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Preface

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1997 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

Motivation for the Book

 

Parallel computing is a critical component of the computing technology of the 90s, and it is likely
to have as much impact over the next twenty years as microprocessors have had over the past
twenty. Indeed, the two technologies are closely linked, as the evolution of highly integrated
microprocessors and memory chips is making multiprocessor systems increasingly attractive.
Already multiprocessors represent the high performance end of almost every segment of the
computing market, from the fastest supercomputers, to departmental compute servers, to the indi-
vidual desktop. In the past, computer vendors employed a range of technologies to provide
increasing performance across their product line. Today, the same state-of-the-art microprocessor
is used throughout. To obtain a significant range of performance, the simplest approach is to
increase the number of processors, and the economies of scale makes this extremely attractive.
Very soon, several processors will fit on a single chip.
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Although parallel computing has a long and rich academic history, the close coupling with com-
modity technology has fundamentally changed the discipline. The emphasis on radical architec-
tures and exotic technology has given way to quantitative analysis and careful engineering trade-
offs. Our goal in writing this book is to equip designers of the emerging class of multiprocessor
systems, from modestly parallel personal computers to massively parallel supercomputers, with
an understanding of the fundamental architectural issues and the available techniques for
addressing design trade-offs. At the same time, we hope to provide designers of software systems
for these machines with an understanding of the likely directions of architectural evolution and
the forces that will determine the specific path that hardware designs will follow.

The most exciting recent development in parallel computer architecture is the convergence of tra-
ditionally disparate approaches, namely shared-memory, message-passing, SIMD, and dataflow,
on a common machine structure. This is driven partly by common technological and economic
forces, and partly by a better understanding of parallel software.   This convergence allows us to
focus on the overriding architectural issues and to develop a common framework in which to
understand and evaluate architectural trade-offs. Moreover, parallel software has matured to the
point where the popular parallel programming models are available on a wide range of machines
and meaningful benchmarks exists. This maturing of the field makes it possible to undertake a
quantitative, as well as qualitative study of hardware/software interactions. In fact, it demands
such an approach. The book follows a set of issues that are critical to all parallel architectures –
communication latency, communication bandwidth, and coordination of cooperative work -
across the full range of modern designs. It describes the set of techniques available in hardware
and in software to address each issue and explores how the various techniques interact. Case
studies provide a concrete illustration of the general principles and demonstrate specific interac-
tions between mechanisms.

Our final motivation comes from the current lack of an adequate text book for our own courses at
Stanford, Berkeley, and Princeton. Many existing text books cover the material in a cursory fash-
ion, summarizing various architectures and research results, but not analyzing them in depth.
Others focus on specific projects, but fail to recognize the principles that carry over to alternative
approaches. The research reports in the area provide sizable body of empirical data, but it has not
yet been distilled into a coherent picture. By focusing on the salient issues in the context of the
technological convergence, rather than the rich and varied history that brought us to this point,
we hope to provide a deeper and more coherent understanding of the field. 

 

Intended Audience

 

We believe the subject matter of this book is core material and should be relevant to graduate stu-
dents and practicing engineers in the fields of computer architecture, systems software, and appli-
cations. The relevance for computer architects is obvious, given the growing importance of
multiprocessors. Chip designers must understand what constitutes a viable building block for
multiprocessor systems, while computer system designers must understand how best to utilize
modern microprocessor and memory technology in building multiprocessors.

Systems software, including operating systems, compilers, programming languages, run-time
systems, performance debugging tools, will need to address new issues and will provide new
opportunities in parallel computers. Thus, an understanding of the evolution and the forces guid-
ing that evolution is critical. Researchers in compilers and programming languages have
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addressed aspects of parallel computing for some time. However, the new convergence with com-
modity technology suggests that these aspects may need to be reexamined and perhaps addressed
in very general terms. The traditional boundaries between hardware, operating system, and user
program are also shifting in the context of parallel computing, where communication, schedul-
ing, sharing, and resource management are intrinsic to the program.

Applications areas, such as computer graphics and multimedia, scientific computing, computer
aided design, decision support and transaction processing, are all likely to see a tremendous
transformation as a result of the vast computing power available at low cost through parallel com-
puting. However, developing parallel applications that are robust and provide good speed-up
across current and future multiprocessors is a challenging task, and requires a deep understand-
ing of forces driving parallel computers. The book seeks to provide this understanding, but also
to stimulate the exchange between the applications fields and computer architecture, so that bet-
ter architectures can be designed --- those that make the programming task easier and perfor-
mance more robust.

 

Organization of the Book

 

The book is organized into twelve chapters. Chapter 1 begins with the motivation why parallel
architectures are inevitable based on technology, architecture, and applications trends. It then
briefly introduces the diverse multiprocessor architectures we find today (shared-memory, mes-
sage-passing, data parallel, dataflow, and systolic), and it shows how the technology and architec-
tural trends tell a strong story of convergence in the field. The convergence does not mean the end
to innovation, but on the contrary, it implies that we will now see a time of rapid progress in the
field, as designers start talking 

 

to

 

 each other rather than 

 

past

 

 each other. Given this convergence,
the last portion of the chapter introduces the fundamaental design issues for multiprocessors:
naming, synchronization, latency, and bandwidth. These four issues form an underlying theme
throughout the rest of this book. The chapter ends with a historical perspective, poviding a
glimpse into the diverse and rich history of the field.

Chapter 2 provides a brief introduction to the process of parallel programming and what are the
basic components of popular programming models. It is intended to ensure that the reader has a
clear understanding of hardware/software trade-offs, as well as what aspects of performance can
be addressed through architectural means and what aspects much be addressed either by the com-
piler or the programmer in providing to the hardware a well designed parallel program. The anal-
ogy in sequential computing is that architecture cannot transform an  algorithm into an

algorithm, but it can improve the average access time for common memory reference
patterns. The brief discussion of programming issues is not likely to turn you into an expert par-
allel programmer, if you are not already, but it will familiarize you with the issues and what pro-
grams look like in various programming models. Chapter 3 outlines the basic techniques used in
programming for performance and presents a collection of application case studies, that serve as
a basis for quantitative evaluation of design trade-offs throughout the book.

Chapter 4 takes up the challenging task of performing a solid empirical evaluation of design
trade-offs. Architectural evaluation is difficult even for modern uni-processors where we typi-
cally look at variations in pipeline design or memory system design against a fixed set of pro-
grams. In parallel architecture we have many more degrees of freedom to explore, the
interactions between aspects of the design are more profound, the interactions between hardware

O n2( )
O n nlog( )
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and software are more significant and of a wider scope. In general, we are looking at performance
as the machine and the program scale. There is no way to scale one without the other example.
Chapter 3 discusses how scaling interacts with various architectural parameters and presents a set
of benchmarks that are used throughout the later chapters.

Chapters 5 and 6 provide a complete understanding of the bus-based multiprocessors, SMPs, that
form the bread-and-butter of modern commercial machines beyond the desktop, and even to
some extent on the desktop. Chapter 5 presents the logical design of “snooping” bus protocols
which ensure that automatically replicated data is conherent across multiple caches. This chapter
provides an important discussion of memory consistency models, which allows us to come to
terms with what shared memory really means to algorithm designers. It discusses the spectrum of
design options and how machines are optimized against typical reference patterns occuring in
user programs and in the operating system. Given this conceptual understanding of SMPs, it
reflects on implications for parallel programming.

Chapter 6 examines the physical design of bus-based multiprocessors. Itdigs down into the engi-
neering issues that arise in supporting modern microprocessors with multilevel caches on modern
busses, which are highly pipelined. Although some of this material is contained in more casual
treatments of multiprocessor architecture, the presentation here provides a very complete under-
standing of the design issues in this regime. It is especially important because these small-scale
designs form a building block for large-scale designs and because many of the concepts will
reappear later in the book on a larger scale with a broader set of concerns.

Chapter 7 presents the hardware organization and architecture of a range of machines that are
scalable to large or very large configurations. The key organizational concept is that of a network
transaction, analogous to the bus transaction, which is the fundamental primitive for the designs
in Chapters 5 and 6. However, in large scale machines the global information and global arbitra-
tion of small-scale designs is lost. Also, a large number of transactions can be outstanding. We
show how conventional programming models are realized in terms of network transactions and
then study a spectrum of important design points, organized according to the level of direct hard-
ware interpretation of the network transaction, including detailed case studies of important com-
mercial machines.

Chapter 8 puts the results of the previous chapters together to demonstrate how to realize a global
shared physical address space with automatic replication on a large scale. It provides a complete
treatment of directory based cache coherence protocols and hardware design alternatives.

Chapter 9 examines a spectrum of alternatives that push the boundaries of possible hardware/
software trade-offs to obtain higher performance, to reduce hardware complexity, or both. It
looks at relaxed memory consistency models, cache-only memory architectures, and software
based cache coherency. This material is currently in the transitional phase from academic
research to commercial product at the time of writing.

Chapter 10 addresses the design of scable high-performance communication networks, which
underlies all the large scale machines discussed in previous chapters, but was deferred in order to
complete our understanding of the processor, memory system, and network interface design
which drive these networks. The chapter builds a general framework for understanding where
hardware costs, transfer delays, and bandwidth restrictions arise in networks. We then look at a
variety of trade-offs in routing techniques, switch design, and interconnection topology with
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respect to these cost-performance metrics. These trade-offs are made concrete through case stud-
ies of recent designs.

Given the foundation established by the first ten chapters, Chapter 11 examines a set of cross-cut-
ting issues involved in tolerating significant communication delays without impeding perfor-
mance. The techniques essentially exploit two basic capabilities: overlapping communication
with useful computation and pipelinng the communication of a volume of data. The simplest of
these are essentially bulk transfers, which pipeline the movement of a large regular sequence of
data items and often can be off-loaded from the processor. The other techniques attempt to hide
the latency incured in collections of individual loads and stores. Write latencies are hidden by
exploiting weak consistency models, which recognize that ordering is convey by only a small set
of the accesses to shared memory in a program. Read latencies are hidden by implicit or explicit
prefetching of data, or by look-ahead techniques in modern dynamically scheduled processors.
The chapter provides a thorough examination of these alternatives, the impact on compilation
techniques, and quantitative evaluation of the effectiveness. Finally, Chapter 12 examines the
trends in technology, architecture, software systems and applications that are likely to shape evo-
lution of the field. 

We believe parallel computer architecture is an exciting core field whose importance is growing;
it has reached a point of maturity that a textbook makes sense. From a rich diversity of ideas and
approaches, there is now a dramatic convergence happening in the field. It is time to go beyond
surveying the machine landscape, to an understanding of fundamental design principles. We have
intimately participated in the convergence of the field; this text arises from this experience of ours
and we hope it conveys some of the excitement that we feel for this dynamic and growing area.
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CHAPTER 1 Introduction

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

1.1 Introduction

We have enjoyed an explosive growth in performance and capability of computer systems for
over a decade. The theme of this dramatic success story is the advance of the underlying VLSI
technology, which allows larger and larger numbers of components to fit on a chip and clock
rates to increase. The plot is one of computer architecture, which translates the raw potential of
the technology into greater performance and expanded capability of the computer system. The
leading character is parallelism. A larger volume of resources means that more operations can be
done at once, in parallel. Parallel computer architecture is about organizing these resources so
that they work well together. Computers of all types have harnessed parallelism more and more
effectively to gain performance from the raw technology, and the level at which parallelism is
exlploited continues to rise. The other key character is storage. The data that is operated on at an
ever faster rate must be held somewhere in the machine. Thus, the story of parallel processing is
deeply intertwined with data locality and communication. The computer architect must sort out
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these changing relationships to design the various levels of a computer system so as to maximize
performance and programmability within the limits imposed by technology and cost at any par-
ticular time.

Parallelism is a fascinating perspective from which to understand computer architecture, because
it applies at all levels of design, it interacts with essentially all other architectural concepts, and it
presents a unique dependence on the underlying technology. In particular, the basic issues of
locality, bandwidth, latency, and synchronization arise at many levels of the design of parallel
computer systems. The trade-offs must be resolved in the context of real application workloads. 

Parallel computer architecture, like any other aspect of design, involves elements of form and
function. These elements are captured nicely in the following definition[AGo89].

A parallel computer is a collection of processing elements that cooperate and communicate
to solve large problems fast.

However, this simple definition raises many questions. How large a collection are we talking
about? How powerful are the individual processing elements and can the number be increased in
a straight-forward manner? How do they cooperate and communicate? How are data transmitted
between processors, what sort of interconnection is provided, and what operations are available
to sequence the actions carried out on different processors? What are the primitive abstractions
that the hardware and software provide to the programmer? And finally, how does it all translate
into performance? As we begin to answer these questions, we will see that small, moderate, and
very large collections of processing elements each have important roles to fill in modern comput-
ing. Thus, it is important to understand parallel machine design across the scale, from the small
to the very large. There are design issues that apply throughout the scale of parallelism, and oth-
ers that are most germane to a particular regime, such as within a chip, within a box, or on a very
large machine. It is safe to say that parallel machines occupy a rich and diverse design space.
This diversity makes the area exciting, but also means that it is important that we develop a clear
framework in which to understand the many design alternatives.

Parallel architecture is itself a rapidly changing area. Historically, parallel machines have demon-
strated innovative organizational structures, often tied to particular programing models, as archi-
tects sought to obtain the ultimate in performance out of a given technology. In many cases,
radical organizations were justified on the grounds that advances in the base technology would
eventually run out of steam. These dire predictions appear to have been overstated, as logic den-
sities and switching speeds have continued to improve and more modest parallelism has been
employed at lower levels to sustain continued improvement in processor performance. Nonethe-
less, application demand for computational performance continues to outpace what individual
processors can deliver, and multiprocessor systems occupy an increasingly important place in
mainstream computing. What has changed is the novelty of these parallel architectures. Even
large-scale parallel machines today are built out of the same basic components as workstations
and personal computers. They are subject to the same engineering principles and cost-perfor-
mance trade-offs. Moreover, to yield the utmost in performance, a parallel machine must extract
the full performance potential of its individual components. Thus, an understanding of modern
parallel architectures must include an in-depth treatment of engineering trade-offs, not just a
descriptive taxonomy of possible machine structures.

Parallel architectures will play an increasingly central role in information processing. This view
is based not so much on the assumption that individual processor performance will soon reach a
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plateau, but rather on the estimation that the next level of system design, the multiprocessor level,
will become increasingly attractive with increases in chip density. The goal of this book is to
articulate the principles of computer design at the multiprocessor level. We examine the design
issues present for each of the system components – memory systems, processors, and networks –
and the relationships between these components. A key aspect is understanding the division of
responsibilities between hardware and software in evolving parallel machines. Understanding
this division, requires familiarity with the requirements that parallel programs place on the
machine and the interaction of machine design and the practice of parallel programming.

The process of learning computer architecture is frequently likened to peeling an onion, and this
analogy is even more appropriate for parallel computer architecture. At each level of understand-
ing we find a complete whole with many interacting facets, including the structure of the
machine, the abstractions it presents, the technology it rests upon, the software that exercises it,
and the models that describe its performance. However, if we dig deeper into any of these facets
we discover another whole layer of design and a new set of interactions. The wholistic, many
level nature of parallel computer architecture makes the field challenging to learn and challeng-
ing to present. Something of the layer by layer understanding is unavoidable.

This introductory chapter presents the ‘outer skin’ of parallel computer architecture. It first out-
lines the reasons why we expect parallel machine design to become pervasive from desktop
machines to supercomputers. We look at the technological, architectural, and economic trends
that have led to the current state of computer architecture and that provide the basis for anticipat-
ing future parallel architectures. Section 1.2 focuses on the forces that have brought about the
dramatic rate of processor performance advance and the restructuring of the entire computing
industry around commodity microprocessors. These forces include the insatiable application
demand for computing power, the continued improvements in the density and level of integration
in VLSI chips, and the utilization of parallelism at higher and higher levels of the architecture. 

We then take a quick look at the spectrum of important architectural styles which give the field
such a rich history and contribute to the modern understanding of parallel machines. Within this
diversity of design, a common set of design principles and trade-offs arise, driven by the same
advances in the underlying technology. These forces are rapidly leading to a convergence in the
field, which forms the emphasis of this book. Section 1.3 surveys traditional parallel machines,
including shared-memory, message-passing, single-instruction-multiple-data, systolic arrays,
and dataflow, and illustrates the different ways that they address common architectural issues.
The discussion illustrates the dependence of parallel architecture on the underlying technology
and, more importantly, demonstrates the convergence that has come about with the dominance of
microprocessors. 

Building on this convergence, in Section 1.4 we examine the fundamental design issues that cut
across parallel machines: what can be named at the machine level as a basis for communication
and coordination, what is the latency or time required to perform these operations, and what is
the bandwidth or overall rate at which they can be performed. This shift from conceptual struc-
ture to performance components provides a framework for quantitative, rather than merely quali-
tative, study of parallel computer architecture.

With this initial, broad understanding of parallel computer architecture in place, the following
chapters dig deeper into its technical substance. Chapter 2 delves into the structure and require-
ments of parallel programs to provide a basis for understanding the interaction between parallel
architecture and applications. Chapter 3 builds a framework for evaluating design decisions in
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terms of application requirements and performance measurements. Chapter 4 is a complete study
of parallel computer architecture at the limited scale that is widely employed in commercial mul-
tiprocessors – a few processors to a few tens of processors. The concepts and structures intro-
duced at this scale form the building blocks for more aggressive large scale designs presented
over the next five chapters.

1.2 Why Parallel Architecture

Computer architecture, technology, and applications evolve together and have very strong inter-
actions. Parallel computer architecture is no exception. A new dimension is added to the design
space – the number of processors – and the design is even more strongly driven by the demand
for performance at acceptable cost. Whatever the performance of a single processor at a given
time, higher performance can, in principle, be achieved by utilizing many such processors. How
much additional performance is gained and at what additional cost depends on a number of fac-
tors, which we will explore throughout the book.

To better understand this interaction, let us consider the performance characteristics of the pro-
cessor building blocks. Figure 1-11 illustrates the growth in processor performance over time for
several classes of computers[HeJo91]. The dashed lines represent a naive extrapolation of the
trends. Although one should be careful in drawing sharp quantitative conclusions from such lim-
ited data, the figure suggests several valuable observations, discussed below.

First, the performance of the highly integrated, single-chip CMOS microprocessor is steadily
increasing and is surpassing the larger, more expensive alternatives. Microprocessor performance
has been improving at a rate of more than 50% per year. The advantages of using small, inexpen-
sive, low power, mass produced processors as the building blocks for computer systems with
many processors are intuitively clear. However, until recently the performance of the processor
best suited to parallel architecture was far behind that of the fastest single processor system. This
is no longer so. Although parallel machines have been built at various scales since the earliest
days of computing, the approach is more viable today than ever before, because the basic proces-
sor building block is better suited to the job. 

The second and perhaps more fundamental observation is that change, even dramatic change, is
the norm in computer architecture. The continuing process of change has profound implications
for the study of computer architecture, because we need to understand not only how things are,
but how they might evolve, and why. Change is one of the key challenges in writing this book,
and one of the key motivations. Parallel computer architecture has matured to the point where it
needs to be studied from a basis of engineering principles and quantitative evaluation of perfor-
mance and cost. These are rooted in a body of facts, measurements, and designs of real machines.

1.  The figure is drawn from an influential 1991 paper that sought to explain the dramatic changes
taking place in the computing industry[HeJo91] The metric of performance is a bit tricky when
reaching across such a range of time and market segment. The study draws data from general
purpose benchmarks, such as the SPEC benchmark that is widely used to assess performance on
technical computing applications[HePa90]. After publication, microprocessors continued to track
the prediction, while mainframes and supercomputers went through tremendous crises and
emerged using multiple CMOS microprocessors in their market niche.
22 DRAFT: Parallel Computer Architecture 9/10/97



 

Why Parallel Architecture

     
Unfortunately, the existing data and designs are necessarily frozen in time, and will become
dated as the field progresses. We have elected to present hard data and examine real machines
throughout the book in the form of a “late 1990s” technological snapshot in order to retain this
grounding. We strongly believe that the methods of evaluation underlying the analysis of con-
crete design trade-offs transcend the chronological and technological reference point of the book.

The “late 1990s” happens to be a particularly interesting snapshot, because we are in the midst of
a dramatic technological realignment as the single-chip microprocessor is poised to dominate
every sector of computing, and as parallel computing takes hold in many areas of mainstream
computing. Of course, the prevalence of change suggests that one should be cautious in extrapo-
lating toward the future. In the remainder of this section, we examine more deeply the forces and
trends that are giving parallel architectures an increasingly important role throughout the com-
puting field and pushing parallel computing into the mainstream. We look first at the application
demand for increased performance and then at the underlying technological and architectural
trends that strive to meet these demands. We see that parallelism is inherently attractive as com-
puters become more highly integrated, and that it is being exploited at increasingly high levels of
the design. Finally, we look at the role of parallelism in the machines at the very high end of the
performance spectrum.

1.2.1 Application Trends

The demand for ever greater application performance is a familiar feature of every aspect of com-
puting. Advances in hardware capability enable new application functionality, which grows in

Figure  1-1  Performance trends over time of micro, mini, mainframe and supercomputer processors.[HeJo91]

Performance of microprocessors has been increasing at a rate of nearly 50% per year since the mid 80’s. More tra-
ditional mainframe and supercomputer performance has been increasing at a rate of roughly 25% per year. As a
result we are seeing the processor that is best suited to parallel architecture become the performance leader as well.
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significance and places even greater demands on the architecture, and so on. This cycle drives the
tremendous ongoing design, engineering, and manufacturing effort underlying the sustained
exponential performance increase in microprocessor performance. It drives parallel architecture
even harder, since parallel architecture focuses on the most demanding of these applications.
With a 50% annual improvement in processor performance, a parallel machine of a hundred pro-
cessors can be viewed as providing to applications the computing power that will be widely avail-
able ten years in the future, whereas a thousand processors reflects nearly a twenty year horizon.

Application demand also leads computer vendors to provide a range of models with increasing
performance and capacity at progressively increased cost. The largest volume of machines and
greatest number of users are at the low end, whereas the most demanding applications are served
by the high end. One effect of this “platform pyramid” is that the pressure for increased perfor-
mance is greatest at the high-end and is exerted by an important minority of the applications.
Prior to the microprocessor era, greater performance was obtained through exotic circuit technol-
ogies and machine organizations. Today, to obtain performance significantly greater than the
state-of-the-art microprocessor, the primary option is multiple processors, and the most demand-
ing applications are written as parallel programs. Thus, parallel architectures and parallel appli-
cations are subject to the most acute demands for greater performance. 

A key reference point for both the architect and the application developer is how the use of paral-
lelism improves the performance of the application. We may define the speedup on  processors
as

. (EQ 1.1)

For a single, fixed problem, the performance of the machine on the problem is simply the recipro-
cal of the time to complete the problem, so we have the following important special case:

. (EQ 1.2)

Scientific and Engineering Computing

The direct reliance on increasing levels of performance is well established in a number of
endeavors, but is perhaps most apparent in the field of computational science and engineering.
Basically, computers are used to simulate physical phenomena that are impossible or very costly
to observe through empirical means. Typical examples include modeling global climate change
over long periods, the evolution of galaxies, the atomic structure of materials, the efficiency of
combustion with an engine, the flow of air over surfaces of vehicles, the damage due to impacts,
and the behavior of microscopic electronic devices. Computational modeling allows in-depth
analyses to be performed cheaply on hypothetical designs through computer simulation. A direct
correspondence can be drawn between levels of computational performance and the problems
that can be studied through simulation. Figure 1-2 summarizes the 1993 findings of the Commit-
tee on Physical, Mathematical, and Engineering Sciences of the federal Office of Science and
Technology Policy[OST93]. It indicates the computational rate and storage capacity required to
tackle a number of important science and engineering problems. Also noted is the year in which
this capability was forecasted to be available. Even with dramatic increases in processor perfor-
mance, very large parallel architectures are needed to address these problems in the near future.
Some years further down the road, new grand challenges will be in view.

p

Speedup p processors( ) Performance p processors( )
Performance 1 processors( )
-------------------------------------------------------------------≡

Speedupfixed problem p processors( ) T ime 1 processor( )
T ime p processors( )
------------------------------------------------=
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Parallel architectures have become the mainstay of scientific computing, including physics,
chemistry, material science, biology, astronomy, earth sciences, and others. The engineering
application of these tools for modeling physical phenomena is now essential to many industries,
including petroleum (reservoir modeling), automotive (crash simulation, drag analysis, combus-
tion efficiency), aeronautics (airflow analysis, engine efficiency, structural mechanics, electro-
magnetism), pharmaceuticals (molecular modeling), and others. In almost all of these
applications, there is a large demand for visualization of the results, which is itself a demanding
application amenable to parallel computing.

The visualization component has brought the traditional areas of scientific and engineering com-
puting closer to the entertainment industry. In 1995, the first full-length computer-animated
motion picture, Toy Story, was produced on a parallel computer system composed of hundreds of
Sun workstations. This application was finally possible because the underlying technology and
architecture crossed three key thresholds: the cost of computing dropped to where the rendering
could be accomplished within the budget typically associated with a feature film, while the per-
formance of the individual processors and the scale of parallelism rose to where it could be
accomplished in a reasonable amount of time (several months on several hundred processors).

Figure  1-2  Grand Challenge Application Requirements

A collection of important scientific and engineering problems are positioned in a space defined by computational
performance and storage capacity. Given the exponential growth rate of performance and capacity, both of these
axes map directly to time. In the upper right corner appears some of the Grand Challenge applications identified by
the U.S. High Performance Computing and Communications program.
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Each science and engineering applications has an analogous threshold of computing capacity and
cost at which it becomes viable.

Let us take an example from the Grand Challenge program to help understand the strong interac-
tion between applications, architecture, and technology in the context of parallel machines. A
1995 study[JNNIE] examined the effectiveness of a wide range of parallel machines on a variety
of applications, including a molecular dynamics package, AMBER (Assisted Model Building
through Energy Refinement). AMBER is widely used to simulate the motion of large biological
models such as proteins and DNA, which consist of sequences of residues (amino acids and
nucleic acids, respectively) each composed of individual atoms. The code was developed on Cray
vector supercomputers, which employ custom ECL-based processors, large expensive SRAM
memories, instead of caches, and machine instructions that perform arithmetic or data movement
on a sequence, or vector, of data values. Figure 1-3 shows the speedup obtained on three versions
of this code on a 128-processor microprocessor-based machine - the Intel Paragon, described
later. The particular test problem involves the simulation of a protein solvated by water. This test
consisted of 99 amino acids and 3,375 water molecules for approximately 11,000 atoms.

The initial parallelization of the code (vers. 8/94) resulted in good speedup for small configura-
tions, but poor speedup on larger configurations. A modest effort to improve the balance of work
done by each processor, using techniques we discuss in Chapter 2, improved the scaling of the
application significantly (vers. 9/94). An additional effort to optimize communication produced a
highly scalable version(12/94). This 128 processor version achieved a performance of 406
MFLOPS; the best previously achieved was 145 MFLOPS on a Cray C90 vector processor. The
same application on a more efficient parallel architecture, the Cray T3D, achieved 891 MFLOPS
on 128 processors. This sort of “learning curve” is quite typical in the parallelization of important
applications, as is the interaction between application and architecture. The application writer
typically studies the application to understand the demands it places on the available architec-
tures and how to improve its performance on a given set of machines. The architect may study
these demands as well in order to understand how to make the machine more effective on a given
set of applications. Ideally, the end user of the application enjoys the benefits of both efforts.

The demand for ever increasing performance is a natural consequence of the modeling activity.
For example, in electronic CAD as the number of devices on the chip increases, there is obvi-
ously more to simulate. In addition, the increasing complexity of the design requires that more
test vectors be used and, because higher level functionality is incorporated into the chip, each of
these tests must run for a larger number of clock cycles. Furthermore, an increasing level of con-
fidence is required, because the cost of fabrication is so great. The cumulative effect is that the
computational demand for the design verification of each new generation is increasing at an even
faster rate than the performance of the microprocessors themselves. 

Commercial Computing

Commercial computing has also come to rely on parallel architectures for its high-end. Although
the scale of parallelism is typically not as large as in scientific computing, the use of parallelism
is even more wide-spread. Multiprocessors have provided the high-end of the commercial com-
puting market since the mid-60s. In this arena, computer system speed and capacity translate
directly into the scale of business that can be supported by the system. The relationship between
performance and scale of business enterprise is clearly articulated in the on-line transaction pro-
cessing (OLTP) benchmarks sponsored by the Transaction Processing Performance Council
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(TPC) [tpc]. These benchmarks rate the performance of a system in terms of its throughput in
transactions-per-minute (tpm) on a typical workload. TPC-C is an order entry application with a
mix of interactive and batch transactions, including realistic features like queued transactions,
aborting transactions, and elaborate presentation features[GrRe93]. The benchmark includes an
explicit scaling criteria to make the problem more realistic: the size of the database and the num-
ber of terminals in the system increase as the tpmC rating rises. Thus, a faster system must oper-
ate on a larger database and service a larger number of users.

Figure 1-4 shows the tpm-C ratings for the collection of systems appearing in one edition of the
TPC results (March 1996), with the achieved throughput on the vertical axis and the number of
processors employed in the server along the horizontal axis. This data includes a wide range of
systems from a variety of hardware and software vendors; we have highlighted the data points for
models from a few of the vendors. Since the problem scales with system performance, we cannot
compare times to see the effectiveness of parallelism. Instead, we use the throughput of the sys-
tem as the metric of performance in Equation 1.1.

Figure  1-3  Speedup on Three Versions of a Parallel Program

The parallelization learning curve is illustrated by the speedup obtained on three successive versions of this
molecular dynamics code on the Intel Paragon.
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Example  1-1 The tpmC for the Tandem Himalaya and IBM Power PC systems are given in the
following table. What is the speedup obtained on each?

For the IBM system we may calculate speedup relative to the uniprocessor system, whereas in
the Tandem case we can only calculate speedup relative to a sixteen processor system. For the
IBM machine there appears to be a significant penalty in the parallel database implementation in

tpmC

Number of Processors IBM RS 6000 PowerPC Himalaya K10000

1 735

4 1438

8 3119

16 3043

32 6067

64 12021

112 20918

Figure  1-4  TPC-C throughput versus number of processors on TPC

he March 1996 TPC report documents the transaction processing performance for a wide range of system. The
figure shows the number of processors employed for all of the high end systems, highlights five leading vendor
product lines. All of the major database vendors utilize multiple processors for their high performance options,
although the scale of parallelism varies considerably.
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going from one to four processors, however, the scaling is very good (superlinear) from four to
eight processors. The Tandem system achieves good scaling, although the speedup appears to be
beginning to flatten towards the hundred processor regime.

Several important observations can be drawn from the TPC data. First, the use of parallel archi-
tectures is prevalent. Essentially all of the vendors supplying database hardware or software offer
multiprocessor systems that provide performance substantially beyond their uniprocessor prod-
uct. Second, it is not only large scale parallelism that is important, but modest scale multiproces-
sor servers with tens of processors, and even small-scale multiprocessors with two or four
processors. Finally, even a set of well-documented measurements of a particular class of system
at a specific point in time cannot provide a true technological snapshot. Technology evolves rap-
idly, systems take time to develop and deploy, and real systems have a useful lifetime. Thus, the
best systems available from a collection of vendors will be at different points in their life cycle at
any time. For example, the DEC Alpha and IBM PowerPC systems in the 3/96 TPC report were
much newer, at the time of the report, than the Tandem Himalaya system. We cannot conclude,
for example, that the Tandem system is inherently less efficient as a result of its scalable design.
We can, however, conclude that even very large scale systems must track the technology to retain
their advantage.

Even the desktop demonstrates a significant number of concurrent processes, with a host of
active windows and daemons. Quite often a single user will have tasks running on many
machines within the local area network, or farm tasks across the network. The transition to paral-
lel programming, including new algorithms in some cases or attention to communication and
synchronization requirements in existing algorithms, has largely taken place in the high perfor-
mance end of computing, especially in scientific programming. The transition is in progress
among the much broader base of commercial engineering software. In the commercial world, all
of the major database vendors support parallel machines for their high-end products. Typically,
engineering and commercial applications target more modest scale multiprocessors, which domi-
nate the server market. However, the major database vendors also offer “shared-nothing” ver-
sions for large parallel machines and collections of workstations on a fast network, often called
clusters. In addition, multiprocessor machines are heavily used to improve throughput on multi-
programming workloads. All of these trends provide a solid application demand for parallel
architectures of a variety of scales.

SpeeduptpmC

Number of Processors IBM RS 6000 PowerPC Himalaya K10000

1 1

4 1.96

8 4.24

16 1

32 1.99

64 3.95

112 6.87
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1.2.2 Technology Trends

The importance of parallelism in meeting the application demand for ever greater performance
can be brought into sharper focus by looking more closely at the advancements in the underlying
technology and architecture. These trends suggest that it may be increasingly difficult to “wait for
the single processor to get fast enough,” while parallel architectures will become more and more
attractive. Moreover, the examination shows that the critical issues in parallel computer architec-
ture are fundamentally similar to those that we wrestle with in “sequential” computers, such as
how the resource budget should be divided up among functional units that do the work, caches to
exploit locality, and wires to provide bandwidth.

The primary technological advance is a steady reduction in the basic VLSI feature size. This
makes transistors, gates, and circuits faster and smaller, so more fit in the same area. In addition,
the useful die size is growing, so there is more area to use. Intuitively, clock rate improves in pro-
portion to the improvement in feature size, while the number of transistors grows as the square,
or even faster due to increasing overall die area. Thus, in the long run the use of many transistors
at once, i.e., parallelism, can be expected to contribute more than clock rate to the observed per-
formance improvement of the single-chip building block.

This intuition is borne out by examination of commercial microprocessors. Figure 1-5 shows the
increase in clock frequency and transistor count for several important microprocessor families.
Clock rates for the leading microprocessors increase by about 30% per year, while the number of
transistors increases by about 40% per year. Thus, if we look at the raw computing power of a
chip (total transistors switching per second), transistor capacity has contributed an order of mag-
nitude more than clock rate over the past two decades.1 The performance of microprocessors on
standard benchmarks has been increasing at a much greater rate. The most widely used bench-
mark for measuring workstation performance is the SPEC suite, which includes several realistic

Figure  1-5  Improvement in logic density and clock frequency of microprocessors. 

Improvements in lithographic technique, process technology, circuit design, and datapath design have yielded
a sustained improvement in logic density and clock rate.
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integer programs and floating point programs[SPEC]. Integer performance on SPEC has been
increasing at about 55% per year, and floating-point performance at 75% per year. The LINPACK
benchmark[Don94] is the most widely used metric of performance on numerical applications.
LINPACK floating-point performance has been increasing at more than 80% per year. Thus, pro-
cessors are getting faster in large part by making more effective use of an ever larger volume of
computing resources.

The simplest analysis of these technology trends suggests that the basic single-chip building
block will provide increasingly large capacity, in the vicinity of 100 million transistors by the
year 2000. This raises the possibility of placing more of the computer system on the chip, includ-
ing memory and I/O support, or of placing multiple processors on the chip[Gwe94b]. The former
yields a small and conveniently packaged building block for parallel architectures. The latter
brings parallel architecture into the single chip regime[Gwe94a]. Both possibilities are in evi-
dence commercially, with the system-on-a-chip becoming first established in embedded systems,
portables, and low-end personal computer products.[x86,mips] Multiple processors on a chip is
becoming established in digital signal processing[Fei94]. 

The divergence between capacity and speed is much more pronounced in memory technology.
From 1980 to 1995, the capacity of a DRAM chip increased a thousand-fold, quadrupling every
three years, while the memory cycle time improved by only a factor of two. In the time-frame of
the 100 million transistor microprocessor, we anticipate gigabit DRAM chips, but the gap
between processor cycle time and memory cycle time will have grown substantially wider. Thus,
the memory bandwidth demanded by the processor (bytes per memory cycle) is growing rapidly
and in order to keep pace, we must transfer more data in parallel. From PCs to workstations to
servers, designs based on conventional DRAMs are using wider and wider paths into the memory
and greater interleaving of memory banks. Parallelism. A number of advanced DRAM designs
are appearing on the market which transfer a large number of bits per memory cycle within the
chip, but then pipeline the transfer of those bits across a narrower interface at high frequency. In
addition, these designs retain recently data in fast on-chip buffers, much as processor caches do,
in order to reduce the time for future accesses. Thus, exploiting parallelism and locality is central
to the advancements in memory devices themselves.

The latency of a memory operation is determined by the access time, which is smaller than the
cycle time, but still the number of processor cycles per memory access time is large and increas-
ing. To reduce the average latency experienced by the processor and to increase the bandwidth
that can be delivered to the processor, we must make more and more effective use of the levels of
the memory hierarchy that lie between the processor and the DRAM memory. As the size of the
memory increases, the access time increases due to address decoding, internal delays in driving
long bit lines, selection logic, and the need to use a small amount of charge per bit. Essentially all
modern microprocessors provide one or two levels of caches on chip, plus most system designs
provide an additional level of external cache. A fundamental question as we move into multipro-
cessor designs is how to organize the collection of caches that lie between the many processors
and the many memory modules. For example, one of the immediate benefits of parallel architec-

1.  There are many reasons why the transistor count does not increase as the square of the clock rate. One is
that much of the area of a processor is consumed by wires, serving to distribute control, data, or clock, i.e.,
on-chip communication. We will see that the communication issue reappears at every level of parallel com-
puter architecture.
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tures is that the total size of each level of the memory hierarchy can increase with the number of
processors without increasing the access time.

Extending these observations to disks, we see a similar divergence. Parallel disks storage sys-
tems, such as RAID, are becoming the norm. Large, multi-level caches for files or disk blocks are
predominant.

1.2.3 Architectural Trends

Advances in technology determine what is possible; architecture translates the potential of the
technology into performance and capability. There are fundamentally two ways in which a larger
volume of resources, more transistors, improves performance: parallelism and locality. More-
over, these two fundamentally compete for the same resources. Whenever multiple operations are
performed in parallel the number of cycles required to execute the program is reduced. However,
resources are required to support each of the simultaneous activities. Whenever data references
are performed close to the processor, the latency of accessing deeper levels of the storage hierar-
chy is avoided and the number of cycles to execute the program is reduced. However, resources
are also required to provide this local storage. In general, the best performance is obtained by an
intermediate strategy which devotes resources to exploit a degree of parallelism and a degree of
locality. Indeed, we will see throughout the book that parallelism and locality interact in interest-
ing ways in systems of all scales, from within a chip to across a large parallel machine. In current
microprocessors, the die area is divided roughly equally between cache storage, processing, and
off-chip interconnect. Larger scale systems may exhibit a somewhat different split, due to differ-
ences in the cost and performance trade-offs, but the basic issues are the same. 

Examining the trends in microprocessor architecture will help build intuition towards the issues
we will be dealing with in parallel machines. It will also illustrate how fundamental parallelism is
to conventional computer architecture and how current architectural trends are leading toward
multiprocessor designs. (The discussion of processor design techniques in this book is cursory,
since many of the readers are expected to be familiar with those techniques from traditional
architecture texts[HeP90] or the many discussions in the trade literature. It does provide provide
an unique perspective on those techniques, however, and will serve to refresh your memory.) 

The history of computer architecture has traditionally been divided into four generations identi-
fied by the basic logic technology: tubes, transistors, integrated circuits, and VLSI. The entire
period covered by the figures in this chapter is lumped into the fourth or VLSI generation.
Clearly, there has been tremendous architectural advance over this period, but what delineates
one era from the next within this generation? The strongest delineation is the kind of parallelism
that is exploited. The period up to about 1985 is dominated by advancements in bit-level parallel-
ism, with 4-bit microprocessors replaced by 8-bit, 16-bit, and so on. Doubling the width of the
datapath reduces the number of cycles required to perform a full 32-bit operation. This trend
slows once a 32-bit word size is reached in the mid-80s, with only partial adoption of 64-bit oper-
ation obtained a decade later. Further increases in word-width will be driven by demands for
improved floating-point representation and a larger address space, rather than performance. With
address space requirements growing by less than one bit per year, the demand for 128-bit opera-
tion appears to be well in the future. The early microprocessor period was able to reap the bene-
fits of the easiest form of parallelism: bit-level parallelism in every operation. The dramatic
inflection point in the microprocessor growth curve in Figure 1-1 marks the arrival of full 32-bit
word operation combined with the prevalent use of caches.
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The period from the mid-80s to mid-90s is dominated by advancements in instruction-level par-
allelism. Full word operation meant that the basic steps in instruction processing (instruction
decode, integer arithmetic, and address calculation) could be performed in a single cycle; with
caches the instruction fetch and data access could also be performed in a single cycle, most of the
time. The RISC approach demonstrated that, with care in the instruction set design, it was
straightforward to pipeline the stages of instruction processing so that an instruction is executed
almost every cycle, on average. Thus the parallelism inherent in the steps of instruction process-
ing could be exploited across a small number of instructions. While pipelined instruction pro-
cessing was not new, it had never before been so well suited to the underlying technology. In
addition, advances in compiler technology made instruction pipelines more effective.

The mid-80s microprocessor-based computers consisted of a small constellation of chips: an
integer processing unit, a floating-point unit, a cache controller, and SRAMs for the cache data
and tag storage. As chip capacity increased these components were coalesced into a single chip,
which reduced the cost of communicating among them. Thus, a single chip contained separate
hardware for integer arithmetic, memory operations, branch operations, and floating-point opera-
tions. In addition to pipelining individual instructions, it became very attractive to fetch multiple
instructions at a time and issue them in parallel to distinct function units whenever possible. This
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Figure  1-6  Number of transistors per processor chip over the last 25 years. 

The growth essentially follows Moore’s law which says that the number of transistors doubles every 2 years. Fore-
casting from past trends we can reasonably expect to be designing for a 50-100 million transistor budget at the end
of the decade. Also indicated are the epochs of design within the fourth, or VLSI generation of computer architec-
ture reflecting the increasing level of parallelism.
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form of instruction level parallelism came to be called superscalar execution. It provided a natu-
ral way to exploit the ever increasing number of available chip resources. More function units
were added, more instructions were fetched at time, and more instructions could be issued in
each clock cycle to the function units.

However, increasing the amount of instruction level parallelism that the processor can exploit is
only worthwhile if the processor can be supplied with instructions and data fast enough to keep it
busy. In order to satisfy the increasing instruction and data bandwidth requirement, larger and
larger caches were placed on-chip with the processor, further consuming the ever increasing
number of transistors. With the processor and cache on the same chip, the path between the two
could be made very wide to statisfy the bandwidth requirement of multiple instruction and data
accesses per cycle. However, as more instructions are issued each cycle, the performance impact
of each control transfer and each cache miss becomes more significant. A control transfer may
have to wait for the depth, or latency, of the processor pipeline, until a particular instruction
reaches the end of the pipeline and determines which instruction to execute next. Similarly,
instructions which use a value loaded from memory may cause the processor to wait for the
latency of a cache miss.

Processor designs in the 90s deploy a variety of complex instruction processing mechanisms in
an effort to reduce the performance degradation due to latency in “wide-issue” superscalar pro-
cessors. Sophisticated branch prediction techniques are used to avoid pipeline latency by guess-
ing the direction of control flow before branches are actually resolved. Larger, more sophisticated
caches are used to avoid the latency of cache misses. Instructions are scheduled dynamically and
allowed to complete out of order so if one instruction encounters a miss, other instructions can
proceed ahead of it, as long as they do not depend on the result of the instruction. A larger win-
dow of instructions that are waiting to issue is maintained within the processor and whenever an
instruction produces a new result, several waiting instructions may be issued to the function
units. These complex mechanisms allow the processor to tolerate the latency of a cache-miss or
pipeline dependence when it does occur. However, each of these mechanisms place a heavy
demand on chip resources and a very heavy design cost.

Given the expected increases in chip density, the natural question to ask is how far will instruc-
tion level parallelism go within a single thread of control? At what point will the emphasis shift
to supporting the higher levels of parallelism available as multiple processes or multiple threads
of contol within a process, i.e, thread level parallelism? Several research studies have sought to
answer the first part of the question, either through simulation of aggressive machine
designs[Cha*91,Hor*90,Lee*91,MePa91] or through analysis of the inherent properties of pro-
grams[But*91,JoWa89,Joh90,Smi*89,Wal91]. The most complete treatment appears in
Johnson’s book devoted to the topic[Joh90]. Simulation of aggressive machine designs generally
shows that 2-way superscalar, i.e., issuing two instructions per cycle, is very profitable and 4-way
offers substantial additional benefit, but wider issue widths, e.g., 8-way superscalar, provide little
additional gain. The design complexity increases dramatically, because control transfers occur
roughly once in five instructions, on average. 

To estimate the maximum potential speedup that can be obtained by issuing multiple instructions
per cycle, the execution trace of a program is simulated on an ideal machine with unlimited
instruction fetch bandwidth, as many functions units as the program can use, and perfect branch
prediction. (The latter is easy, since the trace correctly follows each branch.) These generous
machine assumptions ensure that no instruction is held up because a function unit is busy or
because the instruction is beyond the look-ahead capability of the processor. Furthermore, to
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ensure that no instruction is delayed because it updates a location that is used by logically previ-
ous instructions, storage resource dependences are removed by a technique called renaming.
Each update to a register or memory location is treated as introducing a new “name,” and subse-
quent uses of the value in the execution trace refer to the new name. In this way, the execution
order of the program is constrained only by essential data dependences; each instruction is exe-
cuted as soon as its operands are available. Figure 1-7 summarizes the result of this “ideal
machine” analysis based on data presented by Johnson[Joh91]. The histogram on the left shows
the fraction of cycles in which no instruction could issue, only one instruction, and so on.
Johnson’s ideal machine retains realistic function unit latencies, including cache misses, which
accounts for the zero-issue cycles. (Other studies ignore cache effects or ignore pipeline laten-
cies, and thereby obtain more optimistic estimates.) We see that even with infinite machine
resources, perfect branch prediction, and ideal renaming, 90% of the time no more than four
instructions issue in a cycle. Based on this distribution, we can estimate the speedup obtained at
various issue widths, as shown in the right portion of the figure. Recent work[LaWi92,Soh94]
provides empirical evidence that to obtain significantly larger amounts of parallelism, multiple
threads of control must be pursued simultaneously. Barring some unforeseen breakthrough in
instruction level parallelism, the leap to the next level of useful parallelism, multiple concurrent
threads, is increasingly compelling as chips increase in capacity.

The trend toward thread or process-level parallelism has been strong at the computer system level
for some time. Computers containing multiple state-of-the-art microprocessors sharing a com-
mon memory became prevalent in the mid 80’s, when the 32-bit microprocessor was first intro-
duced[Bel85]. As indicated by Figure 1-8, which shows the number of processors available in
commercial multiprocessors over time, this bus-based shared-memory multiprocessor approach
has maintained a substantial multiplier to the increasing performance of the individual proces-
sors. Almost every commercial microprocessor introduced since the mid-80s provides hardware
support for multiprocessor configurations, as we discuss in Chapter 5. Multiprocessors dominate
the server and enterprise (or mainframe) markets and have migrated down to the desktop. 

Figure  1-7  Distribution of potential instruction-level parallelism and estimated speedup under ideal superscalar
execution

The figure shows the distribution of available instruction-level parallelism and maximum potential speedup under ide-
alized superscalar execution, including unbounded processing resources and perfect branch prediction. Data is an
average of that presented for several benchmarks by Johnson[Joh91].
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The early multi-microprocessor systems were introduced by small companies competing for a
share of the minicomputer market, including Synapse[Nes85], Encore[Sha85], Flex[Mat85],
Sequent[Rod85] and Myrias[Sav85]. They combined 10 to 20 microprocessors to deliver com-
petitive throughput on timesharing loads. With the introduction of the 32-bit Intel i80386 as the
base processor, these system obtained substantial commercial success, especially in transaction
processing. However, the rapid performance advance of RISC microprocessors, exploiting
instruction level parallelism, sapped the CISC multiprocessor momentum in the late 80s (and all
but eliminated the minicomputer). Shortly thereafter, several large companies began producing
RISC multiprocessor systems, especially as servers and mainframe replacements. Again, we see
the critical role of bandwidth. In most of these multiprocessor designs, all the processors plug
into a common bus. Since a bus has a fixed aggregate bandwidth, as the processors become faster,
a smaller number can be supported by the bus. The early 1990s brought a dramatic advance in the
shared memory bus technology, including faster electrical signalling, wider data paths, pipelined
protocols, and multiple paths. Each of these provided greater bandwidth, growing with time and
design experience, as indicated in Figure 1-9. This allowed the multiprocessor designs to ramp
back up to the ten to twenty range and beyond, while tracking the microprocessor
advances[AR94,Cek*93,Fen*95,Fra93,Gal*94,GoMa95].

The picture in the mid-90s is very interesting. Not only has the bus-based shared-memory multi-
processor approach become ubiquitous in the industry, it is present at a wide range of scale.
Desktop systems and small servers commonly support two to four processors, larger servers sup-
port tens, and large commercial systems are moving toward a hundred. Indications are that this
trend will continue. As indication of the shift in emphasis, in 1994 Intel defined a standard
approach to the design of multiprocessor PC systems around its Pentium microprocessor[Sla94].
The follow-on PentiumPro microprocessor allows four-processor configurations to be con-
structed by wiring the chips together without even any glue logic; bus drivers, arbitration, and so
on are in the microprocessor. This development is expected to make small-scale multiprocessors
a true commodity. Additionally, a shift in the industry business model has been noted, where mul-
tiprocessors are being pushed by software vendors, especially database companies, rather than
just by the hardware vendors. Combining these trends with the technology trends, it appears that
the question is when, not if, multiple processors per chip will become prevalent.

