CTL Model Checking

Lecture #20 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 13, 2009

Overview Lecture #20

- ⇒ Existential normal form
 - Basic CTL model-checking algorithm
 - Algorithms for $\exists (\Phi \cup \Psi)$ and $\exists \Box \Phi$
 - Time complexity

Existential normal form (ENF)

The set of CTL formulas in *existential normal form* (ENF) is given by:

$$\Phi ::= \mathsf{true} \; \middle| \; a \; \middle| \; \Phi_1 \; \land \; \Phi_2 \; \middle| \; \neg \Phi \; \middle| \; \exists \bigcirc \Phi \; \middle| \; \exists (\Phi_1 \, \mathsf{U} \, \Phi_2) \; \middle| \; \exists \Box \, \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF

$$\begin{array}{lll} \forall \bigcirc \, \Phi & \equiv & \neg \exists \bigcirc \, \neg \Phi \\ \\ \forall (\Phi \, \mathsf{U} \, \Psi) & \equiv & \neg \exists (\neg \Psi \, \mathsf{U} \, (\neg \Phi \wedge \neg \Psi)) \, \wedge \, \neg \exists \Box \, \neg \Psi \end{array}$$

Overview Lecture #20

- Existential normal form
- ⇒ Basic CTL model-checking algorithm
 - Algorithms for $\exists (\Phi \cup \Psi)$ and $\exists \Box \Phi$
 - Time complexity

#20: CTL model checking Model checking

Model checking CTL

- How to check whether *TS* satisfies CTL formula $\widehat{\Phi}$?
 - convert the formula $\widehat{\Phi}$ into the equivalent Φ in ENF
 - compute *recursively* the set $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$
 - $TS \models \Phi$ if and only if each initial state of TS belongs to $Sat(\Phi)$
- Recursive bottom-up computation of Sat(Φ):
 - consider the parse-tree of Φ
 - start to compute $Sat(a_i)$, for all leafs in the tree
 - then go one level up in the tree and determine $Sat(\cdot)$ for these nodes

e.g.,:
$$Sat(\underline{\Psi_1 \land \Psi_2}) = Sat(\underline{\Psi_1}) \cap Sat(\underline{\Psi_2})$$
 node at level $i+1$

- then go one level up and determine $Sat(\cdot)$ of these nodes
- and so on...... until the root is treated, i.e., $Sat(\Phi)$ is computed

Basic algorithm

```
Input: finite transition system TS and CTL formula \Phi (both over AP) Output: TS \models \Phi
```

```
(\text{* compute the sets } \textit{Sat}(\Phi) \ = \ \{ \ s \in S \ | \ s \models \Phi \ \} \ ^*) for all i \leqslant |\Phi| do \text{for all } \Psi \in \textit{Sub}(\Phi) \text{ with } |\Psi| = i \text{ do} \text{compute } \textit{Sat}(\Psi) \text{ from } \textit{Sat}(\Psi') \qquad \text{(* for maximal proper } \Psi' \in \textit{Sub}(\Psi) \ ^*) od \text{od} \text{return } I \subseteq \textit{Sat}(\Phi)
```

Example

© JPK

6

Characterization of Sat (1)

For all CTL formulas Φ , Ψ over AP it holds:

$$\begin{array}{lll} \textit{Sat}(\mathsf{true}) &=& S \\ & \textit{Sat}(a) &=& \{\, s \in S \mid a \in L(s) \,\}, \text{ for any } a \in \textit{AP} \\ & \textit{Sat}(\Phi \wedge \Psi) &=& \textit{Sat}(\Phi) \cap \textit{Sat}(\Psi) \\ & \textit{Sat}(\neg \Phi) &=& S \setminus \textit{Sat}(\Phi) \\ & \textit{Sat}(\exists \bigcirc \Phi) &=& \{\, s \in S \mid \textit{Post}(s) \cap \textit{Sat}(\Phi) \neq \varnothing \,\} \end{array}$$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states

#20: CTL model checking Model checking

Characterization of Sat (2)

• $Sat(\exists (\Phi \cup \Psi))$ is the <u>smallest</u> subset T of S, such that:

$$(1) \textit{Sat}(\Psi) \subseteq T \quad \text{and} \quad (2) \ (s \in \textit{Sat}(\Phi) \ \text{and} \ \textit{Post}(s) \cap T \neq \varnothing) \ \Rightarrow \ s \in T$$

• $Sat(\exists \Box \Phi)$ is the largest subset T of S, such that:

