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Abstract
Networks are typically visualized with force-based or spectral layouts. These algorithms lack reproducibility and
perceptual uniformity because they do not use a node coordinate system. The layouts can be difficult to interpret
and are unsuitable for assessing differences in networks. To address these issues, we introduce hive plots
(http://www.hiveplot.com) for generating informative, quantitative and comparable network layouts. Hive plots
depict network structure transparently, are simple to understand and can be easily tuned to identify patterns of
interest. The method is computationally straightforward, scales well and is amenable to a plugin for existing tools.
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INTRODUCTION
Networks are routinely used in biology to capture

and model the complexity and dynamics of relation-

ships between functional units in a genome, cell, or

tissue [1–3]. Networks are used in the study of gene

transcription and regulation [4], protein interactions

[5, 6], metabolic pathways [7, 8], genetic basis of

disease [9], genome assembly [10, 11] and classifying

repetitive structures therein [12]. They capture the

full problem domain as a single system [13, 14],

integrate experimental evidence with computational

approaches [15] and characterize both global proper-

ties of the system [16] and individual components in

their context, such as genes implicated in cancer

[5, 17]. Network analysis [18, 19] is complemented

by visualization to bridge computation and

interpretation, accelerate discovery and deepen in-

sight [20, 21].

Investigators rely on visual interfaces to networks

to manage complexity, help create a mind-map

of the patterns and cogently communicate their

findings. Visualization applications such as

BiologicalNetworks [22], Cytoscape [23, 24],

Gephi [25], MatrixExplorer [26], Osprey [27] and

others [20, 21] are continually challenged to cope

with growing data sets and informatively render

large networks [28]. To address the needs of users,

who are faced with increasingly larger cognitive load

in interpreting the visualizations, layout algorithms

continue to be developed and refined to make

network visualizations more approachable and

informative [20, 29]. These include Fruchterman
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Reingold [30], a force-directed method which gen-

erates pleasant layouts with uniform edge and vertex

distribution, OpenOrd [31], a multilevel algorithm

that scales to millions of nodes and effectively reveals

clusters and the Sugiyama method [32, 33] ideal for

discovering a network’s hierarchy. Unfortunately,

the effectiveness of these methods is reduced by

inherent unpredictability, inconsistency and lack of

perceptual uniformity. As a result, their layouts

have earned the disparaging moniker ‘hairballs’.

Network layouts are difficult to predict and inter-

pret because their creation is in part, driven by an

aesthetic heuristic that can influence how specific

structures are rendered. The interplay between

form and function can result in layouts that remain

unconvincing about whether the network contains

any meaningful patterns at all (Figure 2 in [34]),

given that in other layouts similar patterns are

acknowledged to be entirely artefactual (Figure 2B

in [35]). This inherent unpredictability is con-

founded by the fact that different algorithms

generate very different layouts of the same network

(Figure 1A) and limits the usefulness of

complementing one layout with another. The lack

of interpretable structure in many layouts can imply

variation where none exists (Figure 1B) and hide

meaningful network patterns (Figure 2A and B).

Most algorithms are sensitive to small changes in

the network and create perceptually nonuniform

layouts, where differences vary out of proportion

to changes in the network. Figure 2C shows the

extent to which a hierarchical layout can change

upon removal of an edge or node. This lack of

robustness is not limited to small networks, as

exemplified in Figure 2E, which shows the impact

of removing a single gene on the layout of the gene

regulatory network RegulonDB [36, 37]. The mag-

nitude of this effect will vary, but its presence makes

such layouts unsuitable for comparing networks and

prevents us from formulating a robust visual query

language to interrogate network visualizations.