1.2.4 Supercomputers

We have looked at the forces driving the development of parallel architecture in the general mar-
ket. A second, confluent set of forces come from the quest to achieve absolute maximum perfor-
mance, or supercomputing. Although commercial and information processing applications are
increasingly becoming important drivers of the high end, historically, scientific computing has
been a kind of proving ground for innovative architecture. In the mid 60’s this included pipelined
instruction processing and dynamic instruction scheduling, which are commonplace in micropro-
cessors today. Starting in the mid 70’s, supercomputing was dominated by vector processors,
which perform operations on sequences of data elements, i.e, a vector, rather than individual sca-
lar data. Vector operations permit more parallelism to be obtained within a single thread of con-
trol. Also, these vector supercomputers were implemented in very fast, expensive, high power
circuit technologies.

Dense linear algebra is an important component of Scientific computing and the specific empha-
sis of the LINPACK benchmark. Although this benchmark evaluates a narrow aspect of system
performance, it is one of the few measurements available over a very wide class of machines over
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a long period of time. Figure 1-10 shows the Linpack performance trend for one processor of the
leading Cray Research vector supercomputers[Aug*89,Rus78] compared with that of the fastest
contemporary microprocessor-based workstations and servers. For each system two data points
are provided. The lower one is the performance obtained on a 100x100 matrix and the higher one
on a 1000x1000 matrix. Within the vector processing approach, the single processor performance
improvement is dominated by modest improvements in cycle time and more substantial increases
in the vector memory bandwidth. In the microprocessor systems, we see the combined effect of
increasing clock rate, on-chip pipelined floating-point units, increasing on-chip cache size,
increasing off-chip second-level cache size, and increasing use of instruction level parallel-
ism.The gap in uniprocessor performance is rapidly closing.

Multiprocessor architectures are adopted by both the vector processor and microprocessor
designs, but the scale is quite different. The Cray Xmp provided first two and later four proces-
sors, the Ymp eight, the C90 sixteen, and the T94 thirty-two. The microprocessor based super-
computers provided initially about a hundred processors, increasing to roughly a thousand from
1990 onward. These massively parallel processors (MPPs) have tracked the microprocessor
advance, with typically a lag of one to two years behind the leading microprocessor-based work-
station or personal computer. As shown in Figure 1-11, the large number of slightly slower
microprocessors has proved dominant for this benchmark. (Note the change of scale from
MFLOPS Figure 1-10to GFLOPS.) The performance advantage of the MPP systems over tradi-

Figure  1-8  Number of processors in fully configured commercial bus-based shared-memory multiprocessors.

After an initial era of 10 to 20-way SMPs based on slow CISC microprocessors, companies such as Sun, HP, DEC,
SGI, IBM and CRI began producing sizable RISC-based SMPs, as did commercial vendors not shown here, including
NCR/ATT, Tandem, and Pyramid.
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tional vector supercomputers is less substantial on more complete applications[NAS] owing to
the relative immaturity of the programming languages, compilers, and algorithms, however, the
trend toward the MPPs is still very pronounced. The importance of this trend was apparent
enough that in 1993 Cray Research announced its T3D, based on the DEC Alpha microprocessor.
Recently the Linpack benchmark has been used to rank the fastest computers systems in the
world. Figure 1-12 shows the number of multiprocessor vector processors (PVP), MPPs, and
bus-based shared memory machines (SMP) appearing in the list of the top 500 systems. The lat-
ter two are both microprocessor based and the trend is clear.

1.2.5 Summary

In examining current trends from a variety of perspectives – economics, technology, architecture,
and application demand – we see that parallel architecture is increasingly attractive and increas-
ingly central. The quest for performance is so keen that parallelism is being exploited at many
different levels at various points in the computer design space. Instruction level parallelism is
exploited in all modern high-performance processors. Essentially all machines beyond the desk-
top are multiprocessors, including servers, mainframes, and supercomputers. The very high-end
of the performance curve is dominated by massively parallel processors. The use of large scale
parallelism in applications is broadening and small-scale multiprocessors are emerging on the

Figure  1-9  Bandwidth of the shared memory bus in commercial multiprocessors.

.After slow growth for several years, a new era of memory bus design began in 1991. This supported the use of sub-
stantial numbers of very fast microprocessors.
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desktop and servers are scaling to larger configurations. The focus of this book is the multipro-
cessor level of parallelism. We study the design principles embodied in parallel machines from
the modest scale to the very large, so that we may understand the spectrum of viable parallel
architectures that can be built from well proven components.

Our discussion of the trends toward parallel computers has been primarily from the processor
perspective, but one may arrive at the same conclusion from the memory system perspective.
Consider briefly the design of a memory system to support a very large amount of data, i.e., the
data set of large problems. One of the few physical laws of computer architecture is that fast
memories are small, large memories are slow. This occurs as a result of many factors, including
the increased address decode time, the delays on the increasingly long bit lines, the small drive of
increasingly dense storage cells, and the selector delays. This is why memory systems are con-
structed as a hierarchy of increasingly larger and slower memories. On average, a large hierarchi-
cal memory is fast, as long as the references exhibit good locality. The other trick we can play to
“cheat the laws of physics” and obtain fast access on a very large data set is to replicate the pro-
cessor and have the different processors access independent smaller memories. Of course, phys-
ics is not easily fooled. We pay the cost when a processor accesses non-local data, which we call
communication, and when we need to orchestrate the actions of the many processors, i.e., in syn-
chronization operations.

Figure  1-10  Uniprocessor performance of supercomputers and microprocessor-based systems on the LINPACK
benchmark.

Performance in MFLOPS for a single processor on solving dense linear equations is shown for the leading Cray
vector supercomputer and the fastest workstations on a 100x100 and 1000x1000 matrix.
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1.3 Convergence of Parallel Architectures

Historically, parallel machines have developed within several distinct architectural “camps” and
most texts on the subject are organized around a taxonomy of these designs. However, in looking
at the evolution of parallel architecture, it is clear that the designs are strongly influenced by the
same technological forces and similar application requirements. It is not surprising that there is a
great deal of convergence in the field. In this section, our goal is to construct a framework for
understanding the entire spectrum of parallel computer architectures and to build intuition as to
the nature of the convergence in the field. Along the way, we will provide a quick overview of the
evolution of parallel machines, starting from the traditional camps and moving toward the point
of convergence.

1.3.1 Communication Architecture

Given that a parallel computer is “a collection of processing elements that communicate and
cooperate to solve large problems fast,” we may reasonably view parallel architecture as the
extension of conventional computer architecture to address issues of communication and cooper-
ation among processing elements. In essence, parallel architecture extends the usual concepts of
a computer architecture with a communication architecture. Computer architecture has two dis-

Figure  1-11  Performance of supercomputers and MPPs on the LINPACK Peak-performance benchmark.

Peak performance in GFLOPS for solving dense linear equations is shown for the leading Cray multiprocessor vec-
tor supercomputer and the fastest MPP systems. Note the change in scale from Figure 1-10.
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tinct facets. One is the definition of critical abstractions, especially the hardware/software bound-
ary and the user/system boundary. The architecture specifies the set of operations at the boundary
and the data types that these operate on. The other facet is the organizational structure that real-
izes these abstractions to deliver high performance in a cost-effective manner. A communication
architecture has these two facets, as well. It defines the basic communication and synchronization
operations, and it addresses the organizational structures that realize these operations. 

The framework for understanding communication in a parallel machine is illustrated in Figure 1-
13. The top layer is the programming model, which is the conceptualization of the machine that
the programmer uses in coding applications. Each programming model specifies how parts of the
program running in parallel communicate information to one another and what synchronization
operations are available to coordinate their activities. Applications are written in a programming
model. In the simplest case, a multiprogramming workload in which a large number of indepen-
dent sequential programs are run on a parallel machine, there is no communication or coopera-
tion at the programming level. The more interesting cases include parallel programming models,
such as shared address space, message passing, and data parallel programming. We can describe
these models intuitively as follows:

• Shared address programming is like using a bulletin board, where one can communicate with
one or many colleagues by posting information at known, shared locations. Individual activi-
ties can be orchestrated by taking note of who is doing what task. 

Figure  1-12  Type of systems used in 500 fastest computer systems in the world.

Parallel vector processors (PVPs) have given way to microprocessor-based Massively Parallel Processors (MPPs)
and bus-based symmetric shared-memory multiprocessors (SMPs) at the high-end of computing.
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• Message passing is akin to telephone calls or letters, which convey information from a spe-
cific sender to a specific receiver. There is a well-defined event when the information is sent
or received, and these events are the basis for orchestrating individual activities. However,
there is no shared locations accessible to all.

• Data parallel processing is a more regimented form of cooperation, where several agents per-
form an action on separate elements of a data set simultaneously and then exchange informa-
tion globally before continuing en masse. The global reorganization of data may be
accomplished through accesses to shared addresses or messages, since the programming
model only defines the overall effect of the parallel steps.

A more precise definition of these programming models will be developed later in the text; at this
stage it is most important to understand the layers of abstraction. 

A programming model is realized in terms of the user-level communication primitives of the sys-
tem, which we call the communication abstraction. Typically, the programming model is embod-
ied in a parallel language or programming environment, so there is a mapping from the generic
language constructs to the specific primitives of the system. These user-level primitives may be
provided directly by the hardware, by the operating system or by machine specific user software
which maps the communication abstractions to the actual hardware primitives. The distance
between the lines in the figure is intended to indicate that the mapping from operations in the pro-
gramming model to the hardware primitives may be very simple or it may be very involved. For
example, access to a shared location is realized directly by load and store instructions on a
machine in which all processors use the same physical memory, however, passing a message on
such a machine may involve a library or system call to write the message into a buffer area or to
read it out. We will examine the mapping between layers more below.

The communication architecture defines the set of communication operations available to the
user software, the format of these operations, and the data types they operate on, much as an

Figure  1-13  Layers of Abstraction in Parallel Computer Architecture 

Critical layers of abstractions lie between the application program and the actual hardware. The application is writ-
ten for a programming model, which dictates how pieces of the program share information and coordinate their
activies. The specific operations providing communication and synchronization form the communication abstrac-
tion, which is he boundary between the user program and the system implementation. This abstraction is realized
through compiler or library support using the primitives available from the hardware of from the operating system,
which uses priviledged hardware primtives. The communication hardware is organized to provide these operations
efficiently on the physical wires connecting together the machine.
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instruction set architecture does for a processor. Note that even in conventional instruction sets,
some operations may be realized by a combination of hardware and software, such as a load
instruction which relies on operating system intervention in the case of a page fault. The commu-
nication architecture also extends the computer organization with the hardware structures that
support communication.

As with conventional computer architecture, there has been a great deal of debate over the years
as to what should be incorporated into each layer of abstraction in parallel architecture and how
large the “gap” should be between the layers. This debate has been fueled by various assumptions
about the underlying technology and more qualitative assessments of “ease of programming.” We
have drawn the hardware/software boundary as flat, which might indicate that the available hard-
ware primitives in different designs have more or less uniform complexity. Indeed, this is becom-
ing more the case as the field matures. In most early designs the physical hardware organization
was strongly oriented toward a particular programming model, i.e., the communication abstrac-
tion supported by the hardware was essentially identical to the programming model. This “high
level” parallel architecture approach resulted in tremendous diversity in the hardware organiza-
tions. However, as the programming models have become better understood and implementation
techniques have matured, compilers and run-time libraries have grown to provide an important
bridge between the programming model and the underlying hardware. Simultaneously, the tech-
nological trends discussed above have exerted a strong influence, regardless of programming
model. The result has been a convergence in the organizational structure with relatively simple,
general purpose communication primitives.

In the remainder of this section surveys the most widely used programming models and the cor-
responding styles of machine design in past and current parallel machines. Historically, parallel
machines were strongly tailored to a particular programming model, so it was common to lump
the programming model, the communication abstraction, and the machine organization together
as “the architecture”, e.g., a shared memory architecture, a message passing architecture, and so
on. This approach is less appropriate today, since there is a large commonality across parallel
machines and many machines support several programming models. It is important to see how
this convergence has come about, so we will begin from the traditional perspective and look at
machine designs associated with particular programming models, and explain their intended role
and the technological opportunities that influenced their design. The goal of the survey is not to
develop a taxonomy of parallel machines per se, but to identify a set of core concepts that form
the basis for assessing design trade-offs across the entire spectrum of potential designs today and
in the future. It also demonstrates the influence that the dominant technological direction estab-
lished by microprocessor and DRAM technologies has had on parallel machine design, which
makes a common treatment of the fundamental design issues natural or even imperative. Specifi-
cally, shared-address, message passing, data parallel, dataflow and systolic approaches are pre-
sented. In each case, we explain the abstraction embodied in the programming model and look at
the motivations for the particular style of design, as well as the intended scale and application.
The technological motivations for the approach are examine and how these changed over time.
These changes are reflected in the machine organization, which determines what is fast and what
is slow. The performance characteristics ripple up to influence aspects of the programming
model. The outcome of this brief survey is a clear organizational convergence, which is captured
in a generic parallel machine at then end of the section.
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1.3.2 Shared Memory

One of the most important classes of parallel machines is shared memory multiprocessors. The
key property of this class is that communication occurs implicitly as a result of conventional
memory access instructions, i.e., loads and stores. This class has a long history, dating at least to
precursors of mainframes in the early 60s1, and today it has a role in almost every segment of the
computer industry. Shared memory multiprocessors serve to provide better throughput on multi-
programming workloads, as well as to support parallel programs. Thus, they are naturally found
across a wide range of scale, from a few processors to perhaps hundreds. Below we examine the
communication architecture of shared-memory machines and the key organizational issues for
small-scale designs and large configurations.

The primary programming model for these machine is essentially that of timesharing on a single
processor, except that real parallelism replaces interleaving in time. Formally, a process is a vir-
tual address space and one or more threads of control. Processes can be configured so that por-
tions of their address space are shared, i.e., are mapped to common physical location, as
suggested by Figure 1-19. Multiple threads within a process, by definition, share portions of the
address space. Cooperation and coordination among threads is accomplished by reading and
writing shared variables and pointers referring to shared addresses. Writes to a logically shared
address by one thread are visible to reads of the other threads. The communication architecture
employs the conventional memory operations to provide communication through shared
addresses, as well as special atomic operations for synchronization. Completely independent pro-
cesses typically share the kernel portion of the address space, although this is only accessed by
operating system code. Nonetheless, the shared address space model is utilized within the operat-
ing system to coordinate the execution of the processes. 

While shared memory can be used for communication among arbitrary collections of processes,
most parallel programs are quite structured in their use of the virtual address space. They typi-
cally have a common code image, private segments for the stack and other private data, and
shared segments that are in the same region of the virtual address space of each process or thread
of the program. This simple structure implies that the private variables in the program are present
in each process and that shared variables have the same address and meaning in each process or
thread. Often straightforward parallelization strategies are employed; for example, each process
may perform a subset of the iterations of a common parallel loop or, more generally, processes
may operate as a pool of workers obtaining work from a shared queue. We will discuss the struc-
ture of parallel program more deeply in Chapter 2. Here we look at the basic evolution and devel-
opment of this important architectural approach.

The communication hardware for shared-memory multiprocessors is a natural extension of the
memory system found in most computers. Essentially all computer systems allow a processor
and a set of I/O controllers to access a collection of memory modules through some kind of hard-
ware interconnect, as illustrated in Figure 1-15. The memory capacity is increased simply by
adding memory modules. Additional capacity may or may not increase the available memory
bandwidth, depending on the specific system organization. I/O capacity is increased by adding

1.  Some say that BINAC was the first multiprocessors, but it was intended to improve reliability. The two
processors check each other at every instruction. They never agreed, so people eventually turned one of
them off.
44 DRAFT: Parallel Computer Architecture 9/10/97



Convergence of Parallel Architectures
devices to I/O controllers or by inserting additional I/O controllers. There are two possible ways
to increase the processing capacity: wait for a faster processor to become available, or add more
processors. On a timesharing workload, this should increase the throughput of the system. With
more processors, more processes run at once and throughput is increased. If a single application
is programmed to make use of multiple threads, more processors should speed up the application.
The primitives provided by the hardware are essentially one-to-one with the operations available
in the programming model.

Within the general framework of Figure 1-15, there has been a great deal of evolution of shared
memory machines as the underlying technology advanced. The early machines were “high end”
mainframe configurations [Lon61,Padeg]. On the technology side, memory in early mainframes
was slow compared to the processor, so it was necessary to interleave data across several memory
banks to obtain adequate bandwidth for a single processor; this required an interconnect between
the processor and each of the banks. On the application side, these systems were primarily
designed for throughput on a large number of jobs. Thus, to meet the I/O demands of a workload,
several I/O channels and devices were attached. The I/O channels also required direct access each
of the memory banks. Therefore, these systems were typically organized with a cross-bar switch
connecting the CPU and several I/O channels to several memory banks, as indicated by Figure 1-
16a. Adding processors was primarily a matter of expanding the switch; the hardware structure to
access a memory location from a port on the processor and I/O side of the switch was unchanged.
The size and cost of the processor limited these early systems to a small number of processors.
As the hardware density and cost improved, larger systems could be contemplated. The cost of
scaling the cross-bar became the limiting factor, and in many cases it was replaced by a multi-

Figure  1-14  Typical memory model for shared-memory parallel programs

Collection of processes have a common region of physical addresses mapped into their virtual address space, in
addition to the private region, which typically contains the stack and private data.
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stage interconnect, suggested by Figure 1-16b, for which the cost increases more slowly with the
number of ports. These savings come at the expense of increased latency and decreased band-
width per port, if all are used at once. The ability to access all memory directly from each proces-
sor has several advantages: any processor can run any process or handle any I/O event and within
the operating system data structures can be shared.

The widespread use of shared-memory multiprocessor designs came about with the 32-bit micro-
processor revolution in the mid 80s, because the processor, cache, floating point, and memory
management unit fit on a single board[Bel95], or even two to a board. Most mid-range machines,
including minicomputers, servers, workstations, and personal computers are organized around a
central memory bus, as illustrated in Figure 1-16a. The standard bus access mechanism allows
any processor to access any physical address in the system. Like the switch based designs, all
memory locations are equidistant to all processors, so all processors experience the same access
time, or latency, on a memory reference. This configuration is usually called a symmetric multi-
processor (SMP)1. SMPs are heavily used for execution of parallel programs, as well as multi-

Figure  1-15  Extending a system into a shared-memory multiprocessor by adding processor modules

Most systems consist of one or more memory modules accessible by a processor and I/O controllers through a hard-
ware interconnect, typically a bus, cross-bar or multistage interconnect. Memory and I/O capacity is increased by
attaching memory and I/O modules. Shared-memory machines allow processing capacity to be increased by adding
processor modules.
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programming. The typical organization of bus-based symmetric multiprocessor is illustrated by
Figure 1-17, which describes the first highly integrated SMP for the commodity market.
Figure 1-18 illustrates a high-end server organization which distributes the physical memory over
the processor modules.

The factors limiting the number of processors that can be supported with a bus-based organiza-
tion are quite different from those in the switch-based approach. Adding processors to the switch
is expensive, however, the aggregate bandwidth increases with the number of ports. The cost of
adding a processor to the bus is small, but the aggregate bandwidth is fixed. Dividing this fixed
bandwidth among the larger number of processors limits the practical scalability of the approach.
Fortunately, caches reduce the bandwidth demand of each processor, since many references are
satisfied by the cache, rather than by the memory. However, with data replicated in local caches
there is a potentially challenging problem of keeping the caches “consistent”, which we will
examine in detail later in the book.

Starting from a baseline of small-scale shared memory machines, illustrated in the figures above,
we may ask what is required to scale the design to a large number of processors. The basic pro-
cessor component is well-suited to the task, since it is small and economical, but there is clearly a
problem with the interconnect. The bus does not scale because it has a fixed aggregate band-
width. The cross-bar does not scale well, because the cost increases as the square of the number
of ports. Many alternative scalable interconnection networks exist, such that the aggregate band-
width increases as more processors are added, but the cost does not become excessive. We need
to be careful about the resulting increase in latency, because the processor may stall while a
memory operation moves from the processor to the memory module and back. If the latency of
access becomes too large, the processors will spend much of their time waiting and the advan-
tages of more processors may be offset by poor utilization.

One natural approach to building scalable shared memory machines is to maintain the uniform
memory access (or “dancehall”) approach of Figure 1-15 and provide a scalable interconnect
between the processors and the memories. Every memory access is translated into a message
transaction over the network, much as it might be translated to a bus transaction in the SMP
designs. The primary disadvantage of this approach is that the round-trip network latency is expe-
rienced on every memory access and a large bandwidth must be supplied to every processor.

An alternative approach is to interconnect complete processors, each with a local memory, as
illustrated in Figure 1-19. In this non-uniform memory access (NUMA) approach, the local
memory controller determines whether to perform a local memory access or a message transac-
tion with a remote memory controller. Accessing local memory is faster than accessing remote
memory. (The I/O system may either be a part of every node or consolidated into special I/O
nodes, not shown.) Accesses to private data, such as code and stack, can often be performed
locally, as can accesses to shared data that, by accident or intent, are stored on the local node. The
ability to access the local memory quickly does not increase the time to access remote data appre-
ciably, so it reduces the average access time, especially when a large fraction of the accesses are

1.  The term SMP is widely used, but causes a bit of confusion. What exactly needs to be symmetric? Many
designs are symmetric in some respect. The more precise description of what is intended by SMP is a shared
memory multiprocessor where the cost of accessing a memory location is the same for all processors, i.e., it
has uniform access costs when the access actually is to memory. If the location is cached, the access will be
faster, but still it is symmetric with respect to processors.
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to local data. The bandwidth demand placed on the network is also reduced. Although some con-
ceptual simplicity arises from having all shared data equidistant from any processor, the NUMA
approach has become far more prevalent because of its inherent performance advantages and
because it harnesses more of the mainstream processor memory system technology. One example
of this style of design is the Cray T3E, illustrated in Figure 1-20. This machine reflects the view-
point where, although all memory is accessible to every processor, the distribution of memory
across processors is exposed to the programmer. Caches are used only to hold data (and instruc-
tions) from local mmory. It is the programmer’s job to avoid frequent report references. The SGI
Origin is an example of a machine with a similar organizational structure, but it allows data from
any memory to be replicated into any of the caches and provide hardware support to keep these
caches consistent, without relying on a bus connecting all the modules with a common set of
wires. While this book was being written, the two dsigns literally converged after the two compa-
nies merged.

To summarize, the communication abstraction underlying the shared address space programming
model is reads and writes to shared variables, this is mapped one-to-one to a communication
abstraction consisting of load and store instructions accessing a global, shared address space,
which is supported directly in hardware through access to shared physical memory locations. The
communication abstraction is very “close” to the actual hardware. Each processor can name

Figure  1-17  Physical and logical organization of the Intel PentiumPro four processor “quad pack”

The Intel quad-processor Pentium Pro motherboard employed in many multiprocessor servers illustrates the major
design elements of most small scale SMPs. Its logical block diagram shows there can be up to four processor mod-
ules, each containing a Pentium-Pro processor, first level caches, TLB, 256 KB second level cache, interrupt con-
troller (IC), and a bus interface (BI) in a single chip connecting directly to a 64-bit memory bus. The bus operates at
66 MHz and memory transactions are pipelined to give a peak bandwidth of 528 MB/s. A two-chip memory con-
troller and four-chip memory interleave unit (MIU) connect the bus to multiple banks of DRAM. Bridges connect
the memory bus to two independent PCI busses, which host display, network, SCSI, and lower speed I/O connec-
tions. The Pentium-Pro module contains all the logic necessary to support the multiprocessor communication archi-
tecture, including that required for memory and cache consistency. The structure of the Pentium-Pro “quad pack” is
similar to a large number of earlier SMP designs, but has a much higher degree of integration and is targeted at a
much larger volume.
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every physical location in the machine; a process can name all data it shares with others within its
virtual address space. Data transfer is a result of conventional load and store instructions, and the
data is transferred either as primitive types in the instruction set, bytes, words, etc., or as cache
blocks. Each process performs memory operations on addresses in its virtual address space; the

Figure  1-18  Physical and logical organization of the Sun Enterprise Server

A larger scale design is illustrated by the Sun Ultrasparc-based Enterprise multiprocessor server. The diagram
shows its physical structure and logical organization. A wide (256 bit), highly pipelined memory bus delivers 2.5
GB/s of memory bandwidth. This design uses a hierarchical structure, where each card is either a complete dual-
processor with memory or a complete I/O system. The full configuration supports 16 cards of either type, with at
least one of each. The CPU/Mem card contains two Ultrasparc processor modules, each with 16 KB level-1 and 512
KB level-2 caches, plus two 512-bit wide memory banks and an internal switch. Thus, adding processors adds
memory capacity and memory interleaving. The I/O card provides three SBUS slots for I/O extensions, a SCSI con-
nector, 100bT Ethernet port, and two FiberChannel interfaces. A typical complete configuration would be 24 pro-
cessors and 6 I/O cards. Although memory banks are physically packaged with pairs of processors, all
memory is equidistant from all processors and accessed over the common bus, preserving the SMP
characteristics. Data may be placed anywhere in the machine with no performance impact.
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address translation process identifies a physical location, which may be local or remote to the
processor and may be shared with other processes. In either case, the hardware accesses it
directly, without user or operating system software intervention. The address translation realizes
protection within the shared address space, just as it does for uniprocessors, since a process can
only access the data in its virtual address space. The effectiveness of the shared memory
approach depends on the latency incurred on memory accesses, as well as the bandwidth of data
transfer that can be supported. Just as a memory storage hierarchy allows that data that is bound
to an address to be migrated toward the processor, expressing communication in terms of the
storage address space allows shared data to be migrated toward the processor that accesses it.
However, migrating and replicating data across a general purpose interconnect presents a unique
set of challenges. We will see that to achieve scalability in such a design it is necessary, but not
sufficient, for the hardware interconnect to scale well. The entire solution, including the mecha-
nisms used for maintaining the consistent shared memory abstractions, must also scale well.

1.3.3 Message-Passing

A second important class of parallel machines, message passing architectures, employs complete
computers as building blocks – including the microprocessor, memory and I/O system – and pro-
vides communication between processors as explicit I/O operations. The high-level block dia-

Figure  1-20   Cray T3E Scalable Shared Address Space Machine

The Cray T3E is designed to scale up to a thousand processors supporting a global shared address space.
Each node contains a DEC Alpha processor, local memory, a network interface integrated with the
memory controller, and a network switch. The machine is organized as a three dimensional cube, with
each node connected to its six neighbors through 480 MB/s point-to-point links. Any processor can read
or write any memory location, however, the NUMA characteristic of the machine is exposed in the com-
munication architecture, as well as in its performance characteristics. A short sequence of instructions is
required to establish addressability to remote memory, which can then be accessed by conventional
loads and stores. The memory controller captures the access to a remote memory and conducts a mes-
sage transaction with the memory controller of the remote node on the local processor’s behalf. The
message transaction is automatically routed through intermediate nodes to the desired destination, with
a small delay per “hop”. The remote data is typically not cached, since there is no hardware mechanism
to keep it consistent. (We will look at other design points that allow shared data to be replicated through-
out the processor caches.) The Cray T3E I/O system is distributed over a collection of nodes on the sur-
face of the cube, which are connected to the external world through an addition I/O network
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gram for a message passing machine is essentially the same as the NUMA shared-memory
approach, shown in Figure 1-19. The primary difference is that communication is integrated at
the I/O level, rather than into the memory system. This style of design also has much in common
with networks of workstations, or “clusters”, except the packaging of the nodes is typically much
tighter, there is no monitor or direct user access, and the network is of much higher capability
than standard local area network. The integration between the processor and the network tends to
be much tighter than in traditional I/O structures, which support connection to devices that are
much slower than the processor, since message passing is fundamentally processor-to-processor
communication. 

In message-passing there is generally a substantial distance between the programming model and
the communication operations at the physical hardware level, because user communication is
performed through operating system or library calls which perform many lower level actions,
including the actual communication operation. Thus, the discussion of message-passing begins
with a look at the communication abstraction, and then briefly surveys the evolution of hardware
organizations supporting this abstraction.

The most common user-level communication operations on message passing systems are variants
of send and receive. In its simplest form, send specifies a local data buffer that is to be transmitted
and a receiving process (typically on a remote processor). Receive specifies a sending process
and a local data buffer into which the transmitted data is to be placed. Together, the matching
send and receive cause a data transfer from one process to another, as indicated in Figure 1-19. In
most message passing systems, the send operation also allows an identifier or tag to be attached
to the message and the receiving operation specifies a matching rule, such as a specific tag from a
specific processor, any tag from any processor. Thus, the user program names local addresses and
entries in an abstract process-tag space. The combination of a send and a matching receive
accomplishes a memory to memory copy, where each end specifies its local data address, and a
pairwise synchronization event. There are several possible variants of this synchronization event,
depending upon whether the send completes when the receive has been executed, when the send
buffer is available for reuse, or when the request has been accepted. Similarly, the receive can
potentially wait until a matching send occurs or simply post the receive. Each of these variants
have somewhat different semantics and different implementation requirements.

Message passing has long been used as a means of communication and synchronization among
arbitrary collections of cooperating sequential processes, even on a single processor. Important
examples include programming languages, such as CSP and Occam, and common operating sys-
tems functions, such as sockets. Parallel programs using message passing are typically quite
structured, like their shared-memory counter parts. Most often, all nodes execute identical copies
of a program, with the same code and private variables. Usually, processes can name each other
using a simple linear ordering of the processes comprising a program.

Early message passing machines provided hardware primitives that were very close to the simple
send/receive user-level communication abstraction, with some additional restrictions. A node was
connected to a fixed set of neighbors in a regular pattern by point-to-point links that behaved as
simple FIFOs[Sei85]. This sort of design is illustrated in Figure 1-22 for a small 3D cube. Most
early machines were hypercubes, where each node is connected to  other nodes differing by one
bit in the binary address, for a total of  nodes, or meshes, where the nodes are connect to
neighbors on two or three dimensions. The network topology was especially important in the
early message passing machines, because only the neighboring processors could be named in a
send or receive operation. The data transfer involved the sender writing into a link and the

n
2n
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receiver reading from the link. The FIFOs were small, so the sender would not be able to finish
writing the message until the receiver started reading it, so the send would block until the receive
occured. In modern terms this is called synchronous message passing because the two events
coincide in time. The details of moving data were hidden from the programmer in a message
passing library, forming a layer of software between send and receive calls and the actual hard-
ware.1

The direct FIFO design was soon replaced by more versatile and more robust designs which pro-
vided direct memory access (DMA) transfers on either end of the communication event. The use
of DMA allowed non-blocking sends, where the sender is able to initiate a send and continue
with useful computation (or even perform a receive) while the send completes. On the receiving
end, the transfer is accepted via a DMA transfer by the message layer into a buffer and queued
until the target process performs a matching receive, at which point the data is copying into the
address space of the receiving process.

The physical topology of the communication network dominated the programming model of
these early machines and parallel algorithms were often stated in terms of a specific interconnec-
tion topology, e.g., a ring, a grid, or a hypercube[Fox*88]. However, to make the machines more
generally useful, the designers of the message layers provided support for communication
between arbitrary processors, rather than only between physical neighbors[NX]. This was origi-
nally supported by forwarding the data within the message layer along links in the network. Soon
this routing function was moved into the hardware, so each node consisted of a processor with
mmory, and a switch that could forward messsages, called a router. However, in this store-and-
forward approach the time to transfer a message is proportional to the number of hops it takes

1.  The motivation for synchronous message passing was not just from the machine structure; it
was also was also present in important programming languages, especially CSP[***CSP]. Early
in the microprocesor era the approach was captured in a single chip building block, the Trans-
puter, which was widely touted during its development by INMOS as a revolution in computing.

Figure  1-21  User level send/receive message passing abstraction
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through the network, so there remained an emphasis on interconnection topology.(See
Exercise 1.7) 

The emphasis on network topology was significantly reduced with the introduction of more gen-
eral purpose networks, which pipelined the message transfer through each of the routers forming
the interconnection network[Bar*94,BoRo89,Dun88,HoMc93,Lei*92,PiRe94,VEi*92]. In most
modern message passing machines, the incremental delay introduced by each router is small
enough that the transfer time is dominated by the time to simply move that data between the pro-
cessor and the network, not how far it travels.[Gro92,HoMc93,Hor*93PiRe94]. This greatly sim-
plifies the programming model; typically the processors are viewed as simply forming a linear
sequence with uniform communication costs. In other words, the communication abstraction
reflects an organizational structure much as in Figure 1-19. One important example of such
machine is the IBM SP-2, illustrated in Figure 1-23, which is constructed from conventional
RS6000 workstations, a scalable network, and a network interface containing a dedicated proces-
sor. Another is the Intel Paragon, illustrated in Figure 1-24, which integrates the network inter-
face more tightly to the processors in an SMP nodes, where one of the processors is dedicated to
supporting message passing.

A processor in a message passing machine can name only the locations in its local memory, and
it can name each of the procesors, perhaps by number or by route. A user process can only name
private addresses and other processes; it can transfer data using the send/receive calls.

1.3.4 Convergence

Evolution of the hardware and software has blurred the once clear boundary between the shared
memory and message passing camps. First, consider the communication operations available to
the user process.

Figure  1-22   Typical structure of an early message passing machines

Each node is connected to neighbors in three dimensions via FIFOs.
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• Traditional message passing operations (send/receive) are supported on most shared memory
machines through shared buffer storage. Send involves writing data, or a pointer to data, into
the buffer, receive involves reading the data from shared storage. Flags or locks are used to
control access to the buffer and to indicate events, such as message arrival.

• On a message passing machine, a user process may construct a global address space of sorts
by carrying along pointers specifying the process and local virtual address in that process.
Access to such a global address can be performed in software, through an explicit message
transaction. Most message passing libraries allow a process to accept a message for “any”
process, so each process can serve data requests from the others. A logical read is realized by
sending an request to the process containing the object and receiving a response. The actual
message transaction may be hidden from the user; it may be carried out by compiler gener-
ated code for access to a shared variable.[Split-C,Midway,CID,Cilk]

Figure  1-23   IBM SP-2 Message Passing Machine

The IBM SP-2 is a scalable parallel machine constructed essentially out of complete RS6000 workstations. Modest
modifications are made to packaging the workstations into standing racks. A network interface card (NIC) is
inserted at the MicroChannel I/O bus. The NIC contains the drivers for the actual link into the network, a substan-
tial amount of memory to buffer message data, and a complete i960 microprocessor to move data between host
memory and the network. The network itself is a butterfly-like structure, constructed by cascading 8x8 cross-bar
switches. The links operate at 40 MB/s in each direction, which is the full capability of the I/O bus. Several other
machine employ a similar network interface design, but connect directly to the memory bus, rather than at the I/O
bus.
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• A shared virtual address space can be established on a message passing machine at the page
level. A collection of processes have a region of shared addresses, but for each process only
the pages that are local to it are accessible. Upon access to a missing (i.e., remote) page, a
page fault occurs and the operating system engages the remote node in a message transaction
to transfer the page and map it into the user address space.

At the level of machine organization, there has been substantial convergence as well. Modern
message passing architectures appear essentially identical at the block diagram level to the scal-
able NUMA design illustrated in Figure 1-19. In the shared memory case, the network interface
was integrated with the cache controller or memory controller, in order for that device to observe
cache misses and conduct a message transaction to access memory in a remote node. In the mes-
sage passing approach, the network interface is essentially an I/O device. However, the trend has
been to integrate this device more deeply into the memory system as well, and to transfer data
directly from the user address space. Some designs provide DMA transfers across the network,
from memory on one machine to memory on the other machine, so the network interface is inte-

Figure  1-24   Intel Paragon

The Intel Paragon illustrates a much tighter packaging of nodes. Each card is an SMP with two or more i860 pro-
cessors and a network interface chip connected to the cache-coherent memory bus. One of the processors is dedi-
cated to servicing the network. In addition, the node has a DMA engine to transfer contiguous chunks of data to and
from the network at a high rate. The network is a 3D grid, much like the Cray T3E, with links operating at 175 MB/
s in each direction.
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grated fairly deeply with the memory system. Message passing is implemented on top of these
remote memory copies[HoMc92]. In some designs a complete processor assists in communica-
tion, sharing a cache-coherent memory bus with the main processor[Gro92,PiRe94,HoMc92].
Viewing the convergence from the other side, clearly all large-scale shared memory operations
are ultimately implemented as message transactions at some level.

In addition to the convergeence of scalable message passing and shared memory machines,
switched-based local area networks, including fast ethernet, ATM, FiberChannel, and several
proprietary design[Bod95, Gil96] have emerged, providing scalable interconnects that are
approaching what traditional parallel machines offer. These new networks are being used to con-
nect collections of machines, which may be shared-memory multiprocessors in their own right,
into clusters, which may operate as a parallel machine on individual large problems or as many
individual machines on a multiprogramming load. Also, essentially all SMP vendors provide
some form of network clustering to obtain better reliability.

In summary, message passing and a shared address space represent two clearly distinct program-
ming models, each providing a well-defined paradigm for sharing, communication, and synchro-
nization. However, the underlying machine structures have converged toward a common
organization, represented by a collection of complete computers, augmented by a communication
assist connecting each node to a scalable communication network. Thus, it is natural to consider
supporting aspects of both in a common framework. Integrating the communication assist more
tightly into the memory system tends to reduce the latency of network transactions and improve
the bandwidth that can be supplied to or accepted from the network. We will want to look much
more carefully at the precise nature of this integration and understand how it interacts with cache
design, address translation, protection, and other traditional aspects of computer architecture.

1.3.5 Data Parallel Processing

A third important class of parallel machines has been variously called: processor arrays, single-
instruction-multiple-data machines, and data parallel architectures. The changing names reflect a
gradual separation of the user-level abstraction from the machine operation. The key characteris-
tic of the programming model is that operations can be performed in parallel on each element of
a large regular data structure, such as an array or matrix. The program is logically a single
thread of control, carrying out a sequence of either sequential or parallel steps. Within this gen-
eral paradigm, there has been many novel designs, exploiting various technological opportuni-
ties, and considerable evolution as microprocessor technology has become such a dominate
force.

An influential paper in the early 70’s[Fly72] developed a taxonomy of computers, known as
Flynn’s taxonomy , which characterizes designs in terms of the number of distinct instructions
issued at a time and the number of data elements they operate on. Conventional sequential com-
puters being single-instruction-single-data (SISD) and parallel machines built from multiple con-
ventional processors being multiple-instruction-multiple-data (MIMD). The revolutionary
alternative was single-instruction-multiple-data (SIMD). Its history is rooted in the mid-60s
when an individual processor was a cabinet full of equipment and an instruction fetch cost as
much in time and hardware as performing the actual instruction. The idea was that all the instruc-
tion sequencing could be consolidated in the control processor. The data processors included only
the ALU, memory, and a simple connection to nearest neighbors. 
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In the early data parallel machines, the data parallel programming model was rendered directly in
the physical hardware[Bal*62, Bou*72,Cor72,Red73,Slo*62,Slot67,ViCo78]. Typically, a con-
trol processor broadcast each instruction to an array of data processing elements (PEs), which
were connected to form a regular grid, as suggested by Figure 1-25. It was observed that many
important scientific computations involved uniform calculation on every element of an array or
matrix, often involving neighboring elements in the row or column. Thus, the parallel problem
data was distributed over the memories of the data processors and scalar data was retained in the
control processor’s memory. The control processor instructed the data processors to each perform
an operation on local data elements or all to perform a communication operation. For example, to
average each element of a matrix with its four neighbors, a copy of the matrix would be shifted
across the PEs in each of the four directions and a local accumulation performed in each PE. Data
PEs typically included a condition flag, allowing some to abstain from an operation. In some
designs, the local address can be specified with an indirect addressing mode, allowing processors
to all do the same operation, but with different local data addresses.

The development of arrays of processors was almost completely eclipsed in the mid 70s with the
development of vector processors. In these machines, a scalar processor is integrated with a col-
lection of function units that operate on vectors of data out of one memory in a pipelined fashion.
The ability to operate on vectors anywhere in memory eliminated the need to map application
data structures onto a rigid interconnection structure and greatly simplified the problem of getting
data aligned so that local operations could be performed. The first vector processor, the CDC
Star-100, provided vector operations in its instruction set that combined two source vectors from
memory and produced a result vector in memory. The machine only operated at full speed if the
vectors were contiguous and hence a large fraction of the execution time was spent simply trans-
posing matrices. A dramatic change occurred in 1976 with the introduction of the Cray-1, which
extended the concept of a load-store architecture employed in the CDC 6600 and CDC 7600 (and
rediscovered in modern RISC machines) to apply to vectors. Vectors in memory, of any fixed
stride, were transferred to or from contiguous vector registers by vector load and store instruc-
tions. Arithmetic was performed on the vector registers. The use of a very fast scalar processor
(operating at the unprecedented rate of 80 MHz) tightly integrated with the vector operations and

Figure  1-25  Typical organization of a data parallel (SIMD) parallel machine

Individual processing elements (PEs) operate in lock-step under the direction of a single control processor. Tradi-
tionally, SIMD machines provide a limited, regular interconnect among the PEs, although this was generalized in
later machines, such as the Thinking Machines Connection Machine and the MasPar.
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utilizing a large semiconductor memory, rather than core, took over the world of supercomput-
ing. Over the next twenty years Cray Research led the supercomputing market by increasing the
bandwidth for vector memory transfers, increasing the number of processors, the number of vec-
tor pipelines, and the length of the vector registers, resulting in the performance growth indicated
by Figure 1-10 and Figure 1-11.

The SIMD data parallel machine experienced a renaissance in the mid-80s, as VLSI advances
made simple 32-bit processor just barely practical[Bat79,Bat80,Hill85,Nic90,TuRo88]. The
unique twist in the data parallel regime was to place thirty-two very simple 1-bit processing ele-
ments on each chip, along with serial connections to neighboring processors, while consolidating
the instruction sequencing capability in the control processor. In this way, systems with several
thousand bit-serial processing elements could be constructed at reasonable cost. In addition, it
was recognized that the utility of such a system could be increased dramatically with the provi-
sion of a general interconnect allowing an arbitrary communication pattern to take place in a sin-
gle rather long step, in addition to the regular grid neighbor connections[Hill85,HiSt86,Nic90].
The sequencing mechanism which expands conventional integer and floating point operations
into a sequence of bit serial operations also provided a means of “virtualizing” the processing
elements, so that a few thousand processing elements can give the illusion of operating in parallel
on millions of data elements with one virtual PE per data element.

The technological factors that made this bit-serial design attractive also provided fast, inexpen-
sive, single-chip floating point units, and rapidly gave way to very fast microprocessors with inte-
grated floating point and caches. This eliminated the cost advantage of consolidating the
sequencing logic and provided equal peak performance on a much smaller number of complete
processors. The simple, regular calculations on large matrices which motivated the data parallel
approach also have tremendous spatial and temporal locality, if the computation is properly
mapped onto a smaller number of complete processors, with each processor responsible for a
large number of logically contiguous data points. Caches and local memory can be brought to
bear on the set of data points local to each node, while communication occurs across the bound-
aries or as a global rearrangement of data.

Thus, while the user-level abstraction of parallel operations on large regular data structures con-
tinued to offer an attractive solution to an important class of problems, the machine organization
employed with data parallel programming models evolved towards a more generic parallel archi-
tecture of multiple cooperating microprocessors, much like scalable shared memory and message
passing machines, often with the inclusion of specialized network support for global synchroni-
zation, such as a barrier , which causes each process to wait at a particular point in the program
until all other processes have reach that point[Hor93,Lei*92,Kum92,KeSc93,Koe*94]. Indeed,
the SIMD approach evolved into the SPMD (single-program-multiple-data) approach, in which
all processors execute copies of the same program, and has thus largely converged with the more
structured forms of shared memory and message passing programming. 

Data parallel programming languages are usually implemented by viewing the local address
spaces of a collection of processes, one per processor, as forming an explicit global address
space. Data structures are laid out across this global address space and there is a simple mapping
from indexes to processor and local offset. The computation is organized as a sequence of “bulk
synchronous” phases of either local computation or global communication, separated by a global
barrier [cite BSP]. Because all processors do communication together and there is a global view
of what is going on, either a shared address space or message passing can be employed. For
example, if a phase involved every processor doing a write to an address in the processor “to the
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left”, it could be realized by each doing a send to the left and a receive “from the right” into the
destination address. Similarly, every processor reading can be realized by every processor send-
ing the address and then every processor sending back the data. In fact, the code that is produced
by compilers for modern data parallel languages is essentially the same as for the structured con-
trol-parallel programs that are most common in shared-memory and message passing program-
ming models. With the convergence in machine structure, there has been a convergence in how
the machines are actually used.

1.3.6 Other Parallel Architectures

The mid-80s renaissance gave rise to several other architectural directions which received con-
siderable investigation by academia and industry, but enjoyed less commercial success than the
three classes discussed above and therefore experienced less use as a vehicle for parallel pro-
gramming. Two approaches that were developed into complete programming systems were data-
flow architectures and systolic architectures. Both represent important conceptual developments
of continuing value as the field evolves.

Dataflow Architecture

Dataflow models of computation sought to make the essential aspects of a parallel computation
explicit at the machine level, without imposing artificial constraints that would limit the available
parallelism in the program. The idea is that the program is represented by a graph of essential
data dependences, as illustrated in Figure 1-26, rather than as a fixed collection of explicitly
sequenced threads of control. An instruction may execute whenever its data operands are avail-
able. The graph may be spread arbitrarily over a collection of processors. Each node specifies an
operation to perform and the address of each of the nodes that need the result. In the original
form, a processor in a dataflow machine operates a simple circular pipeline. A message, or token,
from the network consists of data and an address, or tag, of its destination node. The tag is com-
pared against those in a matching store. If present, the matching token is extracted and the
instruction is issued for execution. If not, the token is placed in the store to await its partner.
When a result is computed, a new message, or token, containing the result data is sent to each of
the destinations specified in the instruction. The same mechanism can be used whether the suc-
cessor instructions are local or on some remote processor. The primary division within dataflow
architectures is whether the graph is static, with each node representing a primitive operation, or
dynamic, in which case a node can represent the invocation of an arbitrary function, itself repre-
sented by a graph. In dynamic or tagged-token architectures, the effect of dynamically expanding
the graph on function invocation is usually achieved by carrying additional context information
in the tag, rather than actually modifying the program graph.

The key characteristic of dataflow architectures is the ability to name operations performed any-
where in the machine, the support for synchronization of independent operations, and dynamic
scheduling at the machine level. As the dataflow machine designs matured into real systems, pro-
grammed in high level parallel languages, a more conventional structure emerged. Typically, par-
allelism was generated in the program as a result of parallel function calls and parallel loops, so it
was attractive to allocate these larger chunks of work to processors. This led to a family of
designs organized essentially like the NUMA design of Figure 1-19. The key differentiating fea-
tures being direct support for a large, dynamic set of threads of control and the integration of
communication with thread generation. The network was closely integrated with the processor;
in many designs the “current message” is available in special registers, and there is hardware sup-
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port for dispatching to a thread identified in the message. In addition, many designs provide extra
state bits on memory locations in order to provide fine-grained synchronization, i.e., synchroni-
zation on an element-by-element basis, rather than using locks to synchronize accesses to an
entire data structure. In particular, each message could schedule a chunk of computation which
could make use of local registers and memory. 

By contrast, in shared memory machines one generally adopts the view that a static or slowly
varying set of processes operate within a shared address space, so the compiler or program maps
the logical parallelism in the program to a set of processes by assigning loop iterations, maintain-
ing a shared work queue, or the like. Similarly, message passing programs involve a static, or
nearly static, collection of processes which can name one another in order to communicate. In
data parallel architectures, the compiler or sequencer maps a large set of “virtual processor” oper-
ations onto processors by assigning iterations of a regular loop nest. In the dataflow case, the
machine provides the ability to name a very large and dynamic set of threads which can be
mapped arbitrarily to processors. Typically, these machines provided a global address space as
well. As we have seen with message passing and data parallel machines, dataflow architectures
experienced a gradual separation of programming model and hardware structure as the approach
matured.

Figure  1-26  Dataflow graph and basic execution pipeline
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Systolic Architectures

Another novel approach was systolic architectures, which sought to replace a single sequential
processor by a regular array of simple processing elements and, by carefully orchestrating the
flow of data between PEs, obtain very high throughput with modest memory bandwidth require-
ments. These designs differ from conventional pipelined function units, in that the array structure
can be non-linear, e.g. hexagonal, the pathways between PEs may be multidirectional, and each
PE may have a small amount of local instruction and data memory. They differ from SIMD in
that each PE might do a different operation.

The early proposals were driven by the opportunity offered by VLSI to provide inexpensive spe-
cial purpose chips. A given algorithm could be represented directly as a collection of specialized
computational units connected in a regular, space-efficient pattern. Data would move through the
system at regular “heartbeats” as determined by local state. Figure 1-27 illustrates a design for
computing convolutions using a simple linear array. At each beat the input data advances to the
right, is multiplied by a local weight, and is accumulated into the output sequence as it also
advances to the right. The systolic approach has aspects in common with message passing, data
parallel, and dataflow models, but takes on a unique character for a specialized class of problems.

