GPU Teaching Kit

Accelerated Computing

Module 4.5 - Memory and Data Locality

Handling Arbitrary Matrix Sizes in Tiled Algorithms

Objective

— To learn to handle arbitrary matrix sizes in tiled matrix multiplication
— Boundary condition checking
— Regularizing tile contents
— Rectangular matrices

Handling Matrix of Arbitrary Size

» The tiled matrix multiplication kernel we presented so far can
handle only square matrices whose dimensions (Width) are
multiples of the tile width (TILE_WIDTH)

* However, real applications need to handle arbitrary sized matrices.

* One could pad (add elements to) the rows and columns into multiples

of the tile size, but would have significant space and data transfer time
overhead.

« We will take a different approach.

Phase 1 Loads for Block (0,0) for a 3x3 Example

Threads (1,0) and (1,1) need special

treatment in loading N tile
I\IO 0 NO,l I\IO 2 g
110 Nlil N112
Na.o[NNz I|—NZ' Nyal shared Memory
=
= >
_

Shared Memory

| |
Mo,0[Mo 1Mo ——&—) Poo|Po.1]Po.2
Ml,g Ml,l M1,2 '.""34 PliO I31,1 P1i2

MZ,O M2,1 M2,2 F)2,0 P2,1 F)2,2

Threads (0,1) and (1,1) need
special treatment in loading M tile

Phase 1 Use for Block (0,0) (iteration 0)

I\IO,O NO,l I\|0,2

N
201N pN1 0

Ny o[N21INs» Nob|Nops Shared Memory

Shared Memory

MO,O Ile,l MO,Z lVlo,-Q- ¥ 'C,l PO,Z
Mligz Mlll MliZ |V|1 > 1 1.1 P1i2
MZO M21 M2,2 IPZO P21 F)22

e —
N2o|N21N2o NZ,OE' Shared Memory

Shared Memory

All Threads need special
treatment. None of them should
introduce invalidate contributions

to their P elements.

Phase 0 Loads for Block (1,1) for a 3x3 Example

Threads (0,1) and (1,1) need special
treatment in loading N tile

P
Nn ~I Ny IN N>
P02 222 shared Memory
N1,0 N1,1 N1,2 >
N, o|No 1IN, 5
Mp.0[Mo. 1Mo - Ipo,o Po.1]Po.2
M, g M, M, Shared Memory{P, 4| P; 1P »
M, o| M 20, IP2 0o|P2.1fP2.2

Threads (1,0) and (1,1) need
special treatment in loading M tile

Major Cases in Toy Example

— Threads that do not calculate valid P elements but still need to
participate in loading the input tiles

— Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but
need to participate in loading tile element N[1,2]

— Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles

— Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but
attempts to load non-existing N[3,0]

A “Simple” Solution

— When a thread is to load any input element, test if it is in the valid index
range
— If valid, proceed to load
— Else, do not load, just write a 0

— Rationale: a 0 value will ensure that that the multiply-add step does not
affect the final value of the output element

— The condition tested for loading input elements is different from the test
for calculating output P element

— A thread that does not calculate valid P element can still participate in loading input tile
elements

Phase 1 Use for Block (0,0) (iteration 1)

NO,l

Nlil
N2,1

N20

: E| Shared Memory
D1 | P

Shared Memory

Boundary Condition for Input M Tile

— Each thread loads
— M[RoW][p*TILE_WIDTH+tx]
— M[Row*Width + p*TILE_ WIDTH+tx]
— Need to test
— (Row < Width) && (p*TILE_WIDTH+tx < Width)
— If true, load M element
— Else, load 0

A

Boundary Condition for Input N Tile

— Each thread loads
— N[p*TILE_WIDTH-+ty][Col]
— N[(p*TILE_WIDTH-+ty)*Width+ Col]
— Need to test
— (p*TILE_WIDTH+ty < Width) && (Col< Width)
— If true, load N element
— Else, load 0

Loading Elements — with boundary check

8 for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {

— ++ if(Row < Width && t * TILE_WIDTH+tx < Width) {

- 9 ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
— ++ }else {

-+t ds_M[ty][tx] = 0.0;

- ++ }

— 4+ if (p*TILE_WIDTH+ty < Width && Col < Width) {

- 10 ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
- ++ } else {

- ++ ds_N[ty][tx] = 0.0;

- ++ }

— 11 _ syncthreads();

Inner Product — Before and After

— ++ if(Row < Width && Col < Width) {

— 12 for(inti=0;i<TILE_WIDTH; ++i) {

- 13 Pvalue += ds_M[ty][i] * ds_N[i][tx];
- }

— 14 syncthreads();

— 15 1} /* end of outer for loop */

— ++ if (Row < Width && Col < Width)

- 16 P[Row*Width + Col] = Pvalue;

— }/* end of kernel */

Some Important Points

— For each thread the conditions are different for
— Loading M element
— Loading N element
— Calculating and storing output elements

— The effect of control divergence should be small for large matrices

Handling General Rectangular Matrices

— In general, the matrix multiplication is defined in terms of rectangular
matrices
— Ajx kM matrix multiplied with a k x | N matrix results in a j x | P matrix

— We have presented square matrix multiplication, a special case

— The kernel function needs to be generalized to handle general
rectangular matrices
— The Width argument is replaced by three arguments: j, k, |
When Width is used to refer to the height of M or height of P, replace it with |
When Width is used to refer to the width of M or height of N, replace it with k
When Width is used to refer to the width of N or width of P, replace it with |

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 4.5 - Memory and Data Locality
	Objective
	Handling Matrix of Arbitrary Size
	Phase 1 Loads for Block (0,0) for a 3x3 Example
	Phase 1 Use for Block (0,0) (iteration 0)
	Phase 1 Use for Block (0,0) (iteration 1)
	Phase 0 Loads for Block (1,1) for a 3x3 Example
	Major Cases in Toy Example
	A “Simple” Solution
	Phase 1 Use for Block (0,0) (iteration 1)
	Boundary Condition for Input M Tile
	Boundary Condition for Input N Tile
	Loading Elements – with boundary check
	Inner Product – Before and After
	Some Important Points
	Handling General Rectangular Matrices
	Slide Number 17