To make layouts rational, informative and repro-

ducible, we introduce the ‘hive plot’ (HP), in which

nodes are placed on radially oriented linear axes

according to a well-defined coordinate system. HPs

satisfy the five requirements for an effective and

Figure 1: (A) Network drawing algorithms can produce strikingly different layouts when applied to large
networks. Visualizations of the largest connected component (2652 nodes, 3941 edges) of the human disease
network [38] generated with Cytoscape 2.8.1 [23, 24, 39] and Gephi 0.7 [27]. In each panel, the same group of
nodes are highlighted to show the variety of ways in which dense hubs are rendered by each algorithm. (B) Affine
transformations of Cytoscape’s j.spring embedded algorithm result in layouts that can be easily confused with
those of different networks. The same group of nodes as in panel A is highlighted.
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Figure 2: Conventional network drawing algorithms generate layouts that lack robustnessçsmall changes in a
network can have a disproportionately large effect on the entire layout. (A) Manual layout of a 15-node symmetric
directed network. (B) Cytoscape’s layouts of (A) using the j.Sugiyama [32] and force-directed algorithms obscure
the simplicity and symmetry of the network. (C) Cytoscape’s yFiles hierarchic layout [49] is very efficient and
useful for showing the flow in a network, but exemplifies brittleness.The layout of the network from (A) varies con-
siderably when edge E1and node N1are removed. (D) HPs of the networks in (C) are robust and globally unaffected
by local changes to the network.The rules for these HP are explained in Figure 3C. (E) Brittleness is seen in layouts
of large networks. The removal of a single top regulatory gene (NsrR, a regulatory protein, which is a member of
the Rrf2 family.) from RegulonDB network [36, 37] alters layout significantly, making it impossible to determine
what has changed.
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aesthetic layout [40]: generality (can be applied to

different classes of networks), flexibility (can be

adjusted to suit their purpose), transparency (can be

easily explained and understood), competence

(generate useful and quantitatively interpretable re-

sults) and speed (render typically much faster than

traditional layouts). In addition to these, HPs have

two other critical properties that distinguish them

Figure 3: Process of creating HPs from directed and undirected networks. (A) The structure of the RegulonDB
network [36, 37]. (B) A parallel coordinate plot of the genes highlighted in (A), assigned to axes (x1, x2, x3) based
on their role (regulator, manager, workhorse) and positioned on the axis based on connectivity (deg). (C) HP
of the genes highlighted in (A), showing the conceptual similarity between the HP and parallel coordinate plot.
The circular layout of the HP permits connections between edge axes in the parallel coordinate plot (NSRR/
NRFD) to be accommodated within the plot area. (D) The structure of the gene-disease network [38] that
connects genes implicated in the same disease. Classification of the connecting diseases (e.g. ophthalmological,
bone, connective tissue, etc.) partitions the network into overlapping sets of genes. (E) The clustering coefficient
(cc) measures the extent of connections between a node’s neighbors and is used to place genes on HP axis. HP of
the highlighted nodes in (D) constructed using ranges of the cc, for axis assignment and connectivity for axis
scale. The x1-axis is cloned (x11, x12) to reveal connections between cc¼ 0 nodes.
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from other layouts: reproducibility and perceptual

uniformity.

The HP layout is a parallel coordinate plot [41]

(typically applied to multi-genome alignments

[42–44]) in which the axes are radially arranged,

making the layout compact and connections easy

to follow. HPs share similarities with other methods

that implement a coordinate system for node layout,

such as PivotGraph [45] and Semantic Substrates

[46, 47], which project nodes onto multiple

nonoverlapping regions whose internal layout is rec-

tilinear and based on one or two attributes. Semantic

substrates can visually capture relationships between

an arbitrary number of annotations (Figure 9 in [47])

and are very effective when the layout within each

panel is not overly complex, such as when ordinal or

nominal attributes have a small number of different

values. As the number of panels and attribute values

grows, the edges can become dense and difficult to

interpret (Figure 10 in [47]). In a noninteractive

form, it is not possible to isolate a single node from

others because its positions within each panel cannot

be directly related. In comparison, HPs aim to

provide a quantitative representation based on two

structurally-derived attributes and apply a radial

scheme to help declutter the layout. A radial

approach has been used previously [48] to represent

layers in a hierarchical Sugiyama layout [32]. HPs are

distinguished by projecting the network onto a

multidimensional coordinate system that is based

directly on structural properties, such as connectivity

or clustering. The coordinate system creates consist-

ent layouts of network components that have the

same structural profile and can be tuned to reveal

specific patterns. This consistency makes HP appro-

priate for comparing networks and monitoring their

evolution. Network comparison with HPs is possible

because the layouts are perceptually uniform—

modifying the network alters the HP only in parts

directly affected by the change, making it is easy to

spot the resulting difference (Figure 2D).

