
Aggregate Computing and Field Calculus

Ferruccio Damiani

University of Turin - Department of Computer Science

www.di.unito.it/~damiani

Mobile Device Programming

(Laurea Magistrale in Informatica, a.a. 2018-2019)

http://www.di.unito.it/~damiani
http://www.di.unito.it/~damiani

Programming a distributed system poses several challenges:

 diverse heterogeneous entities  device abstraction?

 collaboration vs selfishness  centralization? aggregation?

 dynamic goals and environment  adaptive algorithms?

 data security and privacy  cryptography? localised aggregation?

Challenges

2 Ferruccio Damiani

Programming a distributed system poses several challenges:

 diverse heterogeneous entities  device abstraction?

 collaboration vs selfishness  centralization? aggregation?

 dynamic goals and environment  adaptive algorithms?

 data security and privacy  cryptography? localised aggregation?

Challenges

3 Ferruccio Damiani

Programming a distributed system poses several challenges:

 diverse heterogeneous entities  device abstraction?

 collaboration vs selfishness  centralization? aggregation?

 dynamic goals and environment  adaptive algorithms?

 data security and privacy  cryptography? localised aggregation?

Challenges

4 Ferruccio Damiani

Programming a distributed system poses several challenges:

 diverse heterogeneous entities  device abstraction?

 collaboration vs selfishness  centralization? aggregation?

 dynamic goals and environment  adaptive algorithms?

 data security and privacy  cryptography? localised aggregation?

Challenges

5 Ferruccio Damiani

Programming a distributed system poses several challenges:

 diverse heterogeneous entities  device abstraction?

 collaboration vs selfishness  centralization? aggregation?

 dynamic goals and environment  adaptive algorithms?

 data security and privacy  cryptography? localised aggregation?

Challenges

6 Ferruccio Damiani

Classical paradigms, algorithms and languages hardly deal with these expectations

Shifting

 From single-device focus and query-based system programming

 To data-based aggregate viewpoint:

 overall set of devices spread in a pervasive computing environment seen as a single
aggegate machine

 overall dispersed localised data as a single entity: computational field

 aggregate specifications as global plans, locally interpreted by agents

Aggregate Computing: the underlying idea

7 Ferruccio Damiani

Shifting

 From single-device focus and query-based system programming

 To data-based aggregate viewpoint:

 overall set of devices spread in a pervasive computing environment seen as a single
aggegate machine

 overall dispersed localised data as a single entity: computational field

 aggregate specifications as global plans, locally interpreted by agents

Aggregate Computing: the underlying idea

8 Ferruccio Damiani

Shifting

 From single-device focus and query-based system programming

 To data-based aggregate viewpoint:

 overall set of devices spread in a pervasive computing environment seen as a single
aggegate machine

 overall dispersed localised data as a single entity: computational field

 aggregate specifications as global plans, locally interpreted by agents

Aggregate Computing: the underlying idea

9 Ferruccio Damiani

Shifting

 From single-device focus and query-based system programming

 To data-based aggregate viewpoint:

 overall set of devices spread in a pervasive computing environment seen as a single
aggegate machine

 overall dispersed localised data as a single entity: computational field

 aggregate specifications as global plans, locally interpreted by agents

Aggregate Computing: the underlying idea

10 Ferruccio Damiani

Shifting

 From single-device focus and query-based system programming

 To data-based aggregate viewpoint:

 overall set of devices spread in a pervasive computing environment seen as a single
aggegate machine

 overall dispersed localised data as a single entity: computational field

 aggregate specifications as global plans, locally interpreted by agents

Aggregate Computing: the underlying idea

11 Ferruccio Damiani

adaptivity, resiliency, robustness, simplicity

Example of continuous space-time relations between six devices distributed
along a street: wireless access points and meters are stationary, while the car
moves steadily and the phone stops and starts twice

Field Calculus: modelling complex systems

Ferruccio Damiani 12

 continuous computation of a temperature threshold (a)

 approximated by the discrete network of devices (b)

 producing an approximation (c)

Field Calculus: an example

Ferruccio Damiani 13

 Programs executed by a network of devices (a dynamic
neighboring relation represents physical or logical proximity)

