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Abstract

This dissertation presents the implementation of a symbolic CTL*
model checking algorithm based on multi-valued decision diagrams
(MDDs). Given a Petri Net model and a CTL* proposition, the al-
gorithm is capable of identifying LTL sub-formulae, translate them to
Büchi automata and compute the synchronized product of each LTL
formula with the model. MDDs are used to encode the Petri Net and
such composition, provably lowering both system memory and time
required to manipulate its graph of reachable states with respect to
explicit model checking tecniques. By combining the sets of satisfying
states for each LTL sub-formula according to the temporal quantifiers
preceding them, the algorithm is capable of producing the boolean sat-
isfaction result of the CTL* formula and a counterexample or witness
run describing such outcome. Timed test runs executed againts a large
set of models and specifications of LTL, CTL and CTL* temporal log-
ics show competitive performance results with respect to other tools
which process CTL* by translating each formula to µ-calculus. This
algorithm has been implemented as one of the free and open source
programs composing the GreatSPN framework for formal verification
of systems.

1 Introduction

1.1 Model Checking

Model checking is a formal verification technique intended to analyze prop-
erties of system designs. Given a formal model and a specification, the
objective of model checking is to decide whether the behavior of the model
satisfies the specification or not. The model is usually represented as a Kripke
structure or by a high-level formalism that can be transformed into a Kripke
structure. Examples of these formalisms are Petri Nets and Process algebra.
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The specification is provided using a temporal logic expression, that is,
a formula that expresses a temporal and logical statement. Temporal logics
are modal logics geared towards the description of the temporal ordering of
events. It is important to clarify that these logics do not consider precise
timing requirements of activities or events, but reason about their abstract
temporal order. For this reason, they are particularly useful when applied to
concurrent systems in which all components proceed in a lock-step fashion
over a discrete time domain. The system behavior is assumed to be observ-
able at integral time points and each time point identifies a snapshot of all
variables of the system, called state.

Two brands of temporal logics have been proposed over the years for
specifying the properties of reactive systems. Linear Temporal Logic [22] is
based on linear time, therefore considering every moment in time as having
a unique possible future. Computational Tree Logic [9] is defined upon
branching time: it pictures the structure of time as a tree, allowing each
moment in time to split into different possible futures. From now on we
will refer to these two logics using their well-known acronyms LTL and CTL
respectively.

The difference between LTL and CTL is rooted in their satisfaction rela-
tions, which are conceptually different. LTL is said to be path-based, since a
system S satisfies a LTL formula φ if for all initial paths of S, paths starting
in an intial state s0 satisfy φ. Conversely, CTL is said to be state-based,
since a system S satisfies a CTL formula φ if and only if φ holds in all initial
states of S.

Furthermore, the expressiveness of LTL and CTL temporal logics is in-
comparable [19]. Conversely, CTL is particularly useful to express the pos-
sibility of existence of a specific path of execution of a model, that is, the
occurrence of an event happening on one branch but not necessarily all of
them. This concept cannot be expressed using a formalism based on lin-
ear time such as LTL, which describes executions of a system, not the way
those executions are organized in a branching tree. On the contrary, CTL
cannot express situations in which the same behavior may occur on distinct
branches at distinct times, while the ability of LTL to describe individual
paths is more convenient in this case. In practice, the LTL formula FGφ
is not expressible in CTL, while the formula AFAGφ is not expressible in
LTL. Given the shortcomings of both these temporal logics, a superset of
LTL and CTL called CTL* [12] has been introduced.
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1.2 A brief history of LTL model checking

Model checking LTL properties comes down to checking language empty-
ness of the syncronized product between the Kripke structure representing
the model and a formalism which can represent a LTL formula while be-
ing translatable to a Kripke structure, namely a Büchi automaton. This
automata-theoretic approach [25] treats the synchronized product as a transi-
tion system [18] whose state graph can be analyzed using tecniques classified
in two main categories:

• Explicit methods process the state graph of the synchronized product
using graph traversal algorithms.

• Symbolic methods represent the state graph using decision diagrams
and usually apply fixed point algorithms to the set of states to find the
strongly connected components (SCCs) of the transition system.

