Translation Verification of the OCaml pattern
matching compiler

Francesco Mecca

1 TODO Scaletta [1/2]

X Abstract
O Introduction [0%)]

O Ocaml
O Pattern matching
O Translation Verification

O Symbolic execution

Abstract

This dissertation presents an algorithm for the translation valida-
tion of the OCaml pattern matching compiler. Given the source rep-
resentation of the target program and the target program compiled
in untyped lambda form, the algoritmhm is capable of modelling the
source program in terms of symbolic constraints on it’s branches and
apply symbolic execution on the untyped lambda representation in or-
der to validate wheter the compilation produced a valid result. In this
context a valid result means that for every input in the domain of the
source program the untyped lambda translation produces the same
output as the source program. The input of the program is modelled
in terms of symbolic constraints closely related to the runtime repre-
sentation of OCaml objects and the output consists of OCaml code
blackboxes that are not evaluated in the context of the verification.

2 Introduction

2.1 TODO OCaml

Objective Caml (OCaml) is a dialect of the ML (Meta-Language) family of
programming languages. OCaml shares many features with other dialects



of ML, such as SML and Caml Light, The main features of ML languages
are the use of the Hindley-Milner type system that provides with respect to
static type systems of traditional imperative and /or object oriented language
such as C, C++ and Java many advantages such as:

e Parametric polymorphism: in certain scenarios a function can accept
more than one type for the input parameters. For example a function
that computes the lenght of a list doesn’t need to inspect the type of
the elements of the list and for this reason a List.length function can
accept list of integers, list of strings and in general list of any type. Such
languages offer polymorphic functions through subtyping at runtime
only, while other languages such as C++ offer polymorphism through
compile time templates and function overloading. With the Hindley-
Milner type system each well typed function can have more than one
type but always has a unique best type, called the principal type. For
example the principal type of the List.length function is "For any a,
function from list of a to int" and a is called the type parameter.

e Strong typing: Languages such as C and C++ allow the programmer to
operate on data without considering its type, mainly through pointers.
Other languages such as C# and Go allow type erasure so at runtime
the type of the data can’t be queried. In the case of programming
languages using an Hindley-Milner type system the programmer is not
allowed to operate on data by ignoring or promoting its type.

e Type Inference: the principal type of a well formed term can be inferred
without any annotation or declaration.