HPs provide quantitative visual signatures, useful

for large networks, a task that challenges convention-

al layouts. They can quickly reveal patterns such as

hubs and clusters and identify structurally equivalent

elements in the context of the full data set. HPs

complement traditional layouts (e.g. force-based or

semantic substrates) and can be displayed alongside

for multimodal navigation of a network, particularly

when functional components are delineated with

constraint-based methods [50]. They can be

enhanced by the same approaches that make trad-

itional layouts easier to understand, such as reducing

visual complexity by node removal and grouping

[20] and including additional (e.g. matrix) represen-

tations [26]. HPs are interpretable at small sizes and

can be grouped into a matrix of plots, a ‘hive panel’,

to create a dashboard multivariate visualization of

independent properties, similar to a correlation scat-

ter plot matrix (Figure 6A in [51]). HPs may initially

appear complex, but differ from other approaches in

that their complexity scales well and is accessible to

inspection. With familiarization, a human reader can

quickly develop facility to interpret them, unlike

‘hairballs’, which cannot be consistently decon-

structed into patterns and remain opaque to even

experienced eyes.

This article introduces HPs and demonstrates their

application. Using the Escherichia coli RegulonDB

[36, 37], a directed gene regulatory network, we

will show how HPs can be used to reveal structure.

The human disease network (HDN) [38], an undir-

ected network that relates genes to disease, will be

used to demonstrate how to use HP to compare

networks by contrasting the structure of different

disease system in the network. This is conceptually

equivalent to comparing two networks derived from

the same data set, such as the gene and disease

networks in the human disease networks (Figure 2

in [38]), or two networks derived from different

experimental conditions, such as regulation in

MCF-7 human breast cancer cells stimulated by

epidermal growth factor or heregulin with several

doses [52]. Beyond networks, HPs can communicate

complex data sets that can be mapped onto a three-

axis model, such as synteny between three genomes

[53, 54], where the HP representation is even more

effective than a circular one [55].

HIVE PLOTS
The HP is a network layout algorithm that places

nodes on radially oriented linear axes with a coord-

inate system based on nodes’ structural properties.

HPs comprise three flexible components: (i) rules

that govern assignment of nodes to axes (and, op-

tionally, to collinear axis segments) and node coord-

inates, (ii) layout profile of axes (position, scale and

orientation) and (iii) rules that control the format of

edges drawn as curves between nodes. The combin-

ation of radially arranged axes and curved edges re-

sembles the top of a beehive—hence ‘hive plot’.
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To create an HP, network structural parameters

(Table 1) used by rules are initially calculated (e.g.

connectivity, clustering coefficient, etc.). Parameters

are selected to suit the purpose of the layout

(e.g. clustering coefficient distinguishes hubs and

clusters). Next, the rules are applied to each node

in the network to assign it to an axis and determine

its coordinate. Axis assignment rules are typically

Boolean tests such as ‘is the node a sink?’ or ‘is the

node’s ‘‘clustering coefficient’’ smaller than 0.5?’.

It is up to the user to define rules that create a

unique assignment and rules can be a function of

any number of structural parameters. Node coordin-

ates are typically derived from the absolute or

rank-ordered value of a node parameter, such as

connectivity. Once axis assignment and node coord-

inates have been computed, the HP is drawn with

axes as radial linear segments, nodes as glyphs and

edges as curves between corresponding node pos-

itions. The final format of the layout is flexible and

formatting of components such as node glyphs and

edges is addressable. Nodes with the same position

on the layout may be disambiguated with labels, a

repelling scheme to spread the nodes out locally, or

density maps [56]. We demonstrate how these rules

are operationalized to create HPs from directed and

undirected networks using small example networks

(Figure 3).

Figure 3A shows a typical directed network,

rendered as a parallel-coordinate plot in Figure 3B

and HP in Figure 3C. The assignment of nodes to

the x1, x2 and x3 axes is based on the directionality

of edges and node coordinates are a function of

connectivity (total number of edges). We use the

terminology from ref. [63] to refer to sources (out

edges only) as ‘regulators’, sinks (in edges only) as

‘workhorses’ and the other nodes as ‘managers’.

The layout in Figure 3C is natural for directed

networks those in which nodes can be similarly

partitioned by structure, function or annotation.