Explicit methods are based on graph traversal algorithms but are often
limited by the complexity of the LTL model checking problem, which is con-
strained by the size of the state space of the model, the size of the underlying
automaton used to represent the formula and the combined size of the two
Kripke structures in a transition system. More specifically, the model check-
ing problem for LTL is known to be PSPACE-complete [23]. Historically,
the first LTL model checkers were explicit: a notable example is SPIN [14],
which takes advantage of an optimized version of Tarjan DFS algorithm for
finding strongly connected components in a graph, called Nested Depth First
Search [15].

In practice, model checkers applied to complex, real-world sistems have
to face the state space explosion problem: the exponential growth in the
number of variables of the state graph dimension. Given that, in general,
a system with n variables over a domain of k possible values requires at
least nk states in the reachability set, it is understandable how even a simple
model might necessitate a large reachability graph. Furthermore, dealing
with real-valued variables, which have infinite possible assignments, results
in a reachability graph with infinitely many states.

This problem has encouraged the development of various tecniques which
have proven to be successful in mitigating the state explosion. Explicit model
checkers have introduced on-the-fly state-space construction to avoid storing
the whole state graph. The most basic on-the-fly algorithm [13] stores states
which have already been visited in memory and is therefore able to check for
cycles in the reachability graph while generating it through DFS. SPIN uses
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on-the-fly state graph construction combined with partial order reduction
[21], a tecnique which reduces the size of the reachability graph by exploiting
commutativity of concurrently executed transitions which result in the same
state.

1.3 The origin of symbolic model checking

Efforts towards state space minimization have been particularly successful in
developing clever representation of the state graph. Symbolic model checking
represent the system model and the LTL formula using set of states and set
of transitions. These sets can be represented as solutions to logical equa-
tions, using decision diagrams to represent this state space implicitly. Since
syntactically small equations can represent large set of states, this tecnique
ultimately avoids building the state graph explicitly, thus saving space in
memory. Above all, Ordered Binary Decision Diagrams (OBDDs) provide a
canonical form for boolean formulae which can be substantially more com-
pact than conjunctive or disjuntive normal form and efficient algorithms have
been implemented for manipulating them. McMillan was the first to intro-
duce the use of OBDDs to represent the state space of a model, developing
a CTL model checking tool called SMV [20]. Symbolic model checking is
considered to be one of the biggest breakthrough in the history of model
checking for its impact on the state explosion problem [8].

Symbolic model checking was initially applied to CTL because of the
significantly lower complexity of the model checking problem with respect
to LTL: CTL model checking is known to be P-Complete and its time com-
plexity is bilinear in the size of the model and of the formula [10]. After
the introduction of SMV, further research work increased the capabilities of
decision diagrams. By introducing Multi-valued decision diagrams (MDDs) ,
tools were able to represent integral and real-valued functions, thus enhanc-
ing the applications of symbolic strategies to formal verification. In recent
years, the LTSmin tool [17] developed by the University of Twente employs
the SYLVAN multi-core MDDs library [24] to speed up symbolic analysis
algorithms for CTL model checking. A different solution was adopted by
an extended version of SMV, NuSMV [7], which mantained the specification
language of McMillan’s tool while improving it by introducing LTL model
checking and Sat-based Bounded model checking [4], which exploits propo-
sitional satisfiability without using BDDs to represent the state graph. This
approach was chosen because working with decision diagrams does not al-
ways guarantee an improvement over explicit model checking tecniques due
to the often time-consuming procedure of selecting a variable ordering for all
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variables in the system, which is a known NP-complete problem [5].
Until the present day, our GreatSPN framework used multi-valued, multi-

terminal decision diagrams (MTMDDs) provided by the Meddly library [3]
to perform CTL model checking on Petri Nets [2]. Meddly is possibly
the only open-source library to implement MTMDDs, Edge-valued MDDs
(EVMDDs) while providing state-of-the-art algorithms to manipulate them.
To determine the optimal variable ordering for the MDDs used to represet
the state graph, GreatSPN uses a set of algorithms based on different heuris-
tics which are run during the state space generation procedure [1]. As we are
going to discuss later in this dissertation, GreatSPN is now capable of CTL*
model checking by reducing symbolic LTL model checking to CTL model
checking with fairness constraints, as demonstrated in a notorious article
[11] by Clarke et al.