Practical realizations of these ideas, such as iWarp[Bor*90], provided quite general programma-
bility in the nodes, in order for a variety of algorithms to be realized on the same hardware. The
key differentiation is that the network can be configured as a collection of dedicated channels,
representing the systolic communication pattern, and data can be transferred directly from pro-
cessor registers to processor registers across a channel. The global knowledge of the communica-
tion pattern is exploited to reduce contention and even to avoid deadlock. The key characteristic
of systolic architectures is the ability to integrate highly specialized computation under a simple,
regular, and highly localized communication patterns.

Figure  1-27  Systolic Array computation of an inner product
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Systolic algorithms have also been generally amenable to solutions on generic machines, using
the fast barrier to delineate coarser grained phases. The regular, local communication pattern of
these algorithms yield good locality when large portions of the logical systolic array are executed
on each process, the communication bandwidth needed is low, and the synchronization require-
ments are simple. Thus, these algorithms have proved effective on the entire spectrum of parallel
machines.

1.3.7 A Generic Parallel Architecture

In examining the evolution of the major approaches to parallel architecture, we see a clear con-
vergence for scalable machines toward a generic parallel machine organization, illustrated in
Figure 1-28. The machine comprises a collection of essentially complete computers, each with
one or more processors and memory, connected through a scalable communication network via
communications assist, some kind of controller or auxiliary processing unit which assists in gen-
erating outgoing messages or handling incoming messages. While the consolidation within the
field may seem to narrow the interesting design space, in fact, there is great diversity and debate
as to what functionality should be provided within the assist and how it interfaces to the proces-
sor, memory system, and network. Recognizing that these are specific differences within a
largely similar organization helps to understand and evaluate the important organizational trade-
offs. 

Not surprisingly, different programming models place different requirements on the design of the
communication assist, and influence which operations are common and should be optimized. In
the shared memory case, the assist is tightly integrated with the memory system in order to cap-
ture the memory events that may require interaction with other nodes. Also, the assist must
accept messages and perform memory operations and state transitions on behalf of other nodes.
In the message passing case, communication is initiated by explicit actions, either at the system
or user level, so it is not required that memory system events be observed. Instead, there is a need
to initiate the messages quickly and to respond to incoming messages. The response may require
that a tag match be performed, that buffers be allocated, that data transfer commence, or that an
event be posted. The data parallel and systolic approaches place an emphasis on fast global syn-
chronization, which may be supported directly in the network or in the assist. Dataflow places an
emphasis on fast dynamic scheduling of computation based on an incoming message. Systolic
algorithms present the opportunity to exploit global patterns in local scheduling. Even with these
differences, is important to observe that all of these approaches share common aspects; they need
to initiate network transactions as a result of specific processor events, and they need to perform
simple operations on the remote node to carry out the desired event.

We also see that a separation has emerged between programming model and machine organiza-
tion as parallel programming environments have matured. For example, Fortran 90 and High Per-
formance Fortran provide a shared-address data-parallel programming model, which is
implemented on a wide range of machines, some supporting a shared physical address space, oth-
ers with only message passing. The compilation techniques for these machines differ radically,
even though the machines appear organizationally similar, because of differences in communica-
tion and synchronization operations provided at the user level (i.e., the communication abstrac-
tion) and vast differences in the performance characteristics of these communication operations.
As a second example, popular message passing libraries, such as PVM (parallel virtual machine)
and MPI (message passing interface), are implemented on this same range of machines, but the
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implementation of the libraries differ dramatically from one kind of machine to another. The
same observations hold for parallel operating systems. 

1.4 Fundamental Design Issues

Given how the state of the art in parallel architecture has advanced, we need to take a fresh look
at how to organize the body of material in the field. Traditional machine taxonomies, such as
SIMD/MIMD, are of little help since multiple general purpose processors are so dominant. One
cannot focus entirely on programming models, since in many cases widely differing machine
organizations support a common programming model. One cannot just look at hardware struc-
tures, since common elements are employed in many different way. instead, we ought to focus
our attention on the architectural distinctions that make a difference to the software that is to run
on the machine. In particular, we need to highlight those aspects that influence how a compiler
should generate code from a high-level parallel language, how a library writer would code a well-
optimized library, or how an application would be written in a low-level parallel language. We
can then approach the design problem as one that is constrained from above by how programs use
the machine and from below by what the basic technology can provide.

In our view, the guiding principles for understanding modern parallel architecture are indicated
by the layers of abstraction presented in Figure 1-13. Fundamentally, we must understand the
operations that are provided at the user-level communication abstraction, how various program-
ming models are mapped to these primitives, and how these primitives are mapped to the actual
hardware. Excessive emphasis on the high-level programming model without attention to how it
can be mapped to the machine would detract from understanding the fundamental architectural
issues, as would excessive emphasis on the specific hardware mechanisms in each particular
machine.

This section looks more closely at the communication abstraction and the basic requirements of a
programming model. It then defines more formally the key concepts that tie together the layers:

Figure  1-28  Generic scalable multiprocessor organization. 

A collection of essentially complete computers, including one or more processors and memory, communicating
through a general purpose, high-performance, scalable interconnect. Typically, each node contains a controller
which assists in communication operations across the network.
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naming, ordering, and communication and replication of data. Finally, it introduces the basic per-
formance models required to resolve design trade-offs.

1.4.1 Communication Abstraction

The communication abstraction forms the key interface between the programming model and the
system implementation. It plays a role very much like the instruction set in conventional sequen-
tial computer architecture. Viewed from the software side, it must have a precise, well-defined
meaning so that the same program will run correctly on many implementations. Also the opera-
tions provided at this layer must be simple, composable entities with clear costs, so that the soft-
ware can be optimized for performance. Viewed from the hardware side, it also must have a well-
defined meaning so that the machine designer can determine where performance optimizations
can be performed without violating the software assumptions. While the abstraction needs to be
precise, the machine designer would like it not to be overly specific, so it does not prohibit useful
techniques for performance enhancement or frustrate efforts to exploit properties of newer tech-
nologies.

The communication abstraction is, in effect, a contract between the hardware and the software
allowing each the flexibility to improve what it does, while working correctly together. To under-
stand the “terms” of this contract, we need to look more carefully at the basic requirements of a
programming model.

1.4.2 Programming Model Requirements

A parallel program consists of one or more threads of control operating on data. A parallel pro-
gramming model specifies what data can be named by the threads, what operations can be per-
formed on the named data, and what ordering exists among these operations.

To make these issues concrete, consider the programming model for a uniprocessor. A thread can
name the locations in its virtual address space and can name machine registers. In some systems
the address space is broken up into distinct code, stack, and heap segments, while in others it is
flat. Similarly, different programming languages provide access to the address space in different
ways; for example, some allow pointers and dynamic storage allocation, while others do not.
Regardless of these variations, the instruction set provides the operations that can be performed
on the named locations. For example, in RISC machines the thread can load data from or store
data to memory, but perform arithmetic and comparisons only on data in registers. Older instruc-
tion sets support arithmetic on either. Compilers typically mask these differences at the hardware/
software boundary, so the user’s programing model is one of performing operations on variables
which hold data. The hardware translates each virtual address to a physical address on every
operation.

The ordering among these operations is sequential program order – the programmer’s view is
that variables are read and modified in the top-to-bottom, left-to-right order specified in the pro-
gram. More precisely, the value returned by a read to an address is the last value written to the
address in the sequential execution order of the program. This ordering assumption is essential to
the logic of the program. However, the reads and writes may not actually be performed in pro-
gram order, because the compiler performs optimizations when translating the program to the
instruction set and the hardware performs optimizations when executing the instructions. Both
make sure the program cannot tell that the order has been changed. The compiler and hardware
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preserve the dependence order. If a variable is written and then read later in the program order,
they make sure that the later operation uses the proper value, but they may avoid actually writing
and reading the value to and from memory or may defer the write until later. Collections of reads
with no intervening writes may be completely reordered and, generally, writes to different
addresses can be reordered as long as dependences from intervening reads are preserved. This
reordering occurs at the compilation level, for example, when the compiler allocates variables to
registers, manipulates expressions to improve pipelining, or transforms loops to reduce overhead
and improve the data access pattern. It occurs at the machine level when instruction execution is
pipelined, multiple instructions are issued per cycle, or when write buffers are used to hide mem-
ory latency. We depend on these optimizations for performance. They work because for the pro-
gram to observe the effect of a write, it must read the variable, and this creates a dependence,
which is preserved. Thus, the illusion of program order is preserved while actually executing the
program in the looser dependence order.1 We operate in a world where essentially all program-
ming languages embody a programming model of sequential order of operations on variables in a
virtual address space and the system enforces a weaker order wherever it can do so without get-
ting caught.

Now let’s return to parallel programming models. The informal discussion earlier in this chapter
indicated the distinct positions adopted on naming, operation set, and ordering. Naming and
operation set are what typically characterize the models, however, ordering is of key importance.
A parallel program must coordinate the activity of its threads to ensure that the dependences
within the program are enforced; this requires explicit synchronization operations when the
ordering implicit in the basic operations is not sufficient. As architects (and compiler writers) we
need to understand the ordering properties to see what optimization “tricks” we can play for per-
formance. We can focus on shared address and message passing programming models, since they
are the most widely used and other models, such as data parallel, are usually implemented in
terms of one of them.

The shared address space programming model assumes one or more threads of control, each
operating in an address space which contains a region that is shared between threads, and may
contain a region that is private to each thread. Typically, the shared region is shared by all
threads. All the operations defined on private addresses are defined on shared addresses, in partic-
ular the program accesses and updates shared variables simply by using them in expressions and
assignment statements. 

Message passing models assume a collection of processes each operating in a private address
space and each able to name the other processes. The normal uniprocessor operations are pro-
vided on the private address space, in program order. The additional operations, send and receive,
operate on the local address space and the global process space. Send transfers data from the
local address space to a process. Receive accepts data into the local address space from a process.
Each send/receive pair is a specific point-to-point synchronization operation. Many message
passing languages offer global or collective communication operations as well, such as broad-
cast.

1.  The illusion breaks down a little bit for system programmers, say, if the variable is actually a
control register on a device. Then the actual program order must be preserved. This is usually
accomplished by flagging the variable as special, for example using the volatile type modifier in
C.
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1.4.3 Naming

The position adopted on naming in the programming model is presented to the programmer
through the programming language or programming environment. It is what the logic of the pro-
gram is based upon. However, the issue of naming is critical at each level of the communication
architecture. Certainly one possible strategy is to have the operations in the programming model
be one-to-one with the communication abstraction at the user/system boundary and to have this
be one-to-one with the hardware primitives. However, it is also possible for the compiler and
libraries to provide a level of translation between the programming model and the communica-
tion abstraction, or for the operating system to intervene to handle some of the operations at the
user/system boundary. These alternatives allow the architect to consider implementing the com-
mon, simple operations directly in hardware and supporting the more complex operations partly
or wholely in software.

Let us consider the ramification of naming at the layers under the two primary progrramming
models: shared address and mssage passing. First, in a shared address model, accesses to shared
variables in the program are usually mapped by the compiler to load and store instructions on
shared virtual addresses, just like access to any other variable. This is not the only option, the
compiler could generate special code sequences for accesses to shared variables, the uniform
access to private and shared addresses is appealing in many respects. A machine supports a glo-
bal physical address space if any processor is able to generate a physical address for any location
in the machine and access the location in a single memory operation. It is straightforward to real-
ize a shared virtual address space on a machine providing a global physical address space: estab-
lish the virtual-to-physical mapping so that shared virtual addresses map to the same physical
location, i.e., the processes have the same entries in their page tables. However, the existence of
the level of translation allows for other approaches. A machine supports independent local physi-
cal address spaces, if each processor can only access a distinct set of locations. Even on such a
machine, a shared virtual address space can be provided by mapping virtual addresses which are
local to a process to the corresponding physical address. The non-local addresses are left
unmapped, so upon access to a non-local shared address a page fault will occur, allowing the
operating system to intervene and access the remote shared data. While this approach can provide
the same naming, operations, and ordering to the program, it clearly has different hardware
requirements at the hardware/software boundary. The architect’s job is resolve these design
trade-offs across layers of the system implementation so that the result is efficient and cost effec-
tive for the target application workload on available technology.

Secondly, message passing operations could be realized directly in hardware, but the matching
and buffering aspects of the send/receive operations are better suited to software implementation.
More basic data transport primitives are well supported in hardware. Thus, in essentially all par-
allel machines, the message passing programming model is realized via a software layer that is
built upon a simpler communication abstraction. At the user/system boundary, one approach is to
have all message operations go through the operating system, as if they were I/O operations.
However, the frequency of message operations is much greater than I/O operations, so it makes
sense to use the operating system support to set up resources, priviledges etc. and allow the fre-
quent, simple data transfer operations to be supported directly in hardware. On the other hand,
we might consider adopting a shared virtual address space as the lower level communication
abstraction, in which case send and receive operations involve writing and reading shared buffers
and posting the appropriate synchronization events. The issue of naming arises at each level of
abstraction in a parallel architecture, not just in the programming model. As architects, we need
to design against the frequency and type of operations that occur at the communication abstrac-
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tion, understanding that there are trade-offs at this boundary involving what is supported directly
in hardware and what in software.

Operations

Each programming model defines a specific set of operations that can be performed on the data or
objects that can be named within the model. For the case of a shared address model, these include
reading and writing shared variables, as well as various atomic read-modify-write operations on
shared variables, which are used to synchronize the threads. For message passing the operations
are send and receive on private (local) addresses and process identifiers, as described above. One
can observe that there is a global address space defined by a message passing model. Each ele-
ment of data in the program is named by a process number and local address within the process.
However, there are no operations defined on these global addresses. They can be passed around
and interpreted by the program, for example, to emulate a shared address style of programming
on top of message passing, but they cannot be operated on directly at the communication abstrac-
tion. As architects we need to be aware of the operations defined at each level of abstraction. In
particular, we need to be very clear on what ordering among operations is assumed to be present
at eacg level of abstraction, where communication takes place, and how data is replicated. 

1.4.4 Ordering

The properties of the specified order among operations also has a profound effect throughout the
layers of parallel architecture. Notice, for example, that the message passing model places no
assumption on the ordering of operations by distinct processes, except the explicit program order
associated with the send/receive operations, whereas a shared address model must specify
aspects of how processes see the order of operations performed by other processes. Ordering
issues are important and rather subtle. Many of the “tricks” that we play for performance in the
uniprocessor context involve relaxing the order assumed by the programmer to gain performance,
either through parallelism or improved locality or both. Exploiting parallelism and locality is
even more important in the multiprocessor case. Thus, we will need to understand what new
tricks can be played. We also need to examine what of the old tricks are still valid. Can we per-
form the traditional sequential optimizations, at the compiler and architecture level, on each pro-
cess of a parallel program? Where can the explicit synchronization operations be used to allow
ordering to be relaxed on the conventional operations? To answer these questions we will need to
develop a much more complete understanding of how programs use the communication abstrac-
tion, what properties they rely upon, and what machine structures we would like to exploit for
performance.

A natural position to adopt on ordering is that operations in a thread are in program order. That is
what the programmer would assume for the special case of one thread. However, there remains
the question of what ordering can be assumed among operations performed on shared variables
by different threads. The threads operate independently and, potentially, at different speeds so
there is no clear notion of “latest”. If one has in mind that the machines behave as a collection of
simple processors operating on a common, centralized memory, then it is reasonable to expect
that the global order of memory accesses will be some arbitrary interleaving of the individual
program orders. In reality we won’t build the machines this way, but it establishes what opera-
tions are implicitly ordered by the basic operations in the model. This interleaving is also what
we expect if a collection of threads that are timeshared, perhaps at a very fine level, on a unipro-
cessor.
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Where the implicit ordering is not enough, explicit synchronization operations are required.
There are two types of synchronization required in parallel programs: 

• Mutual exclusion ensures that certain operations on certain data are performed by only
one thread or process at a time. We can imagine a room that must be entered to perform
such an operation, and only one process can be in the room at a time. This is accom-
plished by locking the door upon entry and unlocking it on exit. If several processes
arrive at the door together, only one will get in and the others will wait till it leaves. The
order in which the processes are allowed to enter does not matter and may vary from one
execution of the program to the next; what matters is that they do so one at a time.
Mutual exclusion operations tend to serialize the execution of processes.

• Events are used to inform other processes that some point of execution has been reached
so that they can proceed knowing that certain dependences have been satisfied. These
operations are like passing a batton from one runner to the next in a relay race or the
starter firing a gun to indicate the start of a race. If one process writes a value which
another is supposed to read, there needs to be an event synchronization operation to
indicate that the value is ready to be read. Events may be point-to-point, involving a pair
of processes, or they may be global, involving all processes, or a group of processes.

1.4.5 Communication and Replication

The final issues that are closely tied to the layers of parallel architecture are that of communica-
tion and data replication. Replication and communication are inherently related. Consider first a
message passing operation. The effect of the send/receive pair is to copy data that is in the
sender’s address space into a region of the receiver’s address space. This transfer is essential for
the receiver to access the data. If the data was produced by the sender, it reflects a true communi-
cation of information from one process to the other. If the data just happened to be stored at the
sender, perhaps because that was the initial configuration of the data or because the data set is
simply to large to fit on any one node, then this transfer merely replicates the data to where it is
used. The processes are not actually communicating via the data transfer. If the data was repli-
cated or positioned properly over the processes to begin with, there would be no need to commu-
nicate it in a message. More importantly, if the receiver uses the data over and over again, it can
reuse its replica without additional data transfers. The sender can modify the region of addresses
that was previously communicated with no effect on the previous receiver. If the effect of these
later updates are to be communicated, an additional transfer must occur.

Consider now a conventional data access on a uniprocessor through a cache. If the cache does not
contain the desired address, a miss occurs and the block is transfered from the memory that
serves as a backing store. The data is implicitly replicated into cache near the processor that
accesses it. If the processor resuses the data while it resides in the cache, further transfers with
the memory are avoided. In the uniprocessor case, the processor produces the data and the pro-
cessor that consumes it, so the “communication” with the memory occurs only because the data
does not fit in the cache or it is being accessed for the first time.

Interprocess communication and data transfer within the storage hierarchy become melded
together in a shared physical address space. Cache misses cause a data transfer across the
machine interconnect whenever the physical backing storage for an address is remote to the node
accessing the address, whether the address is private or shared and whether the transfer is a result
of true communication or just a data access. The natural tendency of the machine is to replicate
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data into the caches of the processors that access the data. If the data is reused while it is in the
cache, no data transfers occur; this is a major advantage. However, when a write to shared data
occurs, something must be done to ensure that later reads by other processors get the new data,
rather than the old data that was replicated into their caches. This will involve more than a simple
data transfer.

To be clear on the relationship of communication and replication it is important to distinguish
several concepts that are frequently bundled together. When a program performs a write, it binds
a data value to an address; a read obtains the data value bound to an address. The data resides in
some physical storage element in the machine. A data transfer occurs whenever data in one stor-
age element is transfered into another. This does not necessarily change the bindings of addresses
and values. The same data may reside in multiple physical locations, as it does in the uniproces-
sor storage hierarchy, but the one nearest to the processor is the only one that the processor can
observe. If it is updated, the other hidden replicas, including the actual memory location, must
eventually be updated. Copying data binds a new set of addresses to the same set of values. Gen-
erally, this will cause data transfers. Once the copy has been made, the two sets of bindings are
completely independent, unlike the implicit replication that occurs within the storage hierarchy,
so updates to one set of addresses do not effect the other. Communication between processes
occurs when data written by one process is read by another. This may cause a data transfer within
the machine, either on the write or the read, or the data transfer may occur for other reasons.
Communication may involve establishing a new binding, or not, depending on the particular
communication abstraction.

In general, replication avoids “unnecessary” communication, that is transferring data to a con-
sumer that was not produced since the data was previously accessed. The ability to perform repli-
cation automatically at a given level of the communication archtiecture depends very strongly on
the naming and ordering properties of the layer. Moreover, replication is not a panacea. Replica-
tion itself requires data transfers. It is disadvantageous to replicate data that is not going to be
used. We will see that replication plays an important role throughout parallel computer architec-
ture.

1.4.6 Performance

In defining the set of operations for communication and cooperation, the data types, and the
addressing modes, the communication abstraction specifies how shared objects are named, what
ordering properties are preserved, and how synchronization is performed. However, the perfor-
mance characteristics of the available primitives determines how they are actually used. Program-
mers and compiler writers will avoid costly operations where possible. In evaluating architectural
trade-offs, the decision between feasible alternatives ultimately rests upon the performance they
deliver. Thus, to complete our introduction to the fundamental issues of parallel computer archi-
tecture, we need to lay a framework for understanding performance at many levels of design.

Fundamentally, there are three performance metrics, latency, the time taken for an operation,
bandwidth, the rate at which operations are performed, and cost, the impact these operations have
on the execution time of the program. In a simple world where processors do only one thing at a
time these metrics are directly related; the bandwidth (operations per second) is the reciprocal of
the latency (seconds per operation) and the cost is simply the latency times the number of opera-
tions performed. However, modern computer systems do many different operations at once and
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the relationship between these performance metrics is much more complex. Consider the follow-
ing basic example.

Example  1-2 Suppose a component can perform a specific operation in 100ns. Clearly it can
support a bandwidth of 10 million operations per second. However, if the
component is pipelined internally as ten equal stages, it is able to provide a peak
bandwidth of 100 million operations per second. The rate at which operations can
be initiated is determined by how long the slowest stage is occupied, 10 ns, rather
than by the latency of an individual operation. The bandwidth delivered on an
application depends on how frequently it initiates the operations. If the application
starts an operation every 200 ns, the delivered bandwidth is 5 million operations per
seconds, regardless of how the component is pipelined. Of course, usage of
resources is usually birsty, so pipelining can be advantageous even when the
average initiation rate is low. If the application performed one hundred million
operations on this component, what is the cost of these operations? Taking the
operation count times the operation latency would give upper bound of 10 seconds.
Taking the operation count divided by the peak rate gives a lower bound of 1
second. The former is accurate if the program waited for each operation to complete
before continuing. The latter assumes that the operations are completely overlapped
with other useful work, so the cost is simply the cost to initiate the operation.
Suppose that on average the program can do 50 ns of useful work after each
operation issued to the component before it depends on the operations result. Then
the cost to the application is 50 ns per operation – the 10 ns to issue the operation
and the 40 ns spent waiting for it to complete.

Since the unique property of parallel computer architecture is communication, the operations that
we are concerned with most often are data transfers. The performance of these operations can be
understood as a generalization of our basic pipeline example. 

Data Transfer Time

The time for a data transfer operation is generally described by a linear model:

(EQ 1.3)

where  is the amount of data (e.g., number of bytes),  is the transfer rate of the component
moving the data (e.g., bytes per second), and the constant term, , is the start-up cost. This is a
very convenient model, and it is used to describe a diverse collection of operations, including
messages, memory accesses, bus transactions, and vector operations. For message passing, the
start up cost can be thought of as the time for the first bit to get to the destination. It applies in
many aspects of traditional computer architecture, as well. For memory operations, it is essen-
tially the access time. For bus transactions, it reflects the bus arbitration and command phases.
For any sort of pipelined operation, including pipelined instruction processing or vector opera-
tions, it is the time to fill pipeline.

Using this simple model, it is clear that the bandwidth of a data transfer operation depends on the
transfer size. As the transfer size increases it approaches the asymptotic rate of , which is some-
times referred to as . How quickly it approaches this rate depends on the start-up cost. It is eas-
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ily shown that the size at which half of the peak bandwidth is obtained, the half-power point, is
given by

. (EQ 1.4)

Unfortunately, this linear model does not give any indication when the next such operation can be
initiated, nor does it indicate whether other useful work can be performed during the transfer.
These other factors depend on how the transfer is performed.

Overhead and Occupancy

The data transfer in which we are most interested is the one that occurs across the network in par-
allel machines. It is initiated by the processor through the communication assist. The essential
components of this operation can be described by the following simple model.

(EQ 1.5)

The Overhead is the time the processor spends initiating the transfer. This may be a fixed cost, if
the processor simply has to tell the communication assist to start, or it may be linear in , if the
processor has to copy the data into the assist. The key point is that this is time the processor is
busy with the communication event; it cannot do other useful work or initiate other communica-
tion during this time. The remaining portions of the communication time is considered the net-
work latency; it is the part that can be hidden by other processor operations.

The Occupancy is the time it takes for the data to pass through the slowest component on the
communication path. For example, each link that is traversed in the network will be occupied for

time , where  is the bandwidth of the link. The data will occupy other resources, including

buffers, switches, and the communication assist. Often the communication assist is the bottleneck
that determines the occupancy. The occupancy limits how frequently communication operations
can be initiated. The next data transfer will have to wait until the critical resource is no longer
occupied before it can use that same resource. If there is buffering between the processor and the
bottleneck, the processor may be able to issue a burst of transfers at a frequency greater than

, however, once this buffering is full, the processor must slow to the rate set by the

occupancy. A new transfer can start only when a older one finishes.

The remaining communication time is lumped into the Network Delay, which includes the time
for a bit to be routed across the actual network and many other factors, such as the time to get
through the communication assist. From the processors viewpoint, the specific hardware compo-
nents contributing to network delay are indistinguishable. What effects the processor is how long
it must wait before it can use the result of a communication event, how much of this time it can
be bust with other activities, and how frequently it can communicate data. Of course, the task of
designing the network and its interfaces is very concerned with the specific components and their
contribution to the aspects of performance that the processor observes.

In the simple case where the processor issues a request and waits for the response, the breakdown
of the communication time into its three components is immaterial. All that matters is the total
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round trip time. However, in the case where multiple operations are issued in a pipelined fashion,
each of the components has a specific influence on the delivered performance.

Indeed, every individual component along the communication path can be described by its delay
and its occupancy. The network delay is simply the sum of the delays along the path. The net-
work occupancy is the maximum of the occupancies along the path. For interconnection net-
works there is an additional factor that arises because many transfers can take place
simultaneously. If two of these transfers attempt to use the same resource at once, for example is
they use the same wire at the same time, one must wait. This contention for resources increases
the average communication time. From the processors viewpoint, contention appears as
increased occupancy. Some resource in the system is occupied for a time determined by the col-
lection of transfers across it.

Equation 1.5 is a very general model. It can be used to describe data transfers in many places in
modern, highly pipelined computer systems. As one example, consider the time to move a block
between cache and memory on a miss. There is a period of time that the cache controller spends
inspecting the tag to determine that it is not a hit and then starting the transfer; this is the over-
head. The occupancy is the block size divided by the bus bandwidth, unless there is some slower
component in the system. The delay includes the normal time to arbitrate and gain access to the
bus plus the time spent delivering data into the memory. Additional time spent waiting to gain
access to the bus or wait for the memory bank cycle to complete is due to contention. A second
obvious example is the time to transfer a message from one processor to another. 

Communication Cost

The bottom line is, of course, the time a program spends performing communication. A useful
model connecting the program characteristics to the hardware performance is given by the fol-
lowing.

(EQ 1.6)

The frequency of communication, defined as the number of communication operations per unit of
work in the program, depends on many programming factors (as we will see in Chapter 2) and
many hardware design factors. In particular, hardware may limit the transfer size and thereby
determine the minimum number of messages. It may automatically replicate data or migrate it to
where it is used. However, there is a certain amount of communication that is inherent to parallel
execution, since data must be shared and processors must coordinate their work. In general, for a
machine to support programs with a high communication frequency the other parts of the com-
munication cost equation must be small – low overhead, low network delay, and small occu-
pancy. The attention paid to communication costs essentially determines which programming
models a machine can realize efficiently and what portion of the application space it can support.
Any parallel computer with good computational performance can support programs that commu-
nicate infrequently, but as the frequency increases or volume of communication increases greater
stress is placed on the communication architecture.

The overlap is the portion of the communication operation which is performed concurrently with
other useful work, including computation or other communication. This reduction of the effective
cost is possible because much of the communication time involves work done by components of
the system other than the processor, such as the network interface unit, the bus, the network or the
remote processor or memory. Overlapping communication with other work is a form of small

CommunicationCost f requency CommunicationTime Overlap–( )×=
72 DRAFT: Parallel Computer Architecture 9/10/97



Concluding Remarks
scale parallelism, as is the instruction level parallelism exploited by fast microprocessors. In
effect, we may invest some of the available parallelism in a program to hide the actual cost of
communication. 

Summary

The issues of naming, operation set, and ordering apply at each level of abtraction in a parallel
architecture, not just the programming model. In general, there may be a level of translation or
run-time software between the programming model and the communication abstraction, and
beneath this abstraction are key hardware abstractions. At any level, communication and replica-
tion are deeply related. Whenever two processes access the same data, it either needs to be com-
municated between the two or replicated so each can access a copy of the data. The ability to
have the same name refer to two distinct physical locations in a meaningful manner at a given
level of abstraction depends on the position adopted on naming and ordering at that level. Wher-
ever data movement is involved, we need to understand its performance characteristics in terms
of the latency and bandwidth, and furthermore how these are influenced by overhead and occu-
pancy. As architects, we need to design against the frequency and type of operations that occur at
the communication abstraction, understanding that there are trade-offs across this boundary
involving what is supported directly in hardware and what in software. The position adopted on
naming, operation set, and ordering at each of these levels has a qualitiative impact on these
trade-offs, as we will see throughout the book.

1.5 Concluding Remarks

Parallel computer architecture forms an important thread in the evolution of computer architec-
ture, rooted essentially in the beginnings of computing. For much of this history it takes on a
novel, even exotic role, as the avenue for advancement over and beyond what the base technology
can provide. Parallel computer designs have demonstrated a rich diversity of structure, usually
motivated by specific higher level parallel programming models. However, the dominant techno-
logical forces of the VLSI generation have pushed parallelism increasingly into the mainstream,
making parallel architecture almost ubiquitous. All modern microprocessors are highly parallel
internally, executing several bit-parallel instructions in every cycle and even reordering instruc-
tions within the limits of inherent dependences to mitigate the costs of communication with hard-
ware components external to the processor itself. These microprocessors have become the
performance and price-performance leaders of the computer industry. From the most powerful
supercomputers to departmental servers to the desktop, we see even higher performance systems
constructed by utilizing multiple of such processors integrated into a communications fabric.
This technological focus, augmented with increasing maturity of compiler technology, has
brought about a dramatic convergence in the structural organization of modern parallel machines.
The key architectural issue is how communication is integrated into the memory and I/O systems
that form the remainder of the computational node. This communications architecture reveals
itself functionally in terms of what can be named at the hardware level, what ordering guarantees
are provided and how synchronization operations are performed, while from a performance point
of view we must understand the inherent latency and bandwidth of the available communication
operations. Thus, modern parallel computer architecture carries with it a strong engineering com-
ponent, amenable to quantitative analysis of cost and performance trade-offs. 

Computer systems, whether parallel or sequential, are designed against the requirements and
characteristics of intended workloads. For conventional computers, we assume that most practi-
tioners in the field have a good understanding of what sequential programs look like, how they
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are compiled, and what level of optimization is reasonable to assume the programmer has per-
formed. Thus, we are comfortable taking popular sequential programs, compiling them for a tar-
get architecture, and drawing conclusions from running the programs or evaluating execution
traces. When we attempt to improve performance through architectural enhancements, we
assume that the program is reasonably “good” in the first place.

The situation with parallel computers is quite different. There is much less general understanding
of the process of parallel programming and there is a wider scope for programmer and compiler
optimizations, which can greatly affect the program characteristics exhibited at the machine
level. To address this situation, Chapter 2 provides an overview of parallel programs, what they
look like, how they are constructed. Chapter 3 explains the issues that must be addressed by the
programmer and compiler to construct a “good” parallel program, i.e., one that is effective
enough is using multiple processors to form a reasonable basis for architectural evaluation. Ulti-
mately, we design parallel computers against the program characteristics at the machine level, so
the goal of Chapter 3 is to draw a connection between what appears in the program text and how
the machine spends its time. In effect, Chapter 2 and 3 take us from a general understanding of
issues at the application level down to a specific understanding of the character and frequency of
operations at the communication abstraction.

Chapter 4 establishes a framework for workload-driven evaluation of parallel computer designs.
Two related scenarios are addressed. First, for a parallel machine that has already been built, we
need a sound method of evaluating its performance. This proceeds by first testing what individual
aspects of the machine are capable of in isolation and then measures how well they perform col-
lectively. The understanding of application characteristics is important to ensure that the work-
load run on the machine stresses the various aspects of interest. Second, we outline a process of
evaluating hypothetical architectural advancements. New ideas for which no machine exists need
to be evaluated through simulations, which imposes severe restrictions on what can reasonably be
executed. Again, an understanding of application characteristics and how they scale with problem
and machine size is crucial to navigating the design space.

Chapters 5 and 6 study the design of symmetric multiprocessors with a shared physical address
space in detail. There are several reasons to go deeply into the small-scale case before examining
scalable designs. First, small-scale multiprocessors are the most prevalent form of parallel archi-
tecture; they are likely to be what the most students are exposed to, what the most software devel-
opers are targeting and what the most professional designers are dealing with. Second, the issues
that arise in the small-scale are indicative of what is critical in the large scale, but the solutions
are often simpler and easier to grasp. Thus, these chapters provides a study in the small of what
the following four chapters address in the large. Third, the small-scale multiprocessor design is a
fundamental building block for the larger scale machines. The available options for interfacing a
scalable interconnect with a processor-memory node are largely circumscribed by the processor,
cache, and memory structure of the small scale machines. Finally, the solutions to key design
problems in the small-scale case are elegant in their own right.

The fundamental building-block for the designs in Chapter 5 and 6 is the shared bus between pro-
cessors and memory. The basic problem that we need to solve is to keep the contents of the
caches coherent and the view of memory provided to the processors consistent. A bus is a power-
ful mechanism. It provides any-to-any communication through a single set of wires, but more-
over can serve as a broadcast medium, since there is only one set of wires, and even provide
global status, via wired-or signals. The properties of bus transactions are exploited in designing
extensions of conventional cache controllers that solve the coherence problem. Chapter 5 pre-
74 DRAFT: Parallel Computer Architecture 9/10/97



Concluding Remarks
sents the fundamental techniques to bus-based cache coherence at the logical level and presents
the basic design alternatives. These design alternatives provide an illustration of how workload-
driven evaluation of can be brought to bear in making design decisions. Finally, we return to the
parallel programming issues of the earlier chpapters and examine how aspects of the machine
design influence the software level, especially in regard to cache effects on sharing patterns and
the design of robust synchronization routines. Chapter 6 focuses on the organization structure
and machine implementation of bus-based cache coherence. It examines a variety of more
advanced designs that seek to reduce latency and increase bandwidth while preserving a consis-
tent view of memory.

Chapters 7 through 10 form a closely interlocking study of the design of scalable parallel archi-
tectures. Chapter 7 makes the conceptual step from a bus transaction as a building block for
higher level abstractions to a network transaction as a building block. To cement this understand-
ing, the communication abstractions that we have surveyed in this introductory chapter are con-
structed from primitive network transactions. Then the chapter studies the design of the node to
network interface in depth using a spectrum of case studies. 

Chapters 8 amd 9 go deeply into the design of scalable machines supporting a shared address
space, both a shared physical address space and a shared virtual address space upon independent
physical address spaces. The central issue is automatic replication of data while preserving a con-
sistent view of memory and avoiding performance bottlenecks. The study of a global physical
address space emphasizes hardware organizations that provide efficient, fine-grain sharing. The
study of a global virtual address space provides an understanding of what is the minimal degree
of hardware support required for most workloads. 

Chapter 10 takes up the question of the design of the scalable network itself. As with processors,
caches, and memory systems, there are several dimensions to the network design space and often
a design decision involves interactions along several dimensions. The chapter lays out the funda-
mental design issues for scalable interconnects, illustrates the common design choices, and eval-
uates them relative to the requirements established in chapters 5 and 6. Chapter 9 draws together
the material from the other three chapters in the context of an examination of techniques for
latency tolerance, including bulk transfer, write-behind, and read-ahead across the spectrum of
communication abstractions. Finally, Chapter 11 looks at what has been learned throughout the
text in light of technologocal, application, and economic trends to forcast what will be the key
on-going developments in parallel computer architecture. The book presents the conceptual foun-
dations as well as the engineering issues across a broad range of potential scales of design, all of
which have an important role in computing today and in the future.
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Historical References

Parallel computer architecture has a long, rich, and varied history that is deeply interwoven with advances in
the underlying processor, memory, and network technologies. The first blossoming of parallel architectures
occurs around 1960. This is a point where transistors have replaced tubes and other complicated and constrain-
ing logic technologies. Processors are smaller and more manageable. A relatively cheap, inexpensive storage
technology exists (core memory), and computer architectures are settling down into meaningful “families.”
Small-scale shared-memory multiprocessors took on an important commercial role at this point with the incep-
tion of what we call mainframes today, including the Burroughs B5000[LoKi61] and D825[And*62] and the
IBM System 360 model 65 and 67[Pad81]. Indeed, support for multiprocessor configurations was one of the
key extensions in the evolution of the 360 architecture to System 370. These included atomic memory opera-
9/10/97 DRAFT: Parallel Computer Architecture 81



Introduction
tions and interprocessor interrupts. In the scientific computing area, shared-memory multiprocessors were also
common. The CDC 6600 provided an asymmetric shared-memory organization to connect multiple peripheral
processors with the central processor, and a dual CPU configuration of this machine was produced. The origins
of message-passing machines can be seen as the RW400, introduced in 1960[Por60]. Data parallel machines
also emerged, with the design of the Solomon computer[Bal*62,Slo*62].

Up through the late 60s there was tremendous innovation in the use of parallelism within the processor through
pipelining and replication of function units to obtain a far greater range of performance within a family than
could be obtained by simply increasing the clock rate. It was argued that these efforts were reaching a point of
diminishing returns and a major research project got underway involving the University of Illinois and Bur-
roughs to design and build a 64 processor SIMD machine, called Illiac IV[Bou*67], based on the earlier
Solomon work (and in spite of Amdahl’s arguments to the contrary[Amdh67]). This project was very ambi-
tious, involving research in the basic hardware technologies, architecture, I/O devices, operating systems, pro-
gramming languages, and applications. By the time a scaled-down, 16 processor system was working in 1975,
the computer industry had undergone massive structural change.

First, the concept of storage as a simple linear array of moderately slow physical devices had been revolution-
ized, first with the idea of virtual memory and then with the concept of caching. Work on Multics and its prede-
cessors, e.g., Atlas and CTSS, separated the concept of the user address space from the physical memory of the
machine. This required maintaining a short list of recent translations, a TLB, in order to obtain reasonable per-
formance. Maurice Wilkes, the designer of EDSAC, saw this as a powerful technique for organizing the
addressable storage itself, giving rise to what we now call the cache. This proved an interesting example of
locality triumphing over parallelism. The introduction of caches into the 360/85 yielded higher performance
than the 360/91, which had a faster clock rate, faster memory, and elaborate pipelined instruction execution
with dynamic scheduling. The use of caches was commercialized in the IBM 360/185, but this raised a serious
difficulty for the I/O controllers as well as the additional processors. If addresses were cached and therefore not
bound to a particular memory location, how was an access from another processor or controller to locate the
valid data? One solution was to maintain a directory of the location of each cache line. An idea that has
regained importance in recent years.

Second, storage technology itself underwent a revolution with semiconductor memories replacing core memo-
ries. Initially, this technology was most applicable to small cache memories. Other machines, such as the CDC
7600, simply provided a separate, small, fast explicitly addressed memory. Third, integrated circuits took hold.
The combined result was that uniprocessor systems enjoyed a dramatic advance in performance, which miti-
gated much of the added value of parallelism in the Illiac IV system, with its inferior technological and archi-
tectural base. Pipelined vector processing in the CDC STAR-100 addressed the class of numerical
computations that Illiac was intended to solve, but eliminated the difficult data movement operations. The final
straw was the introduction of the Cray-1 system, with an astounding 80 MHz clock rate owing to exquisite cir-
cuit design and the use of what we now call a RISC instruction set, augmented with vector operations using
vector registers and offering high peak rate with very low start-up cost. The use of simple vector processing
coupled with fast, expensive ECL circuits was to dominate high performance computing for the next 15 years.

A fourth dramatic change occurred in the early 70s, however, with the introduction of microprocessors.
Although the performance of the early microprocessors was quite low, the improvements were dramatic as bit-
slice designs gave way to 4-bit, 8-bit, 16-bit and full-word designs. The potential of this technology motivated
a major research effort at Carnegie-Mellon University to design a large shared memory multiprocessor using
the LSI-11 version of the popular PDP-11 minicomputer. This project went through two phases. First, C.mmp
connected 16 processors through a specially design circuit-switched cross-bar to a collection of memories and
I/O devices, much like the dancehall design in Figure 1-19a[Wul*75]. Second, CM* sought to build a hundred
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processor system by connecting 14-node clusters with local memory through a packet-switched network in a
NUMA configuration[Swa*77a,Swa77b], as in Figure 1-19b.

This trend toward systems constructed from many, small microprocessors literally exploded in the early to mid
80s. This resulted in the emergence of several disparate factions. On the shared memory side, it was observed
that a confluence of caches and properties of busses made modest multiprocessors very attractive. Busses have
limited bandwidth, but are a broadcast medium. Caches filter bandwidth and provide a intermediary between
the processor and the memory system. Research at Berkeley [Goo83,Hell*86] introduced extensions of the
basic bus protocol that allowed the caches to maintain a consistent state. This direction was picked up by sev-
eral small companies, including Synapse[Nes85], Sequent[Rod85], Encore[Bel85,Sha85], Flex[Mate85] and
others, as the 32-bit microprocessor made its debut and the vast personal computer industry took off. A decade
later this general approach dominates the server and high-end workstation market and is taking hold in the PC
servers and the desktop. The approach experienced a temporary set back as very fast RISC microprocessors
took away the performance edge of multiple slower processors. Although the RISC micros were well suited to
multiprocessor design, their bandwidth demands severely limited scaling until a new generation of shared bus
designs emerged in the early 90s.

Simultaneously, the message passing direction took off with two major research efforts. At CalTech a project
was started to construct a 64-processor system using i8086/8087 microprocessors assembled in a hypercube
configuration[Sei85,AtSe88]. From this base-line several further designs were pursued at CalTech and
JPL[Fox*88] and at least two companies pushed the approach into commercialization, Intel with the iPSC
series[] and Ametek. A somewhat more aggressive approach was widely promoted by the INMOS corporation
in England in the form of the Transputer, which integrated four communication channels directly onto the
microprocessor. This approach was also followed by nCUBE, with a series of very large scale message passing
machines. Intel carried the commodity processor approach forward, replacing the i80386 with the faster i860,
then replacing the network with a fast grid-based interconnect in the Delta[] and adding dedicated message
processors in the Paragon. Meiko moved away from the transputer to the i860 in their computing surface. IBM
also investigated an i860-based design in Vulcan.

Data parallel systems also took off in the early 80s, after a period of relative quiet. This included Batcher’s
MPP system developed by Goodyear for image processing and the Connection Machine promoted by Hillis for
AI Applications[Hill85]. The key enhancement was the provision of a general purpose interconnect to prob-
lems demanding other than simple grid-based communication. These ideas saw commercialization with the
emergence of Thinking Machines Corporation, first with the CM-1 which was close to Hillis’ original concep-
tions and the CM-2 which incorporated a large number of bit-parallel floating-point units. In addition, MAS-
PAR and Wavetracer carried the bit-serial, or slightly wider organization forward in cost-effective systems.

A more formal development of highly regular parallel systems emerged in the early 80s as systolic arrays, gen-
erally under the assumption that a large number of very simple processing elements would fit on a single chip.
It was envisioned that these would provide cheap, high performance special-purpose add-ons to conventional
computer systems. To some extent these ideas have been employed in programming data parallel machines.
The iWARP project at CMU produced a more general, smaller scale building block which has been developed
further in conjunction with Intel. These ideas have also found their way into fast graphics, compression, and
rendering chips.

The technological possibilities of the VLSI revolution also prompted the investigation of more radical architec-
tural concepts, including dataflow architectures[Den80,Arv*83,Gur*85], which integrated the network very
closely with the instruction scheduling mechanism of the processor. It was argued that very fast dynamic
scheduling throughout the machine would hide the long communication latency and synchronization costs of a
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large machine and thereby vastly simplify programming. The evolution of these ideas tended to converge with
the evolution of message passing architectures, in the form of message driven computation [Dal93]

Large scale shared-memory designs took off as well. IBM pursued a high profile research effort with the RP-
3[Pfi*85] which sought to connect a large number of early RISC processors, the 801, through a butterfly net-
work. This was based on the NYU Ultracomputer work[Gott*83], which was particularly novel for its use of
combining operations. BBN developed two large scale designs, the BBN Butterfly using Motorola 68000 pro-
cessors and the TC2000[Bro*] using the 88100s. These efforts prompted a very broad investigation of the pos-
sibility of providing cache-coherent shared memory in a scalable setting. The Dash project at Stanford sought
to provide a fully cache coherent distributed shared memory by maintaining a directory containing the disposi-
tion of every cache block[LLJ*92,Len*92]. SCI represented an effort to standardize an interconnect and cache-
coherency protocol[IEEE93]. The Alewife project at MIT sought to minimize the hardware support for shared
memory[Aga*94], which was pushed further by researchers ar Wisconsin[Woo*93]. The Kendall Square
Research KSR1[Fra93,Saa93] goes even further and allows the home location of data in memory to migrate.
Alternatively, the Denelcor HEP attempted to hide the cost of remote memory latency by interleaving many
independent threads on each processor.

The 90s have exhibited the beginnings of a dramatic convergence among these various factions. This conver-
gence is driven by many factors. One is clearly that all of the approach have clear common aspects. They all
require a fast, high quality interconnect. They all profit from avoiding latency where possible and reducing the
absolute latency when it does occur. They all benefit from hiding as much of the communication cost as possi-
ble, where it does occur. They all must support various forms of synchronization. We have seen the shared
memory work explicit seek to better integrate message passing in Alewife[Aga*94] and Flash [Flash-ISCA94],
to obtain better performance where the regularity of the application can provide large transfers. We have seen
data parallel designs incorporate complete commodity processors in the CM-5[Lei*92], allowing very simple
processing of messages at user level, which provides much better efficiency for Message Driven computing and
shared memory[vEi*92,Spe*93]. There remains the additional support for fast global synchronization. We
have seen fast global synchronization, message queues, and latency hiding techniques developed in a NUMA
shared memory context in the Cray T3D[Kesc93,Koe*94] and the message passing support in the Meiko CS-
2[Bar*94,HoMc93] provides direct virtual memory to virtual memory transfers within the user address space.
The new element that continues to separate the factions is the use of complete commodity workstation nodes,
as in the SP-1, SP-2 and various workstation clusters using merging high bandwidth networks, such as
ATM.[And*94,Kun*91,Pfi95]. The costs of weaker integration into the memory system, imperfect network
reliability, and general purpose system requirements have tended to keep these systems more closely aligned
with traditional message passing, although the future developments are far from clear.
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Exercises
1.7 Exercises

1.1  Compute the annual growth rate in number of transistors, die size, and clock rate by fitting an
exponential to the technology leaders using available data inTable 1-1.

1.2  Compute the annual performance growth rates for each of the benchmarks shown in Table 1-
1. Comment on the differences that you observe

Generally, in evaluating performance trade-offs we will evaluate the improvement in perfor-
mance, or speedup, due to some enhancement. Formally,

In particular, we will often refer to the speedup as a function of the machine parallel, e.g., the
number of processors.

1.3  Suppose you are given a program which does a fixed amount of work and some fraction  of
that work must be done sequentially. The remaining portion of the work is perfectly parallel-
izable on  processors. Assuming  is the time taken on one processor, derive a formula for

the time taken on  processors. Use this to get a formula giving an upper bound on the
potential speedup on  processors. (This is a variant of what is often called Amdahl’s
Law[Amd67].) Explain why it is an upper bound?

1.4  Given a histogram of available parallelism such as that shown in Figure 1-7, where  is the
fraction of cycles on an ideal machine in which  instructions issue, derive a generalization of
Amdahl’s law to estimate the potential speedup on a -issue superscalar machine. Apply your
formula the histogram data in Figure 1-7 to produce the speedup curve shown in that figure.

1.5  Locate the current TPC performance data on the web and compare the mix of system config-
urations, performance, and speedups obtained on those machines with the data presented in
Figure 1-4.

Programming Models

1.6  In message passing models each process is provided with a special variable or function that
gives its unique number or rank among the set of processes executing a program. Most
shared-memory programming systems provide a fetch&inc operation, which reads the value
of a location and atomically increments the location. Write a little pseudo-code to show how

Table 1-1   Performance of leading workstations

Year Machine SpecInt SpecFP Linpack n=1000 Peak FP

Sun 4/260    1987 9 6 1.1 1.1 3.3

MIPS M/120 1988 13 10.2 2.1 4.8 6.7

MIPS M/2000 1989 18 21 3.9 7.9 10

IBM RS6000/540 1990 24 44 19 50 60

HP 9000/750 1991 51 101 24 47 66

DEC Alpha AXP 1992 80 180 30 107 150

DEC 7000/610 1993 132.6 200.1 44 156 200

AlphaServer 2100 1994 200 291 43 129 190
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to use fetch&add to assign each process a unique number. Can you determine the number of
processes comprising a shared memory parallel program in a similar way?

1.7  To move an  message along  links in an unloaded store-and-forward network takes

time , where  is the raw link bandwidth, and  is the routing delay per hop.

In a network with cut-through routing this takes time . Consider an 8x8 grid

consisting of 40 MB/s links and routers with 250ns of delay. What is the minimum, maxi-

mum, and average time to move a 64 byte message through the network? A 246 byte mes-

sage?