In an undirected network, axis assignment can be

based on a structural quantity, such as the ‘clustering

coefficient’ (cc), which characterizes the intercon-

nectivity of a node’s neighbors. In Figure 3D, we

show a representative undirected gene-disease net-

work, in which genes implicated in the same diseases

are connected. The corresponding HP in Figure 3E

partitions nodes by cc value (cc¼ 0 to x1, 0 < cc < 1

to x2, and cc¼ 1 to x3) and uses connectivity for

node coordinates. The x1-axis is cloned to reveal

connections between cc¼ 0 nodes (when an axis is

cloned, the same position on both copies

Table 1: Node and graph metrics useful for HP axis assignment and node coordinate rules

Structural parameter Definition

Node parameters
Degree (connectivity) Number of edges incident on a node. For directed graphs, this quantity has an orientation and can be used to

establish ‘flow’.
Flow For a directed graph, the difference between the number of out edges and in edges. Nodes with positive flow

are sources, and those with negative flow are sinks.
Betweenness [57] The number of shortest paths on which a node lies.
Closeness [8] Average distance between a node and all others reachable from it.
Eccentricity Maximum distance between a node and all others reachable from it.
Page rank [58] A type of eigenvector centrality. For a directed graph, the popularity of a node as measured by simulating

a walk across the graph along its edges, with an optional dampening factor that resets the walk to a random
node.Can be applied to both directed and undirected graphs.

Clustering coefficient [59] The extent to which the neighbors of a node are connected. Nodes with a large clustering coefficient form highly
connected neighborhoods.

Topological overlap [60] The similarity between two nodes expressed as the normalized number of shared neighbors between the nodes.
Cut vertex Defined as 1 if the removal of a node disconnects the graph, 0 otherwise.

Network parameters
Module [59, 61] A set of nodes that share more edges than expected by chance. Modules reveal organization at a coarse level

and are typically interpreted as functional components.
Assortativity [62] Correlation between nodes that measures their preference to connect to others that are similar or different in

some way. For example,‘neighbor connectivity’ is the average degree of neighbors of a node with a given degree.
Centralization Normalized difference between the largest and average connectivities.
Density The average connectivity over all nodes.
Diameter Maximum eccentricity over all nodes.
Radius Minimum eccentricity over all nodes.
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corresponds to the same node). For an undirected

network, the orientation of the edges between axis

clones is arbitrary, and in our implementation,

we reverse the links where required for outward

clockwise orientation. In a directed network,

this direction can encode the orientation of

the edge.

In Figure 4, we relate node and edge positions of

HPs in Figure 3C and E to underlying network

structures. Figure 4A shows an HP the small directed

Figure 4: Location of underlying network structures on HPs. (A) HP of a directed network (Figure 2A) using rules
from Figure 3B. Each bundle of edges (A1^A7) is identified in the manual layout. (B) Position of hubs and clusters
in an HP that uses the clustering coefficient (Figure 3E). Hubs have cc¼ 0 and appear between x1-axis clones (B1),
whereas nodes in clusters (cc¼1�e) show up within the x3-axis (B5). Links in region B6 identify nodes on x1-axis
that connect distinct clusters.
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network in Figure 2A, using the same rules as for the

HP of E. coli network in Figure 3C. Each bundle of

edges corresponds to relationships between nodes

with different structural profiles. For example,

bundle A6 represents connections between highly

connected regulators and weakly connected work-

horses. The corresponding visual map for an undir-

ected network is shown in Figure 4B, which shares

the format of Figure 3E. For example, connections

between highly connected clusters (modules) and

hubs are represented by bundle B6 in Figure 4B.

The axes in an HP have adjustable orientation

(inward/outward), size (length may be normalized)

and scale (linear/log/rank ordered). Typically, HPs

have three axes with a uniform radial distribution

(Figure 3C), which prevents edges from crossing

axes. Axes can be cloned (Figure 3E) to show con-

nections between nodes assigned to the same axis.

Hive plots with three axes accommodate edges

between each axis pair without crossing the other

axis. In general, this condition can be achieved

with more than three axes if nodes can be partitioned

to axes in a way that allows for an order in which

nodes are connected only to those on neighboring

axes. If this is not possible, axes must be duplicated at

multiple positions, or edges must be routed across or

around other axes. This negatively impacts the

interpretability of the figure and should be avoided.

Detecting and displaying densely connected

components, or modules [64, 65], is traditionally

challenging because layout algorithms typically

cannot be adjusted to different module detection

rules. Many algorithms natively reveal clusters of

nodes (Figure 7C), but those may overlap (clusters

2 and 13). HPs can mitigate this by dividing each axis

into disjoint segments to which nodes from modules

are assigned. Intramodule connections would appear

as concentric sets of edges, connecting the module’s

corresponding segment on each axis (Figure 5).

This approach is similar to Semantic Substrates

[46], but with the module membership as attribute.

This scheme can also encode membership in strongly

connected components, except that, by definition,

there would be no connections between concentric

regions.