2 Background

2.1 Linear Temporal Logic

LTL is a propositional temporal logic with linear time model, meaning that
it considers a single realized future behavior of a system, that is, a single
path in a Kripke structure.

Definition 1. Syntax of LTL. The formal syntax of LTL is given by the
following grammar in Backus-Naur form (BNF), where a ∈ AP is an atomic
proposition.

φ ::= true | a | ¬φ | φ ∧ φ | Xφ | φ U φ

Using boolean connectors such as ¬ and ∧ allows LTL to be treated
as a propositional logic. Other boolean connectives such as disjunction ∨,
implication →, equivalence ↔ and the exclusive or (xor) operator ⊕ can be
derived as for any other propositional logic. This LTL grammar is defined
using two basic temporal modalities: X (next) andU (until). Using those, we
can derive two essential temporal modalities F (eventually) and G (always),
as follows:

Fφ = trueUφ
Gφ = ¬F¬φ

We now present a list of the temporal modalities which will be used at a
later time in this dissertation.
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• Gφ: "always" (now and forever in the future φ is true)

• Fφ: "eventually" (eventually in the future φ is true)

• Xφ: "next" (in the next time step φ is true)

• ψUφ: "until" (ψ is true until φ is true)

By combining the aforementioned temporal operators we obtain other,
more complex modalities. A typical example is the specification which re-
quires a property to be true infinitely often, GFφ.

LTL Semantics LTL semantics is defined for infinite words σ over the
alphabet 2AP. The satisfiability rules are shown below:

• σ � true

• σ � a iff a ∈ A0

• σ � φ1 ∧ φ2 iff σ � φ1 and σ � φ2

• σ � ¬φ iff ¬(σ � φ)

• σ � Xφ iff σ[1...] � φ

• σ � φ1Uφ2 iff ∃j ≥ 0, σ[j...] � φ2 and σ[i...] � φ1 for all 0 ≤ i < j

A LTL formula φ is said to be valid with regard to a Kripke structure M
if it holds for all paths of M. It is satisfiable if it holds for some path in M.

2.2 CTL*

We briefly introduced CTL* while dealing with the shortcomings of LTL and
CTL. CTL* is a branching temporal logic which extends CTL following a
proposal by Emerson and Halpern. Being based on the concept of branching
time, CTL* is able to represent the possibility of existence of a determinate
behavior in a tree of execution, using CTL path quantifiers E (for some
path) and A (for all paths) to specify whether the required behavior must
be verified for some execution of our system or all possible ones.

CTL* allows path quantifiers to be arbitrarely nested with linear tempo-
ral operatorsG, F,X andU. In contrast, CTL only supports linear temporal
operators if they are immediately preceded by a path quantifier. In a similar
fashion as CTL, the syntax of CTL* distinguishes between state and path
formulae. CTL* path formulae are defined as LTL formulae, whith the only
difference that here state formulae can be used as atoms.
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Definition 2. Syntax of CTL*. The formal syntax of CTL* is made of
state formulae Φ and path formulae φ. The syntax of CTL* state formulae
Φ is defined over the set AP of atomic propositions:

Φ ::= true | a | ¬φ | φ ∧ φ | Eφ

The syntax of CTL* path formulae φ is given by the following grammar,
where Φ is a state formula:

φ ::= Φ | ¬φ | φ ∧ φ | Xφ | φ U φ

As previously seen for LTL, the syntax of CTL* can be treated as any
propositional logic, therefore all boolean connectives can be derived from ¬
and ∧. The missing temporal modalities F and G descend from X and U as
it was the case for LTL, while the path quantifier A can be obtained from
the following equivalence:

Aφ = ¬E¬φ

CTL* Semantics Let a ∈ AP be an atomic proposition, TS = (S,Act,→
, I, AP,L) be a transition system without terminal states, state s ∈ S, Φ and
Ψ be CTL* state formulae and φ, φ1 and φ2 be CTL* path formulae.