1.8  Consider a simple 2D finite difference scheme where at each step every point in the matrix

updated by a weighted average of its four neighbors,

 

All the values are 64-bit floating point numbers. Assuming one element per processor and 
1024x1024 elements, how much data must be communicated per step? Explain how this computation 
could be mapped onto 64 processors so as to minimize the data traffic. Compute how much data must be 
communicated per step.

Latency and bandwidth

1.9  Consider the simple pipelined component described in Example 1-2. Suppose that the appli-
cation alternates beween bursts of  independent operations on the component and phases of
computation lasting  ns that do not use the component. Develop an expression describing
the execution time of the program based on these parameters. Compare this with the unpipe-
lined and fully pipelined bounds. At what points to you get the maximum discrepancy
between the models? How large is it as a fraction of overal execution time?

1.10  Show that Equation 1.4 follows from Equation 1.3.

1.11  What is the x-intercept of the line in Equation 1.3?

If we consider loading a cache line from memory the transfer time is the time to actually transmit
the data across the bus. The start-up includes the time to obtain access to the bus, convey the
address, access the memory, and possibly to place the data in the cache before responding to the
processor. However, in a modern processor with dynamic instruction scheduling, the overhead
may include only the portion spent accessing the cache to detect the miss and placing the request
on the bus. The memory access portion contributes to latency, which can potentially be hidden by
the overlap with execution of instructions that do not depend on the result of the load.

1.12  Suppose we have a machine with a 64-bit wide bus running at 40 MHz. It takes 2 bus cycles
to arbitrate for the bus and present the address. The cache line size is 32 bytes and the mem-
ory access time is 100ns. What is the latency for a read miss? What bandwidth is obtained on
this transfer?

1.13  Suppose this 32-byte line is transferred to another processor and the communication archi-
tecture imposes a start-up cost of 2µs and data transfer bandwidth of 20MB/s. What is the
total latency of the remote operation?

If we consider sending an  message to another processor, we may use the same model. The
start-up can be thought of as the time for a zero length message; it includes the software overhead

n-byte H

H
n
W
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n
W
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on the two processors, the cost of accessing the network interface, and the time to actually cross
the network. The transfer time is usually determined by the point along the path with the least
bandwidth, i.e., the bottleneck.

1.14  Suppose we have a machine with a message start-up of 100µs and a asymptotic peak band-
width of 80MB/s. At what size message is half of the peak bandwidth obtained? 

1.15  Derive a general formula for the “half-power point” in terms of the start-up cost and peak
bandwidth.

The model makes certain basic trade-offs clear. For example, longer transfers take more time, but
obtain higher bandwidth because the start-up cost is amortized over more data movement. This
observation can help guide design trade-offs, at least up to a point where the collection of data
transfers interact to increase the start-up cost or reduce the effective bandwidth.

In some cases we will use the model in Equation 1.6 for estimating data transfer performance
based on design parameters, as in the examples above. In other cases, we will use it as an empiri-
cal tool and fit measurements to a line to determine the effective start-up and peak bandwidth of a
portion of a system. Observe, for example, that if data undergoes a series of copies as part of a
transfer 

1.16  Assuming that before transmitting a message the data must be copied into a buffer. The basic
message time is as in Exercise 1.14, but the copy is performed at a cost of 5 cycles per 32-bit
words on a 100 MHz machine. Given an equation for the expected user-level message time.
How does the cost of a copy compare with a fixed cost of, say, entering the operating system.

1.17  Consider a machine running at 100 MIPS on some workload with the following mix: 50%
ALU, 20% loads, 10% stores, 10% branches. Suppose the instruction miss rate is 1%, the
data miss rate is 5%, the cache line size is 32 bytes. For the purpose of this calculation, treat a
store miss as requiring two cache line transfers, one to load the newly update line and one to
replace the dirty line. If the machine provides a 250 MB/s bus, how many processors can it
accommodate at 50% of peak bus bandwidth? What is the bandwidth demand of each proces-
sor?

The scenario is Exercise 1.17 is a little rosy because it looks only at the sum of the average band-
widths, which is why we left 50% headroom on the bus. In fact, what happens as the bus
approaches saturation is that it takes longer to obtain access for the bus, so it looks to the proces-
sor as if the memory system is slower. The effect is to slow down all of the processors in the sys-
tem, thereby reducing their bandwidth demand. Let’s try a analogous calculation from the other
direction. 

1.18  Assume the instruction mix and miss rate as in Exercise 1.17, but ignore the MIPS, since that
depends on the performance of the memory system. Assume instead that the processor run as
100 MHz and has an ideal CPI (with an perfect memory system). The unloaded cache miss
penalty is 20 cycles. You can ignore the write-back for stores. (As a starter, you might want to
compute the MIPS rate for this new machine.) Assume that the memory system, i.e., the bus
and the memory controller is utilized throughout the miss. What is the utilization of the mem-
ory system, , with a single processor? From this result, estimate the number of processors
that could be supported before the processor demand would exceed the available bus band-
width.

U1
9/10/97 DRAFT: Parallel Computer Architecture 87



Introduction
1.19  Of course, no matter how many processors you place on the bus, they will never exceed the
available bandwidth. Explains what happens to processor performance in response to bus
contention. Can you formalize your observations?
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CHAPTER 2

 

Parallel Programs

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

2.1 Introduction

 

To understand and evaluate design decisions in a parallel machine, we must have an idea of the
software that runs on the machine. Understanding program behavior led to some of the most
important advances in uniprocessors, including memory hierarchies and instruction set design. It
is all the more important in multiprocessors, both because of the increase in degrees of freedom
and because of the much greater performance penalties caused by to mismatches between appli-
cations and systems. 

Understanding parallel software is important for algorithm designers, for programmers, and for
architects. As algorithm designers, it helps us focus on designing algorithms that can be run
effectively in parallel on real systems. As programmers, it helps us understand the key perfor-
mance issues and obtain the best performance from a system. And as architects, it helps us under-
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stand the workloads we are designing against and their important degrees of freedom. Parallel
software and its implications will be the focus of the next three chapters of this book. This chap-
ter describes the process of creating parallel programs in the major programming models. The
next chapter focuses on the performance issues that must be addressed in this process, exploring
some of the key interactions between parallel applications and architectures. And the following
chapter relies on this understanding of software and interactions to develop guidelines for using
parallel workloads to evaluate architectural tradeoffs. In addition to architects, the material in
these chapters is useful for users of parallel machines as well: the first two chapters for program-
mers and algorithm designers, and the third for users making decisions about what machines to
procure. However, the major focus is on issues that architects should understand before they get
into the nuts and bolts of machine design and architectural tradeoffs, so let us look at it from this
perspective. 

As architects of sequential machines, we generally take programs for granted: The field is mature
and there is a large base of programs than can be (or must be) viewed as fixed. We optimize the
machine design against the requirements of these programs. Although we recognize that pro-
grammers may further optimize their code as caches become larger or floating-point support is
improved, we usually evaluate new designs without anticipating such software changes. Compil-
ers may evolve along with the architecture, but the source program is still treated as fixed. In par-
allel architecture, there is a much stronger and more dynamic interaction between the evolution
of machine designs and that of parallel software. Since parallel computing is all about perfor-
mance, programming tends to be oriented towards taking advantage of what machines provide.
Parallelism offers a new degree of freedom—the number of processors—and higher costs for
data access and coordination, giving the programmer a wide scope for software optimizations.
Even as architects, we therefore need to open up the application “black box”. Understanding the
important aspects of the process of creating parallel software, the focus of this chapter, helps us
appreciate the role and limitations of the architecture. The deeper look at performance issues in
the next chapter will shed greater light on hardware-software tradeoffs. 

Even after a problem and a good sequential algorithm for it are determined, there is a substantial
process involved in arriving at a parallel program and the execution characteristics that it offers to
a multiprocessor architecture. This chapter presents general principles of the parallelization pro-
cess, and illustrates them with real examples. The chapter begins by introducing four actual prob-
lems that serve as case studies throughout the next two chapters. Then, it describes the four major
steps in creating a parallel program—using the case studies to illustrate—followed by examples
of how a simple parallel program might be written in each of the major programming models. As
discussed in Chapter 1, the dominant models from a programming perspective narrow down to
three: the data parallel model, a shared address space, and message passing between private
address spaces. This chapter illustrates the primitives provided by these models and how they
might be used, but is not concerned much with performance. After the performance issues in the
parallelization process are understood in the next chapter, the four application case studies will
be treated in more detail to create high-performance versions of them. 

 

2.2 Parallel Application Case Studies

 

We saw in the previous chapter that multiprocessors are used for a wide range of applications—
from multiprogramming and commercial computing to so-called “grand challenge” scientific
problems—and that the most demanding of these applications for high-end systems tend to be
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from scientific and engineering computing. Of the four case studies we refer to throughout this
chapter and the next, two are from scientific computing, one is from commercial computing and
one from computer graphics. Besides being from different application domains, the case studies
are chosen to represent a range of important behaviors found in other parallel programs as well.

Of the two scientific applications, one simulates the motion of ocean currents by discretizing the
problem on a set of regular grids and solving a system of equations on the grids. This technique
of discretizing equations on grids is very common in scientific computing, and leads to a set of
very common communication patterns. The second case study represents another major form of
scientific computing, in which rather than discretizing the domain on a grid the computational
domain is represented as a large number of bodies that interact with one another and move
around as a result of these interactions. These so-called N-body problems are common in many
areas such as simulating galaxies in astrophysics (our specific case study), simulating proteins
and other molecules in chemistry and biology, and simulating electromagnetic interactions. As in
many other areas, hierarchical algorithms for solving these problems have become very popular.
Hierarchical N-body algorithms, such as the one in our case study, have also been used to solve
important problems in computer graphics and some particularly difficult types of equation sys-
tems. Unlike the first case study, this one leads to irregular, long-range and unpredictable com-
munication. 

The third case study is from computer graphics, a very important consumer of moderate-scale
multiprocessors. It traverses a three-dimensional scene and highly irregular and unpredictable
ways, and renders it into a two-dimensional image for display. The last case study represents the
increasingly important class of commercial applications that analyze the huge volumes of data
being produced by our information society to discover useful knowledge, categories and trends.
These information processing applications tend to be I/O intensive, so parallelizing the I/O activ-
ity effectively is very important. The first three case studies are part of a benchmark suite
[SWG92] that is widely used in architectural evaluations in the literature, so there is a wealth of
detailed information available about them. They will be used to illustrate architectural tradeoffs
in this book as well. 

 

2.2.1 Simulating Ocean Currents

 

To model the climate of the earth, it is important to understand how the atmosphere interacts with
the oceans that occupy three fourths of the earth’s surface. This case study simulates the motion
of water currents in the ocean. These currents develop and evolve under the influence of several
physical forces, including atmospheric effects, wind, and friction with the ocean floor. Near the
ocean walls there is additional “vertical” friction as well, which leads to the development of eddy
currents. The goal of this particular application case study is to simulate these eddy currents over
time, and understand their interactions with the mean ocean flow. 

Good models for ocean behavior are complicated: Predicting the state of the ocean at any instant
requires the solution of complex systems of equations, which can only be performed numerically
by computer. We are, however, interested in the behavior of the currents over time. The actual
physical problem is continuous in both space (the ocean basin) and time, but to enable computer
simulation we discretize it along both dimensions. To discretize space, we model the ocean basin
as a grid of equally spaced points. Every important variable—such as pressure, velocity, and var-
ious currents—has a value at each grid point in this discretization. This particular application
uses not a three-dimensional grid but a set of two-dimensional, horizontal cross-sections through
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the ocean basin, each represented by a two-dimensional grid of points (see Figure 2-1). For sim-

plicity, the ocean is modeled as a rectangular basin and the grid points are assumed to be equally
spaced. Each variable is therefore represented by a separate two-dimensional array for each
cross-section through the ocean. For the time dimension, we discretize time into a series of finite
time-steps. The equations of motion are solved at all the grid points in one time-step, the state of
the variables is updated as a result, and the equations of motion are solved again for the next
time-step, and so on repeatedly. 

Every time-step itself consists of several computational phases. Many of these are used to set up
values for the different variables at all the grid points using the results from the previous time-
step. Then there are phases in which the system of equations governing the ocean circulation are
actually solved. All the phases, including the solver, involve sweeping through all points of the
relevant arrays and manipulating their values. The solver phases are somewhat more complex, as
we shall see when we discuss this case study in more detail in the next chapter. 

The more grid points we use in each dimension to represent our fixed-size ocean, the finer the
spatial resolution of our discretization and the more accurate our simulation. For an ocean such
as the Atlantic, with its roughly 2000km-x-2000km span, using a grid of 100-x-100 points
implies a distance of 20km between points in each dimension. This is not a very fine resolution,
so we would like to use many more grid points. Similarly, shorter physical intervals between
time-steps lead to greater simulation accuracy. For example, to simulate five years of ocean
movement updating the state every eight hours we would need about 5500 time-steps. 

The computational demands for high accuracy are large, and the need for multiprocessing is
clear. Fortunately, the application also naturally affords a lot of concurrency: many of the set-up
phases in a time-step are independent of one another and therefore can be done in parallel, and
the processing of different grid points in each phase or grid computation can itself be done in par-
allel. For example, we might assign different parts of each ocean cross-section to different pro-
cessors, and have the processors perform their parts of each phase of computation (a data-parallel
formulation). 

(a) Cross-sections (b) Spatial discretization of a cross-section

Figure  2-1  Horizontal cross-sections through an ocean basin, and their spatial discretization into regular grids.
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2.2.2 Simulating the Evolution of Galaxies

 

Our second case study is also from scientific computing. It seeks to understand the evolution of
stars in a system of galaxies over time. For example, we may want to study what happens when
galaxies collide, or how a random collection of stars folds into a defined galactic shape. This
problem involves simulating the motion of a number of bodies (here stars) moving under forces
exerted on each by all the others, an 

 

n-body

 

 problem. The computation is discretized in space by
treating each star as a separate body, or by sampling to use one body to represent many stars.
Here again, we discretize the computation in time and simulate the motion of the galaxies for
many time-steps. In each time-step, we compute the gravitational forces exerted on each star by
all the others and update the position, velocity and other attributes of that star. 

Computing the forces among stars is the most expensive part of a time-step. A simple method to

compute forces is to calculate pairwise interactions among all stars. This has 

 

O(n

 

2

 

)

 

 computa-
tional complexity for 

 

n

 

 stars, and is therefore prohibitive for the millions of stars that we would
like to simulate. However, by taking advantage of insights into the force laws, smarter hierarchi-
cal algorithms are able to reduce the complexity to 

 

O(n log n)

 

. This makes it feasible to simulate
problems with millions of stars in reasonable time, but only by using powerful multiprocessors.
The basic insight that the hierarchical algorithms use is that since the strength of the gravitational

interaction falls off with distance as , the influences of stars that are further away are

weaker and therefore do not need to be computed as accurately as those of stars that are close by.
Thus, if a group of stars is far enough away from a given star, then their effect on the star does not
have to be computed individually; as far as that star is concerned, they can be approximated as a
single star at their center of mass without much loss in accuracy (Figure 2-2). The further away

the stars from a given star, the larger the group that can be thus approximated. In fact, the strength
of many physical interactions falls off with distance, so hierarchical methods are becoming
increasingly popular in many areas of computing. 

The particular hierarchical force-calculation algorithm used in our case study is the Barnes-Hut
algorithm. The case study is called Barnes-Hut in the literature, and we shall use this name for it
as well. We shall see how the algorithm works in Section 3.6.2. Since galaxies are denser in some
regions and sparser in others, the distribution of stars in space is highly irregular. The distribution

G
m1m2

r
2

--------------

Star too close to 
approximate

Small group far enough away to
approximate by center of mass

Star on which forces
are being computed

Larger group far
enough away to 
approximate

Figure  2-2  The insight used by hierarchical methods for n-body problems.

A group of bodies that is far enough away from a given body may be approximated by the center of mass of the group. The further
apart the bodies, the larger the group that may be thus approximated. 
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also changes with time as the galaxy evolves. The nature of the hierarchy implies that stars in
denser regions interact with more other stars and centers of mass—and hence have more work
associated with them—than stars in sparser regions. There is ample concurrency across stars
within a time-step, but given the irregular and dynamically changing nature the challenge is to
exploit it efficiently on a parallel architecture. 

 

2.2.3 Visualizing Complex Scenes using Ray Tracing

 

Our third case study is the visualization of complex scenes in computer graphics. A common
technique used to render such scenes into images is ray tracing. The scene is represented as a set
of objects in three-dimensional space, and the image being rendered is represented as a two-
dimensional array of pixels (picture elements) whose color, opacity and brightness values are to
be computed. The pixels taken together represent the image, and the resolution of the image is
determined by the distance between pixels in each dimension. The scene is rendered as seen from
a specific viewpoint or position of the eye. Rays are shot from that viewpoint through every pixel
in the image plane and into the scene. The algorithm traces the paths of these rays—computing
their reflection, refraction, and lighting interactions as they strike and reflect off objects—and
thus computes values for the color and brightness of the corresponding pixels. There is obvious
parallelism across the rays shot through different pixels. This application will be referred to as
Raytrace. 

 

2.2.4 Mining Data for Associations

 

Information processing is rapidly becoming a major marketplace for parallel systems. Businesses
are acquiring a lot of data about customers and products, and devoting a lot of computational
power to automatically extracting useful information or “knowledge” from these data. Examples
from a customer database might include determining the buying patterns of demographic groups
or segmenting customers according to relationships in their buying patterns. This process is
called data mining. It differs from standard database queries in that its goal is to identify implicit
trends and segmentations, rather than simply look up the data requested by a direct, explicit
query. For example, finding all customers who have bought cat food in the last week is not data
mining; however, segmenting customers according to relationships in their age group, their
monthly income, and their preferences in pet food, cars and kitchen utensils is. 

A particular, quite directed type of data mining is mining for associations. Here, the goal is to dis-
cover relationships (associations) among the information related to different customers and their
transactions, and to generate rules for the inference of customer behavior. For example, the data-
base may store for every transaction the list of items purchased in that transaction. The goal of
the mining may be to determine associations between sets of commonly purchased items that
tend to be purchased together; for example, the conditional probability P(S

 

1

 

|S

 

2

 

) that a certain set
of items S

 

1

 

 is found in a transaction given that a different set of items S

 

2

 

 is found in that transac-
tion, where S

 

1

 

 and S

 

2

 

 are sets of items that occur often in transactions. 

Consider the problem a little more concretely. We are given a database in which the records cor-
respond to customer purchase transactions, as described above. Each transaction has a transac-
tion identifier and a set of attributes or items, for example the items purchased. The first goal in
mining for associations is to examine the database and determine which sets of 

 

k

 

 items, say, are
found to occur together in more than a given threshold fraction of the transactions. A set of items
(of any size) that occur together in a transaction is called an 

 

itemset

 

, and an itemset that is found
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in more than that threshold percentage of transactions is called a 

 

large itemset

 

. Once the large
itemsets of size 

 

k

 

 are found—together with their frequencies of occurrence in the database of
transactions—determining the association rules among them is quite easy. The problem we con-
sider therefore focuses on discovering the large itemsets of size 

 

k

 

 and their frequencies. 

The data in the database may be in main memory, or more commonly on disk. A simple way to
solve the problem is to first determine the large itemsets of size one. From these, a set of candi-
date itemsets of size two items can be constructed—using the basic insight that if an itemset is
large then all its subsets must also be large—and their frequency of occurrence in the transaction
database counted. This results in a list of large itemsets of size two. The process is repeated until
we obtain the large itemsets of size 

 

k

 

. There is concurrency in examining large itemsets of size 

 

k-
1

 

 to determine candidate itemsets of size 

 

k

 

, and in counting the number of transactions in the
database that contain each of the candidate itemsets. 

 

2.3 The Parallelization Process

 

The four case studies—Ocean, Barnes-Hut, Raytrace and Data Mining—offer abundant concur-
rency, and will help illustrate the process of creating effective parallel programs in this chapter
and the next. For concreteness, we will assume that the sequential algorithm that we are to make
parallel is given to us, perhaps as a description or as a sequential program. In many cases, as in
these case studies, the best sequential algorithm for a problem lends itself easily to paralleliza-
tion; in others, it may not afford enough parallelism and a fundamentally different algorithm may
be required. The rich field of parallel algorithm design is outside the scope of this book. How-
ever, there is in all cases a significant process of creating a good parallel program that implements
the chosen (sequential) algorithm, and we must understand this process in order to program par-
allel machines effectively and evaluate architectures against parallel programs.

At a high level, the job of parallelization involves identifying the work that can be done in paral-
lel, determining how to distribute the work and perhaps the data among the processing nodes, and
managing the necessary data access, communication and synchronization. Note that work
includes computation, data access, and input/output activity. The goal is to obtain high perfor-
mance while keeping programming effort and the resource requirements of the program low. In
particular, we would like to obtain good speedup over the best sequential program that solves the
same problem. This requires that we ensure a balanced distribution of work among processors,
reduce the amount of interprocessor communication which is expensive, and keep the overheads
of communication, synchronization and parallelism management low. 

The steps in the process of creating a parallel program may be performed either by the program-
mer or by one of the many layers of system software that intervene between the programmer and
the architecture. These layers include the compiler, runtime system, and operating system. In a
perfect world, system software would allow users to write programs in the form they find most
convenient (for example, as sequential programs in a high-level language or as an even higher-
level specification of the problem), and would automatically perform the transformation into effi-
cient parallel programs and executions. While much research is being conducted in parallelizing
compiler technology and in programming languages that make this easier for compiler and runt-
ime systems, the goals are very ambitious and have not yet been achieved. In practice today, the
vast majority of the process is still the responsibility of the programmer, with perhaps some help
from the compiler and runtime system. Regardless of how the responsibility is divided among
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these parallelizing agents, the issues and tradeoffs are similar and it is important that we under-
stand them. For concreteness, we shall assume for the most part that the programmer has to make
all the decisions. 

Let us now examine the parallelization process in a more structured way, by looking at the actual
steps in it. Each step will address a subset of the issues needed to obtain good performance.
These issues will be discussed in detail in the next chapter, and only mentioned briefly here. 

 

2.3.1 Steps in the Process

 

To understand the steps in creating a parallel program, let us first define three few important con-
cepts: tasks, processes and processors. A 

 

task

 

 is an arbitrarily defined piece of the work done by
the program. It is the smallest unit of concurrency that the parallel program can exploit; i.e., an
individual task is executed by only one processor, and concurrency is exploited across tasks. In
the Ocean application we can think of a single grid point in each phase of computation as being a
task, or a row of grid points, or any arbitrary subset of a grid. We could even consider an entire
grid computation to be a single task, in which case parallelism is exploited only across indepen-
dent grid computations. In Barnes-Hut a task may be a particle, in Raytrace a ray or a group of
rays, and in Data Mining it may be checking a single transaction for the occurrence of an itemset.
What exactly constitutes a task is not prescribed by the underlying sequential program; it is a
choice of the parallelizing agent, though it usually matches some natural granularity of work in
the sequential program structure. If the amount of work a task performs is small, it is called a

 

fine-grained

 

 task; otherwise, it is called 

 

coarse-grained

 

. 

A 

 

process

 

 (referred to interchangeably hereafter as a 

 

thread

 

) is an abstract entity that performs
tasks.

 

1

 

 A parallel program is composed of multiple cooperating processes, each of which per-
forms a subset of the tasks in the program. Tasks are assigned to processes by some 

 

assignment

 

mechanism. For example, if the computation for each row in a grid in Ocean is viewed as a task,
then a simple assignment mechanism may be to give an equal number of adjacent rows to each
process, thus dividing the ocean cross section into as many horizontal slices as there are pro-
cesses. In data mining, the assignment may be determined by which portions of the database are
assigned to each process, and by how the itemsets within a candidate list are assigned to pro-
cesses to look up the database. Processes may need to communicate and synchronize with one
another to perform their assigned tasks. Finally, the way processes perform their assigned tasks is
by executing them on the physical 

 

processors

 

 in the machine. 

It is important to understand the difference between processes and processors from a paralleliza-
tion perspective. While processors are physical resources, processes provide a convenient way of
abstracting or 

 

virtualizing

 

 a multiprocessor: We initially write parallel programs in terms of pro-
cesses not physical processors; mapping processes to processors is a subsequent step. The num-
ber of processes does not 

 

have

 

 to be the same as the number of processors available to the
program. If there are more processes, they are multiplexed onto the available processors; if there
are fewer processes, then some processors will remain idle. 

 

1.  In Chapter 1 we used the correct operating systems definition of a process: an address space and one or
more threads of control that share that address space. Thus, processes and threads are distinguished in that
definition. To simplify our discussion of parallel programming in this chapter, we do not make this distinc-
tion but assume that a process has only one thread of control. 
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Given these concepts, the job of creating a parallel program from a sequential one consists of
four steps, illustrated in Figure 2-3: 

1.

 

Decomposition

 

 of the computation into tasks, 

2.

 

Assignment

 

 of tasks to processes, 

3.

 

Orchestration

 

 of the necessary data access, communication and synchronization among pro-
cesses, and 

4.

 

Mapping

 

 or binding of processes to processors. 

Together, decomposition and assignment are called partitioning, since they divide the work done
by the program among the cooperating processes. Let us examine the steps and their individual
goals a little further.

 

Decomposition

 

Decomposition means breaking up the computation into a collection of tasks. For example, trac-
ing a single ray in Raytrace may be a task, or performing a particular computation on an individ-
ual grid point in Ocean. In general, tasks may become available dynamically as the program
executes, and the number of tasks available at a time may vary over the execution of the program.
The maximum number of tasks available at a time provides an upper bound on the number of
processes (and hence processors) that can be used effectively at that time. Hence, the major goal
in decomposition is to 

 

expose enough concurrency

 

 to keep the processes busy at all times, yet not
so much that the overhead of managing the tasks becomes substantial compared to the useful
work done. 
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Figure  2-3  Step in parallelization, and the relationships among tasks, processes and processors. 

The decomposition and assignment phases are together called partitioning. The orchestration phase coordinates data access, com-
munication and synchronization among processes, and the mapping phase maps them to physical processors. 
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Limited concurrency is the most fundamental limitation on the speedup achievable through paral-
lelism, not just the fundamental concurrency in the underlying problem but also how much of this
concurrency is exposed in the decomposition. The impact of available concurrency is codified in
one of the few “laws” of parallel computing, called 

 

Amdahl’s Law

 

. If some portions of a pro-
gram’s execution don’t have as much concurrency as the number of processors used, then some
processors will have to be idle for those portions and speedup will be suboptimal. To see this in
its simplest form, consider what happens if a fraction 

 

s

 

 of a program’s execution time on a uni-
processor is inherently sequential; that is, it cannot be parallelized. Even if the rest of the pro-
gram is parallelized to run on a large number of processors in infinitesimal time, this sequential
time will remain. The overall execution time of the parallel program will be at least 

 

s

 

, normalized
to a total sequential time of 1, and the speedup limited to 1/s. For example, if s=0.2 (20% of the
program’s execution is sequential), the maximum speedup available is 1/0.2 or 5 regardless of the
number of processors used, even if we ignore all other sources of overhead. 

 

Example  2-1 

 

Consider a simple example program with two phases. In the first phase, a single
operation is performed independently on all points of a two-dimensional 

 

n

 

-by-

 

n

 

grid, as in Ocean. In the second, the sum of the 

 

n

 

2

 

 grid point values is computed. If
we have 

 

p

 

 processors, we can assign 

 

n

 

2

 

/p

 

 points to each processor and complete the
first phase in parallel in time 

 

n

 

2

 

/p

 

. In the second phase, each processor can add each
of its assigned 

 

n

 

2

 

/p

 

 values into a global sum variable. What is the problem with this
assignment, and how can we expose more concurrency?

 

Answer

 

The problem is that the accumulations into the global sum must be done one at a
time, or 

 

serialized

 

, to avoid corrupting the sum value by having two processors try
to modify it simultaneously (see mutual exclusion in Section 2.4.5). Thus, the

second phase is effectively serial and takes 

 

n

 

2

 

 time regardless of 

 

p

 

. The total time in

parallel is 

 

n

 

2

 

/p

 

 + 

 

n

 

2

 

, compared to a sequential time of 2

 

n

 

2

 

, so the speedup is at most

 or , which is at best 2 even if a very large number of processors is

used. 

We can expose more concurrency by using a little trick. Instead of summing each
value directly into the global sum, serializing all the summing, we divide the
second phase into two phases. In the new second phase, a process sums its assigned
values independently into a private sum. Then, in the third phase, processes sum
their private sums into the global sum. The second phase is now fully parallel; the
third phase is serialized as before, but there are only 

 

p

 

 operations in it, not 

 

n

 

. The

total parallel time is 

 

n

 

2

 

/p

 

 + 

 

n

 

2

 

/p

 

 + p, and the speedup is at best . If 
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large relative to p, this speedup limit is almost linear in the number of processors
used. Figure 2-4 illustrates the improvement and the impact of limited concurrency.

More generally, given a decomposition and a problem size, we can construct a concurrency pro-
file which depicts how many operations (or tasks) are available to be performed concurrently in
the application at a given time. The concurrency profile is a function of the problem, the decom-
position and the problem size but is independent of the number of processors, effectively assum-
ing that an infinite number of processors is available. It is also independent of the assignment or
orchestration. These concurrency profiles may be easy to analyze (as we shall see for matrix fac-
torization in Exercise 2.4) or they may be quite irregular. For example, Figure 2-5 shows a con-
currency profile of a parallel event-driven simulation for the synthesis of digital logic systems.
The X-axis is time, measured in clock cycles of the circuit being simulated. The Y-axis or amount
of concurrency is the number of logic gates in the circuit that are ready to be evaluated at a given
time, which is a function of the circuit, the values of its inputs, and time. There is a wide range of
unpredictable concurrency across clock cycles, and some cycles with almost no concurrency. 

The area under the curve in the concurrency profile is the total amount of work done, i.e. the
number of operations or tasks computed, or the “time” taken on a single processor. It’s horizontal
extent is a lower bound on the “time” that it would take to run the best parallel program given that
decomposition, assuming an infinitely large number of processors. The area divided by the hori-
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Figure  2-4  Illustration of the impact of limited concurrency. 

The x-axis is time, and the y-axis is the amount of work available (exposed by the decomposition) to be done in parallel at a given
time. (a) shows the profile for a single processor. (b) shows the original case in the example, which is divided into two phases: one fully
concurrent, and one fully serialized. (c) shows the improved version, which is divided into three phases: the first two fully concurrent,
and the last fully serialized but with a lot less work in it (O(p) rather than O(n)). 
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zontal extent therefore gives us a limit on the achievable speedup with unlimited number of pro-
cessors, which is thus simply the average concurrency available in the application over time. A
rewording of Amdahl’s law may therefore be: 

Thus, if fk be the number of X-axis points in the concurrency profile that have concurrency k,
then we can write Amdahl’s Law as:

. (EQ 2.1)

It is easy to see that if the total work  is normalized to 1 and a fraction s of this is serial,

then the speedup with an infinite number of processors is limited by , and that with p pro-

cessors is limited by . In fact, Amdahl’s law can be applied to any overhead of paral-

lelism, not just limited concurrency, that is not alleviated by using more processors. For now, it
quantifies the importance of exposing enough concurrency as a first step in creating a parallel
program. 
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Figure  2-5  Concurrency profile for a distributed-time, discrete-event logic simulator.

The circuit being simulated is a simple MIPS R6000 microprocessor. The y-axis shows the number of logic elements available for
evaluation in a given clock cycle. 
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Assignment

Assignment means specifying the mechanism by which tasks will be distributed among pro-
cesses. For example, which process is responsible for computing forces on which stars in Barnes-
Hut, and which process will count occurrences of which itemsets and in which parts of the data-
base in Data Mining? The primary performance goals of assignment are to balance the workload
among processes, to reduce interprocess communication, and to reduce the runtime overheads of
managing the assignment. Balancing the workload is often referred to as load balancing. The
workload to be balanced includes computation, input/output and data access or communication,
and programs that are not balance these well among processes are said to be load imbalanced. 

Achieving these performance goals simultaneously can appear intimidating. However, most pro-
grams lend themselves to a fairly structured approach to partitioning (decomposition and assign-
ment). For example, programs are often structured in phases, and candidate tasks for
decomposition within a phase are often easily identified as seen in the case studies. The appropri-
ate assignment of tasks is often discernible either by inspection of the code or from a higher-level
understanding of the application. And where this is not so, well-known heuristic techniques are
often applicable. If the assignment is completely determined at the beginning of the program—or
just after reading and analyzing the input—and does not change thereafter, it is called a static or
predetermined assignment; if the assignment of work to processes is determined at runtime as the
program executes—perhaps to react to load imbalances—it is called a dynamic assignment. We
shall see examples of both. Note that this use of static is a little different than the “compile-time”
meaning typically used in computer science. Compile-time assignment that does not change at
runtime would indeed be static, but the term is more general here. 

Decomposition and assignment are the major algorithmic steps in parallelization. They are usu-
ally independent of the underlying architecture and programming model, although sometimes the
cost and complexity of using certain primitives on a system can impact decomposition and
assignment decisions. As architects, we assume that the programs that will run on our machines
are reasonably partitioned. There is nothing we can do if a computation is not parallel enough or
not balanced across processes, and little we may be able to do if it overwhelms the machine with
communication. As programmers, we usually focus on decomposition and assignment first, inde-
pendent of the programming model or architecture, though in some cases the properties of the
latter may cause us to revisit our partitioning strategy. 

Orchestration

This is the step where the architecture and programming model play a large role, as well as the
programming language itself. To execute their assigned tasks, processes need mechanisms to
name and access data, to exchange data (communicate) with other processes, and to synchronize
with one another. Orchestration uses the available mechanisms to accomplish these goals cor-
rectly and efficiently. The choices made in orchestration are much more dependent on the pro-
gramming model, and on the efficiencies with which the primitives of the programming model
and communication abstraction are supported, than the choices made in the previous steps. Some
questions in orchestration include how to organize data structures and schedule tasks to exploit
locality, whether to communicate implicitly or explicitly and in small or large messages, and how
exactly to organize and express interprocess communication and synchronization. Orchestration
also includes scheduling the tasks assigned to a process temporally, i.e. deciding the order in
which they are executed. The programming language is important both because this is the step in
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which the program is actually written and because some of the above tradeoffs in orchestration
are influenced strongly by available language mechanisms and their costs. 

The major performance goals in orchestration are reducing the cost of the communication and
synchronization as seen by the processors, preserving locality of data reference, scheduling tasks
so that those on which many other tasks depend are completed early, and reducing the overheads
of parallelism management. The job of architects is to provide the appropriate primitives with
efficiencies that simplify successful orchestration. We shall discuss the major aspects of orches-
tration further when we see how programs are actually written. 

Mapping

The cooperating processes that result from the decomposition, assignment and orchestration
steps constitute a full-fledged parallel program on modern systems. The program may control the
mapping of processes to processors, but if not the operating system will take care of it, providing
a parallel execution. Mapping tends to be fairly specific to the system or programming environ-
ment. In the simplest case, the processors in the machine are partitioned into fixed subsets, possi-
bly the entire machine, and only a single program runs at a time in a subset. This is called space-
sharing. The program can bind or pin processes to processors to ensure that they do not migrate
during the execution, or can even control exactly which processor a process runs on so as to pre-
serve locality of communication in the network topology. Strict space-sharing schemes, together
with some simple mechanisms for time-sharing a subset among multiple applications, have so far
been typical of large-scale multiprocessors. 

At the other extreme, the operating system may dynamically control which process runs where
and when—without allowing the user any control over the mapping—to achieve better resource
sharing and utilization. Each processor may use the usual multiprogrammed scheduling criteria
to manage processes from the same or from different programs, and processes may be moved
around among processors as the scheduler dictates. The operating system may extend the unipro-
cessor scheduling criteria to include multiprocessor-specific issues. In fact, most modern systems
fall somewhere between the above two extremes: The user may ask the system to preserve certain
properties, giving the user program some control over the mapping, but the operating system is
allowed to change the mapping dynamically for effective resource management. 

Mapping and associated resource management issues in multiprogrammed systems are active
areas of research. However, our goal here is to understand parallel programming in its basic form,
so for simplicity we assume that a single parallel program has complete control over the
resources of the machine. We also assume that the number of processes equals the number of pro-
cessors, and neither changes during the execution of the program. By default, the operating sys-
tem will place one process on every processor in no particular order. Processes are assumed not
to migrate from one processor to another during execution. For this reason, we use the terms
“process” and “processor” interchangeably in the rest of the chapter.

2.3.2 Parallelizing Computation versus Data

The view of the parallelization process described above has been centered on computation, or
work, rather than on data. It is the computation that is decomposed and assigned. However, due to
the communication abstraction or performance considerations, we may be responsible for
decomposing and assigning data to processes as well. In fact, in many important classes of prob-



The Parallelization Process

9/10/97 DRAFT: Parallel Computer Architecture 103

lems the decomposition of work and data are so strongly related that they are difficult or even
unnecessary to distinguish. Ocean is a good example: Each cross-sectional grid through the
ocean is represented as an array, and we can view the parallelization as decomposing the data in
each array and assigning parts of it to processes. The process that is assigned a portion of an array
will then be responsible for the computation associated with that portion, a so-called owner com-
putes arrangement. A similar situation exists in data mining, where we can view the database as
being decomposed and assigned; of course, here there is also the question of assigning the item-
sets to processes. Several language systems, including the High Performance Fortran standard
[KLS+94, HPF93], allow the programmer to specify the decomposition and assignment of data
structures; the assignment of computation then follows the assignment of data in an owner com-
putes manner. However, the distinction between computation and data is stronger in many other
applications, including the Barnes-Hut and Raytrace case studies as we shall see. Since the com-
putation-centric view is more general, we shall retain this view and consider data management to
be part of the orchestration step. 

2.3.3 Goals of the Parallelization Process

As stated previously, the major goal of using a parallel machine is to improve performance by
obtaining speedup over the best uniprocessor execution. Each of the steps in creating a parallel
program has a role to play in achieving that overall goal, and each has its own performance goals.

These are summarized in Table 2-1, and we shall discuss them in more detail in the next chapter.

Creating an effective parallel program requires evaluating cost as well as performance. In addi-
tion to the dollar cost of the machine itself, we must consider the resource requirements of the
program on the architecture and the effort it takes to develop a satisfactory program. While costs
and their impact are often more difficult to quantify than performance, they are very important
and we must not lose sight of them; in fact, we may need to compromise performance to reduce
them. As algorithm designers, we should favor high-performance solutions that keep the resource
requirements of the algorithm small and that don’t require inordinate programming effort. As
architects, we should try to design high-performance systems that, in addition to being low-cost,
reduce programming effort and facilitate resource-efficient algorithms. For example, an architec-
ture that delivers gradually improving performance with increased programming effort may be

Table 2-1  Steps in the Parallelization Process and Their Goals

Step
Architecture-
dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency, but not too much

Assignment Mostly no
Balance workload

Reduce communication volume

Orchestration Yes

Reduce non-inherent communication via data locality 
(see next chapter)

Reduce cost of comm/synch as seen by processor

Reduce serialization of shared resources

Schedule tasks to satisfy dependences early

Mapping Yes
Put related processes on the same processor if necessary

Exploit locality in network topology
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preferable to one that is capable of ultimately delivering better performance but only with inordi-
nate programming effort.

Having understood the basic process and its goals, let us apply it to a simple but detailed example
and see what the resulting parallel programs look like in the three major modern programming
models introduced in Chapter 1: shared address space, message passing, and data parallel. We
shall focus here on illustrating programs and programming primitives, not so much on perfor-
mance. 

2.4 Parallelization of an Example Program

The four case studies introduced at the beginning of the chapter all lead to parallel programs that
are too complex and too long to serve as useful sample programs. Instead, this section presents a
simplified version of a piece or kernel of Ocean: its equation solver. It uses the equation solver to
dig deeper and illustrate how to implement a parallel program using the three programming mod-
els. Except for the data parallel version, which necessarily uses a high-level data parallel lan-
guage, the parallel programs are not written in an aesthetically pleasing language that relies on
software layers to hide the orchestration and communication abstraction from the programmer.
Rather, they are written in C or Pascal-like pseudocode augmented with simple extensions for
parallelism, thus exposing the basic communication and synchronization primitives that a shared
address space or message passing communication abstraction must provide. Standard sequential
languages augmented with primitives for parallelism also reflect the state of most real parallel
programming today. 

2.4.1 A Simple Example: The Equation Solver Kernel

The equation solver kernel solves a simple partial differential equation on a grid, using what is
referred to as a finite differencing method. It operates on a regular, two-dimensional grid or array
of (n+2)-by-(n+2) elements, such as a single horizontal cross-section of the ocean basin in
Ocean. The border rows and columns of the grid contain boundary values that do not change,
while the interior n-by-n points are updated by the solver starting from their initial values. The
computation proceeds over a number of sweeps. In each sweep, it operates on all the elements of
the grid, for each element replacing its value with a weighted average of itself and its four nearest
neighbor elements (above, below, left and right, see Figure 2-6). The updates are done in-place in
the grid, so a point sees the new values of the points above and to the left of it, and the old values
of the points below it and to its right. This form of update is called the Gauss-Seidel method.
During each sweep the kernel also computes the average difference of an updated element from
its previous value. If this average difference over all elements is smaller than a predefined “toler-
ance” parameter, the solution is said to have converged and the solver exits at the end of the
sweep. Otherwise, it performs another sweep and tests for convergence again. The sequential
pseudocode is shown in Figure 2-7. Let us now go through the steps to convert this simple equa-
tion solver to a parallel program for each programming model. The decomposition and assign-
ment are essentially the same for all three models, so these steps are examined them in a general
context. Once we enter the orchestration phase, the discussion will be organized explicitly by
programming model. 
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2.4.2 Decomposition

For programs that are structured in successive loops or loop nests, a simple way to identify con-
currency is to start from the loop structure itself. We examine the individual loops or loop nests in
the program one at a time, see if their iterations can be performed in parallel, and determine
whether this exposes enough concurrency. We can then look for concurrency across loops or take
a different approach if necessary. Let us follow this program structure based approach in
Figure 2-7. 

Each iteration of the outermost loop, beginning at line 15, sweeps through the entire grid. These
iterations clearly are not independent, since data that are modified in one iteration are accessed in
the next. Consider the loop nest in lines 17-24, and ignore the lines containing diff. Look at the
inner loop first (the j loop starting on line 18). Each iteration of this loop reads the grid point
(A[i,j-1]) that was written in the previous iteration. The iterations are therefore sequentially
dependent, and we call this a sequential loop. The outer loop of this nest is also sequential, since
the elements in row i-1 were written in the previous (i-1th) iteration of this loop. So this simple
analysis of existing loops and their dependences uncovers no concurrency in this case. 

In general, an alternative to relying on program structure to find concurrency is to go back to the
fundamental dependences in the underlying algorithms used, regardless of program or loop struc-
ture. In the equation solver, we might look at the fundamental data dependences at the granularity
of individual grid points. Since the computation proceeds from left to right and top to bottom in
the grid, computing a particular grid point in the sequential program uses the updated values of
the grid points directly above and to the left. This dependence pattern is shown in Figure 2-8. The
result is that the elements along a given anti-diagonal (south-west to north-east) have no depen-
dences among them and can be computed in parallel, while the points in the next anti-diagonal
depend on some points in the previous one. From this diagram, we can observe that of the 

Figure  2-6  Nearest-neighbor update of a grid point in the simple equation solver. 

The black point is A[i,j] in the two-dimensional array that represents the grid, and is updated using itself and the four shaded points
that are its nearest neighbors according to the equation at the right of the figure. 

A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
A[i,j+1] + A[i+1,j])

Expression for updating each interior point:

O n2( )
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work involved in each sweep, there a sequential dependence proportional to n along the diagonal
and inherent concurrency proportional to n.

Suppose we decide to decompose the work into individual grid points, so updating a single grid
point is a task. There are several ways to exploit the concurrency this exposes. Let us examine a
few. First, we can leave the loop structure of the program as it is, and insert point-to-point syn-
chronization to ensure that a grid point has been produced in the current sweep before it is used
by the points to the right of or below it. Thus, different loop nests and even different sweeps
might be in progress simultaneously on different elements, as long as the element-level depen-
dences are not violated. But the overhead of this synchronization at grid-point level may be too

1. int n; /* size of matrix: n-by-n elements*/

2. float **A, diff = 0;

3. main()

4. begin

5. read(n) ; /* read input parameter: matrix size*/

6. A ← malloc (a 2-d array of size n+2 by n+2 doubles);

7. initialize(A); /* initialize the matrix A somehow */

8. Solve (A); /* call the routine to solve equation*/

9. end main

10. procedure Solve (A) /* solve the equation system */

11. float **A; /* A is an n+2 by n+2 array*/

12. begin

13. int i, j, done = 0;

14. float diff = 0, temp;

15. while (!done) do /* outermost loop over sweeps */

16. diff = 0; /* initialize maximum difference to 0 */

17. for i ← 1 to n do /* sweep over non-border points of grid */

18. for j ← 1 to n do

19. temp = A[i,j]; /* save old value of element */

20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21. A[i,j+1] + A[i+1,j]); /*compute average */

22. diff += abs(A[i,j] - temp);

23. end for

24. end for

25. if (diff/(n*n) < TOL) then done = 1;

26. end while

27.end procedure

Figure  2-7  Pseudocode describing the sequential equation solver kernel.

The main body of work to be done in each iteration is in the nested for loop in lines 17 to 23. This is what we would like to parallel-
ize. 
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high. Second, we can change the loop structure, and have the first for loop (line 17) be over anti-
diagonals and the inner for loop be over elements within an anti-diagonal. The inner loop can
now be executed completely in parallel, with global synchronization between iterations of the
outer for loop to preserve dependences conservatively across anti-diagonals. Communication will
be orchestrated very differently in the two cases, particularly if communication is explicit. How-
ever, this approach also has problems. Global synchronization is still very frequent: once per
anti-diagonal. Also, the number of iterations in the parallel (inner) loop changes with successive
outer loop iterations, causing load imbalances among processors especially in the shorter anti-
diagonals. Because of the frequency of synchronization, the load imbalances, and the program-
ming complexity, neither of these approaches is used much on modern architectures. 

The third and most common approach is based on exploiting knowledge of the problem beyond
the sequential program itself. The order in which the grid points are updated in the sequential
program (left to right and top to bottom) is not fundamental to the Gauss-Seidel solution method;
it is simply one possible ordering that is convenient to program sequentially. Since the Gauss-
Seidel method is not an exact solution method (unlike Gaussian elimination) but rather iterates
until convergence, we can update the grid points in a different order as long as we use updated
values for grid points frequently enough.1 One such ordering that is used often for parallel ver-
sions is called red-black ordering. The idea here is to separate the grid points into alternating red
points and black points as on a checkerboard (Figure 2-9), so that no red point is adjacent to a
black point or vice versa. Since each point reads only its four nearest neighbors, it is clear that to

1.  Even if we don’t use updated values from the current while loop iteration for any grid points, and we
always use the values as they were at the end of the previous while loop iteration, the system will still con-
verge, only much slower. This is called Jacobi rather than Gauss-Seidel iteration. 

Figure  2-8  Dependences and concurrency in the Gauss-Seidel equation solver computation. 

The horizontal and vertical lines with arrows indicate dependences, while the anti-diagonal, dashed lines connect points with no
dependences among them and that can be computed in parallel. 
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compute a red point we do not need the updated value of any other red point, but only the updated
values of the above and left black points (in a standard sweep), and vice versa. We can therefore
divide a grid sweep into two phases: first computing all red points and then computing all black
points. Within each phase there are no dependences among grid points, so we can compute all

red points in parallel, then synchronize globally, and then compute all  black points in par-

allel. Global synchronization is conservative and can be replaced by point-to-point synchroniza-
tion at the level of grid points—since not all black points need to wait for all red points to be
computed—but it is convenient. 

The red-black ordering is different from our original sequential ordering, and can therefore both
converge in fewer or more sweeps as well as produce different final values for the grid points
(though still within the convergence tolerance). Note that the black points will see the updated
values of all their (red) neighbors in the current sweep, not just the ones to the left and above.
Whether the new order is sequentially better or worse than the old depends on the problem. The
red-black order also has the advantage that the values produced and convergence properties are
independent of the number of processors used, since there are no dependences within a phase. If
the sequential program itself uses a red-black ordering then parallelism does not change the prop-
erties at all. 

The solver used in Ocean in fact uses a red-black ordering, as we shall see later. However, red-
black ordering produces a longer kernel of code than is appropriate for illustration here. Let us
therefore examine a simpler but still common asynchronous method that does not separate points
into red and black. Global synchronization is used between grid sweeps as above, and the loop
structure for a sweep is not changed from the top-to-bottom, left-to-right order. Instead, within a
sweep a process simply updates the values of all its assigned grid points, accessing its nearest

red point

black point

Figure  2-9  Red-black ordering for the equation solver.

The sweep over the grid is broken up into two sub-sweeps: The first computes all the red points, and the second all the black points.
SInce red points depend only on black points and vice versa, there are no dependences within a sub-sweep. 

n2

2
----- n2

2
-----
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neighbors whether or not they have been updated in the current sweep by their assigned processes
or not. That is, it ignores dependences among grid points within a sweep. When only a single pro-
cess is used, this defaults to the original sequential ordering. When multiple processes are used,
the ordering is unpredictable; it depends on the assignment of points to processes, the number of
processes used, and how quickly different processes execute at runtime. The execution is no
longer deterministic, and the number of sweeps required to converge may depend on the number
of processors used; however, for most reasonable assignments the number of sweeps will not
vary much. 