 Every device is given the same (terminating) program,
iterated in asynchronous computation rounds

 Each program iteration comprises:
1. gathering of messages from other related/nearby devices

2. perception of contextual information through sensors

3. storing local state of computation

4. computing a new local state

5. dispatching messages to neighbors

6. executing some form of actuation

Field Calculus: overview

Ferruccio Damiani 14

P ::= F e program

F ::= def d(x) { e } function declaration

e ::= expression

 x | v | f(e) variable, value, function application

 | rep(e){(x)=>e} time evolution (feedback)

 | nbr{e} neighbourhood field construction (includes device itself)

 | if(e){e}{e} space restriction

v ::= l |  value

l ::= c(l) local value

 ::=   l neighbouring field value (arising at runtime)

f ::= d | b function (defined or built-in) name

NOTATION: F denotes a sequence “F1 F2 ... Fn” (n  0); x denotes a sequence “x1, x2, ... xn” (n  0); ...

Field Calculus: syntax

Ferruccio Damiani 15

-

-

-

-

 b(e1,...,en): applies built-in function b to arguments e1,...,en. Built-in functions
are stateless mathematical, logical, or algorithmic functions, sensors or
actuators

 rep(e1){(x)=>e2}: defines a local state variable x initialized with value v.
Updated at each round with the result of executing its body e, thereby
defining a field that evolves over time

 nbr{e}: gathers a map at each device (actually, a field) from all neighbors
(including itself) to their latest value of s. Built-in“hood” functions then
summarize such maps, e.g., min-hood(m) finds the minimum value in map m
(excluding the value associated to the device itself)

 if(e0){e1}{e2}: partitions the network into two regions: where e0 is true e1 is
computed, elsewhere e2 is computed instead. Importantly, partition implies
branches are encapsulated and cannot have effects outside their subspace

Field Calculus: semantics

Ferruccio Damiani 16

 A program that computes whether temperature is high:

 temperature() > 20 // bool

 A program that shows whether temperature is high:

 if (temperature() > 20) {set-led(“green”)} {set-led(“orange”)} // unit

 A program that counts the number of rounds in each device:

 rep 0 { (x) => x + 1 }

 A program that computes whether any neighbor has a high
temperature:

 any-hood (nbr { temperature() > 20 }) // bool
 // any-hood: maps each device to ``whether any of its neighbor (excluding itself) has value true’’

Field Calculus: examples

 Ferruccio Damiani 17

 A program that computes whether any location has
ever experienced a high temperature:

 def gossip-ever (value) { // (bool) → bool

 rep (false) { (ever) =>

 ever or value or (any-hood (nbr ever))

 }

 }

 gossip-ever (temperature() > 20)

 Ferruccio Damiani 18

 A program that computes the distance to a

 region with a high temperature:

 def distance-to (source) { // (bool) → num

 rep (infinity) { (d) =>

 mux (source, 0, min-hood(nbr{d} + nbr-range()))

 }

 }

 distance-to (temperature() > 20)
// mux: maps each device to the value of its second argument, if the value first argument is true,

// and to the value of its third argument, otherwise

// min-hood: maps each device to the minimum value of its neighbor (excluding itself)

// nbr-range: maps each device to field of distances to its neighbors

Ferruccio Damiani 19

 def distance-to (source) { // (bool) → num

 rep (infinity) { (d) =>

 mux (source, 0, min-hood(nbr{d} + nbr-range()))

 }

 }

Ferruccio Damiani 20

 def distance-to (source) { // (bool) → num

 rep (infinity) { (d) =>

 mux (source, 0, min-hood(nbr{d} + nbr-range()))

 }

 }

Ferruccio Damiani 21

 def distance-to (source) { // (bool) → num

 rep (infinity) { (d) =>

 mux (source, 0, min-hood(nbr{d} + nbr-range()))

 }

 }

Ferruccio Damiani 22

 A function that broadcasts a value from a source:

 def broadcast (source, value) { // (bool, num) → num

 snd (rep (pair(infinity, value)) { (old) =>

 mux(source, pair(0, value), min-hood(nbr{pair(fst(old) + 1, snd(old))}))