State formulae: semantics

• s � a iff a ∈ L(s)

• s � Φ ∧Ψ iff s � Φ and s � Ψ

• s � ¬Φ iff ¬(s � Φ)

• s � Eφ iff σ � φ for some σ ∈ Paths(s)

Path formulae: semantics

• σ � Φ iff s0 � Φ

• σ � φ1 ∧ φ2 iff σ � φ1 and σ � φ2

• σ � ¬φ iff ¬(σ � φ)

• σ � Xφ iff σ[1...] � φ

• σ � φ1Uφ2 iff ∃j ≥ 0, σ[j...] � φ2 and σ[i...] � φ1 for all 0 ≤ i < j
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2.3 Decision Diagrams

Decision diagrams are directed, acyclic graphs used to represent functions
over variables with finitely many possible assignments. They were originally
studied by Bryant [6] as a representation of boolean functions in the form of
Binary Decision Diagrams (BDDs). We focus on a generalization of BDDs
called Multi-value Decision Diagrams (MDDs) [16], whose variable domain
can be arbitrarely large and which can be used to represent functions of
integral and real-valued variables.

Definition 3. Multi-valued Decision Diagram. A multi-valued desicion dia-
gram, or MDD, is an acyclic graph in which each node represents a function
over variables with finitely many possible assignments, of the form:

f : SK × ...× S1 → {0, . . . ,m− 1}

Each one of the sets Sk is considered to be finite on an arbitrarely large
domain. We can write:

Sk = {0, 1, . . . , nk − 1}

An MDD is composed of two types of nodes: terminal nodes and non-
terminal nodes.

• Terminal nodes are labeled with values from the set {0, 1, . . . ,m− 1},
representing the constant function:

g(xK , . . . , x1) = a

• Non-terminal nodes are labeled with one of the function variables xk
and contain nk arcs to other nodes.

A non terminal node labeled with xk has an outgoing arc corresponding
to value v which goes to a node representing the function:

fxk=v(xK , . . . , x1) ≡ f(xK , . . . , xk+1, v, xk−1, . . . , x1)

Reduced ordered MDDs In the contest of model checking, MDDs are
useful to encode the state space of a model as a boolean, integral or real-
valued function. To fit this purpose, MDDs must be in canonical form,
meaning that for any given function and variable ordering, there must be
exactly one representation of that function as MDD. For this to be true, we
have to impose two constraints on MDDs: that they are ordered and reduced
(ROMDDs).
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Definition 4. Ordered MDDs. An MDD is ordered if all paths through the
MDD visit non-terminal nodes accortding to the same variable ordering.

Definition 5. Reduced Ordered MDDs. A reduced, ordered MDD is an
ordered MDD that contains no duplicate nodes and no redundant nodes.

• Two nodes are redundant if all of its outgoing arcs point to the same
node.

• Two terminal nodes are duplicates if they have the same label, while
two non-terminal nodes are duplicates if they have the same variable
label and the same outgoing arcs for each value.

2.4 Automata over infinite words

We’ve described how Linear Temporal Logic provides a language to describe
the temporal order of a series of events. When applied to formal verification,
these sequences of events can be interpreted as computations of the program.
A computation is a potentially infinite sequence of program states: each state
is described by a finite set of atomic propositions, which will be referred to as
a nonempty alphabet. Therefore a computation can be treated as an infinite
word over the alphabet of truth assignments to the atomic propositions of a
given alphabet.

This reasoning suggests that a LTL specification can be thought of as
a description of a language over some alphabet. This language is made
of infinite words, which represent program computations. We can exploit
this equivalence of computations and words to connect linear temporal logic
to automata theory applied on infinite words. As we are going to show,
automata over infinite words depict a suitable formalism to represent LTL
specifications. More precisely, given any propositional temporal formula, one
can construct a finite automaton over infinite words that accepts precisely
the computations satisfied by the formula [26]. This chapter will present
an introduction to automata theory and describe how LTL model check-
ing employs a particular class of automata over infinite words, called Büchi
automata.
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