APPLICATIONSOF HP
Studying network structure
Directed networks case studyçgene regulatory
network
To show how HPs can be used to analyze directed

networks, we use the RegulonDB E. coli gene

regulatory network [38, 39], which comprises rela-

tionships between transcription factors and genes

classified by function (repressor, activator, dual)

and experimental certainty (certain, uncertain,

unknown). With 1584 nodes, the network is too

complex for its layout to be informative and neither

hierarchical nor force-based layouts (Figure 6A) help

answer fundamental questions like (i) what is the

relative proportion of each node type? (ii) what are

the differences in connectivity patterns between each

layer? and (iii) what is the role of the manager genes

Figure 5: HPS can represent communities by assigning nodes from each community to a different axis segment.
In this plot, the two interconnected clusters in a small network are shown by segmenting each axis into two.
The link that connects the clusters appears between segments at different radial positions.Where not zero, cc are
shown beside the node.
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Figure 6: Application of HPs to a large directed network. (A) RegulonDB [37] network of1584 regulating genes in
E. coli generated with Cytoscape [39] using yFiles Sugyiama (left) and spring embedded layouts (right). Node size
encodes connectivity and edge color encodes the function of the relationship. Genes mentioned in the text are
labeled. (B) Four HPs of RegulonDB generated with rules from Figure 3B. The directionality of the edges between
cloned axes in B4 is clockwise. Pie charts show the proportion of relationship types within an edge bundle and the
fraction of edges from a node in a bundle is identified with a dotted circle. (C) Manual layout of the neighborhood
of managers at NSRR. Node sizes reflect the number of workhorses controlled by each gene.
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in the network? These layouts occlude the identity

of structurally unique nodes (e.g. most connected

regulator or manager) and their roles (e.g. is the

most connected regulator a repressor, activator

or both?).

We show how HPs can be used to address such

questions in Figure 6B, in which layouts vary only by

axis scaling and normalization. The absolute scale,

unnormalized HP [Figure 6(B1)] shows the max-

imum connectivity of the node types, demonstrating

that managers are the most connected nodes (CRP,

deg¼ 433), then regulators (NSRR, deg¼ 83) and

then workhorses (GADA, MICF, deg¼ 11). When

connectivity rank is used as node coordinate

[Figure 6(B2)], the axis length becomes proportional

to the number of nodes, revealing a preponderance

of workhorses (1415) to managers (135) and regula-

tors (44). The overall distribution of edges within the

layers of the network can be observed in the normal-

ized rank-ordered HP in Figure 6(B3), which dem-

onstrates that connections between highly connected

managers and workhorses have a larger proportion

of dual-role edges than from sparsely connected

managers.

The most revealing HP is Figure 6(B4), where

node coordinates are based on absolute connectivity

but axis length is normalized. This HP neatly accom-

modates annotation, such as pie charts to indicate the

proportion of each type of edge within bundles of

edges. We see that the most connected regulator

(NSRR) is a strict repressor and has 93% of its

connections to workhorses and only 7% to managers.

The proportion of regulator/manager and regulator/

workhorse relationships appears to be very similar

(30% activators, 65% repressors and 5% dual), indi-

cating that purpose of the top layer in the network

is to provide negative feedback. NSRR connects to

both busy and sparse workhorses, but preferentially

to only sparse managers with the exception of IHFA

(third most connected manager). The two busiest

managers, FNR and CRP, are shielded from the

top layer of the network (there are no connections

from regulators) and independent (they are not con-

nected to each other) and exert a primarily activating

influence.

This HP also reveals that highly connected

managers predominately have a repressing effect on

themselves. CRP is self-connected in dual capacity,

as shown by the orange line between the outermost

ends of the cloned manager axis, and is affected by

only one other gene (FIS), repressively. FNR, the

second most connected manager, is repressed by itself

and ARCA. These top manager/manager relation-

ships are distinguished from the generally activating

relationships between the top managers (FNR

and CRP) and workhorses or sparsely connected

managers, as indicated by the pie charts in the bun-

dles from these genes. Moreover, relatively few top

manager connections are to other managers (5%

FNR/manager, 11% CRP/manager) with most of

the connections made to workhorses (95% FNR/

workhorse, 89% CRP/workhorse).