 })

}

 A function that computes the distance:

 def distance (source, destination) { // (bool, bool) → num

 broadcast(source, distance-to(destination))

 }

 A function that computes a channel:

 def channel (source, destination, width) { // (bool, bool, num) → bool

 distance-to(source) + distance-to(destination)

 <

 width + distance(source, destination)

}
Ferruccio Damiani 23

 A program that computes a channel avoiding obstacles:

 def channel-avoiding-obstacles (o, s, d, w) {

 // (bool, bool, bool, num) → bool

 if (o) { false } { channel(s,d,w) }

 }

channel-avoiding-obstacles (eobstacle , esource , edestination , ewidth)

Ferruccio Damiani 24

Channels (blue) route between source (orange) and
destination (purple) around obstacles (pink), deployed in a
low-density network with topology (green) in evidence (left),
and in a high-density environment of 10,000 nodes (right).

Ferruccio Damiani 25

 A wrong program (mux does not interfere with channel
computation):

 def wrong-channel-avoiding-obstacles (o, s, d, w) {

 // (bool, bool, bool, num) → bool

 mux (o) { false } { channel(s,d,w) }

 }

wrong-channel-avoiding-obstacles (eobstacle , esource , edestination ,
ewidth)

Ferruccio Damiani 26

Higher order functions support:
 Devices running different programs

 Runtime updates
 Damiani, F., Viroli, M., Pianini, D., Beal, J. 2015. Code Mobility Meets Self-organisation: A Higher-Order

Calculus of Computational Fields. In Proceedings of FORTE 2015. LNCS, Vol. 9039, pp 113–128, Springer.
DOI: 10.1007/978-3-319-19195-9_8

Field Calculus: higher-order functions

Ferruccio Damiani 27

Field Calculus: programming

Ferruccio Damiani 28

 Implicit adaptation and communication

 Code each collective service independently
 Compose via scope and information flow

Aggregate Computing: two survey papers

Ferruccio Damiani 29

 Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll.
2013. Organizing the Aggregate: Languages for Spatial Computing. In
Formal and Practical Aspects of Domain-Specific Languages: Recent
Developments, Marjan Mernik (Ed.). IGI Global, Hershey, PA, Chapter 16,
436–501. A longer version available at: http://arxiv.org/abs/1202.5509

Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto
Casadei, and Danilo Pianini, 2018. From Field-Based Coordination to
Aggregate Computing. In 20th IFIP WG 6.1 International Conference,
COORDINATION 2018, Held as Part of the 13th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2018, Madrid,
Spain, June 18-21, 2018. Proceedings. DOI: 10.1007/978-3-319-92408-3

http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509

 Expressing algorithms of collective adaptation as
reusable blocks
 Jacob Beal, Danilo Pianini, Mirko Viroli. Aggregate Programming for the Internet of

Things. IEEE Computer 48(9): 22-30 (2015). DOI: 10.1109/MC.2015.261

 Type soundness (for the first order calculus)
 Ferruccio Damiani, Mirko Viroli, Jacob Beal. A type-sound calculus of

computational fields. Science of Compututer Programming 117: 17-44 (2016). DOI:
10.1016/j.scico.2015.11.005

 Expressivity
 Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Mirko Viroli. Space-Time

Universality of Field Calculus. In 20th IFIP WG 6.1 International Conference,
COORDINATION 2018, Held as Part of the 13th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain, June 18-21,
2018. Proceedings. DOI: 10.1007/978-3-319-92408-3

Field Calculus: some results

2016.12.14
HyVar – Ferruccio Damiani 30

 Structuring computations in a way that is effectively
independent of devices number and location (for the first
order calculus)
 Jacob Beal, Mirko Viroli, Danilo Pianini, Ferruccio Damiani. Self-Adaptation to Device

Distribution in the Internet of Things. ACM Transactions on Autonomous and Adaptive
Systems 12(3): 12:1-12:29 (2017). DOI: 10.1145/3105758

 Intrinsic resiliency to changes in the environment (for the
first order calculus)
 Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Danilo Pianini. Engineering

