result r ::= guard list * (Match bb | NoMatch | Absurd)
guard := bb

(equiv S Cₛ Cₜ gs = Yes)      ∧ covers(Cₜ, S) ⇒ ∀vₛ≃vₜ ∈ S, Cₛ(vₛ) ≃gs Cₜ(vₜ)
(equiv S Cₛ Cₜ gs = No(vₛ,vₜ) ∧ covers(Cₜ, S) ⇒ vₛ≃vₜ ∈ S ∧ Cₛ(vₛ) ≠gs Cₜ(vₜ)

(vs,vt) \in S
-------------------------
Test(S,false) = No(vs,vt)

Test(S,true) = Yes


-------------------------------
equiv \emptyset Cs Ct gs \to Yes

-----------------------------------------
equiv S Failure (Leaf BBt) gs ~>No(vs, vt)

-----------------------------------------
equiv S (Leaf BBs) Failure gs ~>No(vs, vt)

----------------------------------------------
equiv S Failure Failure gs ~> Test(S, gs = [])

rBB = Test(S, equiv_BB BBs BBt)
rGuard = Test(s, gs = [])
------------------------------------------------------
equiv S (Leaf BBs) (Leaf BBt) gs ~> Merge(rBB, rGuard)



Cs \in (Leaf BBs, Failure)

(equiv S Cs Ci gs)^i ~> ri)^i
equiv S Cs Cf gs ~> rf
-----------------------------------------------------
equiv S Cs (Node(a, (Domi,Ci)^i, Cf)) gs ~> Merge((ri)^i, rf)

(equiv S Ci (trim Ct a=Ki) gs ~> ri)^i
equiv S Cf (trim Ct (a\notin(K_i)^i)) gs ~> rf
----------------------------------------------------------
equiv S (Node(a, (Ki,Ci)^i, Cf) Ct gs ~> Merge((ri)^i, rf)

<guard here>

equiv S Ctrue Ct (gs++[condition]) ~> rt
equiv S Cfalse Ct (gs++[condition]) ~> rf
-------------------------------------------
equiv S (Guard condition Ctrue Cfalse) Ct gs ~> (Merge rt rf)

rCond = Test(S, cond = condition)
equiv S Cs Ctrue gs ~> rt
equiv S Cs Cfalse gs ~> rf
-------------------------------------------
equiv S Cs (Guard condition Ctrue Cfalse) ([cond]++gs) ~> (Merge rt rf)

(vs,vt) \in S
-------------------------------------------
equiv S Cs (Guard condition Ctrue Cfalse) [] ~> No(vs,vt)


(Simplified rules)

Idea: only talk about the valid equivalences (no No business)
so instead of proving facts of the form
equiv S Cs Ct gs ~> r
we just prove
equiv S Cs Ct gs

------------------------
equiv \emptyset Cs Ct gs

--------------------------
equiv S Failure Failure []

equiv_BB BBs BBt
-------------------------------
equiv S (Leaf BBs) (Leaf BBt) []

Cs \in (Leaf BBs, Failure)

(equiv S Cs Ci gs)^i
equiv S Cs Cf gs
-----------------------------------------
equiv S Cs (Node(a, (Domi,Ci)^i, Cf)) gs

equiv S Ci (trim Ct a=Ki) gs
equiv S Cf (trim Ct (a\notin(K_i)^i) gs
-------------------------------------
equiv S (Node(a, (Ki,Ci)^i, Cf) Ct gs

equiv S Ctrue Ct (gs++[condition])
equiv S Cfalse Ct (gs++[condition])
--------------------------------------------
equiv S (Guard condition Ctrue Cfalse) Ct gs

equiv S Cs Ctrue gs
equiv S Cs Cfalse gs
--------------------------------------------
equiv S Cs (Guard condition Ctrue Cfalse) ([condition]++gs)


(Let's forget about those that are below)

forall i, (equiv S Ci (Ct/a=Ki) = Yes)
equiv S Cf (Ct/a\notin(K_i)^i) = Yes
            -------------------------------------------
                    equiv S (Node(a, (Ki,Ci)^i, Cf) Ct gs ~> Yes

  exists i, (equiv S Ci (Ct/a=Ki) = No(vs,vt))
      -------------------------------------------------
            equiv S (Node(a, (Ki,Ci)^i, Cf) Ct gs ~> No(vs,vt)

  equiv S Cf (Ct/a\notin(K_i)^i) = No(vs,vt)
      -------------------------------------------------
            equiv kS (Node(a, (Ki,Ci)^i, Cf) Ct gs ~> No(vs,vt)

  forall S Cs Ct gs, exists (a unique) r such that
        (equiv S Cs Ct gs = r) is provable