If we choose a decomposition into individual inner loop iterations (grid points), we can express
the program by writing lines 15 to 26 of Figure 2-7 as shown in Figure 2-10. All that we have

done is replace the keyword for in the parallel loops with for_all. A for_all loop simply
tells the underlying software/hardware system that all iterations of the loop can be executed in
parallel without dependences, but says nothing about assignment. A loop nest with both nesting
levels being for_all means that all iterations in the loop nest (n*n or n2 here) can be executed
in parallel. The system can orchestrate the parallelism in any way it chooses; the program does
not take a position on this. All it assumes is that there is an implicit global synchronization after a
for_all loop nest. 

In fact, we can decompose the computation into not just individual iterations as above but any
aggregated groups of iterations we desire. Notice that decomposing the computation corresponds
very closely to decomposing the grid itself. Suppose now that we wanted to decompose into rows
of elements instead, so that the work for an entire row is an indivisible task which must be
assigned to the same process. We could express this by making the inner loop on line 18 a
sequential loop, changing its for_all back to a for, but leaving the loop over rows on line 17
as a parallel for_all loop. The parallelism, or degree of concurrency, exploited under this
decomposition is reduced from n2 inherent in the problem to n: Instead of n2 independent tasks of
duration one unit each, we now have n independent tasks of duration n units each. If each task

15. while (!done) do /* a sequential loop*/

16. diff = 0; 

17. for_all i ← 1 to n do /* a parallel loop nest */

18. for_all j ← 1 to n do

19. temp = A[i,j];

20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21. A[i,j+1] + A[i+1,j]);

22. diff += abs(A[i,j] - temp);

23. end for_all

24. end for_all

25. if (diff/(n*n) < TOL) then done = 1;

26. end while

Figure  2-10  Parallel equation solver kernel with decomposition into elements and no explicit assignment.

Since both for loops are made parallel by using for_all instead of for, the decomposition is into individual grid elements. Other than
this change, the code is the same as the sequential code. 
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executed on a different processor, we would have approximately  communication operations
(accesses to data computed by other tasks) for n points.

Let us proceed past decomposition and see how we might assign rows to processes explicitly,
using a row-based decomposition. 

2.4.3 Assignment

The simplest option is a static (predetermined) assignment in which each processor is responsible

for a contiguous block of rows, as shown in Figure 2-11. Row  is assigned to process .

Alternative static assignments to this so-called block assignment are also possible, such as a
cyclic assignment in which rows are interleaved among processes (process  is assigned rows ,

, and so on). We might also consider a dynamic assignment, where each process repeatedly
grabs the next available (not yet computed) row after it finishes with a row task, so it is not prede-
termined which process computes which rows. For now, we will work with the static block
assignment. This simple partitioning of the problem exhibits good load balance across processes
as long as the number of rows is divisible by the number of processes, since the work per row is
uniform. Observe that the static assignments have further reduced the parallelism or degree of
concurrency, from  to , and the block assignment has reduced the communication required by
assigning adjacent rows to the same processor. The communication to computation ratio is now

only .

Given this decomposition and assignment, we are ready to dig into the orchestration phase. This
requires that we pin down the programming model. We begin with a high level, data parallel
model. Then, we examine the two major programming models that this and other models might
compile down to: a shared address space and explicit message passing. 
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Figure  2-11  A simple assignment for the parallel equation solver. 

Each of the four processors is assigned a contiguous, equal number of rows of the grid. In each sweep, it will perform the work
needed to update the elements of its assigned rows.



Parallelization of an Example Program

9/10/97 DRAFT: Parallel Computer Architecture 111

2.4.4 Orchestration under the Data Parallel Model 

The data parallel model is convenient for the equation solver kernel, since it is natural to view the
computation as a single thread of control performing global transformations on a large array data
structure, just as we have done above [Hil85,HiS86]. Computation and data are quite inter-
changeable, a simple decomposition and assignment of the data leads to good load balance across
processes, and the appropriate assignments are very regular in shape and can be described by
simple primitives. Pseudocode for the data-parallel equation solver is shown in Figure 2-12. We
assume that global declarations (outside any procedure) describe shared data, and all other data
are private to a process. Dynamically allocated shared data, such as the array A, are allocated
with a G_MALLOC (global malloc) call rather than a regular malloc. Other than this, the main
differences from the sequential program are the use of an DECOMP statement, the use of
for_all loops instead of for loops, the use of a private mydiff variable per process, and the
use of a REDUCE statement. We have already seen that for_all loops specify that the iterations
can be performed in parallel. The DECOMP statement has a two-fold purpose. First, it specifies
the assignment of the iterations to processes (DECOMP is in this sense an unfortunate choice of
word). Here, it is a [BLOCK, *, nprocs] assignment, which means that the first dimension
(rows) is partitioned into contiguous pieces among the nprocs processes, and the second dimen-
sion is not partitioned at all. Specifying [CYCLIC, *, nprocs] would have implied a cyclic or
interleaved partitioning of rows among nprocs processes, specifying [BLOCK, BLOCK, nprocs]
would have implied a subblock decomposition, and specifying [*, CYCLIC, nprocs] would
have implied an interleaved partitioning of columns. The second and related purpose of DECOMP
is that it also specifies how the grid data should be distributed among memories on a distributed-
memory machine (this is restricted to be the same as the assignment in most current data-parallel
languages, following the owner computes rule, which works well in this example). 

The mydiff variable is used to allow each process to first independently compute the sum of the
difference values for its assigned grid points. Then, the REDUCE statement directs the system to
add all their partial mydiff values together into the shared diff variable. The reduction opera-
tion may be implemented in a library in a manner best suited to the underlying architecture. 

While the data parallel programming model is well-suited to specifying partitioning and data dis-
tribution for regular computations on large arrays of data, such as the equation solver kernel or
the Ocean application, the desirable properties do not hold true for more irregular applications,
particularly those in which the distribution of work among tasks or the communication pattern
changes unpredictably with time. For example, think of the stars in Barnes-Hut or the rays in
Raytrace. Let us look at the more flexible, lower-level programming models in which processes
have their own individual threads of control and communicate with each other when they please. 

2.4.5 Orchestration under the Shared Address Space Model

In a shared address space we can simply declare the matrix A as a single shared array—as we did
in the data parallel model—and processes can reference the parts of it they need using loads and
stores with exactly the same array indices as in a sequential program. Communication will be
generated implicitly as necessary. With explicit parallel processes, we now need mechanisms to
create the processes, coordinate them through synchronization, and control the assignment of
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1. int n, nprocs; /* grid size (n+2-by-n+2) and number of processes*/

2. float **A, diff = 0;

3. main()

4. begin

5. read(n); read(nprocs);; /* read input grid size and number of processes*/

6. A ← G_MALLOC (a 2-d array of size n+2 by n+2 doubles);

7. initialize(A); /* initialize the matrix A somehow */

8. Solve (A); /* call the routine to solve equation*/

9. end main

10. procedure Solve(A) /* solve the equation system */

11. float **A; /* A is an n+2 by n+2 array*/

12. begin

13. int i, j, done = 0;

14. float mydiff = 0, temp;

14a. DECOMP A[BLOCK,*];

15. while (!done) do /* outermost loop over sweeps */

16. mydiff = 0; /* initialize maximum difference to 0 */

17. for_all i ← 1 to n do /* sweep over non-border points of grid */

18. for_all j ← 1 to n do

19. temp = A[i,j]; /* save old value of element */

20. A[i,j] ← 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21. A[i,j+1] + A[i+1,j]); /*compute average */

22. mydiff += abs(A[i,j] - temp);

23. end for_all

24. end for_all

24a. REDUCE (mydiff, diff, ADD);

25. if (diff/(n*n) < TOL) then done = 1;

26. end while

27.end procedure

Figure  2-12  Pseudocode describing the data-parallel equation solver.

Differences from the sequential code are shown in italicized bold font. The decomposition is still into individual elements, as indi-
cated by the nested for_all loop. The assignment, indicated by the unfortunately labelled DECOMP statement, is into blocks of con-
tiguous rows (the first or column dimension is partitioned into blocks, and the second or row dimension is not partitioned). The
REDUCE statement sums the locally computed mydiffs into a global diff value. The while loop is still serial. 
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work to processes. The primitives we use are typical of low-level programming environments
such as parmacs [LO+87], and are summarized in Table 2-2. 

Pseudocode for the parallel equation solver in a shared address space is shown in Figure 2-13.
The special primitives for parallelism are shown in italicized bold font. They are typically imple-
mented as library calls or macros, each of which expands to a number of instructions that accom-
plish its goal. Although the code for the Solve procedure is remarkably similar to the sequential
version, let’s go through it one step at a time.

A single process is first started up by the operating system to execute the program, starting from
the procedure called main. Let’s call it the main process. It reads the input, which specifies the
size of the grid A (recall that input n denotes an (n+2) -by-(n+2) grid of which n-by-n points are
updated by the solver). It then allocates the grid A as a two-dimensional array in the shared
address space using the G_MALLOC call, and initializes the grid. The G_MALLOC call is similar
to a usual malloc call—used in the C programming language to allocate data dynamically in
the program’s heap storage—and it returns a pointer to the allocated data. However, it allocates
the data in a shared region of the heap, so they can be accessed and modified by any process. For
data that are not dynamically allocated on the heap, different systems make different assumptions
about what is shared and what is private to a process. Let us assume that all “global” data in the
sequential C programming sense—i.e. data declared outside any procedure, such as nprocs and
n in Figure 2-13—are shared. Data on a procedure’s stack (such as mymin, mymax, mydiff,
temp, i and j) are private to a process that executes the procedure, as are data allocated with a
regular malloc call (and data that are explicitly declared to be private, not used in this pro-
gram). 

Having allocated data and initialized the grid, the program is ready to start solving the system. It
therefore creates (nprocs-1) “worker” processes, which begin executing at the procedure
called Solve. The main process then also calls the Solve procedure, so that all nprocs processes

Table 2-2  Key Shared Address Space Primitives

Name Syntax Function

CREATE CREATE(p,proc,args)
Create p processes that start executing at 
procedure proc with arguments args.

G_MALLOC G_MALLOC(size) Allocate shared data of size bytes

LOCK LOCK(name) Acquire mutually exclusive access

UNLOCK UNLOCK(name) Release mutually exclusive access

BARRIER BARRIER(name, number)
Global synchronization among number 
processes: None gets past BARRIER until 
number have arrived 

WAIT_FOR_END WAIT_FOR_END(number) Wait for number processes to terminate

wait for flag
while (!flag); or

WAIT(flag)

Wait for flag to be set (spin or block); 
for point-to-point event synchronization.

set flag
flag = 1; or 

SIGNAL(flag)

Set flag; wakes up process spinning or 
blocked on flag, if any
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1. int n, nprocs; /* matrix dimension and number of processors to be used */
2a. float **A, diff; /*A is global (shared) array representing the grid */

/* diff is global (shared) maximum difference in current sweep */
2b. LOCKDEC(diff_lock); /* declaration of lock to enforce mutual exclusion */
2c. BARDEC (bar1); /* barrier declaration for global synchronization between sweeps*/

3. main() 

4. begin

5. read(n); read(nprocs); /* read input matrix size and number of processes*/
6. A ← G_MALLOC (a two-dimensional array of size n+2 by n+2 doubles);

7. initialize(A); /* initialize A in an unspecified way*/
8a. CREATE (nprocs-1, Solve, A);

8 Solve(A); /* main process becomes a worker too*/
8b. WAIT_FOR_END; /* wait for all child processes created to terminate */
9. end main

10. procedure Solve(A)

11. float **A; /* A is entire n+2-by-n+2 shared array, as in the sequential program */
12. begin

13. int i,j, pid, done = 0;

14. float temp, mydiff = 0; /* private variables/
14a. int mymin ← 1 + (pid * n/nprocs); /* assume that n is exactly divisible by  */
14b. int mymax ← mymin + n/nprocs - 1; /* nprocs for simplicity here*/

15. while (!done) do /* outer loop over all diagonal elements */ 
16. mydiff = diff = 0; /* set global diff to 0 (okay for all to do it) */ 
17. for i ← mymin to mymax do /* for each of my rows */ 
18. for j ← 1 to n do /* for all elements in that row */
19. temp = A[i,j];

20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21. A[i,j+1] + A[i+1,j]);

22. mydiff += abs(A[i,j] - temp); 

23. endfor

24. endfor

25a. LOCK(diff_lock); /* update global diff if necessary */
25b. diff += mydiff;

25c. UNLOCK(diff_lock);

25d. BARRIER(bar1, nprocs); /* ensure all have got here before checking if done*/

25e. if (diff/(n*n) < TOL) then done = 1; /* check convergence; all get same answer*/
25f. BARRIER(bar1, nprocs); /* see Exercise c */
26. endwhile

27.end procedure

Figure  2-13  Pseudocode describing the parallel equation solver in a shared address space. 

Line numbers followed by a letter denote lines that were not present in the sequential version. The numbers are chosen to match the
line or control structure in the sequential code with which the new lines are most closely related. The design of the data structures
does not have to change from the sequential program. Processes are created with the CREATE call, and the main process waits for
them to terminate at the end of the program with the WAIT_FOR_END call. The decomposition is into rows, since the inner loop is
unmodified, and the outer loop specifies the assignment of rows to processes. Barriers are used to separate sweeps (and to separate
the convergence test from further modification of the global diff variable), and locks are used to provide mutually exclusive access to
the global diff variable. 
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enter the procedure in parallel as equal partners. All created processes execute the same code
image until they exit from the program and terminate. This does not mean that they proceed in
lock-step or even execute the same instructions, since in general they may follow different con-
trol paths through the code. That is, we use a structured, single-program-multiple-data style of
programming. Control over the assignment of work to processes—and which data they access—
is maintained by a few private variables that acquire different values for different processes (e.g.
mymin and mymax), and by simple manipulations of loop control variables. For example, we
assume that every process upon creation obtains a unique process identifier (pid) between 0 and
nprocs-1 in its private address space, and in lines 12-13 uses this pid to determine which rows
are assigned to it. Processes synchronize through calls to synchronization primitives. We shall
discuss these primitives shortly

We assume for simplicity that the total number of rows n is an integer multiple of the number of
processes nprocs, so that every process is assigned the same number of rows. Each process cal-
culates the indices of the first and last rows of its assigned block in the private variables mymin
and mymax. It then proceeds to the actual solution loop. 

The outermost while loop (line 21) is still over successive grid sweeps. Although the iterations of
this loop proceed sequentially, each iteration or sweep is itself executed in parallel by all pro-
cesses. The decision of whether to execute the next iteration of this loop is taken separately by
each process (by setting the done variable and computing the while (!done) condition)
even though each will make the same decision: The redundant work performed here is very small
compared to the cost of communicating a completion flag or the diff value. 

The code that performs the actual updates (lines 19-22) is essentially identical to that in the
sequential program. Other than the bounds in the loop control statements, used for assignment,
the only difference is that each process maintains its own private variable mydiff. This private
variable keeps track of the total difference between new and old values for only its assigned grid
points. It is accumulated it once into the shared diff variable at the end of the sweep, rather
than adding directly into the shared variable for every grid point. In addition to the serialization
and concurrency reason discussed in Section 2.3.1, all processes repeatedly modifying and read-
ing the same shared variable causes a lot of expensive communication, so we do not want to do
this once per grid point. 

The interesting aspect of the rest of the program (line 23 onward) is synchronization, both mutual
exclusion and event synchronization, so the rest of the discussion will focus on it. First, the accu-
mulations into the shared variable by different processes have to be mutually exclusive. To see
why, consider the sequence of instructions that a processor executes to add its mydiff variable
(maintained say in register r2) into the shared diff variable; i.e. to execute the source state-
ment diff += mydiff:

Suppose the value in the variable diff is 0 to begin with, and the value of mydiff in each pro-
cess is 1. After two processes have executed this code we would expect the value in diff to be

load the value of diff into register r1

add the register r2 to register r1

store the value of register r1 into diff
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2. However, it may turn out to be 1 instead if the processes happen to execute their operations in
the interleaved order shown below. 

This is not what we intended. The problem is that a process (here P2) may be able to read the
value of the logically shared diff between the time that another process (P1) reads it and writes
it back. To prohibit this interleaving of operations, we would like the sets of operations from dif-
ferent processes to execute atomically (mutually exclusively) with respect to one another. The set
of operations we want to execute atomically or mutually exclusively is called a critical section.:
Once a process starts to execute the first of its three instructions above (its critical section), no
other process can execute any of the instructions in its corresponding critical section until the
former process has completed the last instruction in the critical section. The LOCK-UNLOCK pair
around line 25b achieves mutual exclusion.

A lock, such as cell_lock, can be viewed as a shared token that confers an exclusive right.
Acquiring the lock through the LOCK primitive gives a process the right to execute the critical
section. The process that holds the lock frees it when it has completed the critical section by issu-
ing an UNLOCK command. At this point, the lock is either free for another process to acquire or
be granted, depending on the implementation. The LOCK and UNLOCK primitives must be imple-
mented in a way that guarantees mutual exclusion. Our LOCK primitive takes as argument the
name of the lock being used. Associating names with locks allows us to use different locks to
protect unrelated critical sections, reducing contention and serialization.

Locks are expensive, and even a given lock can cause contention and serialization if multiple pro-
cesses try to access it at the same time. This is another reason to use a private mydiff variable to
reduce accesses to the shared variable. This technique is used in many operations called reduc-
tions (implemented by the REDUCE operation in the data parallel program). A reduction is a situ-
ation in which many processes (all, in a global reduction) perform associative operations (such as
addition, taking the maximum, etc.) on the same logically shared data. Associativity implies that
the order of the operations does not matter. Floating point operations, such as the ones here, are
strictly speaking not associative, since how rounding errors accumulate depends on the order of
operations. However, the effects are small and we usually ignore them, especially in iterative cal-
culations that are anyway approximations.

Once a process has added its mydiff into the global diff, it waits until all processes have done
so and the value contained in diff is indeed the total difference over all grid points. This
requires global event synchronization implemented here with a BARRIER. A barrier operation

P1 P2

r1 ← diff {P1 gets 0 in its r1}

r1 ← diff {P2 also gets 0}

r1 ← r1+r2 {P1 sets its r1 to 1}

r1 ← r1+r2 {P2 sets its r1 to 1}

diff ← r1 {P1 sets cell_cost to 1}

diff ← r1 {P2 also sets cell_cost to 1}
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takes as an argument the name of the barrier and the number of processes involved in the syn-
chronization, and is issued by all those processes. Its semantics are as follows. When a process
calls the barrier, it registers the fact that it has reached that point in the program. The process is
not allowed to proceed past the barrier call until the specified number of processes participating
in the barrier have issued the barrier operation. That is, the semantics of BARRIER(name,p)
are: wait until p processes get here and only then proceed. 

Barriers are often used to separate distinct phases of computation in a program. For example, in
the Barnes-Hut galaxy simulation we use a barrier between updating the positions of the stars at
the end of one time-step and using them to compute forces at the beginning of the next one, and
in data mining we may use a barrier between counting occurrences of candidate itemsets and
using the resulting large itemsets to generate the next list of candidates. Since they implement all-
to-all event synchronization, barriers are usually a conservative way of preserving dependences;
usually, not all operations (or processes) after the barrier actually need to wait for all operations
before the barrier. More specific, point-to-point or group event synchronization would enable
some processes to get past their synchronization event earlier; however, from a programming
viewpoint it is often more convenient to use a single barrier than to orchestrate the actual depen-
dences through point-to-point synchronization.

When point-to-point synchronization is needed, one way to orchestrate it in a shared address
space is with wait and signal operations on semaphores, with which we are familiar from operat-
ing systems. A more common way is by using normal shared variables as synchronization flags,
as shown in Figure 2-14. Since P1 simply spins around in a tight while loop for something to

happen, keeping the processor busy during this time, we call this spin-waiting or busy-waiting.
Recall that in the case of a semaphore the waiting process does not spin and consume processor
resources but rather blocks (suspends) itself, and is awoken when the other process signals the
semaphore. 

In event synchronization among subsets of processes, or group event synchronization, one or
more processes may act as producers and one or more as consumers. Group event synchroniza-
tion can be orchestrated either using ordinary shared variables as flags or by using barriers among
subsets of processes. 

P1 P2

A = 1;

a: while (flag is 0) do nothing; b: flag = 1;

print A; 

Figure  2-14  Point-to-point event synchronization using flags.

Suppose we want to ensure that a process P1 does not get past a certain point (say a) in the program until some other process P2 has
already reached another point (say b). Assume that the variable flag (and A) was initialized to 0 before the processes arrive at this sce-
nario. If P1 gets to statement a after P2 has already executed statement b, P1 will simply pass point a. If, on the other hand, P2 has not
yet executed b, then P1 will remain in the “idle” while loop until P2 reaches b and sets flag to 1, at which point P1 will exit the idle
loop and proceed. If we assume that the writes by P2 are seen by P1 in the order in which they are performed, then this synchroniza-
tion will ensure that P1 prints the value 1 for A. 
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Once it is past the barrier, a process reads the value of diff and examines whether the average
difference over all grid points (diff/(n*n)) is less than the error tolerance used to determine
convergence. If so, it sets the done flag to exit from the while loop; if not, it goes on to perform
another sweep. 

Finally, the WAIT_FOR_END called by the main process at the end of the program (line 11) is a
particular form of all-to-one synchronization. Through it, the main process waits for all the
worker processes it created to terminate. The other processes do not call WAIT_FOR_END, but
implicitly participate in the synchronization by terminating when they exit the Solve procedure
that was their entry point into the program.

In summary, for this simple equation solver the parallel program in a shared address space is not
too different in structure from the sequential program. The major differences are in the control
flow—which are implemented by changing the bounds on some loops—in creating processes and
in the use of simple and generic synchronization primitives. The body of the computational loop
is unchanged, as are the major data structures and references to them. Given a strategy for
decomposition, assignment and synchronization, inserting the necessary primitives and making
the necessary modifications is quite mechanical in this example. Changes to decomposition and
assignment are also easy to incorporate. While many simple programs have this property in a
shared address space we will see later that more substantial changes are needed as we seek to
obtain higher and higher parallel performance, and also as we address more complex parallel pro-
grams.
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Example  2-2 How would the code for the shared address space parallel version of the equation
solver change if we retained the same decomposition into rows but changed to a
cyclic or interleaved assignment of rows to processes?

Answer Figure 2-15 shows the relevant pseudocode. All we have changed in the code is the

control arithmetic in line 17. The same global data structure is used with the same
indexing, and all the rest of the parallel program stays exactly the same. 

2.4.6 Orchestration under the Message Passing Model

We now examine a possible implementation of the parallel solver using explicit message passing
between private address spaces, employing the same decomposition and assignment as before.
Since we no longer have a shared address space, we cannot simply declare the matrix A to be
shared and have processes reference parts of it as they would in a sequential program. Rather, the
logical data structure A must be represented by smaller data structures, which are allocated
among the private address spaces of the cooperating processes in accordance with the assignment
of work. The process that is assigned a block of rows allocates those rows as a sub-grid in its
local address space. 

The message-passing program shown in Figure 2-16 is structurally very similar to the shared
address space program in Figure 2-13 (more complex programs will reveal further differences in
the next chapter, see Section 3.7). Here too, a main process is started by the operating system
when the program executable is invoked, and this main process creates (nprocs-1) other pro-
cesses to collaborate with it. We assume that every created process acquires a process identifier
pid between 0 and nprocs-1, and that the CREATE call allows us to communicate the pro-
gram’s input parameters (n and nprocs) to the address space of each process.1 The outermost

1.  An alternative organization is to use what is called a “hostless” model, in which there is no single main
process. The number of processes to be used is specified to the system when the program is invoked. The
system then starts up that many processes and distributes the code to the relevant processing nodes. There is
no need for a CREATE primitive in the program itself, every process reads the program inputs (n and
nprocs) separately, though processes still acquire unique user-level pid’s. 

17. for i ← pid+1 to n by nprocs do /* for my interleaved set of rows*/ 
18. for j ← 1 to n do /* for all elements in that row */
19. temp = A[i,j];

20. A[i,j] ¨ 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +

21. A[i,j+1] + A[i+1,j]);

22. mydiff += abs(A[i,j] - temp); 

23. endfor

24. endfor

Figure  2-15  Cyclic assignment of row-based solver in a shared address space.

All that changes in the code from the block assignment of rows in Figure 2-13 is first for statement in line 17. The data structures or
accesses to them do not have to be changed. 
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1. int pid, n, nprocs; /* process id, matrix dimension and number of processors to be used */
2. float **myA;

3. main() 

4. begin

5. read(n);  read(nprocs); /* read input matrix size and number of processes*/
8a. CREATE (nprocs-1 processes that start at procedure Solve);

8b. Solve(); /* main process becomes a worker too*/
8c. WAIT_FOR_END; /* wait for all child processes created to terminate */
9. end main

10. procedure Solve()

11. begin

13. int i,j, pid, n’ = n/nprocs, done = 0;

14. float temp, tempdiff, mydiff = 0; /* private variables/
6. myA ← malloc(a 2-d array of size [n/nprocs + 2] by n+2);/* my assigned rows of A */
7. initialize(myA); /* initialize my rows of A, in an unspecified way*/

15.while (!done) do 

16. mydiff = 0; /* set local diff to 0 */ 
16a.if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);

16b. if (pid = nprocs-1) then SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);

16c. if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW);

16d. if (pid != nprocs-1) then RECEIVE(&myA[n’+1,0],n*sizeof(float),pid+1,ROW);

/* border rows of neighbors have now been copied into myA[0,*] and myA[n’+1,*] */
17. for i ← 1 to n’ do /* for each of my rows */ 
18. for j ← 1 to n do /* for all elements in that row */
19. temp = myA[i,j];

20. myA[i,j] ¨ 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +

21. myA[i,j+1] + myA[i+1,j]);

22. mydiff += abs(myA[i,j] - temp);

23. endfor

24. endfor

/* communicate local diff values and obtain determine if done; can be replaced by reduction and broadcast */
25a. if (pid != 0) then /* process 0 holds global total diff*/
25b. SEND(mydiff,sizeof(float),0,DIFF); 

25c. RECEIVE(mydiff,sizeof(float),0,DONE); 

25d. else

25e. for i ← 1 to nprocs-1 do /* for each of my rows */ 
25f. RECEIVE(tempdiff,sizeof(float),*,DONE); 

25g. mydiff += tempdiff; /* accumulate into total */
25h. endfor

25i. for i ← 1 to nprocs-1 do /* for each of my rows */ 
25j. SEND(done,sizeof(int),i,DONE); 

25k. endfor

25l. endif

26. if (mydiff/(n*n) < TOL) then done = 1;

27. endwhile

28. end procedure

Figure  2-16  Pseudocode describing parallel equation solver with explicit message-passing.

Now the meaning of the data structures and the indexing of them changes in going to the parallel code. Each process has its own myA
data structure that represents its assigned part of the grid, and myA[i,j] referenced by different processes refers to different parts of
the logical overall grid. The communication is all contained in lines 16 a-d and 25 a-f. No locks or barriers are needed, since the syn-
chronization is implicit in the send-receive pairs. Several extra lines of code are added to orchestrate the communication with simple
sends and receives.
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loop of the Solve routine (line 15) still iterates over grid sweeps until convergence. In every
iteration a process performs the computation for its assigned rows and communicates as neces-
sary. The major differences are in the data structures used to represent the logically shared matrix
A and in how interprocess communication is implemented. We shall focus on these differences.

Instead of representing the matrix to be factored as a single global (n+2)-by-(n+2) array A, each
process in the message-passing program allocates an array called myA of size (nprocs/n +
2)-by-(nprocs/n + 2) in its private address space. This array represents its assigned
nprocs/n rows of the logically shared matrix A, plus two rows at the edges to hold the bound-
ary data from its neighboring partitions. The boundary rows from its neighbors must be commu-
nicated to it explicitly and copied into these extra or ghost rows. Ghost rows are used because
without them the communicated data would have to received into separate one-dimensional
arrays with different names created specially for this purpose, which would complicate the refer-
encing of the data when they are read in the inner loop (lines 20-21). Communicated data have to
be copied into the receiver’s private address space anyway, so programming is made easier by
extending the existing data structure rather than allocating new ones. 

Recall from Chapter 1 that both communication and synchronization in a message passing pro-
gram are based on two primitives: SEND and RECEIVE. The program event that initiates data
transfer is the SEND operation, unlike in a shared address space where data transfer is usually ini-
tiated by the consumer or receiver using a load instruction. When a message arrives at the desti-
nation processor, it is either kept in the network queue or temporarily stored in a system buffer
until a process running on the destination processor posts a RECEIVE for it. With a RECEIVE,
a process reads an incoming message from the network or system buffer into a designated portion
of the private (application) address space. A RECEIVE does not in itself cause any data to be
transferred across the network. 

Our simple SEND and RECEIVE primitives assume that the data being transferred are in a con-
tiguous region of the virtual address space. The arguments in our simple SEND call are the start
address—in the sending processor’s private address space—of the data to be sent, the size of the
message in bytes, the pid of the destination process—which we must be able to name now, unlike
in a shared address space—and an optional tag or type associated with the message for matching
at the receiver. The arguments to the RECEIVE call are a local address at which to place the
received data, the size of the message, the sender’s process id, and the optional message tag or
type. The sender’s id and the tag, if present, are used to perform a match with the messages that
have arrived and are in the system buffer, to see which one corresponds to the receive. Either or
both of these fields may be wild-cards, in which case they will match a message from any source
process or with any tag, respectively. SEND and RECEIVE primitives are usually implemented in
a library on a specific architecture, just like BARRIER and LOCK in a shared address space. A
full set of message passing primitives commonly used in real programs is part of a standard
called the Message Passing Interface (MPI), described at different levels of detail in [Pac96,
MPI93, GLS94]. A significant extension is transfers of non-contiguous regions of memory, either
with regular stride—such as every tenth word in between addresses a and b, or four words every
sixth word—or by using index arrays to specify unstructured addresses from which to gather
data on the sending side or to which to scatter data on the receiving side. Another is a large
degree of flexibility in specifying tags to match messages and in the potential complexity of a
match. For example, processes may be divided into groups that communicate certain types of
messages only to each other, and collective communication operations may be provided as
described below. 
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Semantically, the simplest forms of SEND and RECEIVE we can use in our program are the so
called synchronous forms. A synchronous SEND returns control to the calling process only when
it is clear that the corresponding RECEIVE has been performed. A synchronous RECEIVE
returns control when the data have been received into the destination buffer. Using synchronous
messages, our implementation of the communication in lines 16a-d is actually deadlocked. All
processors do their SEND first and stall until the corresponding receive is performed, so none
will ever get to actually perform their RECEIVE! In general, synchronous message passing can
easily deadlock on pairwise exchanges of data if we are not careful. One way to avoid this prob-
lem is to have every alternate processor do its SENDs first followed by its RECEIVEs, and the
others start do their RECEIVEs first followed by their SENDs. The alternative is to use different
semantic flavors of send and receive, as we will see shortly. 

The communication is done all at once at the beginning of each iteration, rather than element-by-
element as needed in a shared address space. It could be done element by element, but the over-
head of send and receive operations is usually too large to make this approach perform reason-
ably. As a result, unlike in the shared address space version there is no computational asynchrony
in the message-passing program: Even though one process updates its boundary rows while its
neighbor is computing in the same sweep, the neighbor is guaranteed not see the updates in the
current sweep since they are not in its address space. A process therefore sees the values in its
neighbors’ boundary rows as they were at the end of the previous sweep, which may cause more
sweeps to be needed for convergence as per our earlier discussion (red-black ordering would
have been particularly useful here). 

Once a process has received its neighbors’ boundary rows into its ghost rows, it can update its
assigned points using code almost exactly like that in the sequential and shared address space
programs. Although we use a different name (myA) for a process’s local array than the A used in
the sequential and shared address space programs, this is just to distinguish it from the logically
shared entire grid A which is here only conceptual; we could just as well have used the name A).
The loop bounds are different, extending from 1 to nprocs/n (substituted by n’ in the code)
rather than 0 to n-1 as in the sequential program or mymin to mymax in the shared address
space program. In fact, the indices used to reference myA are local indices, which are different
than the global indices that would be used if the entire logically shared grid A could be referenced
as a single shared array. That is, the myA[1,j] reference by different processes refers to differ-
ent rows of the logically shared grid A. The use of local index spaces can be somewhat more
tricky in cases where a global index must also be used explicitly, as seen in Exercise 2.4. 

Synchronization, including the accumulation of private mydiff variables into a logically shared
diff variable and the evaluation of the done condition, is performed very differently here than
in a shared address space. Given our simple synchronous sends and receives which block the
issuing process until they complete, the send-receive match encapsulates a synchronization event,
and no special operations (like locks and barriers) or additional variables are needed to orches-
trate mutual exclusion or event synchronization. Consider mutual exclusion. The logically shared
diff variable must be allocated in some process’s private address space (here process 0). The
identity of this process must be known to all the others. Every process sends its mydiff value to
process 0, which receives them all and adds them to the logically shared global diff. Since only
it can manipulate this logically shared variable mutual exclusion and serialization are natural and
no locks are needed. In fact, process 0 can simply use its own mydiff variable as the global
diff. 
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Now consider the global event synchronization for determining the done condition. Once it has
received the mydiff values from all the other processes and accumulated them, it sends the
accumulated value to all the other processes, which are waiting for it with receive calls. There is
no need for a barrier since the completion of the receive implies that all processes’s mydiffs
have been accumulated since process 0 has sent out the result. The processes then compute the
done condition to determine whether or not to proceed with another sweep. We could instead
have had process 0 alone compute the done condition and then send the done variable, not the
diff value, to the others, saving the redundant calculation of the done condition. We could, of
course, implement lock and barrier calls using messages if that is more convenient for program-
ming, although that may lead to request-reply communication and more round-trip messages.
More complex send-receive semantics than the synchronous ones we have used here may require
additional synchronization beyond the messages themselves, as we shall see.

Notice that the code for the accumulation and done condition evaluation communication has
expanded to several lines when using only point-to-point SENDs and RECEIVEs as communica-
tion operations. In practice, programming environments would provide library functions like
REDUCE (accumulate values from private variables in multiple processes to a single variable in
a given process) and BROADCAST (send from one process to all processes) to the programmer
which the application processes could use directly to simplify the codein these stylized situa-
tions. Using these, lines 25a through 25b in Figure 2-16 can be replaced by the two lines in
Figure 2-17. The system may provide special support to improve the performance of these and
other collective communication operations (such as multicast from one to several or even several
to several processes, or all-to-all communication in which every process transfers data to every
other process), for example by reducing the software overhead at the sender to that of a single
message, or they may be built on top of the usual point to point send and receive in user-level
libraries for programming convenience only. 

Finally, we said earlier that send and receive operations come in different semantic flavors,
which we could use to solve our deadlock problem. Let us examine this a little further. The main
axis along which these flavors differ is their completion semantics; i.e. when they return control
to the user process that issued the send or receive. These semantics affect when the data struc-
tures or buffers they use can be reused without compromising correctness. There are two major
kinds of send/receive—synchronous and asynchronous. Within the class of asynchronous mes-

/* communicate local diff values and determine if done, using reduction and broadcast */
25b. REDUCE(0,mydiff,sizeof(float),ADD); 

25c. if (pid == 0) then 

25i. if (mydiff/(n*n) < TOL) then done = 1;

26. endif
25k. BROADCAST(0,done,sizeof(int),DONE); 

Figure  2-17  Accumulation and convergence determination in the solver using REDUCE and BROADCAST instead of SEND and
RECEIVE. 

The first argument to the REDUCE call is the destination process. All but this process will do a send to this process in the implementa-
tion of REDUCE, while this process will do a receive. The next argument is the private variable to be reduced from (in all other pro-
cesses than the destination) and to (in the destination process), and the third argument is the size of this variable. The last argument is
the function to be performed on the variables in the reduction. Similarly, the first argument of the BROADCAST call is the sender; this
process does a send and all others do a receive. The second argument is the variable to be broadcast and received into, and the third is
its size. The final argument is the optional message type.
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sages, there are two major kinds: blocking and non-blocking. Let us examine these and see how
they might be used in our program. 

Synchronous sends and receives are what we assumed above, since they have the simplest seman-
tics for a programmer. A synchronous send returns control to the calling process only when the
corresponding synchronous receive at the destination end has completed successfully and
returned an acknowledgment to the sender. Until the acknowledgment is received, the sending
process is suspended and cannot execute any code that follows the send. Receipt of the acknowl-
edgment implies that the receiver has retrieved the entire message from the system buffer into
application space. Thus, the completion of the send guarantees (barring hardware errors) that the
message has been successfully received, and that all associated data structures and buffers can be
reused. 

A blocking asynchronous send returns control to the calling process when the message has been
taken from the sending application’s source data structure and is therefore in the care of the sys-
tem. This means that when control is returned, the sending process can modify the source data
structure without affecting that message. Compared to a synchronous send, this allows the send-
ing process to resume sooner, but the return of control does not guarantee that the message will
actually be delivered to the appropriate process. Obtaining such a guarantee would require addi-
tional handshaking. A blocking asynchronous receive is similar in that it returns control to the
calling process only when the data it is receiving have been successfully removed from the sys-
tem buffer and placed at the designated application address. Once it returns, the application can
immediately use the data in the specified application buffer. Unlike a synchronous receive, a
blocking receive does not send an acknowledgment to the sender. 

The nonblocking asynchronous send and receive allow the greatest overlap between computation
and message passing by returning control most quickly to the calling process. A nonblocking
send returns control immediately. A nonblocking receive returns control after simply posting the
intent to receive; the actual receipt of the message and placement into a specified application data
structure or buffer is performed asynchronously at an undetermined time by the system, on the
basis of the posted receive. In both the nonblocking send and receive, however, the return of con-
trol does not imply anything about the state of the message or the application data structures it
uses, so it is the user’s responsibility to determine that state when necessary. The state can be
determined through separate calls to primitives that probe (query) the state. Nonblocking mes-
sages are thus typically used in a two-phase manner: first the send/receive operation itself, and
then the probes. The probes—which must be provided by the message-passing library—might
either block until the desired state is observed, or might return control immediately and simply
report what state was observed. 

Which kind of send/receive semantics we choose depends on how the program uses its data struc-
tures, and on how much we want to optimize performance over ease of programming and porta-
bility to systems with other semantics. The semantics mostly affects event synchronization, since
mutual exclusion falls out naturally from having only private address spaces. In the equation
solver example, using asynchronous sends would avoid the deadlock problem since processes
would proceed past the send and to the receive. However, if we used nonblocking asynchronous
receives, we would have to use a probe before actually using the data specified in the receive.
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Note that a blocking send/receive is equivalent to a nonblocking send/receive followed immedi-
ately by a blocking probe. 

We leave it as an exercise to transform the message passing version to use a cyclic assignment, as
was done for the shared address space version in Example 2-2. The point to observe in that case
is that while the two message-passing versions will look syntactically similar, the meaning of the
myA data structure will be completely different. In one case it is a section of the global array and
in the other is a set of widely separated rows. Only by careful inspection of the data structures
and communication patterns can one determine how a given message-passing version corre-
sponds to the original sequential program.

2.5 Concluding Remarks

Starting from a sequential application, the process of parallelizing the application is quite struc-
tured: We decompose the work into tasks, assign the tasks to processes, orchestrate data access,
communication and synchronization among processes, and optionally map processes to proces-
sors. For many applications, including the simple equation solver used in this chapter, the initial
decomposition and assignment are similar or identical regardless of whether a shared address
space or message passing programming model is used. The differences are in orchestration, par-
ticularly in the way data structures are organized and accessed and the way communication and
synchronization are performed. A shared address space allows us to use the same major data
structures as in a sequential program: Communication is implicit through data accesses, and the
decomposition of data is not required for correctness. In the message passing case we must syn-
thesize the logically shared data structure from per-process private data structures: Communica-
tion is explicit, explicit decomposition of data among private address spaces (processes) is
necessary, and processes must be able to name one another to communicate. On the other hand,

Table 2-3  Some Basic Message Passing Primitives.

Name Syntax Function

CREATE CREATE(procedure) Create process that starts at procedure

BARRIER BARRIER(name, number)
Global synchronization among number 
processes: None gets past BARRIER until 
number have arrived 

WAIT_FOR_END WAIT_FOR_END(number) Wait for number processes to terminate

SEND
SEND(src_addr, size, 
dest, tag)

Send size bytes starting at src_addr 
to the dest process, with tag identifier

RECEIVE
RECEIVE(buffer_addr, 
size, src, tag)

Receive a message with the tag identifier 
from the src process, and put size bytes 
of it into buffer starting at buffer_addr 

SEND_PROBE SEND_PROBE(tag, dest)

Check if message with identifier tag has 
been sent to process dest (only for asyn-
chronous message passing, and meaning 
depends on semantics discussed above)

RECV_PROBE RECV_PROBE(tag, src)

Check if message with identifier tag has 
been received from process src (only for 
asynchronous message passing, and mean-
ing depends on semantics)
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while a shared address space program requires additional synchronization primitives separate
from the loads and stores used for implicit communication, synchronization is bundled into the
explicit send and receive communication in many forms of message passing. As we examine the
parallelization of more complex parallel applications such as the four case studies introduced in
this chapter, we will understand the implications of these differences for ease of programming
and for performance. 

The parallel versions of the simple equation solver that we described here were purely to illus-
trate programming primitives. While we did not use versions that clearly will perform terribly
(e.g. we reduced communication by using a block rather than cyclic assignment of rows, and we
reduced both communication and synchronization dramatically by first accumulating into local
mydiffs and only then into a global diff), they can use improvement. We shall see how in the
next chapter, as we turn our attention to the performance issues in parallel programming and how
positions taken on these issues affect the workload presented to the architecture. 
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2.7 Exercises

2.1  Short Answer Questions:

a. Describe two examples where the a good parallel algorithm must be based on a serial 
algorithm that is different than the best serial algorithm, since the latter does not afford 
enough concurrency. 

b. Which of the case study applications that we have described (Ocean, Barnes-Hut, Ray-
trace) do you think are amenable to decomposing data rather than computation and using 
an owner computes rule in parallelization? What do you think would be the problem(s) 
with using a strict data distribution and owner computes rule in the others? 

2.2  <2.4.5>There are two dominant models for how parent and children processes relate to each
other in a shared address space. In the heavyweight UNIX process fork model, when a pro-
cess creates another, the child gets a private copy of the parent’s image: that is, if the parent
had allocated a variable x, then the child also finds a variable x in its address space which is
initialized to the value that the parent had for x when it created the child; however, any modi-
fications that either process makes subsequently are to its own copy of x and are not visible to
the other process. In the lightweight threads model, the child process or thread gets a pointer
to the parent’s image, so that it and the parent now see the same storage location for x. All
data that any process or thread allocates are shared in this model, except those that are on a
procedure’s stack. 

a. Consider the problem of a process having to reference its process identifier procid in vari-
ous parts of a program, in different routines in a call chain from the routine at which the 
process begins execution. How would you implement this in the first case? In the second? 
Do you need private data per process, or could you do this with all data being globally 
shared?

b. A program written in the former (fork) model may rely on the fact that a child process 
gets its own private copies of the parents’ data structures. What changes would you make 
to port the program to the latter (threads) model for data structures that are (i) only read by 
processes after the creation of the child, (ii) are both read and written? What performance 
issues might arise in designing the data structures (you will be better equipped to answer 
this part of the question after reading the next few chapters)?

2.3  Synchronization.

a. The classic bounded buffer problem provides an example of point-to-point event synchro-
nization. Two processes communicate through a finite buffer. One process—the pro-
ducer—adds data items to a buffer when it is not full, and another—the consumer—reads 
data items from the buffer when it is not empty. If the consumer finds the buffer empty, it 
must wait till the producer inserts an item. When the producer is ready to insert an item, it 
checks to see if the buffer is full, in which case it must wait till the consumer removes 
something from the buffer. If the buffer is empty when the producer tries to add an item, 
depending on the implementation the consumer may be waiting for notification, so the 
producer may need to notify the consumer. Can you implement a bounded buffer with 
only point-to-point event synchronization, or do you need mutual exclusion as well. 
Design an implementation, including pseudocode.
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b. Why wouldn’t we use spinning for interprocess synchronization in uniprocessor operating 
systems? What do you think are the tradeoffs between blocking and spinning on a multi-
processor?

c. In the shared address space parallel equation solver (Figure 2-13 on page 114), why do we 
need the second barrier at the end of a while loop iteration (line 25f)? Can you eliminate it 
without inserting any other synchronization, but perhaps modifying when certain opera-
tions are performed? Think about all possible scenarios. 

2.4  Do LU factorization as an exercise. Describe, give a simple contiguous decomposition and
assignment, draw concurrency profile, estimate speedup assuming no communication over-
heads, and ask to implement in a shared address space and in message passing. Modify the
message-passing pseudocode to implement an interleaved assignment. Use both synchronous
and asynchronous (blocking) sends and receives. Then interleaving in both directions, do the
same. 

2.5  More synchronization. Suppose that a system supporting a shared address space did not sup-
port barriers but only semaphores. Event synchronization would have to be constructed
through semaphores or ordinary flags. To coordinate P1 indicating to P2 that it has reached
point a (so that P2 can proceed past point b where it was waiting) using semaphores, P1 per-
forms a wait (also called P or down) operation on a semaphore when it reaches point a, and
P2 performs a signal (or V or up) operation on the same semaphore when it reaches point b. If
P1 gets to a before P2 gets to b, P1 suspends itself and is awoken by P2’s signal operation.

a. How might you orchestrate the synchronization in LU factorization with (i) flags and (ii) 
semaphores replacing the barriers. Could you use point-to-point or group event synchro-
nization instead of global event synchronization?

b. Answer the same for the equation solver example.

2.6  Other than the above “broadcast” approach, LU factorization can also be parallelized in a
form that is more aggressive in exploiting the available concurrency. We call this form the
pipelined form of parallelization, since an element is computed from the producing process to
a consumer in pipelined form via other consumers, which use the element as they communi-
cate it in the pipeline. 

a. Write shared-address-space pseudocode, at a similar level of detail as Figure 2-13 on 
page 114, for a version that implements pipelined parallelism at the granularity of individ-
ual elements (as described briefly in Section 2.4.2). Show all synchronization necessary. 
Do you need barriers?

b. Write message-passing pseudocode at the level of detail of Figure 2-16 on page 120 for 
the above pipelined case. Assume that the only communication primitives you have are 
synchronous and asynchronous (blocking and nonblocking) sends and receives. Which 
versions of send and receive would you use, and why wouldn’t you choose the others?

c. Discuss the tradeoffs (programming difficulty and likely performance differences) in pro-
gramming the shared address space and message-passing versions.

d. Discuss the tradeoffs in programming the loop-based versus pipelined parallelism

2.7  Multicast (sending a message from one process to a named list of other processes) is a useful
mechanism for communicating among subsets of processes. 

a. How would you implement the message-passing, interleaved assignment version of LU 
factorization with multicast rather than broadcast? Write pseudocode, and compare the 
programming ease of the two versions. 

b. Which do you think will perform better and why? 
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c. What other “group communication” primitives other than multicast do you think might be 
useful for a message passing system to support? Give examples of computations in which 
they might be used. 
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CHAPTER 3

 

Programming for Performance

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

3.1 Introduction

 

The goal of using multiprocessors is to obtain high performance. Having understood concretely
how the decomposition, assignment and orchestration of a parallel program are incorporated in
the code that runs on the machine, we are ready to examine the key factors that limit parallel per-
formance, and understand how they are addressed in a wide range of problems. We will see how
decisions made in different steps of the programming process affect the runtime characteristics
presented to the architecture, as well as how the characteristics of the architecture influence pro-
gramming decisions. Understanding programming techniques and these interdependencies is
important not just for parallel software designers but also for architects. Besides helping us
understand parallel programs as workloads for the systems we build, it also helps us appreciate
hardware-software tradeoffs; that is, in what aspects of programmability and performance can the
architecture be of assistance, and what aspects are best left to software. The interdependencies of
program and system are more fluid, more complex and have far greater performance impact in
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multiprocessors than in uniprocessors; hence, this understanding is very important to our goal of
designing high-performance systems that reduce cost and programming effort. We will carry it
forward with us throughout the book, starting with concrete guidelines for workload-driven
architectural evaluation in the next chapter.

The space of performance issues and techniques in parallel software is very rich: Different goals
trade off with one another, and techniques that further one goal may cause us to revisit the tech-
niques used to address another. This is what makes the creation of parallel software so interest-
ing. As in uniprocessors, most performance issues can be addressed either by algorithmic and
programming techniques in software or by architectural techniques or both. The focus of this
chapter is on the issues and on software techniques. Architectural techniques, sometimes hinted
at here, are the subject of the rest of the book.

While there are several interacting performance issues to contend with, they are not all dealt with
at once. The process of creating a high-performance program is one of successive refinement. As
discussed in Chapter 2, the partitioning steps—decomposition and assignment—are largely inde-
pendent of the underlying architecture or communication abstraction, and concern themselves
with major algorithmic issues that depend only on the inherent properties of the problem. In par-
ticular, these steps view the multiprocessor as simply a set of processors that communicate with
one another. Their goal is to resolve the tension between balancing the workload across pro-
cesses, reducing interprocess communication, and reducing the extra work needed to compute
and manage the partitioning. We focus our attention first on addressing these partitioning issues.

