
More on Parallel Scan
Module 10.4 – Parallel Computation Patterns (scan)

GPU Teaching Kit
Accelerated Computing



2

Objective
– To learn more about parallel scan

– Analysis of the work efficient kernel
– Exclusive scan
– Handling very large input vectors



3

Work Analysis of the Work Efficient Kernel
– The work efficient kernel executes log(n) parallel iterations in the reduction step

– The iterations do n/2, n/4,..1 adds
– Total adds: (n-1)  O(n) work

– It executes log(n)-1 parallel iterations in the post-reduction reverse step
– The iterations do 2-1, 4-1, …. n/2-1 adds
– Total adds: (n-2) – (log(n)-1)  O(n) work

– Both phases perform up to no more than 2x(n-1) adds

– The total number of adds is no more than twice of that done in the efficient sequential 
algorithm
– The benefit of parallelism can easily overcome the 2X work when there is sufficient 

hardware

3



4

Some Tradeoffs
– The work efficient scan kernel is normally more desirable

– Better Energy efficiency
– Less execution resource requirement

– However, the work inefficient kernel could be better for absolute 
performance due to its single-phase nature (forward phase only)
– There is sufficient execution resource

4



5

Handling Large Input Vectors
– Build on the work efficient scan kernel 
– Have each section of 2*blockDim.x elements assigned to a block

– Perform parallel scan on each section
– Have each block write the sum of its section into a Sum[] array indexed 

by blockIdx.x
– Run the scan kernel on the Sum[] array
– Add the scanned Sum[] array values to all the elements of corresponding 

sections
– Adaptation of work inefficient kernel is similar.

5



6

Overall Flow of Complete Scan



7

Exclusive Scan Definition
Definition: The exclusive scan operation takes a binary associative operator ⊕, and an array of 
n elements

[x0, x1, …, xn-1]

and returns the array

[0, x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-2)].

Example: If ⊕ is addition, then the exclusive scan operation
on the array [3  1  7   0   4   1   6    3],
would return [0  3  4 11  11 15 16 22].

7



8

Why Use Exclusive Scan?
– To find the beginning address of allocated buffers

– Inclusive and exclusive scans can be easily derived from each other; 
it is a matter of convenience

[3  1  7   0   4   1   6    3]

Exclusive [0  3  4 11  11 15 16 22]

Inclusive [3  4 11  11 15 16 22 25]



9

A Simple Exclusive Scan Kernel
– Adapt an inclusive, work inefficient scan kernel
– Block 0:

– Thread 0 loads 0 into XY[0]
– Other threads load X[threadIdx.x-1] into XY[threadIdx.x]

– All other blocks:
– All thread load X[blockIdx.x*blockDim.x+threadIdx.x-1] into XY[threadIdex.x]

– Similar adaption for work efficient scan kernel but ensure that each 
thread loads two elements

– Only one zero should be loaded
– All elements should be shifted to the right by only one position

9

Read the Harris article (Parallel Prefix Sum with 
CUDA) for a more intellectually interesting 
approach to exclusive scan kernel 
implementation.



GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 10.4 – Parallel Computation Patterns (scan)
	Objective
	Work Analysis of the Work Efficient Kernel
	Some Tradeoffs
	Handling Large Input Vectors
	Overall Flow of Complete Scan
	Exclusive Scan Definition
	Why Use Exclusive Scan?
	A Simple Exclusive Scan Kernel
	Slide Number 10