Resilient Collective Adaptive Systems by Self-Stabilisation. ACM Transactions on
Modeling and Computer Simulation. 28(2): 16:1-16:28 (2018). DOI: 10.1145/3177774

 Type soundness, denotational semantics and computational
adequacy (for the higher-order calculus)
 Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, Jacob Beal. A Higher-

order Calculus of Computational Fields. ACM Transactions on Computational Logic.
20(1): 5:1-5:55 (2019). DOI: 10.1145/3285956

2016.12.14
HyVar – Ferruccio Damiani 31

Field Calculus: towards production engineering

Ferruccio Damiani 32

 Simple, easy to
understand code

 Robust to errors,
adapt to changing
environment

 Scalable to
potentially vast
numbers of devices

 Take advantage of
spatial nature of
problems

 Proto [proto.bbn.com] since 2008
 An aggregate programming language based on dialect of SCHEME
 Created by Jacob Beal and Jonathan Bachrach before of the Field Calculus

 Protelis [protelis.github.io] since 2015
 Practical aggregate programming, hosted in Java

 ScaFi (Scala with Computational Fields)

 [https://scafi.github.io] since 2016
 An aggregate programming framework for Scala. It provides:

1. a Scala-internal DSL for expressing aggregate computations

2. a distributed platform supporting the configuration and execution of aggregate
systems

Both Protelis and ScaFi can be connected to the simulator Alchemist
[https://alchemistsimulator.github.io].

Field Calculus: implementations

Ferruccio Damiani 33

http://proto.bbn.com/
http://protelis.github.io/
https://alchemistsimulator.github.io/
https://alchemistsimulator.github.io/
https://alchemistsimulator.github.io/

A spatial computer is a collection of computational
devices distributed through a physical (or logical)
space in which:

 the difficulty of moving information between any two
devices is significantly dependent on the distance
between them, and

 the “functional goals” of the system are somehow
defined in terms of the system's spatial structure

Field Calculus: a language for spatial computers

Ferruccio Damiani 34

 Crowd detection and steering

 Enhancing driver assistance systems

General traffic, smart logistic and public transportation
management

 Ambulance, fire fighters, public security, etc. fast track

 Alarm management and disaster recovery

 Environmental (air quality, soil, water, etc.) and
agricultural monitoring

 ...

Field Calculus: some application scenarios

Ferruccio Damiani 35

 Scafi comes with:
 a statically configurable middleware where computations are

carried out either totally in the Cloud or totally in the IoT
 Viroli, M., Casadei, R., Pianini, D. 2016. On execution platforms for large-

scale aggregate computing. In Proceedings of ACM UbiComp ‘16: Adjunct,
pp 1321-1326. DOI: 10.1145/2968219.2979129

We would like to develop an execution strategy where:
 computations are carried out partially in the Cloud and

partially in the IoT/Edge/Fog (cf. www.openfogconsortium.org), and

 dynamically flow up and down depending upon context and
contingencies

Field Calculus: future work

Ferruccio Damiani 36

http://www.openfogconsortium.org/

A uniform approach for IoT/Edge/Fog/Cloud
 Dynamically supports scalable computations in cluster- and

cloud-based systems

 Same benefits of frameworks such as Hadoop and Spark (Aggregate
Computing plays the role of MapReduce)

 Intrinsically supports distributed and situated computations (while
MapReduce is limited to data processing)

 Supports unanticipated runtime software updates

Field Calculus: future work

Ferruccio Damiani 37

Programming paradigm for IoT/Fog/Edge/Cloud
 Coping with:

 Ambient Intelligence and ubiquitous computing
 Hybrid wireless sensor networks that are characterized by modularity,

reliability, flexibility, robustness and scalability
 Wireless monitoring of different ambient parameters (video, audio,

temperature, light, humidity, smoke, air quality, radiation, energy, etc.)
 Mobile robotic sensor networks
 Hybrid wireless sensor networks that enable context and situation based

personalized applications and services
 User context identification: Biometrics; Privacy mood; Attention; Gesture,

Posture
 Social context: Surrounding people and/or objects/things; Type of group;

Link to people and/or objects/things
 Environmental context: Location, position; Time; Condition; Physical data

Ferruccio Damiani 38

Field Calculus: future work