Next, we open up the architecture and examine the new performance issues it raises for the
orchestration and mapping steps. Opening up the architecture means recognizing two facts. The
first fact is that a multiprocessor is not only a collection of processors but also a collection of
memories, one that an individual processor can view as an extended memory hierarchy. The man-
agement of data in these memory hierarchies can cause more data to be transferred across the net-
work than the inherent communication mandated by the partitioning of the work among
processes in the parallel program. The actual communication that occurs therefore depends not
only on the partitioning but also on how the program’s access patterns and locality of data refer-
ence interact with the organization and management of the extended memory hierarchy. The sec-
ond fact is that the cost of communication as seen by the processor—and hence the contribution
of communication to the execution time of the program—depends not only on the amount of
communication but also on how it is structured to interact with the architecture. The relationship
between communication, data locality and the extended memory hierarchy is discussed in
Section 3.3. Then, Section 3.4 examines the software techniques to address the major perfor-
mance issues in orchestration and mapping: techniques for reducing the extra communication by
exploiting data locality in the extended memory hierarchy, and techniques for structuring com-
munication to reduce its cost. 

Of course, the architectural interactions and communication costs that we must deal with in
orchestration sometimes cause us to go back and revise our partitioning methods, which is an
important part of the refinement in parallel programming. While there are interactions and
tradeoffs among all the performance issues we discuss, the chapter discusses each independently
as far as possible and identifies tradeoffs as they are encountered. Examples are drawn from the
four case study applications throughout, and the impact of some individual programming tech-
niques illustrated through measurements on a particular cache-coherent machine with physically
distributed memory, the Silicon Graphics Origin2000, which is described in detail in
Chapter 8.The equation solver kernel is aso carried through the discussion, and the performance
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techniques are applied to it as relevant, so by the end of the discussion we will have created a
high-performance parallel version of the solver. 

As we go through the discussion of performance issues, we will develop simple analytical mod-
els for the speedup of a parallel program, and illustrate how each performance issue affects the
speedup equation. However, from an architectural perspective, a more concrete way of looking at
performance is to examine the different components of execution time as seen by an individual
processor in a machine; i.e. how much time the processor spends executing instructions, access-
ing data in the extended memory hierarchy, and waiting for synchronization events to occur. In
fact, these components of execution time can be mapped directly to the performance factors that
software must address in the steps of creating a parallel program. Examining this view of perfor-
mance helps us understand very concretely what a parallel execution looks like as a workload
presented to the architecture, and the mapping helps us understand how programming techniques
can alter this profile. Together, they will help us learn how to use programs to evaluate architec-
tural tradeoffs in the next chapter. This view and mapping are discussed in Section 3.5. 

Once we have understood the performance issues and techniques, we will be ready to do what we
wanted to all along: understand how to create high-performance parallel versions of complex,
realistic applications; namely, the four case studies. Section 3.6 applies the parallelization pro-
cess and the performance techniques to each case study in turn, illustrating how the techniques
are employed together and the range of resulting execution characteristics presented to an archi-
tecture, reflected in varying profiles of execution time. We will also finally be ready to fully
understand the implications of realistic applications and programming techniques for tradeoffs
between the two major lower-level programming models: a shared address space and explicit
message passing. The tradeoffs of interest are both in ease of programming and in performance,
and will be discussed in Section 3.7. Let us begin with the algorithmic performance issues in the
decomposition and assignment steps. 

 

3.2 Partitioning for Performance

 

For these steps, we can view the machine as simply a set of cooperating processors, largely ignor-
ing its programming model and organization. All we know at this stage is that communication
between processors is expensive. The three primary algorithmic issues are: 

 

•

 

balancing

 

 the workload and reducing the time spent waiting at synchronization events

 

•

 

reducing 

 

communication

 

, and 

 

•

 

reducing the 

 

extra work

 

 done to determine and manage a good assignment. 

Unfortunately, even the three primary algorithmic goals are at odds with one another and must be
traded off. A singular goal of minimizing communication would be satisfied by running the pro-
gram on a single processor, as long as the necessary data fit in the local memory, but this would
yield the ultimate load imbalance. On the other hand, near perfect load balance could be
achieved, at a tremendous communication and task management penalty, by making each primi-
tive operation in the program a task and assigning tasks randomly. And in many complex applica-
tions load balance and communication can be improved by spending more time determining a
good assignment (extra work). The goal of decomposition and assignment is to achieve a good
compromise between these conflicting demands. Fortunately, success is often not so difficult in
practice, as we shall see. Throughout our discussion of performance issues, the four case studies
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from Chapter 2 will be used to illustrate issues and techniques. They will later be presented as
complete case studies addressing all the performance issues in Section 3.6. For each issue, we
will also see how it is applied to the simple equation solver kernel from Chapter 2, resulting at
the end in a high performance version. 

 

3.2.1 Load Balance and Synchronization Wait Time

 

In its simplest form, balancing the workload means ensuring that every processor does the same
amount of work. It extends exposing enough concurrency—which we saw earlier—with proper
assignment and reduced serialization, and gives the following simple limit on potential speedup:

Work, in this context, should be interpreted liberally, because what matters is not just how many
calculations are done but the time spent doing them, which involves data accesses and communi-
cation as well.

In fact, load balancing is a little more complicated than simply equalizing work. Not only should
different processors do the same amount of work, but they should be working at the same time.
The extreme point would be if the work were evenly divided among processes but only one pro-
cess were active at a time, so there would be no speedup at all! The real goal of load balance is to
minimize the time processes spend waiting at synchronization points, including an implicit one at
the end of the program. This also involves minimizing the serialization of processes due to either
mutual exclusion (waiting to enter critical sections) or dependences. The assignment step should
ensure that reduced serialization is possible, and orchestration should ensure that it happens. 

There are four parts to balancing the workload and reducing synchronization wait time: 

 

•

 

Identifying enough concurrency in decomposition, and overcoming Amdahl’s Law. 

 

•

 

Deciding how to manage the concurrency (statically or dynamically).

 

•

 

Determining the granularity at which to exploit the concurrency.

 

•

 

Reducing serialization and synchronization cost. 

This section examines some techniques for each, using examples from the four case studies and
other applications as well. 

 

Identifying Enough Concurrency: Data and Function Parallelism

 

We saw in the equation solver that concurrency may be found by examining the loops of a pro-
gram or by looking more deeply at the fundamental dependences. Parallelizing loops usually
leads to similar (not necessarily identical) operation sequences or functions being performed on
elements of a large data structure(s). This is called 

 

data parallelism

 

, and is a more general form
of the parallelism that inspired data parallel architectures discussed in Chapter 1. Computing
forces on different particles in Barnes-Hut is another example. 

In addition to data parallelism, applications often exhibit 

 

function parallelism

 

 as well: Entirely
different calculations are performed concurrently on either the same or different data. 

 

Function
parallelism

 

 is often referred to as control parallelism or task parallelism, though these are over-
loaded terms. For example, setting up an equation system for the solver in Ocean requires many

Speedupproblem p( ) Sequential Work
max Work on any Processor
--------------------------------------------------------------------≤
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different computations on ocean cross-sections, each using a few cross-sectional grids. Analyzing
dependences at the grid or array level reveals that several of these computations are independent
of one another and can be performed in parallel. Pipelining is another form of function parallel-
ism in which different sub-operations or stages of the pipeline are performed concurrently. In
encoding a sequence of video frames, each block of each frame passes through several stages:
pre-filtering, convolution from the time to the frequency domain, quantization, entropy coding,
etc. There is pipeline parallelism across these stages (for example a few processes could be
assigned to each stage and operate concurrently), as well as data parallelism between frames,
among blocks in a frame, and within an operation on a block. 

Function parallelism and data parallelism are often available together in an application, and pro-
vide a hierarchy of levels of parallelism from which we must choose (e.g. function parallelism
across grid computations and data parallelism within grid computations in Ocean). Orthogonal
levels of parallelism are found in many other applications as well; for example, applications that
route wires in VLSI circuits exhibit parallelism across the wires to be routed, across the segments
within a wire, and across the many routes evaluated for each segment (see Figure 3-1).

The degree of available function parallelism is usually modest and does not grow much with the
size of the problem being solved. The degree of data parallelism, on the other hand, usually
grows with data set size. Function parallelism is also often more difficult to exploit in a load bal-
anced way, since different functions involve different amounts of work. Most parallel programs
that run on large-scale machines are data parallel according to our loose definition of the term,
and function parallelism is used mainly to reduce the amount of global synchronization required
between data parallel computations (as illustrated in Ocean, in Section 3.6.1). 

By identifying the different types of concurrency in an application we often find much more than
we need. The next step in decomposition is to restrict the available concurrency by determining

Wire 
Parallelism

Segment 
Parallelism

Route 
Parallelism

Wire W2 expands to segments

Segment S3 expands to routes

Figure  3-1  The three axes of parallelism in a VLSI wire routing application. 

W1 W2 W3

S21 S22 S23 S24 S25 S26



 

Programming for Performance

 

136 

 

DRAFT: Parallel Computer Architecture 9/10/97

 

the granularity of tasks. However, the choice of task size also depends on how we expect to man-
age the concurrency, so we discuss this next. 

 

Determining How to Manage Concurrency: Static versus Dynamic Assignment

 

A key issue in exploiting concurrency is whether a good load balance can be obtained by a static
or predetermined assignment, introduced in the previous chapter, or whether more dynamic
means are required. A static assignment is typically an algorithmic mapping of tasks to processes,
as in the simple equation solver kernel discussed in the previous chapter. Exactly which tasks
(grid points or rows) are assigned to which processes may depend on the problem size, the num-
ber of processes, and other parameters, but the assignment does not adapt at runtime to other
environmental considerations. Since the assignment is predetermined, static techniques do not
incur much task management overhead at runtime. However, to achieve good load balance they
require that the work in each task be predictable enough, or that there be so many tasks that the
statistics of large numbers ensure a balanced distribution, with pseudo-random assignment. In
addition to the program itself, it is also important that other environmental conditions such as
interference from other applications not perturb the relationships among processors limiting the
robustness of static load balancing.

Dynamic techniques adapt to load imbalances at runtime. They come in two forms. In 

 

semi-static

 

techniques the assignment for a phase of computation is determined algorithmically before that
phase, but assignments are recomputed periodically to restore load balance based on profiles of
the actual workload distribution gathered at runtime. That is, we profile (measure) the work that
each task does in one phase, and use that as an estimate of the work associated with it in the next
phase. This repartitioning technique is used to assign stars to processes in Barnes-Hut
(Section 3.6.2), by recomputing the assignment between time-steps of the galaxy’s evolution.
The galaxy evolves slowly, so the workload distribution among stars does not change much
between successive time-steps. Figure 3-2(a) illustrates the advantage of semi-static partitioning

Figure  3-2  Illustration of the performance impact of dynamic partitioning for load balance. 

The graph on the left shows the speedups of the Barnes-Hut application with and without semi-static partitioning, and the graph on the
right shows the speedups of Raytrace with and without task stealing. Even in these applications that have a lot of parallelism, dynamic
partitioning is important for improving load balance over static partitioning. 

0

5

1 0

1 5

2 0

2 5

3 0

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

Processors

S
p

e
e

d
u

p Origin semi-static

Challenge semi-static
Origin static

Challenge static

0

5

1 0

1 5

2 0

2 5

3 0

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

Processors

S
p

e
e

d
u

p Origin with stealing

Challenge with stealing

Origin, no stealing

Challenge, no stealing



 

Partitioning for Performance

 

9/10/97 DRAFT: Parallel Computer Architecture

 

137

 

over a static assignment of particles to processors, for a 512K particle execution measured on the
Origin2000. It is clear that the performance difference grows with the number of processors used. 

The second dynamic technique, 

 

dynamic tasking

 

, is used to handle the cases where either the
work distribution or the system environment is too unpredictable even to periodically recompute
a load balanced assignment.

 

1

 

 For example, in Raytrace the work associated with each ray is
impossible to predict, and even if the rendering is repeated from different viewpoints the change
in viewpoints may not be gradual. The dynamic tasking approach divides the computation into
tasks and maintains a pool of available tasks. Each process repeatedly takes a task from the pool
and executes it—possibly inserting new tasks into the pool—until there are no tasks left. Of
course, the management of the task pool must preserve the dependences among tasks, for exam-
ple by inserting a task only when it is ready for execution. Since dynamic tasking is widely used,
let us look at some specific techniques to implement the task pool. Figure 3-2(b) illustrates the
advantage of dynamic tasking over a static assignment of rays to processors in the Raytrace
application, for the balls data set measured on the Origin2000.

A simple example of dynamic tasking in a shared address space is 

 

self-scheduling

 

 of a parallel
loop. The loop counter is a shared variable accessed by all the processes that execute iterations of
the loop. Processes obtain a loop iteration by incrementing the counter (atomically), execute the
iteration, and access the counter again, until no iterations remain. The task size can be increased
by taking multiple iterations at a time, i.e., adding a larger value to the shared loop counter. In

 

guided self-scheduling 

 

[AiN88] processes start by taking large chunks and taper down the chunk
size as the loop progresses, hoping to reduce the number of accesses to the shared counter with-
out compromising load balance. 

More general dynamic task pools are usually implemented by a collection of queues, into which
tasks are inserted and from which tasks are removed and executed by processes. This may be a
single centralized queue or a set of distributed queues, typically one per process, as shown in
Figure 3-3. A centralized queue is simpler, but has the disadvantage that every process accesses
the same task queue, potentially increasing communication and causing processors to contend for
queue access. Modifications to the queue (enqueuing or dequeuing tasks) must be mutually
exclusive, further increasing contention and causing serialization. Unless tasks are large and
there are few queue accesses relative to computation, a centralized queue can quickly become a
performance bottleneck as the number of processors increases. 

With distributed queues, every process is initially assigned a set of tasks in its local queue. This
initial assignment may be done intelligently to reduce interprocess communication providing
more control than self-scheduling and centralized queues. A process removes and executes tasks
from its local queue as far as possible. If it creates tasks it inserts them in its local queue. When
there are no more tasks in its local queue it queries other processes’ queues to obtain tasks from
them, a mechanism known as 

 

task stealing

 

. Because task stealing implies communication and
can generate contention, several interesting issues arise in implementing stealing; for example,

 

1.  The applicability of static or semi-static assignment depends not only on the computational properties of
the program but also on its interactions with the memory and communication systems and on the predict-
ability of the execution environment. For example, differences in memory or communication stall time (due
to cache misses, page faults or contention) can cause imbalances observed at synchronization points even
when the workload is computationally load balanced. Static assignment may also not be appropriate for
time-shared or heterogeneous systems.
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how to minimize stealing, whom to steal from, how many and which tasks to steal at a time, and
so on. Stealing also introduces the important issue of 

 

termination detection

 

: How do we decide
when to stop searching for tasks to steal and assume that they’re all done, given that tasks gener-
ate other tasks that are dynamically inserted in the queues? Simple heuristic solutions to this
problem work well in practice, although a robust solution can be quite subtle and communication
intensive [DS68,CM88]. Task queues are used in both a shared address space, where the queues
are shared data structures that are manipulated using locks, as well as with explicit message pass-
ing where the owners of queues service requests for them. 

While dynamic techniques generally provide good load balancing despite unpredictability or
environmental conditions, they make task management more expensive. Dynamic tasking tech-
niques also compromise the explicit control over which tasks are executed by which processes,
thus potentially increasing communication and compromising data locality. Static techniques are
therefore usually preferable when they can provide good load balance given both application and
environment.

 

Determining the Granularity of Tasks

 

If there are no load imbalances due to dependences among tasks (for example, if all tasks to be
executed are available at the beginning of a phase of computation) then the maximum load
imbalance possible with a task-queue strategy is equal to the granularity of the largest task. By

 

granularity

 

 we mean the amount of work associated with a task, measured by the number of
instructions or—more appropriately—the execution time. The general rule for choosing a granu-
larity at which to actually exploit concurrency is that fine-grained or small tasks have the poten-
tial for better load balance (there are more tasks to divide among processes and hence more
concurrency), but they lead to higher task management overhead, more contention and more
interprocessor communication than coarse-grained or large tasks. Let us see why, first in the con-
text of dynamic task queuing where the definitions and tradeoffs are clearer. 

Q Q0 Q2Q1 Q3

all processes 

all remove tasks

P0 inserts P1 inserts P2 inserts P3 inserts

P0 removes P1 removes P2 removes P3removes

others may
 steal

Figure  3-3  Implementing a dynamic task pool with a system of task queues.

(a) Centralized task queue (b) Distributed task queues (one per process)

insert tasks
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Task Granularity with Dynamic Task Queueing

 

: Here, a task is explicitly defined as an entry
placed on a task queue, so task granularity is the work associated with such an entry. The larger
task management (queue manipulation) overhead with small tasks is clear: At least with a cen-
tralized queue, the more frequent need for queue access generally leads to greater contention as
well. Finally, breaking up a task into two smaller tasks might cause the two tasks to be executed
on different processors, thus increasing communication if the subtasks access the same logically
shared data. 

 

Task Granularity with Static Assignment

 

: With static assignment, it is less clear what one
should call a task or a unit of concurrency. For example, in the equation solver is a task a group
of rows, a single row, or an individual element? We can think of a task as the largest unit of work
such that even if the assignment of tasks to processes is changed, the code that implements a task
need not change. With static assignment, task size has a much smaller effect on task management
overhead compared to dynamic task-queueing, since there are no queue accesses. Communica-
tion and contention are affected by the assignment of tasks to processors, not their size. The
major impact of task size is usually on load imbalance and on exploiting data locality in proces-
sor caches. 

 

Reducing Serialization 

 

Finally, to reduce serialization at synchronization points—whether due to mutual exclusion or
dependences among tasks—we must be careful about how we assign tasks and also how we
orchestrate synchronization and schedule tasks. For event synchronization, an example of exces-
sive serialization is the use of more conservative synchronization than necessary, such as barriers
instead of point-to-point or group synchronization. Even if point-to-point synchronization is
used, it may preserve data dependences at a coarser grain than necessary; for example, a process
waits for another to produce a whole row of a matrix when the actual dependences are at the level
of individual matrix elements. However, finer-grained synchronization is often more complex to
program and implies the execution of more synchronization operations (say one per word rather
than one per larger data structure), the overhead of which may turn out to be more expensive than
the savings in serialization. As usual, tradeoffs abound. 

For mutual exclusion, we can reduce serialization by using separate locks for separate data items,
and making the critical sections protected by locks smaller and less frequent if possible. Consider
the former technique. In a database application, we may want to lock when we update certain
fields of records that are assigned to different processes. The question is how to organize the
locking. Should we use one lock per process, one per record, or one per field? The finer the gran-
ularity the lower the contention but the greater the space overhead and the less frequent the reuse
of locks. An intermediate solution is to use a fixed number of locks and share them among
records using a simple hashing function from records to locks. Another way to reduce serializa-
tion is to stagger the critical sections in time, i.e. arrange the computation so multiple processes
do not try to access the same lock at the same time. 

Implementing task queues provides an interesting example of making critical sections smaller
and also less frequent. Suppose each process adds a task to the queue, then searches the queue for
another task with a particular characteristic, and then remove this latter task from the queue. The
task insertion and deletion may need to be mutually exclusive, but the searching of the queue
does not. Thus, instead of using a single critical section for the whole sequence of operations, we
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can break it up into two critical sections (insertion and deletion) and non-mutually-exclusive
code to search the list in between. 

More generally, checking (reading) the state of a protected data structure usually does not have to
be done with mutual exclusion, only modifying the data structure does. If the common case is to
check but not have to modify, as for the tasks we search through in the task queue, we can check
without locking, and then lock and re-check (to ensure the state hasn’t changed) within the criti-
cal section only if the first check returns the appropriate condition. Also, instead of using a single
lock for the entire queue, we can use a lock per queue element so elements in different parts of
the queue can be inserted or deleted in parallel (without serialization). As with event synchroni-
zation, the correct tradeoffs in performance and programming ease depend on the costs and ben-
efits of the choices on a system. 

We can extend our simple limit on speedup to reflect both load imbalance and time spent waiting
at synchronization points as follows:

In general, the different aspects of balancing the workload are the responsibility of software:
There is not much an architecture can do about a program that does not have enough concurrency
or is not load balanced. However, an architecture can help in some ways. First, it can provide effi-
cient support for load balancing techniques such as task stealing that are used widely by parallel
software (applications, libraries and operating systems). Task queues have two important archi-
tectural implications. First, an access to a remote task queue is usually a probe or query, involv-
ing a small amount of data transfer and perhaps mutual exclusion. The more efficiently fine-
grained communication and low-overhead, mutually exclusive access to data are supported, the
smaller we can make our tasks and thus improve load balance. Second, the architecture can make
it easy to name

 

 

 

or access the logically shared data that a stolen task needs. Third, the architecture
can provide efficient support for point-to-point synchronization, so there is more incentive to use
them instead of conservative barriers and hence achieve better load balance. 

 

3.2.2 Reducing Inherent Communication

 

L

 

oad balancing by itself is conceptually quite easy as long as the application affords enough con-
currency: We can simply make tasks small and use dynamic tasking. Perhaps the most important
tradeoff with load balance is reducing interprocessor communication. Decomposing a problem
into multiple tasks usually means that there will be communication among tasks. If these tasks
are assigned to different processes, we incur communication among processes and hence proces-
sors. We focus here on reducing communication that is 

 

inherent

 

 to the parallel program—i.e. one
process produces data that another needs—while still preserving load balance, retaining our view
of the machine as a set of cooperating processors. We will see in Section 3.3 that in a real system
communication occurs for other reasons as well. 

The impact of communication is best estimated not by the absolute amount of communication
but by a quantity called the 

 

communication to computation ratio

 

. This is defined as the amount of
communication (in bytes, say) divided by the computation time, or by the number of instructions
executed. For example, a gigabyte of communication has a much greater impact on the execution
time and communication bandwidth requirements of an application if the time required for the

Speedupproblem p( ) Sequential Work
max Work Synch Wait Time+( )
------------------------------------------------------------------------------≤
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application to execute is 1 second than if it is 1 hour! The communication to computation ratio
may be computed as a per-process number, or accumulated over all processes. 

The inherent communication to computation ratio is primarily controlled by the assignment of
tasks to processes. To reduce communication, we should try to ensure that tasks that access the
same data or need to communicate a lot are assigned to the same process. For example, in a data-
base application, communication would be reduced if queries and updates that access the same
database records are assigned to the same process. 

One partitioning principle that has worked very well for load balancing and communication vol-
ume in practice is 

 

domain decomposition

 

. It was initially used in data-parallel scientific computa-
tions such as Ocean, but has since been found applicable to many other areas. If the data set on
which the application operates can be viewed as a physical domain—for example, the grid repre-
senting an ocean cross-section in Ocean, the space containing a galaxy in Barnes-Hut, or the
image for graphics or video applications—then it is often the case that a point in the domain
either requires information directly from only a small localized region around that point, or
requires long-range information but the requirements fall off with distance from the point. We
saw an example of the latter in Barnes-Hut. For the former, algorithms for motion estimation in
video encoding and decoding examine only areas of a scene that are close to the current pixel,
and a point in the equation solver kernel needs to access only its four nearest neighbor points
directly. The goal of partitioning in these cases is to give every process a contiguous region of the
domain while of course retaining load balance, and to shape the domain so that most of the pro-
cess’s information requirements are satisfied within its assigned partition. As Figure 3-4 shows,
in many such cases the communication requirements for a process grow proportionally to the size
of a partition’s boundary, while computation grows proportionally to the size of its entire parti-
tion. The communication to computation ratio is thus a surface area to volume ratio in three
dimensions, and perimeter to area in two dimensions. Like load balance in data parallel computa-
tion, it can be reduced by either increasing the data set size (

 

n

 

2 

 

in the figure) or reducing the num-
ber of processors (

 

p

 

). 
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Figure  3-4  The perimeter to area relationship of communication to computation in a two-dimensional domain decomposition.

The example shown is for an algorithm with localized, nearest-neighbor information exchange like the simple equation solver ker-
nel. Every point on the grid needs information from its four nearest neighbors. Thus, the darker, internal points in processor P10’s
partition do not need to communicate directly with any points outside the partition. Computation for processor P10 is thus propor-
tional to the sum of all points, while communication is proportional to the number of lighter, boundary points, which is 4 . 
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Of course, the ideal shape for a domain decomposition is application-dependent, depending pri-
marily on the information requirements of and work associated with the points in the domain. For
the equation solver kernel in Chapter 2, we chose to partition the grid into blocks of contiguous
rows. Figure 3-5 shows that partitioning the grid into square-like subgrids leads to a lower inher-
ent communication-to-computation ratio. The impact becomes greater as the number of proces-
sors increases relative to the grid size. We shall therefore carry forward this partitioning into
square subgrids (or simply “subgrids”) as we continue to discuss performance. As a simple exer-

cise, think about what the communication to computation ratio would be if we assigned rows to
processes in an interleaved or cyclic fashion instead (row i assigned to process i mod nprocs). 

How do we find a suitable domain decomposition that is load balanced and also keeps communi-
cation low? There are several ways, depending on the nature and predictability of the computa-
tion:

• Statically, by inspection, as in the equation solver kernel and in Ocean. This requires predict-
ability and usually leads to regularly shaped partitions, as in Figures 3-4 and 3-5. 

• Statically, by analysis. The computation and communication characteristics may depend on
the input presented to the program at runtime, thus requiring an analysis of the input. How-
ever, the partitioning may need to be done only once after the input analysis—before the
actual computation starts—so we still consider it static. Partitioning sparse matrix computa-
tions used in aerospace and automobile simulations is an example: The matrix structure is
fixed, but is highly irregular and requires sophisticated graph partitioning. In data mining, we
may divide the database of transactions statically among processors, but a balanced assign-
ment of itemsets to processes requires some analysis since the work associated with different
itemsets is not equal. A simple static assignment of itemsets as well as the database by inspec-
tion keeps communication low, but does not provide load balance. 

Figure  3-5  Choosing among domain decompositions for a simple nearest-neighbor computation on a regular two-dimensional grid. 

Since the work per grid point is uniform, equally sized partitions yield good load balance. But we still have choices. We might parti-
tion the elements of the grid into either strips of contiguous rows (right) or block-structured partitions that are as close to square as

possible (left). The perimeter-to-area (and hence communication to computation) ratio in the block decomposition case is 

or , while that in strip decomposition is  or . As p increases, block decomposition incurs less inherent communi-

cation for the same computation than strip decomposition.
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• Semi-statically (with periodic repartitioning). This was discussed earlier for applications like
Barnes-Hut whose characteristics change with time but slowly. Domain decomposition is still
important to reduce communication, and we will see the profiling-based Barnes-Hut example
in Section 3.6.2.

• Statically or semi-statically, with dynamic task stealing. Even when the computation is highly
unpredictable and dynamic task stealing must be used, domain decomposition may be useful
in initially assigning tasks to processes. Raytrace is an example. Here there are two domains:
the three-dimensional scene being rendered, and the two-dimensional image plane. Since the
natural tasks are rays shot through the image plane, it is much easier to manage domain
decomposition of that plane than of the scene itself. We decompose the image domain just
like the grid in the equation solver kernel (Figure 3-4), with image pixels corresponding to
grid points, and initially assign rays to the corresponding processes. Processes then steal rays
(pixels) or group of rays for load balancing. The initial domain decomposition is useful
because rays shot through adjacent pixels tend to access much of the same scene data. 

Of course, partitioning into a contiguous subdomain per processor is not always appropriate for
high performance in all applications. We shall see examples in matrix factorization in
Exercise 3.3, and in a radiosity application from computer graphics in Chapter 4. Different
phases of the same application may also call for different decompositions. The range of tech-
niques is very large, but common principles like domain decomposition can be found. For exam-
ple, even when stealing tasks for load balancing in very dynamic applications, we can reduce
communication by searching other queues in the same order every time, or by preferentially
stealing large tasks or several tasks at once to reduce the number of times we have to access non-
local queues. 

In addition to reducing communication volume, it is also important to keep communication bal-
anced among processors, not just computation. Since communication is expensive, imbalances in
communication can translate directly to imbalances in execution time among processors. Overall,
whether tradeoffs should be resolved in favor of load balance or communication volume depends
on the cost of communication on a given system. Including communication as an explicit perfor-
mance cost refines our basic speedup limit to:

What we have done in this expression is separated out communication from work. Work now
means instructions executed plus local data access costs. 

The amount of communication in parallel programs clearly has important implications for archi-
tecture. In fact, architects examine the needs of applications to determine what latencies and
bandwidths of communication are worth spending extra money for (see Exercise 3.8); for exam-
ple, the bandwidth provided by a machine can usually be increased by throwing hardware (and
hence money) at the problem, but this is only worthwhile if applications will exercise the
increased bandwidth. As architects, we assume that the programs delivered to us are reasonable
in their load balance and their communication demands, and strive to make them perform better
by providing the necessary support. Let us now examine the last of the algorithmic issues that we
can resolve in partitioning itself, without much attention to the underlying architecture. 

Speedupproblem p( ) Sequential Work
max Work Synch. Wait Time Comm. Cost+ +( )
--------------------------------------------------------------------------------------------------------------------≤
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3.2.3 Reducing the Extra Work

The discussion of domain decomposition above shows that when a computation is irregular, com-
puting a good assignment that both provides load balance and reduces communication can be
quite expensive. This extra work is not required in a sequential execution, and is an overhead of
parallelism. Consider the sparse matrix example discussed above as an example of static parti-
tioning by analysis. The matrix can be represented as a graph, such that each node represents a
row or column of the matrix and an edge exists between two nodes i and j if the matrix entry (i,j)
is nonzero. The goal in partitioning is to assign each process a set of nodes such that the number
of edges that cross partition boundaries is minimized and the computation is also load balanced.
Many techniques have been developed for this; the ones that result in a better balance between
load balance and communication require more time to compute the graph partitioning. We shall
see another example in the Barnes-Hut case study in Section 3.6.2.

Another example of extra work is computing data values redundantly rather than having one pro-
cess compute them and communicate them to the others, which may be a favorable tradeoff when
the cost of communication is high. Examples include all processes computing their own copy of
the same shading table in computer graphics applications, or of trigonometric tables in scientific
computations. If the redundant computation can be performed while the processor is otherwise
idle due to load imbalance, its cost can be hidden. 

Finally, many aspects of orchestrating parallel programs—such as creating processes, managing
dynamic tasking, distributing code and data throughout the machine, executing synchronization
operations and parallelism control instructions, structuring communication appropriately for a
machine, packing/unpacking data to and from communication messages—involve extra work as
well. For example, the cost of creating processes is what causes us to create them once up front
and have them execute tasks until the program terminates, rather than have processes be created
and terminated as parallel sections of code are encountered by a single main thread of computa-
tion (a fork-join approach, which is sometimes used with lightweight threads instead of pro-
cesses). In Data Mining, we will see that substantial extra work done to transform the database
pays off in reducing communication, synchronization, and expensive input/output activity. 

We must consider the tradeoffs between extra work, load balance, and communication carefully
when making our partitioning decisions. The architecture can help reduce extra work by making
communication and task management more efficient, and hence reducing the need for extra work.
Based only on these algorithmic issues, the speedup limit can now be refined to:

(EQ 3.1)

3.2.4 Summary

The analysis of parallel algorithms requires a characterization of a multiprocessor and a charac-
terization of the parallel algorithm. Historically, the analysis of parallel algorithms has focussed
on algorithmic aspects like partitioning, and has not taken architectural interactions into account.
In fact, the most common model used to characterize a multiprocessor for algorithm analysis has
been the Parallel Random Access Memory (PRAM) model [FoW78]. In its most basic form, the
PRAM model assumes that data access is free, regardless of whether it is local or involves com-

Speedupproblem p( ) Sequential Work
max (Work  +  Synch Wait Time + Comm Cost + Extra Work)
-------------------------------------------------------------------------------------------------------------------------------------------------------≤
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munication. That is, communication cost is zero in the above speedup expression (Equation 3.1),
and work is treated simply as instructions executed: 

. (EQ 3.2)

A natural way to think of a PRAM machine is as a shared address space machine in which all
data access is free. The performance factors that matter in parallel algorithm analysis using the
PRAM are load balance and extra work. The goal of algorithm development for PRAMs is to
expose enough concurrency so the workload may be well balanced, without needing too much
extra work. 

While the PRAM model is useful in discovering the concurrency available in an algorithm, which
is the first step in parallelization, it is clearly unrealistic for modeling performance on real paral-
lel systems. This is because communication, which it ignores, can easily dominate the cost of a
parallel execution in modern systems. In fact, analyzing algorithms while ignoring communica-
tion can easily lead to a poor choice of decomposition and assignment, to say nothing of orches-
tration. More recent models have been developed to include communication costs as explicit
parameters that algorithm designers can use [Val90, CKP+93]. We will return to this issue after
we have obtained a better understanding of communication costs. 

The treatment of communication costs in the above discussion has been limited for two reasons
when it comes to dealing with real systems. First, communication inherent to the parallel pro-
gram and its partitioning is not the only form of communication that is important: There may be
substantial non-inherent or artifactual communication that is caused by interactions of the pro-
gram with the architecture on which it runs. Thus, we have not yet modeled the amount of com-
munication generated by a parallel program satisfactorily. Second, the “communication cost”
term in the equations above is not only determined by the amount of communication caused,
whether inherent or artifactual, but also by the costs of the basic communication operations in the
machine, the structure of the communication in the program, and how the two interact. Both arti-
factual communication and communication structure are important performance issues that are
usually addressed in the orchestration step since they are architecture-dependent. To understand
them, and hence open up the communication cost term, we first need a deeper understanding of
some critical interactions of architectures with software. 

3.3 Data Access and Communication in a Multi-Memory System

In our discussion of partitioning, we have viewed a multiprocessor as a collection of cooperating
processors. However, multiprocessor systems are also multi-memory, multi-cache systems, and
the role of these components is essential to performance. The role is essential regardless of pro-
gramming model, though the latter may influence what the specific performance issues are. The
rest of the performance issues for parallel programs have primarily to do with accessing data in
this multi-memory system, so it is useful for us to now take a different view of a multiprocessor. 

3.3.1 A Multiprocessor as an Extended Memory Hierarchy

From an individual processor’s perspective, we can view all the memory of the machine, includ-
ing the caches of other processors, as forming levels of an extended memory hierarchy. The com-

Speedup-PRAMproblem p( ) Sequential Instructions
max (Instructions  +  Synch Wait Time + Extra Instructions)
--------------------------------------------------------------------------------------------------------------------------------------------------≤
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munication architecture glues together the parts of the hierarchy that are on different nodes. Just
as interactions with levels of the memory hierarchy (for example cache size, associativity, block
size) can cause the transfer of more data between levels than is inherently necessary for the pro-
gram in a uniprocessor system, so also interactions with the extended memory hierarchy can
cause more communication (transfer of data across the network) in multiprocessors than is inher-
ently necessary to satisfy the processes in a parallel program. Since communication is expensive,
it is particularly important that we exploit data locality in the extended hierarchy, both to improve
node performance and to reduce the extra communication between nodes. 

Even in uniprocessor systems, a processor’s performance depends heavily on the performance of
the memory hierarchy. Cache effects are so important that it hardly makes sense to talk about per-
formance without taking caches into account. We can look at the performance of a processor in
terms of the time needed to complete a program, which has two components: the time the proces-
sor is busy executing instructions and the time it spends waiting for data from the memory sys-
tem. 

(EQ 3.3)

As architects, we often normalize this formula by dividing each term by the number of instruc-
tions and measuring time in clock cycles. We then have a convenient, machine-oriented metric of
performance, cycles per instruction (CPI), which is composed of an ideal CPI plus the average
number of stall cycles per instruction. On a modern microprocessor capable of issuing four
instructions per cycle, dependences within the program might limit the average issue rate to, say,
2.5 instructions per cycle, or an ideal CPI of 0.4. If only 1% of these instructions cause a cache
miss, and a cache miss causes the processor to stall for 80 cycles, on average, then these stalls
will account for an additional 0.8 cycles per instruction. The processor will be busy doing “use-
ful” work only one-third of its time! Of course, the other two-thirds of the time is in fact useful. It
is the time spent communicating with memory to access data. Recognizing this data access cost,
we may elect to optimize either the program or the machine to perform the data access more effi-
ciently. For example, we may change how we access the data to enhance temporal or spatial
locality or we might provide a bigger cache or latency tolerance mechanisms.

An idealized view of this extended hierarchy would be a hierarchy of local caches connected to a
single “remote” memory at the next level. In reality the picture is a bit more complex. Even on
machines with centralized shared memories, beyond the local caches is a multi-banked memory
as well as the caches of other processors. With physically distributed memories, a part of the
main memory too is local, a larger part is remote, and what is remote to one processor is local to
another. The difference in programming models reflects a difference in how certain levels of the
hierarchy are managed. We take for granted that the registers in the processor are managed
explicitly, but by the compiler. We also take for granted that the first couple of levels of caches
are managed transparently by the hardware. In the shared address space model, data movement
between the remote level and the local node is managed transparently as well. The message pass-
ing model has this movement managed explicitly by the program. Regardless of the management,
levels of the hierarchy that are closer to the processor provide higher bandwidth and lower
latency access to data. We can improve data access performance either by improving the architec-
ture of the extended memory hierarchy, or by improving the locality in the program. 

Exploiting locality exposes a tradeoff with parallelism similar to reducing communication. Paral-
lelism may cause more processors to access and draw toward them the same data, while locality

Timeprog 1( ) Busy 1( ) DataAccess 1( )+=
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from a processor’s perspective desires that data stay close to it. A high performance parallel pro-
gram needs to obtain performance out of each individual processor—by exploiting locality in the
extended memory hierarchy—as well as being well-parallelized. 

3.3.2 Artifactual Communication in the Extended Memory Hierarchy

Data accesses that are not satisfied in the local (on-node) portion of the extended memory hierar-
chy generate communication. Inherent communication can be seen as part of this: The data
moves from one processor, through the memory hierarchy in some manner, to another processor,
regardless of whether it does this through explicit messages or reads and writes. However, the
amount of communication that occurs in an execution of the program is usually greater than the
inherent interprocess communication. The additional communication is an artifact of how the
program is actually implemented and how it interacts with the machine’s extended memory hier-
archy. There are many sources of this artifactual communication:

Poor allocation of data. Data accessed by one node may happen to be allocated in the local 
memory of another. Accesses to remote data involve communication, even if the data is not 
updated by other nodes. Such transfer can be eliminated by a better assignment or better dis-
tribution of data, or reduced by replicating the data when it is accessed.

Unnecessary data in a transfer. More data than needed may be communicated in a transfer. 
For example, a receiver may not use all the data in a message: It may have been easier to send 
extra data conservatively than determine exactly what to send. Similarly, if data is transferred 
implicitly in units larger than a word, e.g. cache blocks, part of the block may not be used by 
the requester. This artifactual communication can be eliminated with smaller transfers.

Unnecessary transfers due to system granularities. In cache-coherent machines, data may be 
kept coherent at a granularity larger than a single word, which may lead to extra communica-
tion to keep data coherent as we shall see in later chapters. 

Redundant communication of data. Data may be communicated multiple times, for example, 
every time the value changes, but only the last value may actually be used. On the other hand, 
data may be communicated to a process that already has the latest values, again because it 
was too difficult to determine this.

Finite replication capacity. The capacity for replication on a node is finite—whether it be in 
the cache or the main memory—so data that has been already communicated to a process 
may be replaced from its local memory system and hence need to be transferred again even if 
it has not since been modified. 

In contrast, inherent communication is that which would occur with unlimited capacity for repli-
cation, transfers as small as necessary, and perfect knowledge of what logically shared data has
been updated. We will understand some of the sources of artifactual communication better when
we get deeper into architecture. Let us look a little further at the last source of artifactual commu-
nication—finite replication capacity—which has particularly far-reaching consequences. 

Artifactual Communication and Replication: The Working Set Perspective

The relationship between finite replication capacity and artifactual communication is quite fun-
damental in parallel systems, just like the relationship between cache size and memory traffic in
uniprocessors. It is almost inappropriate to speak of the amount of communication without refer-
ence to replication capacity. The extended memory hierarchy perspective is useful in viewing this
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relationship. We may view our generic multiprocessor as a hierarchy with three levels: Local
cache is inexpensive to access, local memory is more expensive, and any remote memory is much
more expensive. We can think of any level as a cache, whether it is actually managed like a hard-
ware cache or by software. Then, we can then classify the “misses” at any level, which generate
traffic to the next level, just as we do for uniprocessors. A fraction of the traffic at any level is
cold-start, resulting from the first time data is accessed by the processor. This component, also
called compulsory traffic in uniprocessors, is independent of cache size. Such cold start misses
are a concern in performing cache simulations, but diminish in importance as programs run
longer. Then there is traffic due to capacity misses, which clearly decrease with increases in
cache size. A third fraction of traffic may be conflict misses, which are reduced by greater asso-
ciativity in the replication store, a greater number of blocks, or changing the data access pattern.
These three types of misses or traffic are called the three C’s in uniprocessor architecture (cold
start or compulsory, capacity, conflict). The new form of traffic in multiprocessors is a fourth C, a
communication miss, caused by the inherent communication between processors or some of the
sources of artifactual communication discussed above. Like cold start misses, communication
misses do not diminish with cache size. Each of these components of traffic may be helped or
hurt by large granularities of data transfer depending on spatial locality. 

If we were to determine the traffic resulting from each type of miss for a parallel program as we
increased the replication capacity (or cache size), we could expect to obtain a curve such as
shown in Figure 3-6. The curve has a small number of knees or points of inflection. These knees
correspond to the working sets of the algorithm relevant to that level of the hierarchy.1 For the
first-level cache, they are the working sets of the algorithm itself; for others they depend on how
references have been filtered by other levels of the hierarchy and on how the levels are managed.
We speak of this curve for a first-level cache (assumed fully associative with a one-word block
size) as the working set curve for the algorithm. 

Traffic resulting from any of these types of misses may cause communication across the
machine’s interconnection network, for example if the backing storage happens to be in a remote
node. Similarly, any type of miss may contribute to local traffic and data access cost. Thus, we
might expect that many of the techniques used to reduce artifactual communication are similar to
those used to exploit locality in uniprocessors, with some additional ones. Inherent communica-
tion misses almost always generate actual communication in the machine (though sometimes
they may not if the data needed happens to have become local in the meanwhile, as we shall see),
and can only be reduced by changing the sharing patterns in the algorithm. In addition, we are
strongly motivated to reduce the artifactual communication that arises either due to transfer size
or due to limited replication capacity, which we can do by exploiting spatial and temporal locality
in a process’s data accesses in the extended hierarchy. Changing the orchestration and assignment
can dramatically change locality characteristics, including the shape of the working set curve. 

For a given amount of communication, its cost as seen by the processor is also affected by how
the communication is structured. By structure we mean whether messages are large or small, how

1.  The working set model of program behavior [Den68] is based on the temporal locality exhibited by the
data referencing patterns of programs. Under this model, a program—or a process in a parallel program—
has a set of data that it reuses substantially for a period of time, before moving on to other data. The shifts
between one set of data and another may be abrupt or gradual. In either case, there is at most times a “work-
ing set” of data that a processor should be able to maintain in a fast level of the memory hierarchy, to use
that level effectively.
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bursty the communication is, whether communication cost can be overlapped with other compu-
tation or communication—all of which are addressed in the orchestration step—and how well the
communication patterns match the topology of the interconnection network, which is addressed
in the mapping step. Reducing the amount of communication—inherent or artifactual—is impor-
tant because it reduces the demand placed on both the system and the programmer to reduce cost.
Having understood the machine as an extended hierarchy and the major issues this raises, let us
see how to address these architecture-related performance issues at the next level in software;
that is, how to program for performance once partitioning issues are resolved. 

3.4 Orchestration for Performance

We begin by discussing how we might exploit temporal and spatial locality to reduce the amount
of artifactual communication, and then move on to structuring communication—inherent or arti-
factual—to reduce cost. 

3.4.1 Reducing Artifactual Communication

In the message passing model both communication and replication are explicit, so even artifac-
tual communication is explicitly coded in program messages. In a shared address space, artifac-
tual communication is more interesting architecturally since it occurs transparently due to
interactions between the program and the machine organization; in particular, the finite cache
size and the granularities at which data are allocated, communicated and kept coherent. We there-
fore use a shared address space to illustrate issues in exploiting locality, both to improve node
performance and to reduce artifactual communication. 
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Figure  3-6  The data traffic between a cache (replication store) and the rest of the system, and its components as a function of cache
size. 
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Exploiting Temporal Locality

A program is said to exhibit temporal locality if tends to access the same memory location
repeatedly in a short time-frame. Given a memory hierarchy, the goal in exploiting temporal
locality is to structure an algorithm so that its working sets map well to the sizes of the different
levels of the hierarchy. For a programmer, this typically means keeping working sets small with-
out losing performance for other reasons. Working sets can be reduced by several techniques.
One is the same technique that reduces inherent communication—assigning tasks that tend to
access the same data to the same process—which further illustrates the relationship between
communication and locality. Once assignment is done, a process’s assigned computation can be
organized so that tasks that access the same data are scheduled close to one another in time, and
so that we reuse a set of data as much as possible before moving on to other data, rather than
moving on and coming back. 

When multiple data structures are accessed in the same phase of a computation, we must decide
which are the most important candidates for exploiting temporal locality. Since communication is
more expensive than local access, we might prefer to exploit temporal locality on nonlocal rather
than local data. Consider a database application in which a process wants to compare all its
records of a certain type with all the records of other processes. There are two choices here: (i)
for each of its own records, the process can sweep through all other (nonlocal) records and com-
pare, and (ii) for each nonlocal record, the process can sweep through its own records and com-
pare. The latter exploits temporal locality on nonlocal data, and is therefore likely to yield better
overall performance. 

Example  3-1 To what extent is temporal locality exploited in the equation solver kernel. How
might the temporal locality be increased?

Answer The equation solver kernel traverses only a single data structure. A typical grid
element in the interior of a process’s partition is accessed at least five times by that
process during each sweep: at least once to compute its own new value, and once
each to compute the new values of its four nearest neighbors. If a process sweeps
through its partition of the grid in row-major order (i.e. row by row and left to right
within each row, see Figure 3-7(a)) then reuse of A[i,j] is guaranteed across the
updates of the three elements in the same row that touch it: A[i,j-1], A[i,j] and
A[i,j+1]. However, between the times that the new values for A[i,j] and A[i+1,j]
are computed, three whole subrows of elements in that process’s partition are
accessed by that process. If the three subrows don’t fit together in the cache, then
A[i,j] will no longer be in the cache when it is accessed again to compute A[i+1,j].
If the backing store for these data in the cache is nonlocal, artifactual
communication will result. The problem can be fixed by changing the order in
which elements are computed, as shown in Figure 3-7(b). Essentially, a process
proceeds left-to-right not for the length of a whole subrow of its partition, but only
a certain length B, before it moves on to the corresponding portion of the next
subrow. It performs its sweep in sub-sweeps over B-by-B blocks of its partition. The
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block size B is chosen so that at least three B-length rows of a partition fit in the
cache. 

This technique of structuring computation so that it accesses a subset of data that fits in a level of
the hierarchy, uses those data as much as possible, and then moves on to the next such set of data,
is called blocking. In the particular example above, the reduction in miss rate due to blocking is
only a small constant factor (about a factor of two). The reduction is only seen when a subrow of
a process’s partition of a grid itself does not fit in the cache, so blocking is not always useful.
However, blocking is used very often in linear algebra computations like matrix multiplication or
matrix factorization, where O(nk+1) computation is performed on a data set of size O(nk), so each
data item is accessed O(n) times. Using blocking effectively with B-by-B blocks in these cases
can reduce the miss rate by a factor of B, as we shall see in Exercise 3.5, which is particularly
important since much of the data accessed is nonlocal. Not surprisingly, many of the same types
of restructuring are used to improve temporal locality in a sequential program as well; for exam-
ple, blocking is critical for high performance in sequential matrix computations. Techniques for
temporal locality can be used at any level of the hierarchy where data are replicated—including
main memory—and for both explicit or implicit replication. 

Since temporal locality affects replication, the locality and referencing patterns of applications
have important implications for determining which programming model and communication
abstraction a system should support. We shall return to this issue in Section 3.7. The sizes and
scaling of working sets have obvious implications for the amounts of replication capacity needed
at different levels of the memory hierarchy, and the number of levels that make sense in this hier-
archy. In a shared address space, together with their compositions (whether they hold local or
remote data or both), working set sizes also help determine whether it is useful to replicate com-
municated data in main memory as well or simply rely on caches, and if so how this should be
done. In message passing, they help us determine what data to replicate and how to manage the

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B=4

Figure  3-7  Blocking to exploit temporal locality in the equation solver kernel.

The figures show the access patterns for a process traversing its partition during a sweep, with the arrow-headed lines showing the
order in which grid points are updated. Updating the subrow of bold elements requires accessing that subrow as well as the two sub-
rows of shaded elements. Updating the first element of the next (shaded) subrow requires accessing the first element of the bold sub-
row again, but these three whole subrows have been accessed since the last time that first bold element was accessed. 
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replication so as not to fill memory with replicated data. Of course it is not only the working sets
of individual applications that matter, but those of the entire workloads and the operating system
that run on the machine. For hardware caches, the size of cache needed to hold a working set
depends on its organization (associativity and block size) as well. 