(3)
$$T \subseteq Sat(\Phi)$$
 and (4) $s \in T$ implies $Post(s) \cap T \neq \emptyset$

where $TS = (S, Act, \rightarrow, I, AP, L)$ is a transition system without terminal states

Proof

end switch

Computation of Sat

```
switch(\Phi):
                          : return \{s \in S \mid a \in L(s)\};
      a
      \exists \bigcirc \Psi : return \{ s \in S \mid Post(s) \cap Sat(\Psi) \neq \emptyset \};
      \exists (\Phi_1 \cup \Phi_2) : T := Sat(\Phi_2); (* compute the smallest fixed point *)
                                while \{ s \in Sat(\Phi_1) \setminus T \mid Post(s) \cap T \neq \emptyset \} \neq \emptyset do
                                   let s \in \{ s \in Sat(\Phi_1) \setminus T \mid Post(s) \cap T \neq \emptyset \};
                                   T := T \cup \{s\};
                                od:
                                return T;
      \Box \Box \Phi
                              T := Sat(\Phi); (* compute the greatest fixed point *)
                                while \{ s \in T \mid Post(s) \cap T = \emptyset \} \neq \emptyset do
                                   let s \in \{ s \in T \mid Post(s) \cap T = \emptyset \};
                                   T := T \setminus \{s\};
                                od:
                                return T;
```

Overview Lecture #20

- Existential normal form
- Basic CTL model-checking algorithm
- \Rightarrow Algorithms for $\exists (\Phi \cup \Psi)$ and $\exists \Box \Phi$
 - Time complexity

Computing $Sat(\exists(\Phi \cup \Psi))$ (1)

• $Sat(\exists (\Phi \cup \Psi))$ is the smallest set $T \subseteq S$ such that:

(1)
$$Sat(\Psi) \subseteq T$$
 and (2) $(s \in Sat(\Phi))$ and $Post(s) \cap T \neq \emptyset$ $\Rightarrow s \in T$

• This suggests to compute $Sat(\exists (\Phi \cup \Psi))$ iteratively:

$$T_0 = Sat(\Psi)$$
 and $T_{i+1} = T_i \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T_i \neq \emptyset \}$

- T_i = states that can reach a Ψ -state in at most i steps via a Φ -path
- By induction on j it follows:

$$T_0 \subseteq T_1 \subseteq \ldots \subseteq T_j \subseteq T_{j+1} \subseteq \ldots \subseteq \mathit{Sat}(\exists (\Phi \cup \Psi))$$

#20: CTL model checking Model checking

Computing $Sat(\exists(\Phi \cup \Psi))$ (2)

- TS is finite, so for some $j \ge 0$ we have: $T_j = T_{j+1} = T_{j+2} = \dots$
- Therefore: $T_j = T_j \cup \{ s \in Sat(\Phi) \mid Post(s) \cap T_j \neq \emptyset \}$
- Hence: $\{s \in Sat(\Phi) \mid Post(s) \cap T_j \neq \emptyset\} \subseteq T_j$
 - hence, T_j satisfies (2), i.e., $(s \in Sat(\Phi) \text{ and } Post(s) \cap T_j \neq \emptyset) \Rightarrow s \in T_j$
 - further, $Sat(\Psi) = T_0 \subseteq T_j$ so, T_j satisfies (1), i.e. $Sat(\Psi) \subseteq T_j$
- As $Sat(\exists (\Phi \cup \Psi))$ is the *smallest* set satisfying (1) and (2):
 - $Sat(\exists (\Phi \cup \Psi)) \subseteq T_j$ and thus $Sat(\exists (\Phi \cup \Psi)) = T_j$
- Hence: $T_0 \subsetneq T_1 \subsetneq T_2 \subsetneq \ldots \subsetneq T_j = T_{j+1} = \ldots = Sat(\exists (\Phi \cup \Psi))$

#20: CTL model checking Model checking

Computing $Sat(\exists(\Phi \cup \Psi))$ (3)

```
Input: finite transition system TS with state-set S and CTL-formula \exists (\Phi \cup \Psi) Output: Sat(\exists (\Phi \cup \Psi)) = \{ s \in S \mid s \models \exists (\Phi \cup \Psi) \}
```

```
E:=\operatorname{Sat}(\Psi); \qquad \qquad (\text{$^*E$ administers the states $s$ with $s\models \exists (\Phi \cup \Psi)$ $^*$}) T:=E; \qquad (\text{$^*T$ contains the already visited states $s$ with $s\models \exists (\Phi \cup \Psi)$ $^*$}) while E\neq\varnothing do let s'\in E; E:=E\setminus \{\,s'\,\}; for all s\in \operatorname{Pre}(s') do if s\in\operatorname{Sat}(\Phi)\setminus T then E:=E\cup \{\,s\,\}; T:=T\cup \{\,s\,\}; endifod od return T
```

