let's check the CTL-formula 3¢ ((p =7) A (p # q))

© JPK 15

#20: CTL model checking Model checking

The computation in snapshots

(poaur) ? Q/O

{p}

{p,7}

ta,r} {p,q}

? I
[

(b)

ﬁz

Zﬂ

(d)

© JPK 16

#20: CTL model checking

Model checking

Computing Sat(30 @)

© JPK

17

#20: CTL model checking Model checking

Computing Sat(30 @)

E := S\ Sat(®); (* E contains any not visited s’ with s’ [z 30® *)
T := Sat(®); (* T contains any s for which s = 30® has not yet been disproven *)
forall s € Sat(®) do c¢[s] := | Post(s) |; od (* initialize array c *)

while E # @ do
(* loop invariant: c[s] = |Post(s) N (T'U E) | *)

let s’ € E; s £ @ ¥
E:=E\{s}; (* s’ has been considered *)
forall s € Pre(s’) do
if s € T then
c[s] := c[s] — 1; (* update counter c[s] for predecessor s of s’ *)
if ¢[s] = 0 then
T:=T\{sh E:=FEU{s} (* s does not have any successor in 1" *)
fi
fi
od
od
return T’

© JPK 18

#20: CTL model checking

Model checking

Example

© JPK

19

#20: CTL model checking Model checking

Alternative algorithm for Sat(30 @)

1. Consider only state s if s = @, otherwise eliminate s

e change TS into TS[®] = (S, Act, —', I', AP, L") with S’ = Sat(®P),
o ' =— NS xActx S), I'=1In S and L'(s) = L(s) fors € S’
= all removed states will not satisfy 30 &, and thus can be safely removed

2. Determine all non-trivial strongly connected components in TS[®]

e non-trivial SCC = maximal, connected subgraph with at least one transition
= any state in such SCC satisfies 30 &

3. s = JO0® is equivalent to “some SCC is reachable from s”

e this search can be done in a backward manner

© JPK 20

#20: CTL model checking Model checking

Example
?{T} /O@
{p7Q7T} Q{p}
{a} {p,7r}
la,r} {p,q} ?
(@ (b) TS[q]
(©) scc (d)

© JPK 21

#20: CTL model checking

Model checking

Overview Lecture #20

e Existential normal form
e Basic CTL model-checking algorithm
e Algorithms for 3(® U &) and 30 ¢

= Time complexity

© JPK

22

#20: CTL model checking

Model checking

Time complexity

For transition system TS with N states and K transitions,
and CTL formula ®, the CTL model-checking problem TS = &
can be determined in time O(| ® |- (N + M))

this applies to both algorithms for 30 &

© JPK

23

#20: CTL model checking Model checking

Model-checking LTL versus CTL

e Let TS be a transition system with N states and M transitions

e Model-checking LTL-formula ® has time-complexity O((N+M)-2!®1)

— linear in the state space of the system model
— exponential in the length of the formula

e Model-checking CTL-formula ® has time-complexity O((N+M)-| @)

— linear in the state space of the system model and the formula

e Is model-checking CTL more efficient?

© JPK 24

#20: CTL model checking Model checking

Model-checking LTL versus CTL

e Let TS be a transition system with N states and M transitions

e Model-checking LTL-formula ® has time-complexity O((N+M)-2!®1)

— linear in the state space of the system model
— exponential in the length of the formula

e Model-checking CTL-formula ® has time-complexity O((N+M)-| @)

— linear in the state space of the system model and the formula

¢ Is model-checking CTL more efficient? No!

© JPK 25

#20: CTL model checking Model checking

Hamiltonian path problem (1)

= LTL-formulae can be exponentially shorter than their CTL-equivalent

e Existence of Hamiltonian path in LTL: A, (Opi A O(p; — O O8-p;))

e In CTL, all possible (= 4!) routes need to be encoded

© JPK 26