To emphasize that the challenges of conventional

layouts apply to even small networks, we show a

manual layout of the relationship of NSRR, the

busiest regulator, with its neighboring managers in

Figure 6C. This layout was laboriously created to

clarify the structure of this region and reveal the

symmetry of its connections, but fundamental

patterns remain slow to glean. For example, to

notice that NSRR does not connect to the most

connected manager (CRP), one first has to find

NSRR (or CRP) in the layout and then scan all of

the outgoing (or incoming) edges to detect the con-

nection. In the HP, this observation is made instantly

because NSRR and CRP, being the most connected

nodes of their type, are always found at the ends

of their respective axes.

Undirected networks case studyçcancer gene network
To show how HPs can be applied to undirected

networks, we use the human disease network

(HDN) [38], which associates 1284 unique disease

identifiers with 3823 gene symbols through 6275

associations maintained in the Morbid Map of

OMIM [10]. It is analogous to protein–protein inter-

action networks, but with genes in place of proteins

and diseases in place of interaction evidence. The

network connects an average of 4.9 genes per disease

(most connected disease is deafness, with 113 gene

symbols) and 1.6 diseases per gene symbol (most

connected gene is TP53, implicated in 11 diseases).

Each disease is further categorized into one of 23

systems, such as cancer, neurological and muscular.

For this case study, we use HPs to visualize relation-

ships between genes by constructing the disease gene

network (DGN) [38]. The DGN is derived from the

HDN by connecting genes associated with the

same one or more diseases (Figure 3D) and resolving

synonymous gene symbols. It comprises 1934 genes
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Figure 7: Application of HPs to a large undirected network. (A) Force atlas layout generated with Gephi [25] of
the cancer component of the gene-disease network showing 258 genes and 3057 edges. Highly connected genes
are labeled. Genes that connect the cancer subsystem to other systems are represented by hollow glyphs, colored
by the target system. (B) HP of the network, with overlapping nodes drawn in decreasing size by color frequency
to maintain visibility. Clustering coefficient ranges for the axes are x1: cc< 0.25, x2: 0.25� cc< 0.5, x3: cc� 0.5,
chosen to effectively separate the nodes. (C) Force atlas layout of genesTP53, KRAS and CCND1, their immediate
neighbors in the network and any genes connecting the neighbors. (D) Corresponding HP, with axis length
normalized. Corresponding clusters, defined as nodes with the same connectivity and clustering coefficient, are
identified with an index in (C) and (D).
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and 13 235 connections. To show how HP can be

used to compare networks, we will study individual

components of the DGN composed of genes asso-

ciated by diseases categorized under the same system

(e.g. cancer).

Figure 7A shows the cancer DGN with the

corresponding HP shown in Figure 7B. The HPs

of the DGN are created by assigning nodes to axes

based on the clustering coefficient and using

connectivity for their coordinates (Figure 3D). The

locations of structures in this plot are shown in

Figure 4B: ‘hubs’ (x1-axis), ‘highly connected

components’ (x2-axis) and ‘clusters’ (x3-axis). The

traditional layout in Figure 7A suggests that

CCND1 and KRAS play similar roles in the net-

work, connecting a large cluster containing

RUNX1 and SCL to the rest of the network, details

are difficult to determine because density of nodes in

the layout is high. The connectivity pattern of TP53,

a central node and several nodes connecting the

cancer component to other systems (AR and IRF1

to muscular system, PROC and VHL to hemato-

logical system and CAR and PARK2 to neurological

system) is also difficult to assess.

The HP in Figure 7B identifies TP53, KRAS and

CCND1 as the major hubs in the network, indicat-

ing that TP53 is the most connected. The fact that

TP53 is connected to both KRAS and CCND1 is

clear from the connections within the x1-axis

region, but not possible to determine from the

layout in Figure 7A. IRF1 and VHL which connect

the cancer to muscular and hematological systems,

respectively, appear to have about 1/2 of the

connectivity of the largest cluster and CAR. The

latter connects to the neurological system and is

identified within a cluster with connectivity similar

to VHL.

The HP reveals that RUNX1, which appears on

the x2-axis, is not part of the largest cluster, a fact

obscured in the conventional layout. The number of

clusters with distinct connectivity can be discerned

by counting the number of node groups on the

x3-axis. The cluster that contains CAR, which con-

nects to the neurological system, is the largest that

connects cancer to another system. PARK2, ACS2

and ACSL6 are also parts of clusters, but smaller

ones. The HP makes possible visual identification

of how genes that are involved in another system

are integrated into the cancer component.