Example

let's check the CTL-formula $\exists \Diamond \, ((p=r) \land (p \neq q))$

The computation in snapshots

Computing $Sat(\exists \Box \Phi)$

Computing $Sat(\exists \Box \Phi)$

```
(* E contains any not visited s' with s' \not\models \exists \Box \Phi *)
E := S \setminus Sat(\Phi);
T := Sat(\Phi):
                                     (* T contains any s for which s \models \exists \Box \Phi has not yet been disproven *)
for all s \in Sat(\Phi) do c[s] := |Post(s)|; od
                                                                                                 (* initialize array c *)
while E \neq \varnothing do
                                                              (* loop invariant: c[s] = | \textit{Post}(s) \cap (T \cup E) | *)
  let s' \in E:
                                                                                                           (*s' \not\models \Phi *)
  E := E \setminus \{ s' \};
                                                                                       (* s' has been considered *)
  for all s \in Pre(s') do
     if s \in T then
        c[s] := c[s] - 1;
                                                                (* update counter c[s] for predecessor s of s' *)
        if c[s] = 0 then
          T := T \setminus \{ s \}; E := E \cup \{ s \};
                                                                        (* s does not have any successor in T *)
        fi
     fi
   od
od
return T
```

Example

Alternative algorithm for $Sat(\exists \Box \Phi)$

- 1. Consider only state s if $s \models \Phi$, otherwise eliminate s
 - change TS into $TS[\Phi] = (S', Act, \rightarrow', I', AP, L')$ with $S' = Sat(\Phi)$,
 - $\bullet \rightarrow' = \rightarrow \cap (S' \times Act \times S'), I' = I \cap S', \text{ and } L'(s) = L(s) \text{ for } s \in S'$
 - \Rightarrow all removed states will not satisfy $\exists \Box \Phi$, and thus can be safely removed
- 2. Determine all *non-trivial strongly connected components* in $TS[\Phi]$
 - non-trivial SCC = maximal, connected subgraph with at least one transition
 - \Rightarrow any state in such SCC satisfies $\exists \Box \Phi$
- 3. $s \models \exists \Box \Phi$ is equivalent to "some SCC is reachable from s"
 - this search can be done in a backward manner

Example

Overview Lecture #20

- Existential normal form
- Basic CTL model-checking algorithm
- Algorithms for $\exists (\Phi \cup \Psi)$ and $\exists \Box \Phi$
- ⇒ Time complexity

Time complexity

For transition system TS with N states and K transitions, and CTL formula Φ , the CTL model-checking problem $\mathit{TS} \models \Phi$ can be determined in time $\mathcal{O}(\mid \Phi \mid \cdot (N+M))$

this applies to both algorithms for $\exists \Box \ \Phi$

Model-checking LTL versus CTL

- ullet Let TS be a transition system with N states and M transitions
- Model-checking LTL-formula Φ has time-complexity $\mathcal{O}((N+M)\cdot 2^{\lceil \Phi \rceil})$
 - linear in the state space of the system model
 - exponential in the length of the formula
- Model-checking CTL-formula Φ has time-complexity $\mathcal{O}((N+M)\cdot |\Phi|)$
 - linear in the state space of the system model and the formula
- Is model-checking CTL more efficient?

Model-checking LTL versus CTL

- ullet Let TS be a transition system with N states and M transitions
- Model-checking LTL-formula Φ has time-complexity $\mathcal{O}((N+M)\cdot 2^{\lceil \Phi \rceil})$
 - linear in the state space of the system model
 - exponential in the length of the formula
- Model-checking CTL-formula Φ has time-complexity $\mathcal{O}((N+M)\cdot |\Phi|)$
 - linear in the state space of the system model and the formula
- Is model-checking CTL more efficient?

No!

Hamiltonian path problem (1)

⇒ LTL-formulae can be *exponentially shorter* than their CTL-equivalent

- Existence of Hamiltonian path in LTL: $\bigwedge_i \Big(\Diamond p_i \land \Box (p_i \to \bigcirc \Box \neg p_i) \Big)$
- In CTL, all possible (= 4!) routes need to be encoded