Exploiting Spatial Locality

A level of the extended memory hierarchy exchanges data with the next level at a certain granu-
larity or transfer size. This granularity may be fixed (for example, a cache block or a page of
main memory) or flexible (for example, explicit user-controlled messages or user-defined
objects). It usually becomes larger as we go further away from the processor, since the latency
and fixed startup overhead of each transfer becomes greater and should be amortized over a
larger amount of data. To exploit a large granularity of communication or data transfer, we
should organize our code and data structures to exploit spatial locality.1 Not doing so can lead to
artifactual communication if the transfer is to or from a remote node and is implicit (at some
fixed granularity), or to more costly communication even if the transfer is explicit (since either
smaller messages may have to be sent or the data may have to be made contiguous before they
are sent). As in uniprocessors, poor spatial locality can also lead to a high frequency of TLB
misses. 

In a shared address space, in addition to the granularity of communication, artifactual communi-
cation can also be generated by mismatches of spatial locality with two other important granular-
ities. One is the granularity of allocation, which is the granularity at which data are allocated in
the local memory or replication store (e.g. a page in main memory, or a cache block in the cache).
Given a set of data structures, this determines the granularity at which the data can be distributed
among physical main memories; that is, we cannot allocate a part of a page in one node’s mem-
ory and another part of the page in another node’s memory. For example, if two words that are
mostly accessed by two different processors fall on the same page, then unless data are replicated
in multiple main memories that page may be allocated in only one processor’s local memory;
capacity or conflict cache misses to that word by the other processor will generate communica-
tion. The other important granularity is the granularity of coherence, which we will discuss in
Chapter 5. We will see that unrelated words that happen to fall on the same unit of coherence in a
coherent shared address space can also cause artifactual communication. 

The techniques used for all these aspects of spatial locality in a shared address space are similar
to those used on a uniprocessor, with one new aspect: We should try to keep the data accessed by
a given processor close together (contiguous) in the address space, and unrelated data accessed
by different processors apart. Spatial locality issues in a shared address space are best examined
in the context of particular architectural styles, and we shall do so in Chapters 5 and 8. Here, for
illustration, we look at one example: how data may be restructured to interact better with the
granularity of allocation in the equation solver kernel. 

1.  The principle of spatial locality states that if a given memory location is referenced now, then it is likely
that memory locations close to it will be referenced in the near future.It should be clear that what is called
spatial locality at the granularity of individual words can also be viewed as temporal locality at the granular-
ity of cache blocks; that is, if a cache block is accessed now, then it (another datum on it) is likely to be
accessed in the near future.
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Example  3-2 Consider a shared address space system in which main memory is physically
distributed among the nodes, and in which the granularity of allocation in main
memory is a page (4 KB, say). Now consider the grid used in the equation solver
kernel. What is the problem created by the granularity of allocation, and how might
it be addressed? 

Answer The natural data structure with which to represent a two-dimensional grid in a
shared address space, as in a sequential program, is a two-dimensional array. In a
typical programming language, a two-dimensional array data structure is allocated
in either a “row-major” or “column-major” way.1 The gray arrows in Figure 3-8(a)
show the contiguity of virtual addresses in a row-major allocation, which is the one
we assume. While a two-dimensional shared array has the programming advantage

of being the same data structure used in a sequential program, it interacts poorly

1.  Consider the array as being a two-dimensional grid, with the first dimension specifying the row number
in the grid and the second dimension the column number. Row-major allocation means that all elements in
the first row are contiguous in the virtual address space, followed by all the elements in the second row, etc.
The C programming language, which we assume here, is a row-major language (FORTRAN, for example, is
column-major).

Figure  3-8  Two-dimensional and Four-dimensional arrays used to represent a two-dimensional grid in a shared address space. 
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with the granularity of allocation on a machine with physically distributed memory
(and with other granularities as well, as we shall see in Chapter 5). 

Consider the partition of processor P5 in Figure 3-8(a). An important working set
for the processor is its entire partition, which it streams through in every sweep and
reuses across sweeps. If its partition does not fit in its local cache hierarchy, we
would like it to be allocated in local memory so that the misses can be satisfied
locally. The problem is that consecutive subrows of this partition are not contiguous
with one another in the address space, but are separated by the length of an entire
row of the grid (which contains subrows of other partitions). This makes it
impossible to distribute data appropriately across main memories if a subrow of a
partition is either smaller than a page, or not a multiple of the page size, or not well
aligned to page boundaries. Subrows from two (or more) adjacent partitions will
fall on the same page, which at best will be allocated in the local memory of one of
those processors. If a processor’s partition does not fit in its cache, or it incurs
conflict misses, it may have to communicate every time it accesses a grid element in
its own partition that happens to be allocated nonlocally. 

The solution in this case is to use a higher-dimensional array to represent the two-
dimensional grid. The most common example is a four-dimensional array, in which
case the processes are arranged conceptually in a two-dimensional grid of partitions
as seen in Figure 3-8. The first two indices specify the partition or process being
referred to, and the last two represent the subrow and subcolumn numbers within
that partition. For example, if the size of the entire grid is 1024-by-1024 elements,
and there are 16 processors, then each partition will be a subgrid of size

 or 256-by-256 elements. In the four-dimensional representation,

the array will be of size 4-by-4-by-256-by-256 elements. The key property of these
higher-dimensional representations is that each processor’s 256-by-256 element
partition is now contiguous in the address space (see the contiguity in the virtual
memory layout in Figure 3-8(b)). The data distribution problem can now occur only
at the end points of entire partitions, rather than of each subrow, and does not occur
at all if the data structure is aligned to a page boundary. However, it is substantially
more complicated to write code using the higher-dimensional arrays, particularly
for array indexing of neighboring process’s partitions in the case of the nearest-
neighbor computation. 

More complex applications and data structures illustrate more significant tradeoffs in data struc-
ture design for spatial locality, as we shall see in later chapters. 

The spatial locality in processes’ access patterns, and how they scale with the problem size and
number of processors, affects the desirable sizes for various granularities in a shared address
space: allocation, transfer and coherence. It also affects the importance of providing support tai-
lored toward small versus large messages in message passing systems. Amortizing hardware and
transfer cost pushes us toward large granularities, but too large granularities can cause perfor-
mance problems, many of them specific to multiprocessors. Finally, since conflict misses can
generate artifactual communication when the backing store is nonlocal, multiprocessors push us
toward higher associativity for caches. There are many cost, performance and programmability
tradeoffs concerning support for data locality in multiprocessors—as we shall see in subsequent
chapters—and our choices are best guided by the behavior of applications.
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Finally, there are often interesting tradeoffs among algorithmic goals such as minimizing inher-
ent communication, implementation issues, and architectural interactions that generate artifactual
communication, suggesting that careful examination of tradeoffs is needed to obtain the best per-
formance on a given architecture. Let us illustrate using the equation solver kernel. 

Example  3-3 Given the performance issues discussed so far, should we choose to partition the
equation solver kernel into square-like blocks or into contiguous strips of rows?

Answer If we only consider inherent communication, we already know that a block domain
decomposition is better than partitioning into contiguous strips of rows (see
Figure 3-5 on page 142). However, a strip decomposition has the advantage that it
keeps a partition wholly contiguous in the address space even with the simpler, two-
dimensional array representation. Hence, it does not suffer problems related to the
interactions of spatial locality with machine granularities, such as the granularity of
allocation as discussed above. This particular interaction in the block case can of
course be solved by using a higher-dimensional array representation. However, a
more difficult interaction to solve is with the granularity of communication. In a
subblock assignment, consider a neighbor element from another partition at a
column-oriented partition boundary. If the granularity of communication is large,
then when a process references this element from its neighbor’s partition it will
fetch not only that element but also a number of other elements that are on the same
unit of communication. These other elements are not neighbors of the fetching
process’s partition, regardless of whether a two-dimensional or four-dimensional
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Figure  3-9  The impact of data structuring and spatial data locality on performance. 

All measurements are on the SGI Origin2000. 2D and 4D imply two- and four-dimensional data structures, respectively, with sub-
block assignment. Rows uses the two-dimensional array with strip assignment into chunks of rows. In the right graph, the postfix rr
means that pages of data are distributed round-robin among physical memories. Without rr, it means that pages are placed in the local
memory of the processor to which their data is assigned, as far as possible. We see from (a) that the rowwise strip assignment outper-
forms the 2D strip assignment due to spatial locality interactions with long cache blocks (128 bytes on the Origin2000), and even a lit-
tle better than the 4D array block assignment due to poor spatial locality in the latter in accessing border elements at column-oriented
partition boundaries. The right graph shows that in all partitioning schemes proper data distribution in main memory is important to
performance, though least successful for the 2D array subblock partitions. In the best case, we see superlinear speedups once there are
enough processors that the size of a processor’s partition of the grid (its important working set) fits into its cache. 
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representation is used, so they are useless and waste communication bandwidth (see
Figure 3-10). With a partitioning into strips of rows, a referenced element still

causes other elements from its row to be fetched, but now these elements are indeed
neighbors of the fetching process’s partition. They are useful, and in fact the large
granularity of communication results in a valuable prefetching effect. Overall, there
are many combinations of application and machine parameters for which the
performance losses in block partitioning owing to artifactual communication will
dominate the performance benefits from reduced inherent communication, so that a
strip partitioning will perform better than a block partitioning on a real system. We
might imagine that it should most often perform better when a two-dimensional
array is used in the block case, but it may also do so in some cases when a four-
dimensional array is used (there is not motivation to use a four-dimensional array
with a strip partitioning). Thus, artifactual communication may cause us to go back
and revise our partitioning method from block to strip. Figure 3-9(a) illustrates this
effect for the Ocean application, and Figure 3-9(b) uses the equation solver kernel
with a larger grid size to also illustrate the impact of data placement. Note that a
strip decomposition into columns rather than rows will yield the worst of both
worlds when data are laid out in memory in row-major order. 

3.4.2 Structuring Communication to Reduce Cost

Whether communication is inherent or artifactual, how much a given communication-to-compu-
tation ratio contributes to execution time is determined by how the communication is organized
or structured into messages. A small communication-to-computation ratio may have a much
greater impact on execution time than a large ratio if the structure of the latter interacts much bet-
ter with the system. This is an important issue in obtaining good performance from a real
machine, and is the last major performance issue we examine. Let us begin by seeing what the
structure of communication means. 

Good spatial locality on 
nonlocal accesses

Poor spatial locality on 
nonlocal accesses

Figure  3-10  Spatial locality in accesses to nonlocal data in the equation solver kernel. 

The shaded points are the nonlocal points that the processor owning the partition accesses. The hatched rectangles are cache blocks,
showing good spatial locality along the row boundary but poor along the column. 
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In Chapter 1, we introduced a model for the cost of communication as seen by a processor given
a frequency of program initiated communication operations or messages (initiated explicit mes-
sages or loads and stores). Combining equations 1.5 and 1.6, that model for the cost C is:

or 

(EQ 3.4)

where 

f is the frequency of communication messages in the program.

nc is the total amount of data communicated by the program. 

m is the number of message, so nc/m is the average length of a message. 

o is the combined overhead of handling the initiation and reception of a message at the send-
ing and receiving processors, assuming no contention with other activities. 

l is the delay for the first bit of the message to reach the destination processor or memory, 
which includes the delay through the assists and network interfaces as well as the network 
latency or transit latency in the network fabric itself (a more detailed model might separate 
the two out). It assumes no contention. 

B is the point-to-point bandwidth of communication afforded for the transfer by the commu-
nication path, excluding the processor overhead; i.e. the rate at which the rest of the message 
data arrives at the destination after the first bit, assuming no contention. It is the inverse of the 
overall occupancy discussed in Chapter 1. It may be limited by the network links, the network 
interface or the communication assist. 

tc is the time induced by contention for resources with other activities.

overlap is the amount of the communication cost that can be overlapped with computation or 
other communication, i.e that is not in the critical path of a processor’s execution. 

This expression for communication cost can be substituted into the speedup equation we devel-
oped earlier (Equation 3.1 on page 144), to yield our final expression for speedup. The portion of
the cost expression inside the parentheses is our cost model for a single data one-way message. It
assumes the “cut-through” or pipelined rather than store-and-forward transmission of modern
multiprocessor networks. If messages are round-trip, we must make the appropriate adjustments.
in addition to reducing communication volume (nc) our goals in structuring communication may
include (i) reducing communication overhead (m*o), (ii) reducing latency (m*l), (iii) reducing
contention (m*tc), and (iv) overlapping communication with computation or other communica-
tion to hide its latency. Let us discuss programming techniques for addressing each of the issues.

Reducing Overhead

Since the overhead o associated with initiating or processing a message is usually fixed by hard-
ware or system software, the way to reduce communication overhead is to make messages fewer
in number and hence larger, i.e. to reduce the message frequency1 Explicitly initiated communi-
cation allows greater flexibility in specifying the sizes of messages; see the SEND primitive
described in Section 2.4.6 in the previous chapter. On the other hand, implicit communication

C freq Overhead Delay+ Length
Bandwidth
----------------------------- Contention Overlap–+ + 

 ×=

C f o l+
nc m⁄

B
------------- tc overlap–+ + 

 ×=
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through loads and stores does not afford the program direct control, and the system must take
responsibility for coalescing the loads and stores into larger messages if necessary. 

Making messages larger is easy in applications that have regular data access and communication
patterns. For example, in the message passing equation solver example partitioned into rows we
sent an entire row of data in a single message. But it can be difficult in applications that have
irregular and unpredictable communication patterns, such as Barnes-Hut or Raytrace. As we shall
see in Section 3.7, it may require changes to the parallel algorithm, and extra work to determine
which data to coalesce, resulting in a tradeoff between the cost of this computation and the sav-
ings in overhead. Some computation may be needed to determine what data should be sent, and
the data may have to be gathered and packed into a message at the sender and unpacked and scat-
tered into appropriate memory locations at the receiver.

Reducing Delay

Delay through the assist and network interface can be reduced by optimizing those components.
Consider the network transit delay or the delay through the network itself. In the absence of con-
tention and with our pipelined network assumption, the transit delay l of a bit through the net-
work itself can be expressed as h*th, where h is the number of “hops” between adjacent network
nodes that the message traverses, th is the delay or latency for a single bit of data to traverse a sin-
gle network hop, including the link and the router or switch. Like o above, th is determined by the
system, and the program must focus on reducing the f and h components of the f*h* th delay cost.
(In store-and-forward networks, th would be the time for the entire message to traverse a hop, not
just a single bit.)

The number of hops h can be reduced by mapping processes to processors so that the topology of
interprocess communication in the application exploits locality in the physical topology of the
network. How well this can be done in general depends on application and on the structure and
richness of the network topology; for example, the nearest-neighbor equation solver kernel (and
the Ocean application) would map very well onto a mesh-connected multiprocessor but not onto
a unidirectional ring topology. Our other example applications are more irregular in their com-
munication patterns. We shall see several different topologies used in real machines and discuss
their tradeoffs in Chapter 10. 

There has been a lot of research in mapping algorithms to network topologies, since it was
thought that as the number of processors p became large poor mappings would cause the latency
due to the h*th term to dominate the cost of messages. How important topology actually is in
practice depends on several factors: (i) how large the th term is relative to the overhead o of get-
ting a message into and out of the network, (ii) the number of processing nodes on the machine,
which determines the maximum number of hops h for a given topology, and (iii) whether the
machine is used to run a single application at a time in “batch” mode or is multiprogrammed
among applications. It turns out that network topology is not considered as important on modern
machines as it once was, because of the characteristics of the machines along all three axes: over-
head dominates hop latency (especially in machines that do not provide hardware support for a
shared address space), the number of nodes is usually not very large, and the machines are often

1.  Some explicit message passing systems provide different types of messages with different costs and
functionalities among which a program can choose. 
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used as general-purpose, multiprogrammed servers. Topology-oriented design might not be very
useful in multiprogrammed systems, since the operating system controls resource allocation
dynamically and might transparently change the mapping of processes to processors at runtime.
For these reasons, the mapping step of parallelization receives considerably less attention than
decomposition, assignment and orchestration. However, this may change again as technology
and machine architecture evolve. Let us now look at contention, the third major cost issue in
communication. 

Reducing Contention

The communication systems of multiprocessors consist of many resources, including network
links and switches, communication controllers, memory systems and network interfaces. All of
these resources have a nonzero occupancy, or time for which they are occupied servicing a given
transaction. Another way of saying this is that they have finite bandwidth (or rate, which is the
reciprocal of occupancy) for servicing transactions. If several messages contend for a resource,
some of them will have to wait while others are serviced, thus increasing message latency and
reducing the bandwidth available to any single message. Resource occupancy contributes to mes-
sage cost even when there is no contention, since the time taken to pass through resource is part
of the delay or overhead, but it can also cause contention. 

Contention is a particularly insidious performance problem, for several reasons. First, it is easy to
ignore when writing a parallel program, particularly if it is caused by artifactual communication.
Second, its effect on performance can be dramatic. If p processors contend for a resource of
occupancy x, the first to obtain the resource incurs a latency of x due to that resource, while the
last incurs at least p*x. In addition to large stall times for processors, these differences in wait
time across processors can also lead to large load imbalances and synchronization wait times.
Thus, the contention caused by the occupancy of a resource can be much more dangerous than
just the latency it contributes in uncontended cases. The third reason is that contention for one
resource can hold up other resources, thus stalling transactions that don’t even need the resource
that is the source of the contention. This is similar to how contention for a single-lane exit off a
multi-lane highway causes congestion on the entire stretch of highway. The resulting congestion
also affects cars that don’t need that exit but want to keep going on the highway, since they may
be stuck behind cars that do need that exit. The resulting backup of cars covers up other unrelated
resources (previous exits), making them inaccessible and ultimately clogging up the highway.
Bad cases of contention can quickly saturate the entire communication architecture. The final
reason is related: The cause of contention is particularly difficult to identify, since the effects
might be felt at very different points in the program than the original cause, particularly commu-
nication is implicit.

Like bandwidth, contention in a network can also be viewed as being of two types: at links or
switches within the network, called network contention, and at the end-points or processing
nodes, called end-point contention. Network contention, like latency, can be reduced by mapping
processes and scheduling the communication appropriately in the network topology. End-point
contention occurs when many processors need to communicate with the same processing node at
the same time (or when communication transactions interfere with local memory references).
When this contention becomes severe, we call that processing node or resource a hot spot. Let us
examine a simple example of how a hot spot may be formed, and how it might be alleviated in
software. 
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Recall the case of processes want to accumulate their partial sums into a global sum, as in our
equation solver kernel. The resulting contention for the global sum can be reduced by using tree-
structured communication rather than having all processes send their updates to the owning node
directly. Figure 3-11 shows the structure of such many-to-one communication using a binary fan-
in tree. The nodes of this tree, which is often called a software combining tree, are the participat-
ing processes. A leaf process sends its update up to its parent, which combines its children’s
updates with its own and sends the combined update up to its parent, and so on till the updates
reach the root (the process that holds the global sum) in  steps. A similar fan-out tree can be
used to send data from one to many processes. Similar tree-based approaches are used to design

scalable synchronization primitives like locks and barriers that often experience a lot of conten-
tion, as we will see in later chapters, as well as library routines for other communication patterns. 

In general, two principles for alleviating contention are to avoid having too many processes com-
municate with the same process at the same time, and to stagger messages to the same destination
so as not to overwhelm the destination or the resources along the way. Contention is often caused
when communication is bursty (i.e. the program spends some time not communicating much and
then suddenly goes through a burst of communication), and staggering reduces burstiness. How-
ever, this must be traded off with making messages large, which tends to increase burstiness.
Finally, having discussed overhead, latency, and contention, let us look at the last of the commu-
nication cost issues. 

Overlapping Communication with Computation or Other Communication

Despite efforts to reduce overhead and delay, the technology trends discussed in Chapter 1 sug-
gest that the end-to-end the communication cost as seen by a processor is likely to remain very
large in processor cycles. Already, it is in the hundreds of processor cycles even on machines that
provide full hardware support for a shared address space and use high-speed networks, and is at
least an order of magnitude higher on current message passing machines due to the higher over-
head term o. If the processor were to remain idle (stalled) while incurring this cost for every word
of data communicated, only programs with an extremely low ratio of communication to compu-
tation would yield effective parallel performance. Programs that communicate a lot must there-
fore find ways to hide the cost of communication from the process’s critical path by overlapping

p2log

Flat Tree Structured

Figure  3-11  Two ways of structuring many-to-one communication: flat, and tree-structured in a binary fan-in tree. 

Note that the destination processor may received up to p-1 messages at a time in the flat case, while no processor is the destination of
more than two messages in the binary tree. 

contention little contention
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it with computation or other communication as much as possible, and systems must provide the
necessary support. 

Techniques to hide communication cost come in different, often complementary flavors, and we
shall spend a whole chapter on them. One approach is simply to make messages larger, thus
incurring the latency of the first word but hiding that of subsequent words through pipelined
transfer of the large message. Another, which we can call precommunication, is to initiate the
communication much before the data are actually needed, so that by the time the data are needed
they are likely to have already arrived. A third is to perform the communication where it naturally
belongs in the program, but hide its cost by finding something else for the processor to do from
later in the same process (computation or other communication) while the communication is in
progress. A fourth, called multithreading is to switch to a different thread or process when one
encounters a communication event. While the specific techniques and mechanisms depend on the
communication abstraction and the approach taken, they all fundamentally require the program
to have extra concurrency (also called slackness) beyond the number of processors used, so that
independent work can be found to overlap with the communication. 

Much of the focus in parallel architecture has in fact been on reducing communication cost as
seen by the processor: reducing communication overhead and latency, increasing bandwidth, and
providing mechanisms to alleviate contention and overlap communication with computation or
other communication. Many of the later chapters will therefore devote a lot of attention to cover-
ing these issues—including the design of node to network interfaces and communication proto-
cols and controllers that minimize both software and hardware overhead (Chapter 7, 8 and 9), the
design of network topologies, primitive operations and routing strategies that are well-suited to
the communication patterns of applications (Chapter 10), and the design of mechanisms to hide
communication cost from the processor (Chapter 11). The architectural methods are usually
expensive, so it is important that they can be used effectively by real programs and that their per-
formance benefits justify their costs. 

3.5 Performance Factors from the Processors’ Perspective

To understand the impact of different performance factors in a parallel program, it is useful to
look from an individual processor’s viewpoint at the different components of time spent execut-
ing the program; i.e. how much time the processor spends in different activities as it executes
instructions and accesses data in the extended memory hierarchy. These different components of
time can be related quite directly to the software performance issues studied in this chapter, help-
ing us relate software techniques to hardware performance. This view also helps us understand
what a parallel execution looks like as a workload presented to the architecture, and will be use-
ful when we discuss workload-driven architectural evaluation in the next chapter. 

In Equation 3.3, we described the time spent executing a sequential program on a uniprocessor as
the sum of the time actually executing instructions (busy) and the time stalled on the memory
system (data-local), where the latter is a “non-ideal” factor that reduces performance. Figure 3-
12(a) shows a profile of a hypothetical sequential program. In this case, about 80% of the execu-
tion time is spent performing instructions, which can be reduced only by improving the algorithm
or the processor. The other 20% is spent stalled on the memory system, which can be improved
by improving locality or the memory system. 
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In multiprocessors we can take a similar view, though there are more such non-ideal factors. This
view cuts across programming models: for example, being stalled waiting for a receive to com-
plete is really very much like being stalled waiting for a remote read to complete or a synchroni-
zation event to occur. If the same program is parallelized and run on a four-processor machine,
the execution time profile of the four processors might look like that in Figure 3-12(b). The figure

assumes a global synchronization point at the end of the program, so that all processes terminate
at the same time. Note that the parallel execution time (55 sec) is greater than one-fourth of the

sequential execution time (100 sec); that is, we have obtained a speedup of only  or 1.8

instead of the four-fold speedup for which we may have hoped. Why this is the case, and what
specific software or programming factors contribute to it can be determined by examining the
components of parallel execution time from the perspective of an individual processor. These are:

Busy-useful: this is the time that the processor spends executing instructions that would have 
been executed in the sequential program as well. Assuming a deterministic parallel program1 
that is derived directly from the sequential algorithm, the sum of the busy-useful times for all 
processors is equal to the busy-useful time for the sequential execution. (This is true at least 
for processors that execute a single instruction per cycle; attributing cycles of execution time 
to busy-useful or other categories is more complex when processors issue multiple instruc-
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Figure  3-12  Components of execution time from the perspective of an individual processor. 
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tions per cycle, since different cycles may execute different numbers of instructions and a 
given stall cycle may be attributable to different causes. We will discuss this further in 
Chapter 11 when we present execution time breakdowns for superscalar processors.)

Busy-overhead: the time that the processor spends executing instructions that are not needed 
in the sequential program, but only in the parallel program. This corresponds directly to the 
extra work done in the parallel program. 

Data-local: the time the processor is stalled waiting for a data reference it issued to be satis-
fied by the memory system on its own processing node; that is, waiting for a reference that 
does not require communication with other nodes. 

Data-remote: the time it is stalled waiting for data to be communicated to or from another 
(remote) processing node, whether due to inherent or artifactual communication. This repre-
sents the cost of communication as seen by the processor. 

Synchronization: the time it spends waiting for another process to signal the occurrence of an 
event that will allow it to proceed. This includes the load imbalance and serialization in the 
program, as well as the time spent actually executing synchronization operations and access-
ing synchronization variables. While it is waiting, the processor could be repeatedly polling a 
variable until that variable changes value—thus executing instructions—or it could be stalled, 
depending on how synchronization is implemented.1 

The synchronization, busy-overhead and data-remote components are not found in a sequential
program running on a uniprocessor, and are overheads introduced by parallelism. As we have
seen, while inherent communication is mostly included in the data-remote component, some
(usually very small) part of it might show up as data-local time as well. For example, data that is
assigned to the local memory of a processor P might be updated by another processor Q, but
asynchronously returned to P’s memory (due to replacement from Q, say) before P references it.
Finally, the data-local component is interesting, since it is a performance overhead in both the
sequential and parallel cases. While the other overheads tend to increase with the number of pro-
cessors for a fixed problem, this component may decrease. This is because the processor is
responsible for only a portion of the overall calculation, so it may only access a fraction of the
data that the sequential program does and thus obtain better local cache and memory behavior. If
the data-local overhead reduces enough, it can give rise to superlinear speedups even for deter-

1.  A parallel algorithm is deterministic if the result it yields for a given input data set are always the same
independent of the number of processes used or the relative timings of events. More generally, we may con-
sider whether all the intermediate calculations in the algorithm are deterministic. A non-deterministic algo-
rithm is one in which the result and the work done by the algorithm to arrive at the result depend on the
number of processes and relative event timing. An example is a parallel search through a graph, which stops
as soon as any path taken through the graph finds a solution. Non-deterministic algorithms complicate our
simple model of where time goes, since the parallel program may do less useful work than the sequential
program to arrive at the answer. Such situations can lead to superlinear speedup, i.e., speedup greater than
the factor by which the number of processors is increased. However, not all forms of non-determinism have
such beneficial results. Deterministic programs can also lead to superlinear speedups due to greater memory
system overheads in the sequential program than a in a parallel execution, as we shall see. 

1.  Synchronization introduces components of time that overlap with other categories. For example, the time
to satisfy the processor’s first access to the synchronization variable for the current synchronization event, or
the time spent actually communicating the occurrence of the synchronization event, may be included either
in synchronization time or in the relevant data access category. We include it in the latter. Also, if a proces-
sor executes instructions to poll a synchronization variable while waiting for an event to occur, that time
may be defined as busy-overhead or as synchronization. We include it in synchronization time, since it is
essentially load imbalance. 
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ministic parallel programs. Figure 3-13 summarizes the correspondences between parallelization

issues, the steps in which they are mostly addressed, and processor-centric components of execu-
tion time. 

Using these components, we may further refine our model of speedup for a fixed problem as fol-
lows, once again assuming a global synchronization at the end of the execution (otherwise we
would take the maximum over processes in the denominator instead of taking the time profile of
any single process):

 (EQ 3.5)

Our goal in addressing the performance issues has been to keep the terms in the denominator low
and thus minimize the parallel execution time. As we have seen, both the programmer and the
architecture have their roles to play. There is little the architecture can do to help if the program is
poorly load balanced or if there is an inordinate amount of extra work. However, the architecture
can reduce the incentive for creating such ill-behaved parallel programs by making communica-
tion and synchronization more efficient. The architecture can also reduce the artifactual commu-
nication incurred, provide convenient naming so that flexible assignment mechanisms can be
easily employed, and make it possible to hide the cost of communication by overlapping it with
useful computation.

3.6 The Parallel Application Case Studies: An In-Depth Look

Having discussed the major performance issues for parallel programs in a general context, and
having applied them to the simple equation solver kernel, we are finally ready to examine what
we really wanted to do all along in software: to achieve good parallel performance on more real-
istic applications on real multiprocessors. In particular, we are now ready to return to the four
application case studies that motivated us to study parallel software in the previous chapter, apply

Synch-wait

Data-remote

Data-local

Load Imbalance and

Communication Structure

Figure  3-13  Mapping between parallelization issues and processor-centric components of execution time. 

Bold lines depict direct relationships, while dotted lines depict side-effect contributions. On the left are shown the parallelization
step in which the issues are mostly addressed.
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the four steps of the parallelization process to each case study, and at each step address the major
performance issues that arise in it. In the process, we can understand and respond to the tradeoffs
that arise among the different performance issues, as well as between performance and ease of
programming. This will not only make our understanding of parallel software and tradeoffs more
concrete, but will also help us see the types of workload characteristics that different applications
present to a parallel architecture. Understanding the relationship between parallel applications,
software techniques and workload characteristics will be very important as we go forward
through the rest of the book. 

Parallel applications come in various shapes and sizes, with very different characteristics and
very different tradeoffs among the major performance issues. Our four case studies provide an
interesting though necessarily very restricted cross-section through the application space. In
examining how to parallelize, and particularly orchestrate, them for good performance, we shall
focus for concreteness on a specific architectural style: a cache-coherent shared address space
multiprocessor with main memory physically distributed among the processing nodes. 

The discussion of each application is divided into four subsections. The first describes in more
detail the sequential algorithms and the major data structures used. The second describes the par-
titioning of the application, i.e. the decomposition of the computation and its assignment to pro-
cesses, addressing the algorithmic performance issues of load balance, communication volume
and the overhead of computing the assignment. The third subsection is devoted to orchestration:
it describes the spatial and temporal locality in the program, as well as the synchronization used
and the amount of work done between synchronization points. The fourth discusses mapping to a
network topology. Finally, for illustration we present the components of execution time as
obtained for a real execution (using a particular problem size) on a particular machine of the cho-
sen style: a 16-processor Silicon Graphics Origin2000. While the level of detail at which we treat
the case studies may appear high in some places, these details will be important in explaining the
experimental results we shall obtain in later chapters using these applications.

3.6.1 Ocean

Ocean, which simulates currents in an ocean basin, resembles many important applications in
computational fluid dynamics. At each horizontal cross-section through the ocean basin, several
different variables are modeled, including the current itself and the temperature, pressure, and
friction. Each variable is discretized and represented by a regular, uniform two-dimensional grid
of size n+2-by-n+2 points (n+2 is used instead of n so that the number of internal, non-border
points that are actually computed in the equation solver is n-by-n). In all, about twenty-five dif-
ferent grid data structures are used by the application. 

The Sequential Algorithm

After the currents at each cross-section are initialized, the outermost loop of the application pro-
ceeds over a large, user-defined number of time-steps. Every time-step first sets up and then
solves partial differential equations on the grids. A time step consists of thirty three different grid
computations, each involving one or a small number of grids (variables). Typical grid computa-
tions include adding together scalar multiples of a few grids and storing the result in another grid
(e.g. A = α1B+α2C-α3D), performing a single nearest-neighbor averaging sweep over a grid and
storing the result in another grid, and solving a system of partial differential equations on a grid
using an iterative method. 
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The iterative equation solver used is the multigrid method. This is a complex but efficient variant
of the equation solver kernel we have discussed so far. In the simple solver, each iteration is a
sweep over the entire n-by-n grid (ignoring the border columns and rows). A multigrid solver, on
the other hand, performs sweeps over a hierarchy of grids. The original n-by-n grid is the finest-
resolution grid in the hierarchy; the grid at each coarser level removes every alternate grid point

in each dimension, resulting in grids of size , , and so on. The first sweep of

the solver traverses the finest grid, and successive sweeps are performed on coarser or finer grids
depending on the error computed in the previous sweep, terminating when the system converges
within a user-defined tolerance. To keep the computation deterministic and make it more effi-
cient, a red-black ordering is used (see Section 2.4.2 on page 105). 

Decomposition and Assignment

Ocean affords concurrency at two levels within a time-step: across some grid computations
(function parallelism), and within a grid computation (data parallelism). Little or no concurrency
is available across successive time-steps. Concurrency across grid computations is discovered by
writing down which grids each computation reads and writes, and analyzing the dependences
among them at this level. The resulting dependence structure and concurrency are depicted in
Figure 3-14. Clearly, there is not enough concurrency across grid computations—i.e. not enough
vertical sections—to occupy more than a few processors. We must therefore exploit the data par-
allelism within a grid computation as well, and we need to decide what combination of function
and data parallelism is best. 

There are several reasons why we choose to have all processes collaborate on each grid computa-
tion, rather than divide the processes among the available concurrent grid computations and use
both levels of parallelism; i.e. why we concentrate on data parallelism. Combined data and func-
tion parallelism would increase the size of each process’s partition of a grid, and hence reduce
communication-to-computation ratio. However, the work associated with different grid computa-
tions is very varied and depends on problem size in different ways, which complicates load bal-
anced assignment. Second, since several different computations in a time-step access the same
grid, for communication and data locality reasons we would not like the same grid to be parti-
tioned in different ways among processes in different computations. Third, all the grid computa-
tions are fully data parallel and all grid points in a given computation do the same amount of
work except at the borders, so we can statically assign grid points to processes using the data-par-
allel-only approach. Nonetheless, knowing which grid computations are independent is useful
because it allows processes to avoid synchronizing between them. 

The inherent communication issues are clearly very similar to those in the simple equation
solver, so we use a block-structured domain decomposition of each grid. There is one complica-
tion—a tradeoff between locality and load balance related to the elements at the border of the
entire grid. The internal n-by-n elements do similar work and are divided equally among all pro-
cesses. Complete load balancing demands that border elements, which often do less work, also
be divided equally among processors. However, communication and data locality suggest that
border elements should be assigned to the processors that own the nearest internal elements. We
follow the latter strategy, incurring a slight load imbalance. 

Finally, let us examine the multigrid equation solver. The grids at all levels of the multigrid hier-
archy are partitioned in the same block-structured domain decomposition. However, the number
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of grid points per processor decreases as we go to coarser levels of the hierarchy. At the highest
log p of the log n possible levels, there will be less grid points than the p processors, so some pro-
cessors will remain idle. Fortunately, relatively little time is spent at these load-imbalanced lev-
els. The ratio of communication to computation also increases at higher levels, since there are
fewer points per processor. This illustrates the importance of measuring speedups relative to the
best sequential algorithm (here multigrid, for example): A classical, non-hierarchical iterative
solver on the original grid would likely yield better self-relative speedups (relative to a single
processor performing the same computation) than the multigrid solver, but the multigrid solver is
far more efficient sequentially and overall. In general, less efficient sequential algorithms often
yield better self-relative “speedups”

Orchestration

Here we are mostly concerned with artifactual communication and data locality, and with the
orchestration of synchronization. Let us consider issues related to spatial locality first, then tem-
poral locality, and finally synchronization.

Spatial Locality: Within a grid computation, the issues related to spatial locality are very similar
to those discussed for the simple equation solver kernel in Section 3.4.1, and we use four-dimen-
sional array data structures to represent the grids. This results in very good spatial locality, partic-
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ularly on local data. Accesses to nonlocal data (the elements at the boundaries of neighboring
partitions) yield good spatial locality along row-oriented partition boundaries, and poor locality
(hence fragmentation) along column-oriented boundaries. There are two major differences
between the simple solver and the complete Ocean application in issues related to spatial locality.
The first is that because Ocean involves thirty-three different grid computations in every time-
step, each involving one or more out of twenty-five different grids, we experience many conflict
misses across grids. While we alleviate this by ensuring that the dimensions of the arrays that we
allocate are not powers of two (even if the program uses power-of-two grids), it is difficult to lay
different grids out relative to one another to minimizes conflict misses. The second difference has
to do with the multigrid solver. The fact that a process’s partition has fewer grid points at higher
levels of the grid hierarchy makes it more difficult to allocate data appropriately at page granular-
ity and reduces spatial locality, despite the use of four-dimensional arrays. 

Working Sets and Temporal Locality: Ocean has a complicated working set hierarchy, with six
working sets. These first three are due to the use of near-neighbor computations, including the
multigrid solver, and are similar to those for the simple equation solver kernel. The first is cap-
tured when the cache is large enough to hold a few grid elements, so that an element that is
accessed as the right neighbor for another element is reused to compute itself and also as the left
neighbor for the next element. The second working set comprises a couple of subrows of a pro-
cess’s partition. When the process returns from one subrow to the beginning of the next in a near-
neighbor computation, it can reuse the elements of the previous subrow. The rest of the working
sets are not well defined as single working sets, and lead to a curve without sharp knees. The
third constitutes a process’s entire partition of a grid used in the multigrid solver. This could be
the partition at any level of the multigrid hierarchy at which the process tends to iterate, so it is
not really a single working set. The fourth consists of the sum of a process’s subgrids at several
successive levels of the grid hierarchy within which it tends to iterate (in the extreme, this
becomes all levels of the grid hierarchy). The fifth working set allows one to exploit reuse on a
grid across grid computations or even phases; thus, it is large enough to hold a process’s partition
of several grids. The last holds all the data that a process is assigned in every grid, so that all these
data can be reused across times-steps. 

The working sets that are most important to performance are the first three or four, depending on
how the multigrid solver behaves. The largest among these grow linearly with the size of the data
set per process. This growth rate is common in scientific applications that repeatedly stream
through their data sets, so with large problems some important working sets do not fit in the local
caches. Note that with proper data placement the working sets for a process consist mostly of
local rather than communicated data. The little reuse that nonlocal data afford is captured by the
first two working sets. 

Synchronization: Ocean uses two types of synchronization. First, global barriers are used to
synchronize all processes between computational phases (the horizontal lines in Figure 3-14), as
well between iterations of the multigrid equation solver. Between several of the phases we could
replace the barriers with finer-grained point-to-point synchronization at element level to obtain
some overlap across phases; however, the overlap is likely to be too small to justify the overhead
of many more synchronization operations and the programming complexity. Second, locks are
used to provide mutual exclusion for global reductions. The work between synchronization
points is very large, typically proportional to the size of a processor’s partition of a grid. 
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Mapping

Given the near-neighbor communication pattern, we would like to map processes to processors
such that processes whose partitions are adjacent to each other in the grid run on processors that
are adjacent to each other in the network topology. Our subgrid partitioning of two-dimensional
grids clearly maps very well to a two-dimensional mesh network. 

In summary, Ocean is a good representative of many computational fluid dynamics computations

that use regular grids. The computation to communication ratio is proportional to  for a prob-

lem with n-by-n grids and p processors, load balance is good except when n is not large relative
to p, and the parallel efficiency for a given number of processors increases with the grid size.
Since a processor streams through its portion of the grid in each grid computation, since only a
few instructions are executed per access to grid data during each sweep, and since there is signif-
icant potential for conflict misses across grids, data distribution in main memory can be very
important on machines with physically distributed memory. 

Figure 3-15 shows the breakdown of execution time into busy, waiting at synchronization points,
and waiting for data accesses to complete for a particular execution of Ocean with 1030-by-1030
grids on a 32-processor SGI Origin2000 machine. As in all our programs, mapping of processes
to processors is not enforced by the program but is left to the system. This machine has very large
per-processor second-level caches (4MB), so with four-dimensional arrays each processor’s par-
tition tends to fit comfortably in its cache. The problem size is large enough relative to the num-
ber of processors that the inherent communication to computation ratio is quite low. The major
bottleneck is the time spent waiting at barriers. Smaller problems would stress communication
more, while larger problems and proper data distribution would put more stress on the local
memory system. With two-dimensional arrays, the story is clearly different. Conflict misses are
frequent, and with data being difficult to place appropriately in main memory, many of these
misses are not satisfied locally, leading to long latencies as well as contention. 
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Figure  3-15  Execution time breakdowns for Ocean on a 32-processor Origin2000. 

The size of each grid is 1030-by-1030, and the convergence tolerance is 10-3. The use of four-dimensional arrays to represent the two-
dimensional arrays to represent the two-dimensional grids clearly reduces the time spent stalled on the memory system (including
communication). This data wait time is very small because a processor’s partition of the grids it uses at a time fit very comfortably in
the large 4MB second-level caches in this machine. With smaller caches, or much bigger grids, the time spent stalled waiting for
(local) data would have been much larger. 
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3.6.2 Barnes-Hut

The galaxy simulation has far more irregular and dynamically changing behavior than Ocean.
The algorithm it uses for computing forces on the stars, the Barnes-Hut method, is an efficient
hierarchical method for solving the n-body problem in O(n log n) time. Recall that the n-body
problem is the problem of computing the influences that n bodies in a system exert on one
another.

The Sequential Algorithm

The galaxy simulation proceeds over hundreds of time-steps, each step computing the net force
on every body and thereby updating that body’s position and other attributes. Recall the insight

that force calculation in the Barnes-Hut method is based on: If the magnitude of interaction
between bodies falls off rapidly with distance (as it does in gravitation), then the effect of a large
group of bodies may be approximated by a single equivalent body, if the group of bodies is far
enough away from the point at which the effect is being evaluated. The hierarchical application
of this insight implies that the farther away the bodies, the larger the group that can be approxi-
mated by a single body.

To facilitate a hierarchical approach, the Barnes-Hut algorithm represents the three-dimensional
space containing the galaxies as a tree, as follows. The root of the tree represents a space cell
containing all bodies in the system. The tree is built by adding bodies into the initially empty root
cell, and subdividing a cell into its eight children as soon as it contains more than a fixed number
of bodies (here ten). The result is an “oct-tree” whose internal nodes are cells and whose leaves
are individual bodies.1 Empty cells resulting from a cell subdivision are ignored. The tree, and
the Barnes-Hut algorithm, is therefore adaptive in that it extends to more levels in regions that
have high body densities. While we use a three-dimensional problem, Figure 3-17 shows a small

1.  An oct-tree is a tree in which every node has a maximum of eight children. In two dimensions, a quadtree
would be used, in which the maximum number of children is four.

Figure  3-16  Flow of computation in the Barnes-Hut application. 
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two-dimensional example domain and the corresponding “quadtree” for simplicity. The positions
of the bodies change across time-steps, so the tree has to be rebuilt every time-step. This results
in the overall computational structure shown in the right hand side of Figure 3-16, with most of
the time being spent in the force calculation phase. 

The tree is traversed once per body to compute the net force acting on that body. The force-calcu-
lation algorithm for a body starts at the root of the tree and conducts the following test recursively
for every cell it visits. If the center of mass of the cell is far enough away from the body, the
entire subtree under that cell is approximated by a single body at the center of mass of the cell,
and the force this center of mass exerts on the body computed. If, however, the center of mass is
not far enough away, the cell must be “opened” and each of its subcells visited. A cell is deter-
mined to be far enough away if the following condition is satisfied:

, (EQ 3.6)

where l is the length of a side of the cell, d is the distance of the body from the center of mass of
the cell, and θ is a user-defined accuracy parameter (θ is usually between 0.5 and 1.2). In this
way, a body traverses deeper down those parts of the tree which represent space that is physically
close to it, and groups distant bodies at a hierarchy of length scales. Since the expected depth of
the tree is O(log n), and the number of bodies for which the tree is traversed is n, the expected
complexity of the algorithm is O(n log n). Actually it is O( n log n), since θ determines the
number of tree cells touched at each level in a traversal. 

Principal Data Structures

Conceptually, the main data structure in the application is the Barnes-Hut tree. The tree is imple-
mented in both the sequential and parallel programs with two arrays: an array of bodies and an
array of tree cells. Each body and cell is represented as a structure or record. The fields for a body
include its three-dimensional position, velocity and acceleration, as well as its mass. A cell struc-
ture also has pointers to its children in the tree, and a three-dimensional center-of-mass. There is
also a separate array of pointers to bodies and one of pointers to cells. Every process owns an
equal contiguous chunk of pointers in these arrays, which in every time-step are set to point to the

(a)    The Spatial Domain (b)    Quadtree Representation

Figure  3-17  Barnes-Hut: A two-dimensional particle distribution and the corresponding quadtree. 
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bodies and cells that are assigned to it in that time-step. The structure and partitioning of the tree
changes across time-steps as the galaxy evolves, the actual bodies and cells assigned to a process
are not contiguous in the body and cell arrays. 

Decomposition and Assignment

Each of the phases within a time-step is executed in parallel, with global barrier synchronization
between phases. The natural unit of decomposition (task) in all phases is a body, except in com-
puting the cell centers of mass, where it is a cell. 

Unlike Ocean, which has a regular and predictable structure of both computation and communi-
cation, the Barnes-Hut application presents many challenges for effective assignment. First, the
non-uniformity of the galaxy implies that the amount of work per body and the communication
patterns are nonuniform, so a good assignment cannot be discovered by inspection. Second, the
distribution of bodies changes across time-steps, which means that no static assignment is likely
to work well. Third, since the information needs in force calculation fall off with distance equally
in all directions, reducing interprocess communication demands that partitions be spatially con-
tiguous and not biased in size toward any one direction. And fourth, the different phases in a
time-step have different distributions of work among the bodies/cells, and hence different pre-
ferred partitions. For example, the work in the update phase is uniform across all bodies, while
that in the force calculation phase clearly is not. Another challenge for good performance is that
the communication needed among processes is naturally fine-grained and irregular.

We focus our partitioning efforts on the force-calculation phase, since it is by far the most time-
consuming. The partitioning is not modified for other phases since (a) the overhead of doing so
(both in partitioning and in the loss of locality) outweighs the potential benefits, and (b) similar
partitions are likely to work well for tree building and moment calculation (though not for the
update phase).

As we have mentioned earlier in the chapter, we can use profiling-based semi-static partitioning
in this application, taking advantage of the fact that although the particle distribution at the end of
the simulation may be radically different from that at the beginning, it evolves slowly with time
does not change very much between two successive time-steps. As we perform the force calcula-
tion phase in a time-step, we record the work done by every particle in that time-step (i.e. count
the number of interactions it computes with other bodies or cells). We then use this work count as
a measure of the work associated with that particle in the next time-step. Work counting is very
cheap, since it only  involves incrementing a local counter when an (expensive) interaction is per-
formed. Now we need to combine this load balancing method with assignment techniques that
also achieve the communication goal: keeping partitions contiguous in space and not biased in
size toward any one direction. We briefly discuss two techniques: the first because it is applicable
to many irregular problems and we shall refer to it again in Section 3.7; the second because it is
what our program uses.

The first technique, called orthogonal recursive bisection (ORB), preserves physical locality by
partitioning the domain space directly. The space is recursively subdivided into two subspaces
with equal cost, using the above load balancing measure, until there is one subspace per process
(see Figure 3-18(a)). Initially, all processes are associated with the entire domain space. Every
time a space is divided, half the processes associated with it are assigned to each of the subspaces
that result. The Cartesian direction in which division takes place is usually alternated with suc-
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cessive divisions, and a parallel median finder is used to determine where to split the current sub-
space. A separate binary tree of depth log p is used to implement ORB. Details of using ORB for
this application can be found in [Sal90]. 

The second technique, called costzones, takes advantage of the fact that the Barnes-Hut algo-
rithm already has a representation of the spatial distribution of bodies encoded in its tree data
structure. Thus, we can partition this existing data structure itself and obtain the goal of partition-
ing space (see Figure 3-18(b)). Here is a high-level description. Every internal cell stores the total
cost associated with all the bodies it contains. The total work or cost in the system is divided
among processes so that every process has a contiguous, equal range or zone of work (for exam-
ple, a total work of 1000 units would be split among 10 processes so that zone 1-100 units is
assigned to the first process, zone 101-200 to the second, and so on). Which cost zone a body in
the tree belongs to can be determined by the total cost of an inorder traversal of the tree up to that
body. Processes traverse the tree in parallel, picking up the bodies that belong in their cost zone.
Details can be found in [SH+95]. Costzones is much easier to implement than ORB. It also and
yields better overall performance in a shared address space, mostly because the time spent in the
partitioning phase itself is much smaller, illustrating the impact of extra work. 

Orchestration

Orchestration issues in Barnes-Hut reveal many differences from Ocean, illustrating that even
applications in scientific computing can have widely different behavioral characteristics of archi-
tectural interest. 

Spatial Locality: While the shared address space makes it easy for a process to access the parts
of the shared tree that it needs in all the computational phases (see Section 3.7), data distribution
to keep a process’s assigned bodies and cells in its local main memory is not so easy as in Ocean.
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Figure  3-18  Partitioning schemes for Barnes-Hut: ORB and Costzones. 