Reduction is frequently used to assist in visualizing

large networks, where nodes with similar structure

are combined (e.g. clusters) or removed (e.g. leaves)

to reduce complexity [22]. HPs automate this strat-

egy as demonstrated in Figures 7C and 6D, which

limit the cancer subsystem to genes immediately ad-

jacent to TP53, KRAS and CCND1, or intercon-

necting their neighbors. Comparing Figure 7A and

C, we see that layouts of large networks occlude

patterns, which may emerge when the layout is

limited to fewer nodes. In the HP in Figure 7D,

structurally distinct sets of nodes are independent

and can be easily identified and enumerated because

their location is based on cluster size and extent of

internal connectivity. The membership of clusters

can be easily read out when labels are employed in

the HP (suppressed in this example for clarity).

In contrast, unambiguously identifying clusters in

Figure 7C is not possible. For example, there are

nodes within the layout area of the largest cluster

(no.1) that do not belong to the cluster (identified

by group no.14). Similarly, nodes within the appar-

ent boundary of cluster no.2 belong elsewhere

(no.13) and the boundary cluster no.3 cannot be

easily discerned.

Comparing network structure
Case studyçfunctional systems with disease
gene network
HPs can be directly compared to demonstrate differ-

ences between networks because they have a fixed

coordinate system. We show plots for the largest

connected component in the ophthalmological,

muscular, hematological and neurological systems

in Figure 8, created by calculating network proper-

ties for each subsystem in isolation from the rest of

the network. The plots reveal the internal structure

of each subsystem, without influence from edges that

embed the system in the rest of the network.

Both the conventional layouts and HPs provide

information about the community structure of each

system, but quantitative information about connect-

ivity is only available through the HPs.

While the density of the conventional layouts

makes resolving clusters and identifying hubs

within each network difficult, in the HPs the process

is as simple as looking at the start of the x1-axis

(leaves), end of the x1-axis (hubs) and x3-axis (clus-

ters). The HPs immediately reveal the absence of

leaves or hubs in the ophthalmological and muscular
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Figure 8: Comparison of largest connected components of ophthalmological, muscular, hematological and
neurological subsystems in the DGN, drawn with the same layout rules as Figures 7A and 6B. Node size encodes
the connectivity of the gene in the entire DGN. HP grid shows connectivity in steps of 10 edges.
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Figure 9: Demonstration of correlation between pairs of structural components in a network using a hive panel.
The cancer DGN from Figure 7A is shown as a matrix of HPs. Links to KRAS,VHL and NBS are highlighted to illus-
trate how a panel can be used to distinguish nodes of this kind (KRAS mediates connections between two clusters,
VHL is a sparsely connected gene at the edge of the network and NBS is within the largest fully connected cluster).
Each HP uses a unique combination of parameters for axis assignment (shown in rows) and node placement
(shown in columns) from the set: betweenness (b), clustering coefficient (cc), closeness (c, remapped to c�1), con-
nectivity (deg) and branching (nn/n, ratio of next-neighbors to neighbors). For example, the plot in row betweenness
(b) and column clustering coefficient (cc) uses b for axis assignment and cc for node placement. Parameter cutoffs
for b, cc, c, deg and nn/n used to determine node axis assignment to x1, x2 and x3-axes for are b:(0, 0^0.05,>0.05),
cc:(0^0.7, 0.7^1, 1), c:(<2, 2^2.5, >2.5), deg:(<30, 30^60, >60) and nn/n:(<2, 2^5, >5). These cutoffs were selected
heuristically to efficiently populate all axes of the graph.
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subsystem (no nodes on x1-axis). The neurological

subsystem has a single leaf, CDKL5, which is difficult

to find in the conventional layout. The hematologic-

al system is seen to have one highly connected hub

(SLC4A1) and two moderately connected ones

(SPTB and CD36), with the connectivity ratios

clearly evident (about 5:2:1). Furthermore, the fact

that SLC4A1 and SPTB are connected is clear in the

HPs, but hidden by the cluster of nodes between

them in the conventional layout. Near absence

of nodes on x2-axis of the hematological HP

emphasizes that it is composed almost entirely of

hubs and clusters, and HPs show that RHCE

and GYPA are not fully interconnected to the

cluster in which they are placed by the conventional

layout.

The quantitative axes of the HP allow us to

determine that the connectivity of SLC4A1 is

nearly 50, 20% larger than the next most connected

nodes in the systems, which are the ROM1/USH2A

cluster in the ophthalmological system. The largest

cluster of all four networks is in the ophthalmological

subsystem with a connectivity of 37. We can also

quickly see that the SRS/RA1 neurological and

AU/SS hematological clusters are structurally

equivalent— they are the same size and both connect

to the most connected node on the x2-axis in their

respective plots.

Hive panelsçnetwork dashboard
HPs that use the same rules can be used to compare

networks, whereas those that use a variety rules can

provide different perspectives on one network.

Figure 9 shows a 25-plot hive panel of the cancer

DGN which uses ‘betweenness’ (b, fraction of a

graph’s shortest paths on which a node lies), ‘cluster-

ing coefficient’ (cc), ‘closeness’ (c, average distance

from a node to all nodes, using c-1 as the quantity

for axis position), ‘connectivity’ (deg) and ‘branching’

(nn/n, ratio of next neighbors to neighbors) to reveal

different aspects of the network. In each panel, we

highlight connections to KRAS, VHL and NBS,

which are genes with different network

characteristics.

In the b/cc plot (row ‘betweenness’, column ‘clus-

tering coefficient’) KRAS [Figure 9(A1)] is seen on

the x3-axis because it has a high ‘betweenness’ (on

the shortest path between many node pairs), but

closer to the center of the HP, because it has a low

cc (it is a hub). Nodes in this region of this plot

divide a network into individual communities.

In the cc/b plot KRAS [Figure 9(A2)] is seen to be

on the x1-axis (low cc) and far along the b axis

(high b), in symmetry to the b/cc plot. VHL is seen

to be weakly connected [Figure 9(A4), low connect-

ivity] and at the edge of the network [Figure 9(A4),

high c]. This is emphasized by VHL’s position on the

cc/b plot [Figure 9(A5)], in which it is seen to have a

low value of b, indicating it is on few shortest paths.

Plots on the diagonal, a hive panel, are used to

stratify the nodes based on a single parameter.

For example, among the nodes with low cc in

the cc/cc, we see that VHL has a slightly higher cc

than KRAS [0.26 versus 0.18, Figure 9(A3)].

Similarly, of all the highly connected nodes

(x3-axis in deg/deg plot), KRAS is at the end of the

axis [Figure 9(A6)].

Some of the quantities in this hive panel are

related (connectivity, betweenness and closeness are

all measures of centrality), and it is up to the user to

decide which parameters capture the essential char-

acteristics of the network and are relevant to com-

municate. The panel presentation is particularly

suitable for an interactive software interface, in

which a user can search for network components,

or select them directly and see the elements high-

lighted in each panel to compare them with the

rest of the network across many parameters.

Performance
Computational time required to generate an HP

layout is largely determined by the speed of algo-

rithms used to calculate network properties used by

axis assignment and node placement rules. Some

properties are quick to calculate, such as degree cen-

trality [O(n2), in adjacency matrix representation],

while others are more computationally intensive,

such as clustering coefficient [O(n3)], [66] and

betweenness [O(n3)], [57], where n is the number

of nodes in the network. The Perl implementation

of HPs, which uses the Graph module to parse and

analyze networks, takes about 20 s (Macbook Pro i7,

2.66 GHz) to compute connectivity and cluster

coefficient statistics for a 1000 node network with

5000 edges. Once these statistics are calculated, plots

of the type seen in Figure 7B can be generated in

less than a second.

CONCLUSIONS
To date, network visualization has lacked a quanti-

tative, visually parsable and scalable approach to
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visually assess and compare large networks. HPs

provide a solution to bridge the gap between assess-

ing and comparing structures of large networks and

studying fine structure of small components of

interest. As a layout algorithm, hive plots can be

tuned to answer specific questions of interest to the

experimenter. Finally, they are computationally sim-

pler than traditional layout algorithms and therefore,

amenable to responsive interactive interfaces through

a plugin.

Implementation
HPs in this article were generated with a Perl

implementation, which can be downloaded from

http://www.hiveplot.com. An R implementation

of 2D and 3D hive plots has been created by

Bryan Hanson and is available at http://academic.

depauw.edu/~hanson/HiveR/HiveR.html.

Key Points

� Hive plots introduce a rational method of network visualization
in which nodes are placed on radial axes, with coordinates
determined solely by structural properties of the network.

� Hive plots are flexible: node placement rules can be tuned to
increase sensitivity to specific patterns.

� Hive plots are predictable: for a given set of rules, the same
structures always have the same layout.

� Hive plots are comparable: differences in layouts is proportional
to differences in corresponding networks.

� Hive plots are transparent and practical: rational rules make
the layout easy to understand, interpret and implement.
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