ORB partitions space directly by recursive bisection, while costzones partitions the tree. (b) shows both the partitioning of the tree as
well as how the resulting space is partitioned by costzones. Note that ORB leads to more regular (rectangular) partitions than cost-
zones. 
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First, data have to be redistributed dynamically as assignments change across time-steps, which
is expensive. Second, the logical granularity of data (a particle/cell) is much smaller than the
physical granularity of allocation (a page), and the fact that bodies/cells are spatially contiguous
in the arrays does not mean they are contiguous in physical space or assigned to the same pro-
cess. Fixing these problems requires overhauling the data structures that store bodies and cells:
using separate arrays or lists per process, that are modified across time-steps. Fortunately, there is
enough temporal locality in the application that data distribution is not so important in a shared
address space (again unlike Ocean). Also, the vast majority of the cache misses are to data in
other processors’ assigned partitions anyway, so data distribution itself wouldn’t help make them
local. We therefore simply distribute pages of shared data in a round-robin interleaved manner
among nodes, without attention to which node gets which pages. 

While in Ocean long cache blocks improve local access performance limited only by partition
size, here multi-word cache blocks help exploit spatial locality only to the extent that reading a
particle’s displacement or moment data involves reading several double-precision words of data.
Very long transfer granularities might cause more fragmentation than useful prefetch, for the
same reason that data distribution at page granularity is difficult: Unlike Ocean, locality of bod-
ies/cells in the data structures does not match that in physical space on which assignment is
based, so fetching data from more than one particle/cell upon a miss may be harmful rather than
beneficial.

Working Sets and Temporal Locality: The first working set in this program contains the data
used to compute forces between a single particle-particle or particle-cell pair. The interaction
with the next particle or cell in the traversal will reuse these data. The second working set is the
most important to performance. It consists of the data encountered in the entire tree traversal to
compute the force on a single particle. Because of the way partitioning is done, the traversal to
compute the forces on the next particle will reuse most of these data. As we go from particle to
particle, the composition of this working set changes slowly. However, the amount of reuse is tre-
mendous, and the resulting working set is small even though overall a process accesses a very
large amount of data in irregular ways. Much of the data in this working set is from other pro-
cesses’ partitions, and most of these data are allocated nonlocally. Thus, it is the temporal locality
exploited on shared (both local and nonlocal) data that is critical to the performance of the appli-
cation, unlike Ocean where it is data distribution. 

By the same reasoning that the complexity of the algorithm is O( n log n), the expected size of
this working set is proportional to O( log n), even though the overall memory requirement of
the application is close to linear in n: Each particle accesses about this much data from the tree to
compute the force on it. The constant of proportionality is small, being the amount of data
accessed from each body or cell visited during force computation. Since this working set fits
comfortably in modern second-level caches, we do not replicate data in main memory. In Ocean
there were important working sets that grew linearly with the data set size, and we did not always
expect them to fit in the cache; however, even there we did not need replication in main memory
since if data were distributed appropriately then the data in these working sets were local. 

Synchronization: Barriers are used to maintain dependences among bodies and cells across
some of the computational phases, such as between building the tree and using it to compute
forces. The unpredictable nature of the dependences makes it much more difficult to replace the
barriers by point-to-point body or cell level synchronization. The small number of barriers used
in a time-step is independent of problem size or number of processors. 
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There is no need for synchronization within the force computation phase itself. While communi-
cation and sharing patterns in the application are irregular, they are phase-structured. That is,
while a process reads particle and cell data from many other processes in the force calculation
phase, the fields of a particle structure that are written in this phase (the accelerations and veloci-
ties) are not the same as those that are read in it (the displacements and masses). The displace-
ments are written only at the end of the update phase, and masses are not modified. However, in
other phases, the program uses both mutual exclusion with locks and point-to-point event syn-
chronization with flags in more interesting ways than Ocean. In the tree building phase, a process
that is ready to add a particle to a cell must first obtain mutually exclusive access to the cell, since
other processes may want to read or modify the cell at the same time. This is implemented with a
lock per cell. The moment calculation phase is essentially an upward pass through the tree from
the leaves to the root, computing the moments of cells from those of their children. Point-to-point
event synchronization is implemented using flags to ensure that a parent does not read the
moment of its child until that child has been updated by all its children. This is an example of
multiple-producer, single-consumer group synchronization. There is no synchronization within
the update phase. 

The work between synchronization points is large, particularly in the force computation and

update phases, where it is  and , respectively. The need for locking cells in the

tree-building and center-of-mass phases causes the work between synchronization points in those
phases to be substantially smaller. 

Mapping

The irregular nature makes this application more difficult to map perfectly for network locality in
common networks such as meshes. The ORB partitioning scheme maps very naturally to a hyper-
cube topology (discussed in Chapter 10), but not so well to a mesh or other less richly intercon-
nected network. This property does not hold for costzones partitioning, which naturally maps to a
one-dimensional array of processors but does not easily guarantee to keep communication local
even in such a network. 

In summary, the Barnes-Hut application has irregular, fine-grained, time-varying communication
and data access patterns that are becoming increasingly prevalent even in scientific computing as
we try to model more complex natural phenomena. Successful partitioning techniques for it are
not obvious by inspection of the code, and require the use of insights from the application
domain. These insights allow us to avoid using fully dynamic assignment methods such as task
queues and stealing.

Figure 3-19 shows the breakdowns of execution time for this application. Load balance is quite
good with a static partitioning of the array of bodies to processors, precisely because there is little
relationship between their location in the array and in physical space. However, the data access
cost is high, since there is a lot of inherent and artifactual communication. Semi-static, costzones
partitioning reduces this data access overhead substantially without compromising load balance. 

3.6.3 Raytrace

Recall that in ray tracing rays are shot through the pixels in an image plane into a three-dimen-
sional scene, and the paths of the rays traced as they bounce around to compute a color and opac-
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ity for the corresponding pixels. The algorithm uses a hierarchical representation of space called
a Hierarchical Uniform Grid (HUG), which is similar in structure to the octree used by the Bar-
nes-Hut application. The root of the tree represents the entire space enclosing the scene, and the
leaves hold a linked list of the object primitives that fall in them (the maximum number of primi-
tives per leaf is also defined by the user). The hierarchical grid or tree makes it efficient to skip
empty regions of space when tracing a ray, and quickly find the next interesting cell. 

Sequential Algorithm

For a given viewpoint, the sequential algorithm fires one ray into the scene through every pixel in
the image plane. These initial rays are called primary rays. At the first object that a ray encounters
(found by traversing the hierarchical uniform grid), it is first reflected toward every light source
to determine whether it is in shadow from that light source. If it isn’t, the contribution of the light
source to its color and brightness is computed. The ray is also reflected from and refracted
through the object as appropriate. Each reflection and refraction spawns a new ray, which under-
goes the same procedure recursively for every object that it encounters. Thus, each primary ray
generates a tree of rays. Rays are terminated either when they leave the volume enclosing the
scene or according to some user-defined criterion (such as the maximum number of levels
allowed in a ray tree). Ray tracing, and computer graphics in general, affords several tradeoffs
between execution time and image quality, and many algorithmic optimizations have been devel-
oped to improve performance without compromising image quality much. 

Decomposition and Assignment 

There are two natural approaches to exploiting parallelism in ray tracing. One is to divide the
space and hence the objects in the scene among processes, and have a process compute the inter-
actions for rays that occur within its space. The unit of decomposition here is a subspace. When a
ray leaves a process’s subspace, it will be handled by the next process whose subspace it enters.
This is called a scene-oriented approach. The alternate, ray-oriented approach is to divide pixels
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(a) Static assignment of bodies (a) Semi-static, costzones assignment

Figure  3-19  Execution time breakdown for Barnes-Hut with 512K bodies on the Origin2000. 

The particular static assignment of bodies used is quite randomized, so given the large number of bodies relative to processors the
workload evens out due to the law of large numbers. The bigger problem with the static assignment is that because it is effectively
randomized the particles assigned to a processor are not close together in space so the communication to computation ratio is much
larger. This is why data wait time is much smaller in the semi-static scheme. If we had assigned contiguous areas of space to pro-
cesses statically, data wait time would be small but load imbalance and hence synchronization wait time would be large. Even with
the current static assignment, there is no guarantee that the assignment will remain load balanced as the galaxy evolves over time. 
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in the image plane among processes. A process is responsible for the rays that are fired through
its assigned pixels, and follows a ray in its path through the entire scene, computing the interac-
tions of the entire ray tree which that ray generates. The unit of decomposition here is a primary
ray. It can be made finer by allowing different processes to process rays generated by the same
primary ray (i.e. from the same ray tree) if necessary. The scene-oriented approach preserves
more locality in the scene data, since a process only touches the scene data that are in its sub-
space and the rays that enter that subspace. However, the ray-oriented approach is much easier to
implement with low overhead, particularly starting from a sequential program, since rays can be
processed independently without synchronization and the scene data are read-only. This program
therefore uses a ray-oriented approach. The degree of concurrency for a n-by-n plane of pixels is
O(n2), and is usually ample. 

Unfortunately, a static subblock partitioning of the image plane would not be load balanced.
Rays from different parts of the image plane might encounter very different numbers of reflec-
tions and hence very different amounts of work. The distribution of work is highly unpredictable,
so we use a distributed task queueing system (one queue per processor) with task stealing for
load balancing.

Consider communication. Since the scene data are read-only, there is no inherent communication
on these data. If we replicated the entire scene on every node, there would be no communication
except due to task stealing. However this approach does not allow us to render a scene larger than
what fits in a single processor’s memory. Other than task stealing, communication is generated
because only 1/p of the scene is allocated locally and a process accesses the scene widely and
unpredictably. To reduce this artifactual communication, we would like processes to reuse scene
data as much as possible, rather than access the entire scene randomly. For this, we can exploit
spatial coherence in ray tracing: Because of the way light is reflected and refracted, rays that pass
through adjacent pixels from the same viewpoint are likely to traverse similar parts of the scene
and be reflected in similar ways. This suggests that we should use domain decomposition on the
image plane to assign pixels to task queues initially. Since the adjacency or spatial coherence of
rays works in all directions in the image plane, block-oriented decomposition works well. This
also reduces the communication of image pixels themselves. 

Given p processors, the image plane is partitioned into p rectangular blocks of size as close to
equal as possible. Every image block or partition is further subdivided into fixed sized square
image tiles, which are the units of task granularity and stealing (see Figure 3-20 for a four-pro-
cess example). These tile tasks are initially inserted into the task queue of the processor that is
assigned that block. A processor ray traces the tiles in its block in scan-line order. When it is
done with its block, it steals tile tasks from other processors that are still busy. The choice of tile
size is a compromise between preserving locality and reducing the number of accesses to other
processors’ queues, both of which reduce communication, and keeping the task size small
enough to ensure good load balance. We could also initially assign tiles to processes in an inter-
leaved manner in both dimensions (called a scatter decomposition) to improve load balance in
the initial assignment. 

Orchestration

Given the above decomposition and assignment, let us examine spatial locality, temporal locality,
and synchronization.
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Spatial Locality: Most of the shared data accesses are to the scene data. However, because of
changing viewpoints and the fact that rays bounce about unpredictably, it is impossible to divide
the scene into parts that are each accessed only (or even dominantly) by a single process. Also,
the scene data structures are naturally small and linked together with pointers, so it is very diffi-
cult to distribute them among memories at the granularity of pages. We therefore resort to using
a round-robin layout of the pages that hold scene data, to reduce contention. Image data are
small, and we try to allocate the few pages they fall on in different memories as well. The sub-
block partitioning described above preserves spatial locality at cache block granularity in the
image plane quite well, though it can lead to some false sharing at tile boundaries, particularly
with task stealing. A strip decomposition in rows of the image plane would be better from the
viewpoint of spatial locality, but would not exploit spatial coherence in the scene as well. Spatial
locality on scene data is not very high, and does not improve with larger scenes.

Temporal Locality: Because of the read-only nature of the scene data, if there were unlimited
capacity for replication then only the first reference to a nonlocally allocated datum would cause
communication. With finite replication capacity, on the other hand, data may be replaced and
have to be recommunicated. The domain decomposition and spatial coherence methods
described earlier enhance temporal locality on scene data and reduce the sizes of the working
sets. However, since the reference patterns are so unpredictable due to the bouncing of rays,
working sets are relatively large and ill-defined. Note that most of the scene data accessed and
hence the working sets are likely to be nonlocal. Nonetheless, this shared address space program
does not replicate data in main memory: The working sets are not sharp and replication in main
memory has a cost, so it is unclear that the benefits outweigh the overheads. 

Synchronization and Granularity: There is only a single barrier after an entire scene is ren-
dered and before it is displayed. Locks are used to protect task queues for task stealing, and also
for some global variables that track statistics for the program. The work between synchronization
points is the work associated with tiles of rays, which is usually quite large.

Mapping

Since Raytrace has very unpredictable access and communication patterns to scene data, the com-
munication is all but impossible to map effectively in this shared address space version. The fact
that the initial assignment of rays partitions the image into a two-dimensional grid of blocks, it
would be natural to map to a two-dimensional mesh network but the effect is not likely to be
large. 

Figure  3-20  Image plane partitioning in Raytrace for four processors.

A tile, the unit
of task stealing

A block, the unit
of partitioning
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In summary, this application tends to have large working sets and relatively poor spatial locality,
but a low inherent communication to computation ratio. Figure 3-21 shows the breakdown of
execution time for the balls data set, illustrating the importance of task stealing in reducing load
imbalance. The extra communication and synchronization incurred as a result is well worthwhile. 

3.6.4 Data Mining

A key difference in the data mining application from the previous ones is that the data being
accessed and manipulated typically reside on disk rather than in memory. It is very important to
reduce the number of disk accesses, since their cost is very high, and also to reduce the conten-
tion for a disk controller by different processors. 

Recall the basic insight used in association mining from Section 2.2.4: If an itemset of size k is
large, then all subsets of that itemset must also be large. For illustration, consider a database in
which there are five items—A, B, C, D, and E—of which one or more may be present in a partic-
ular transaction. The items within a transaction are lexicographically sorted. Consider L2, the list
of large itemsets of size 2. This list might be {AB, AC, AD, BC, BD, CD, DE}. The itemsets
within L2 are also lexicographically sorted. Given this L2, the list of itemsets that are candidates
for membership in L3 are obtained by performing a “join” operation on the itemsets in L2; i.e.
taking pairs of itemsets in L2 that share a common first item (say AB and AC), and combining
them into a lexicographically sorted 3-itemset (here ABC). The resulting candidate list C3 in this
case is {ABC, ABD, ACD, BCD}. Of these itemsets in C3, some may actually occur with enough
frequency to be placed in L3, and so on. In general, the join to obtain Ck from Lk-1 finds pairs of
itemsets in Lk-1 whose first k-2 items are the same, and combines them to create a new item for
Ck. Itemsets of size k-1 that have common k-2 sized prefixes are said to form an equivalence class
(e.g. {AB, AC, AD}, {BC, BD}, {CD} and {DE} in the example above). Only itemsets in the
same k-2 equivalence class need to be considered together to form Ck from Lk-1, which greatly
reduces the number of pairwise itemset comparisons we need to do to determine Ck. 
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Figure  3-21  Execution time breakdowns for Raytrace with the balls data set on the Origin2000.

Task stealing is clearly very important for balancing the workload (and hence reducing synchronization wait time) in this highly
unpredictable application.

(a) With task stealing (a) Without task stealing
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Sequential Algorithm

A simple sequential method for association mining is to first traverse the dataset and record the
frequencies of all itemsets of size one, thus determining L1. From L1, we can construct the candi-
date list C2, and then traverse the dataset again to find which entries of C2 are large and should be
in L2. From L2, we can construct C3, and traverse the dataset to determine L3, and so on until we
have found Lk. While this method is simple, it requires reading all transactions in the database
from disk k times, which is expensive.

The key goals in a sequential algorithm are to reduce the amount of work done to compute candi-
date lists Ck from lists of large itemsets Lk-1, and especially to reduce the number of times data
must be read from disk in determining the counts of itemsets in a candidate list Ck (to determine
which itemsets should be in Lk). We have seen that equivalence classes can be used to achieve the
first goal. In fact, they can be used to construct a method that achieves both goals together. The
idea is to transform the way in which the data are stored in the database. Instead of storing trans-
actions in the form {Tx, A, B, D, ...}—where Tx is the transaction identifier and A, B, D are items
in the transaction—we can keep in the database records of the form {ISx, T1, T2, T3, ...}, where
ISx is an itemset and T1, T2 etc. are transactions that contain that itemset. That is, there is a data-
base record per itemset rather than per transaction. If the large itemsets of size k-1 (Lk-1) that are
in the same k-2 equivalence class are identified, then computing the candidate list Ck requires
only examining all pairs of these itemsets. If each itemset has its list of transactions attached to it,
as in the above representation, then the size of each resulting itemset in Ck can be computed at
the same time as identifying the Ck itemset itself from a pair of Lk-1 itemsets, by computing the
intersection of the transactions in their lists. 

For example, suppose {AB, 1, 3, 5, 8, 9} and {AC, 2, 3, 4, 8, 10} are large 2-itemsets in the same
1-equivalence class (they each start with A), then the list of transactions that contain itemset ABC
is {3, 8}, so the occurrence count of itemset ABC is two. What this means is that once the data-
base is transposed and the 1-equivalence classes identified, the rest of the computation for a sin-
gle 1-equivalence class can be done to completion (i.e. all large k-itemsets found) before
considering any data from other 1-equivalence classes. If a 1-equivalence class fits in main mem-
ory, then after the transposition of the database a given data item needs to be read from disk only
once, greatly reducing the number of expensive I/O accesses. 

Decomposition and Assignment 

The two sequential methods also differ in their parallelization, with the latter method having
advantages in this respect as well. To parallelize the first method, we could first divide the data-
base among processors. At each step, a processor traverses only its local portion of the database
to determine partial occurrence counts for the candidate itemsets, incurring no communication or
nonlocal disk accesses in this phase. The partial counts are then merged into global counts to
determine which of the candidates are large. Thus, in parallel this method requires not only mul-
tiple passes over the database but also requires interprocessor communication and synchroniza-
tion at the end of every pass. 

In the second method, the equivalence classes that helped the sequential method reduce disk
accesses are very useful for parallelization as well. Since the computation on each 1-equivalence
class is independent of the computation on any other, we can simply divide up the 1-equivalence
classes among processes which can thereafter proceed independently, without communication or
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synchronization. The itemset lists (in the transformed format) corresponding to an equivalence
class can be stored on the local disk of the process to which the equivalence class is assigned, so
there is no need for remote disk access after this point either. As in the sequential algorithm, since
each process can complete the work on one of its assigned equivalence classes before proceeding
to the next one, hopefully each item from the local database should be read only once. The issue
is ensuring a load balanced assignment of equivalence classes to processes. A simple metric for
load balance is to assign equivalence classes based on the number of initial entries in them. How-
ever, as the computation unfolds to compute k-itemsets, the amount of work is determined more
closely by the number of large itemsets that are generated at each step. Heuristic measures that
estimate this or some other more appropriate work metric can be used as well. Otherwise, one
may have to resort to dynamic tasking and task stealing, which can compromise much of the sim-
plicity of this method (e.g. that once processes are assigned their initial equivalence classes they
do not have to communicate, synchronize, or perform remote disk access). 

The first step in this approach, of course, is to compute the 1-equivalence classes and the large 2-
itemsets in them, as a starting point for the parallel assignment. To compute the large 2-itemsets,
we are better off using the original form of the database rather than the transformed form, so we
do not transform the database yet (see Exercise 3.12). Every process sweeps over the transactions
in its local portion of the database, and for each pair of items in a transaction increments a local
counter for that item pair (the local counts can be maintained as a two-dimensional upper-trian-
gular array, with the indices being items). It is easy to compute 2-itemset counts directly, rather
than first make a pass to compute 1-itemset counts, construct the list of large 1-itemsets, and then
make another pass to compute 2-itemset counts. The local counts are then merged, involving
interprocess communication, and the large 2-itemsets determined from the resulting global
counts. These 2-itemsets are then partitioned into 1-equivalence classes, and assigned to pro-
cesses as described above. 

The next step is to transform the database from the original {Tx, A, B, D, ...} organization by
transaction to the {ISx, T1, T2, T3, ...} organization by itemset, where the ISx are initially the 2-
itemsets. This can be done in two steps: a local step and a communication step. In the local step,
a process constructs the partial transaction lists for large 2-itemsets from its local portion of the
database. Then, in the communication step a process (at least conceptually) “sends” the lists for
those 2-itemsets whose 1-equivalence classes are not assigned to it to the process to which they
are assigned, and “receives” from other processes the lists for the equivalence classes that are
assigned to it. The incoming partial lists are merged into the local lists, preserving a lexicograph-
ically sorted order, after which the process holds the transformed database for its assigned equiv-
alence classes. It can now compute the k-itemsets step by step for each of its equivalence classes,
without any communication, synchronization or remote disk access. The communication step of
the transformation phase is usually the most expensive step in the algorithm. Finally, the results
for the large k-itemsets are available from the different processes. 

Orchestration

Given this decomposition and assignment, let us examine spatial locality, temporal locality, and
synchronization.

Spatial Locality: Given the organization of the computation and the lexicographic sorting of the
itemsets and transactions, most of the traversals through the data are simple front-to-back sweeps
and hence exhibit very good predictability and spatial locality. This is particularly important in
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reading from disk, since it is important to amortize the high startup costs of a disk read over a
large amount of useful data read. 

Temporal Locality: Proceeding over one equivalence class at a time is much like blocking,
although how successful it is depends on whether the data for that equivalence class fit in main
memory. As the computation for an equivalence class proceeds, the number of large itemsets
becomes smaller, so reuse in main memory is more likely to be exploited. Note that here we are
exploiting temporal locality in main memory rather than in the cache, although the techniques
and goals are similar. 

Synchronization: The major forms of synchronization are the reductions of partial occurrence
counts into global counts in the first step of the algorithm (computing the large 2-itemsets), and a
barrier after this to begin the transformation phase. The reduction is required only for 2-itemsets,
since thereafter every process proceeds independently to compute the large k-itemsets in its
assigned equivalence classes. Further synchronization may be needed if dynamic task manage-
ment is used for load balancing. 

This concludes our in-depth discussion of how the four case studies might actually be parallel-
ized. At least in the first three, we assumed a coherent shared address space programming model
in the discussion. Let us now see how the characteristics of these case studies and other applica-
tions influence the tradeoffs between the major programming models for multiprocessors. 

3.7 Implications for Programming Models

We have seen in this and the previous chapter that while the decomposition and assignment of a
parallel program are often (but not always) independent of the programming model, the orches-
tration step is highly dependent on it. In Chapter 1, we learned about the fundamental design
issues that apply to any layer of the communication architecture, including the programming
model. We learned that the two major programming models—a shared address space and explicit
message passing between private address spaces—are fundamentally distinguished by functional
differences such as naming, replication and synchronization, and that the positions taken on these
influence (and are influenced by) performance characteristics such as latency and bandwidth. At
that stage, we could only speak about these issues in the abstract, and could not appreciate the
interactions with applications and the implications for which programming models are preferable
under what circumstances. Now that we have an in-depth understanding of several interesting
parallel applications, and we understand the performance issues in orchestration, we are ready to
compare the programming models in light of application and performance characteristics. 

We will use the application case studies to illustrate the issues. For a shared address space, we
assume that loads and stores to shared data are the only communication mechanisms exported to
the user, and we call this a load-store shared address space. Of course, in practice there is nothing
to stop a system from providing support for explicit messages as well as these primitives in a
shared address space model, but we ignore this possibility for now. The shared address space
model can be supported in a wide variety of ways at the communication abstraction and hard-
ware-software interface layers (recall the discussion of naming models at the end of Chapter 1)
with different granularities and different efficiencies for supporting communication, replication,
and coherence. These will be discussed in detail in Chapters 8 and 9. Here we focus on the most
common case, in which a cache-coherent shared address space is supported efficiently at fine
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granularity; for example, with direct hardware support for a shared physical address space, as
well as for communication, replication, and coherence at the fixed granularity of cache blocks.
For both the shared address space and message passing models, we assume that the programming
model is supported efficiently by the communication abstraction and the hardware-software
interface. 

As programmers, the programming model is our window to the communication architecture. Dif-
ferences between programming models and how they are implemented have implications for ease
of programming, for the structuring of communication, for performance, and for scalability. The
major aspects that distinguish the two programming models are functional aspects like naming,
replication and synchronization, organizational aspects like the granularity at which communica-
tion is performed, and performance aspects such as end-point overhead of a communication
operation. Other performance aspects such as latency and bandwidth depend largely on the net-
work and network interface used, and can be assumed to be equivalent. In addition, there are dif-
ferences in hardware overhead and complexity required to support the abstractions efficiently,
and in the ease with which they allow us to reason about or predict performance. Let us examine
each of these aspects. The first three point to advantages of a load/store shared address space,
while the others favor explicit message passing. 

Naming

We have already seen that a shared address space makes the naming of logically shared data
much easier for the programmer, since the naming model is similar to that on a uniprocessor.
Explicit messages are not necessary, and a process need not name other processes or know which
processing node currently owns the data. Having to know or determine which process’s address
space data reside in and transfer data in explicit messages is not difficult in applications with reg-
ular, statically predictable communication needs, such as the equation solver kernel and Ocean.
But it can be quite difficult, both algorithmically and for programming, in applications with irreg-
ular, unpredictable data needs. An example is Barnes-Hut, in which the parts of the tree that a
process needs to compute forces on its bodies are not statically predictable, and the ownership of
bodies and tree cells changes with time as the galaxy evolves, so knowing which processes to
obtain data from is not easy. Raytrace is another example, in which rays shot by a process bounce
unpredictably around scene data that are distributed among processors, so it is difficult to deter-
mine who owns the next set of data needed. These difficulties can of course be overcome in both
cases, but this requires either changing the algorithm substantially from the uniprocessor version
(for example, adding an extra time-step to compute who needs which data and transferring those
data to them in Barnes-Hut [Sal90], or using a scene-oriented rather than a ray-oriented approach
in Raytrace, as discussed in Section 3.6.3) or emulating an application-specific shared address
space in software by hashing bodies, cells or scene data to processing nodes. We will discuss
these solutions further in Chapter 7 when we discuss the implications of message passing sys-
tems for parallel software. 

Replication

Several issues distinguish how replication of nonlocal data is managed on different system: (i)
who is responsible for doing the replication, i.e. for making local copies of the data? (ii) where in
the local memory hierarchy is the replication done? (iii) at what granularity are data allocated in
the replication store? (iv) how are the values of replicated data kept coherent? (v) how is the
replacement of replicated data managed? 
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With the separate virtual address spaces of the message-passing abstraction, the only way to rep-
licate communicated data is to copy the data into a process’s private address space explicitly in
the application program. The replicated data are explicitly renamed in the new process’s private
address space, so the virtual and physical addresses may be different for the two processes and
their copies have nothing to do with each other as far as the system is concerned. Organization-
ally, data are always replicated in main memory first (when the copies are allocated in the address
space), and only data from the local main memory enter the processor cache. The granularity of
allocation in the local memory is variable, and depends entirely on the user. Ensuring that the val-
ues of replicated data are kept up to date (coherent) must be done by the program through explicit
messages. We shall discuss replacement shortly. 

We mentioned in Chapter 1 that in a shared address space, since nonlocal data are accessed
through ordinary processor loads and stores and communication is implicit, there are opportuni-
ties for the system to replicate data transparently to the user—without user intervention or
explicit renaming of data—just as caches do in uniprocessors. This opens up a wide range of pos-
sibilities. For example, in the shared physical address space system we assume, nonlocal data
enter the processor’s cache subsystem upon reference by a load or store instruction, without
being replicated in main memory. Replication happens very close to the processor and at the rel-
atively fine granularity of cache blocks, and data are kept coherent by hardware. Other systems
may replicate data transparently in main memory—either at cache block granularity through
additional hardware support or at page or object granularity through system software—and may
preserve coherence through a variety of methods and granularities that we shall discuss in
Chapter 9. Still other systems may choose not to support transparent replication and/or coher-
ence, leaving them to the user. 

Finally, let us examine the replacement of locally replicated data due to finite capacity. How
replacement is managed has implications for the amount of communicated data that needs to be
replicated at a level of the memory hierarchy. For example, hardware caches manage replacement
automatically and dynamically with every reference and at a fine spatial granularity, so that the
cache needs to be only as large as the active working set of the workload (replication at coarser
spatial granularities may cause fragmentation and hence increase the replication capacity
needed). When replication is managed by the user program, as in message passing, it is difficult
to manage replacement this dynamically. It can of course be done, for example by maintaining a
cache data structure in local memory and using it to emulate a hardware cache for communicated
data. However, this complicates programming and is expensive: The software cache must be
looked up in software on every reference to see if a valid copy already exists there; if it does not,
the address must be checked to see whether the datum is locally allocated or a message should be
generated. 

Typically, message-passing programs manage replacement less dynamically. Local copies of
communicated data are allowed to accumulate in local memory, and are flushed out explicitly at
certain points in the program, typically when it can be determined that they are not needed for
some time. This can require substantially more memory overhead for replication in some applica-
tions such as Barnes-Hut and Raytrace. For read-only data, like the scene in Raytrace many mes-
sage passing programs simply replicate the entire data set on every processing node, solving the
naming problem and almost eliminating communication, but also eliminating the ability to run
larger problems on larger systems. In the Barnes-Hut application, while one approach emulates a
shared address space and also a cache for replication—“flushing” the cache at phase bound-
aries—in the other approach a process first replicates locally all the data it needs to compute
forces on all its assigned bodies, and only then begins to compute forces. While this means there
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is no communication during the force calculation phase, the amount of data replicated in main
memory is much larger than the process’s assigned partition, and certainly much larger than the
active working set which is the data needed to compute forces on only one particle
(Section 3.6.2). This active working set in a shared address space typically fits in the processor
cache, so there is not need for replication in main memory at all. In message passing, the large
amount of replication limits the scalability of the approach. 

Overhead and Granularity of Communication

The overheads of initiating and receiving communication are greatly influenced by the extent to
which the necessary tasks can be performed by hardware rather than being delegated to software,
particularly the operating system. As we saw in Chapter 1, in a shared physical address space the
underlying uniprocessor hardware mechanisms suffice for address translation and protection,
since the shared address space is simply a large flat address space. Simply doing address transla-
tion in hardware as opposed to doing it in software for remote references was found to improve
Barnes-Hut performance by about 20% in one set of experiments [ScL94]. The other major task
is buffer management: incoming and outgoing communications need to be temporarily buffered
in the network interface, to allow multiple communications to be in progress simultaneously and
to stage data through a communication pipeline. Communication at the fixed granularity of cache
blocks makes it easy to manage buffers very efficiently in hardware. These factors combine to
keep the overhead of communicating each cache block quite low (a few cycles to a few tens of
cycles, depending on the implementation and integration of the communication assist). 

In message-passing systems, local references are just loads and stores and thus incur no more
overhead than on a uniprocessor. Communication messages, as we know, are much more flexible.
They are typically of a variety of possible types (see Section 2.4.6 and the tag matching discussed
in Chapter 1), of arbitrary lengths, and between arbitrary address spaces. The variety of types
requires software overhead to decode the type of message and execute the corresponding handler
routine at the sending or receiving end. The flexible message length, together with the use of
asynchronous and nonblocking messages, complicates buffer management, so that the operating
system must often be invoked to temporarily store messages. Finally, sending explicit messages
between arbitrary address spaces requires that the operating system on a node intervene to pro-
vide protection. The software overhead needed to handle buffer management and protection can
be substantial, particularly when the operating system must be invoked. A lot of recent design
effort has focused on streamlined network interfaces and message-passing mechanisms, which
have significantly reduced per-message overheads. These will be discussed in Chapter 7. How-
ever, the issues of flexibility and protection remain, and the overheads are likely to remain several
times as large as those of load-store shared address space interfaces. Thus, explicit message-pass-
ing is not likely to sustain as fine a granularity of communication as a hardware-supported shared
address space.

These three issues—naming, replication, and communication overhead—have pointed to the
advantages of an efficiently supported shared address space from the perspective of creating a
parallel program: The burdens of naming and often replication/coherence are on the system
rather than the program, and communication need not be structured in large messages to amortize
overhead but can be done naturally through loads and stores. The next four issues, however, indi-
cate advantages of explicit communication. 
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Block Data Transfer

Implicit communication through loads and stores in a cache-coherent shared address space typi-
cally causes a message to be generated per reference that requires communication. The commu-
nication is usually initiated by the process that needs the data, and we call it receiver-initiated.
Each communication brings in a fixed, usually small amount of data: a cache block in our hard-
ware cache-coherent system. While the hardware support provides efficient fine-grained commu-
nication, communicating one cache block at a time is not the most efficient way to communicate
a large chunk of data from one processor to another. We would rather amortize the overhead and
latency by communicating the data in a single message or a group of large messages. Explicit
communication, as in message passing, allows greater flexibility in choosing the sizes of mes-
sages and also in choosing whether communication is receiver-initiated or sender-initiated.
Explicit communication can be added to a shared address space naming model, and it is also pos-
sible for the system to make communication coarser-grained transparently underneath a load-
store programming model in some cases of predictable communication. However, the natural
communication structure promoted by a shared address space is fine-grained and usually
receiver-initiated. The advantages of block transfer are somewhat complicated by the availability
of alternative latency tolerance techniques, as we shall see in Chapter 11, but it clearly does have
advantages. 

Synchronization

The fact that synchronization can be contained in the (explicit) communication itself in message
passing, while it is usually explicit and separate from data communication in a shared address
space is an advantage of the former model. However, the advantage becomes less significant
when asynchronous message passing is used and separate synchronization must be employed to
preserve correctness. 

Hardware Cost and Design Complexity

The hardware cost and design time required to efficiently support the desirable features of a
shared address space above are greater those required to support a message-passing abstraction.
Since all transactions on the memory bus must be observed to determine when nonlocal cache
misses occur, at least some functionality of the communication assist be integrated quite closely
into the processing node. A system with transparent replication and coherence in hardware
caches requires further hardware support and the implementation of fairly complex coherence
protocols. On the other hand, in the message-passing abstraction the assist does not need to see
memory references, and can be less closely integrated on the I/O bus. The actual tradeoffs in cost
and complexity for supporting the different abstractions will become clear in Chapters 5, 7 and 8. 

Cost and complexity, however, are more complicated issues than simply assist hardware cost and
design time. For example, if the amount of replication needed in message-passing programs is
indeed larger than that needed in a cache-coherent shared address space (due to differences in
how replacement is managed, as discussed earlier, or due to replication of the operating system),
then the memory required for this replication should be compared to the hardware cost of sup-
porting a shared address space. The same goes for the recurring cost of developing effective pro-
grams on a machine. Cost and price are also determined largely by volume in practice. 
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Performance Model 

In designing parallel programs for an architecture, we would like to have at least a rough perfor-
mance model that we can use to predict whether one implementation of a program will be better
than another and to guide the structure of communication. There are two aspects to a perfor-
mance model: modeling the cost of primitive events of different types—e.g. communication mes-
sages—and modeling the occurrence of these events in a parallel program (e.g. how often they
occur, in how bursty a manner, etc.). The former is usually not very difficult, and we have seen a
simple model of communication cost in this chapter. The latter can be quite difficult, especially
when the programs are complex and irregular, and it is this that distinguishes the performance
modeling ease of a shared address space from that of message passing. This aspect is signifi-
cantly easier when the important events are explicitly identified than when they are not. Thus, the
message passing abstraction has a reasonably good performance model, since all communication
is explicit. The performance guidelines for a programmer are at least clear: messages are expen-
sive; send them infrequently. In a shared address space, particularly a cache-coherent one, perfor-
mance modeling is complicated by the same property that makes developing a program easier:
Naming, replication and coherence are all implicit, so it is difficult to determine how much com-
munication occurs and when. Artifactual communication is also implicit and is particularly diffi-
cult to predict (consider cache mapping conflicts that generate communication!), so the resulting
programming guideline is much more vague: try to exploit temporal and spatial locality and use
data layout when necessary to keep communication levels low. The problem is similar to how
implicit caching can make performance difficult to predict even on a uniprocessor, thus compli-
cating the use of the simple von Neumann model of a computer which assumes that all memory
references have equal cost. However, it is of much greater magnitude here since the cost of com-
munication is much greater than that of local memory access on a uniprocessor. 

In summary, the major potential advantages of implicit communication in the shared address
space abstraction are programming ease and performance in the presence of fine-grained data
sharing. The major potential advantages of explicit communication, as in message passing, are
the benefits of block data transfer, the fact that synchronization is subsumed in message passing,
the better performance guidelines and prediction ability, and the ease of building machines. 

Given these tradeoffs, the questions that an architect has to answer are:

Is it worthwhile to provide hardware support for a shared address space (i.e. transparent nam-
ing), or is it easy enough to manage all communication explicitly?

If a shared address space is worthwhile, is it also worthwhile to provide hardware support for 
transparent replication and coherence?

If the answer to either of the above questions is yes, then is the implicit communication 
enough or should there also be support for explicit message passing among processing nodes 
that can be used when desired (this raises a host of questions about how the two abstractions 
should be integrated), which will be discussed further in Chapter 11. 

The answers to these questions depend both on application characteristics and on cost. Affirma-
tive answers to any of the questions naturally lead to other questions regarding how efficiently the
feature should be supported, which raise other sets of cost, performance and programming
tradeoffs that will become clearer as we proceed through the book. Experience shows that as
applications become more complex, the usefulness of transparent naming and replication
increases, which argues for supporting a shared address space abstraction. However, with com-
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munication naturally being fine-grained, and large granularities of communication and coherence
causing performance problems, supporting a shared address space effectively requires an aggres-
sive communication architecture. 

3.8 Concluding Remarks

The characteristics of parallel programs have important implications for the design of multipro-
cessor architectures. Certain key observations about program behavior led to some of the most
important advances in uniprocessor computing: The recognition of temporal and spatial locality
in program access patterns led to the design of caches, and an analysis of instruction usage led to
reduced instruction set computing. In multiprocessors, the performance penalties for mismatches
between application requirements and what the architecture provides are much larger, so it is all
the more important that we understand the parallel programs and other workloads that are going
to run on these machines. This chapter, together with the previous one, has focussed on providing
this understanding. 

Historically, many different parallel architectural genres led to many different programming
styles and very little portability. Today, the architectural convergence has led to common ground
for the development of portable software environments and programming languages. The way we
think about the parallelization process and the key performance issues is largely similar in both
the shared address space and message passing programming models, although the specific granu-
larities, performance characteristics and orchestration techniques are different. While we can
analyze the tradeoffs between the shared address space and message passing programming mod-
els, both are flourishing in different portions of the architectural design space. 

Another effect of architectural convergence has been a clearer articulation of the performance
issues against which software must be designed. Historically, the major focus of theoretical par-
allel algorithm development has been the PRAM model discussed in Section 3.2.4, which
ignores data access and communication cost and considers only load balance and extra work
(some variants of the PRAM model some serialization when different processors try to access the
same data word). This is very useful in understanding the inherent concurrency in an application,
which is the first conceptual step; however, it does not take important realities of modern systems
into account, such as the fact that data access and communication costs can easily dominate exe-
cution time. Historically, communication has been treated separately, and the major focus in its
treatment has been mapping the communication to different network topologies. With a clearer
understanding of the importance of communication and the important costs in a communication
transaction on modern machines, two things have happened. First, models that help analyze com-
munication cost and structure communication have been developed, such as the bulk synchro-
nous programming (BSP) model [Val90] and the LogP model [CKP+93], with the hope of
replacing the PRAM as the de facto model used for parallel algorithm analysis. These models
strive to expose the important costs associated with a communication event—such as latency,
bandwidth, overhead—as we have done in this chapter, allowing an algorithm designer to factor
them into the comparative analysis of parallel algorithms. The BSP model also provides a frame-
work that can be used to reason about communication and parallel performance. Second, the
emphasis in modeling communication cost has shifted to the cost of communication at the end
points, so the number of messages and contention at the end points have become more important
than mapping to network topologies. In fact, both the BSP and LogP models ignore network
topology completely, modeling network latency as a fixed parameter! 
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Models such as BSP and LogP are important steps toward a realistic architectural model against
which to design and analyze parallel algorithms. By changing the values of the key parameters in
these models, we may be able to determine how an algorithm would perform across a range of
architectures, and how it might be best structured for different architectures or for portable per-
formance. However, much more difficult than modeling the architecture as a set of parameters is
modeling the behavior of the algorithm or application, which is the other side of the modeling
equation [SRG94]: What is the communication to computation ratio for irregular applications,
how does it change with replication capacity, how do the access patterns interact with the granu-
larities of the extended memory hierarchy, how bursty is the communication and how can this be
incorporated into the performance model. Modeling techniques that can capture these character-
istics for realistic applications and integrate them into the use of BSP or LogP have yet to be
developed. 

This chapter has discussed some of the key performance properties of parallel programs and their
interactions with basic provisions of a multiprocessor’s memory and communications architec-
ture. These properties include load balance; the communication to computation ratio; aspects of
orchestrating communication that affect communication cost; data locality and its interactions
with replication capacity and the granularities of allocation, transfer and perhaps coherence to
generate artifactual communication; and the implications for communication abstractions that a
machine must support. We have seen that the performance issues trade off with one another, and
that the art of producing a good parallel program is to obtain the right compromise between the
conflicting demands. Performance enhancement techniques can take considerable programming
effort, depending on both the application and the system, and the extent and manner in which dif-
ferent techniques are incorporated can greatly affect the characteristics of the workload presented
to the architecture. Programming for performance is also a process of successive refinement,
where decisions made in the early steps may have to be revisited based on system or program
characteristics discovered in later steps. We have examined the four application case studies that
were introduced in Chapter 2 in depth, and seen how these issues play out in them. We shall
encounter several of these performance issues again in more detail as we consider architectural
design options, tradeoffs and evaluation in the rest of the book. However, with the knowledge of
parallel programs that we have developed, we are now ready to understand how to use the pro-
grams as workloads to evaluate parallel architectures and tradeoffs. 
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3.10 Exercises

3.1  Short Answer Questions:

a. For which of the applications that we have described (Ocean, Galaxy, Raytrace) can we be 
described to have followed this view of decomposing data rather than computation and 
using an owner-computes rule in our parallelization? What would be the problem(s) with 
using a strict data distribution and owner-computes rule in the others? How would you 
address the problem(s)?

b. What are the advantages and disadvantages of using distributed task queues (as opposed
to a global task queue) to implement load balancing? 

c. Do small tasks inherently increase communication, contention and task management
overhead? 

d. Draw one arc from each kind of memory system traffic below (the list on the left) to the
solution technique (on the right) that is the most effective way to reduce that source of traf-
fic in a machine that supports a shared address space with physically distributed memory. 

Kinds of Memory System Traffic Solution Techniques
Cold-Start Traffic Large Cache Sizes
Inherent Communication Data Placement
Extra Data Communication on a Miss Algorithm Reorganization
Capacity-Generated Communication Larger Cache Block Size
Capacity-Generated Local Traffic Data Structure Reorganization

e. Under what conditions would the sum of busy-useful time across processes (in the execu-
tion time) not equal the busy-useful time for the sequential program, assuming both the
sequential and parallel programs are deterministic? Provide examples.

3.2  Levels of parallelism.

a. As an example of hierarchical parallelism, consider an algorithm frequently used in medi-
cal diagnosis and economic forecasting. The algorithm propagates information through a 
network or graph, such as the one in Figure 3-22. Every node represents a matrix of val-
ues. The arcs correspond to dependences between nodes, and are the channels along 
which information must flow. The algorithm starts from the nodes at the bottom of the 
graph and works upward, performing matrix operations at every node encountered along 
the way. It affords parallelism at least two levels: Nodes that do not have an ancestor-
descendent relationship in the traversal can be computed in parallel, and the matrix com-
putations within a node can be parallelized as well. How would you parallelize this algo-
rithm? What are the tradeoffs that are most important? 
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b. Levels of parallelism in locusroute. What are the tradeoffs in determining which level to
pick. What parameters affect your decision? What you would you pick for this case: 30
wires, 24 processors, 5 segments per wire, 10 routes per segment, each route evaluation
takes same amount of time? If you had to pick one and be tied to it for all cases, which
would you pick (you can make and state reasonable assumptions to guide your answer)? 

3.3  LU factorization. 

a. Analyze the load balance and communication volume for both cases of broadcast based 
LU with row decomposition: block assignment and interleaved assignment. 

b. What if we used a two-dimensional scatter decomposition at the granularity of individual
elements. Analyze the load balance and communication volume. 

c. Discuss the tradeoffs (programming difficulty and likely performance differences) in pro-
gramming the different versions in the different communication abstractions. Would you
expect one to always be better?

d. Can you think of a better decomposition and assignment? Discuss. 

e. Analyze the load balance and communication volume for a pipelined implementation in a
2-d scatter decomposition of elements.

f. Discuss the tradeoffs in the performance of the broadcast versus pipelined versions. 

3.4  If E is the set of sections of the algorithm that are enhanced through parallelism, fk is the frac-
tion of the sequential execution time taken up by the kth enhanced section when run on a uni-
processor, and sk is the speedup obtained through parallelism on the kth enhanced section,
derive an expression for the overall speedup obtained. Apply it to the broadcast approach for

Figure  3-22  Levels of parallelism in a graph computation. 

The work within a graph node is shown in the expanded node o the left. 

1. Update matrix
with incoming data

2. Perform matrix-
vector multiply 

outgoing data
to compute 
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LU factorization at element granularity. Draw a rough concurrency profile for the computa-
tion (a graph showing the amount of concurrency versus time, where the unit of time is a log-
ical operation, say updating an interior active element, performed on one or more processors.
Assume a 100-by-100 element matrix. Estimate the speedup, ignoring memory referencing
and communication costs. 

3.5  We have discussed the technique of blocking that is widely used in linear algebra algorithms
to exploit temporal locality (see Section 3.4.1). Consider a sequential LU factorization pro-
gram as described in this chapter. Compute the read miss rate on a system with a cache size of
16KB and a matrix size of 1024-by-1024. Ignore cache conflicts, and count only access to
matrix elements. Now imagine that LU factorization is blocked for temporal locality, and
compute the miss rate for a sequential implementation (this may be best done after reading
the section describing the LU factorization program in the next chapter). Assume a block size
of 32-by-32 elements, and that the update to a B-by-B block takes B3 operations and B2 cache
misses. Assume no reuse of blocks across block operations. If read misses cost 50 cycles,
what is the performance difference between the two versions (counting operations as defined
above and ignoring write accesses). 

3.6  It was mentioned in the chapter that termination detection is an interesting aspect of task
stealing. Consider a task stealing scenario in which processes produce tasks as the computa-
tion is ongoing. Design a good tasking method (where to take tasks from, how to put tasks
into the pool, etc.) and think of some good termination detection heuristics. Perform worst-
case complexity analysis for the number of messages needed by the termination detection
methods you consider. Which one would you use in practice? Write pseudocode for one that
is guaranteed to work and should yield good performance

3.7  Consider transposing a matrix in parallel, from a source matrix to a destination matrix, i.e.
B[i,j] = A[j,i]. 

a. How might you partition the two matrices among processes? Discuss some possibilities 
and the tradeoffs. Does it matter whether you are programming a shared address space or 
message passing machine?

b. Why is the interprocess communication in a matrix transpose called all-to-all personal-
ized communication?

c. Write simple pseudocode for the parallel matrix transposition in a shared address space
and in message passing (just the loops that implement the transpose). What are the major
performance issues you consider in each case, other than inherent communication and
load balance, and how do you address them?

d. Is there any benefit to blocking the parallel matrix transpose? Under what conditions, and
how would you block it (no need to write out the full code)? What, if anything, is the dif-
ference between blocking here and in LU factorization? 

3.8  The communication needs of applications, even expressed in terms of bytes per instruction,
can help us do back-of-the-envelope calculations to determine the impact of increased band-
width or reduced latency. For example, a Fast Fourier Transform (FFT) is an algorithm that is
widely used in digital signal processing and climate modeling applications. A simple parallel
FFT on n data points has a per-process computation cost of O(n log n / p), and per-process
communication volume of O(n/p), where p is the number of processes. The communication to
computation ratio is therefore O(1/log n). Suppose for simplicity that all the constants in the
above expressions are unity, and that we are performing an n=1M (or 220) point FFT on
p=1024 processes. Let the average communication latency for a word of data (a point in the
FFT) be 200 processor cycles, and let the communication bandwidth between any node and
the network be 100MB/sec. Assume no load imbalance or synchronization costs. 
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a. With no latency hidden, for what fraction of the execution time is a process stalled due to 
communication latency? 

b. What would be the impact on execution time of halving the communication latency?

c. What are the node-to-network bandwidth requirements without latency hiding? 

d. What are the node-to-network bandwidth requirements assuming all latency is hidden,
and does the machine satisfy them?

3.9  What kind of data (local, nonlocal, or both) constitute the relevant working set in: (i) main
memory in a message-passing abstraction, (ii) processor cache in a message-passing abstrac-
tion, (iii) processor cache in cache-coherent shared address space abstraction. 

3.10  Implement a reduction and a broadcast. First an O(p) linear method, then an O(log p) i.e. tree
based, method. Do this both for a shared address space and for message-passing. 

3.11  After the assignment of tasks to processors, there is still the issue of scheduling the tasks that
a process is assigned to run in some temporal order. What are the major issues involved here?
Which are the same as on uniprocessor programs, and which are different? Construct exam-
ples that highlight the impact of poor scheduling in the different cases.

3.12  In the data mining case study, why are 2-itemsets computed from the original format of the
database rather than the transformed format?

3.13  You have been given the job of creating a word count program for a major book publisher.
You will be working on a shared-memory multiprocessor with 32 processing elements. Your
only stated interface is “get_words” which returns an array of the book’s next 1000 words to
be counted. The main work each processor will do should look like this:

while(get_words(word)) {
for (i=0; i<1000; i++) {

if word[i] is in list
increment its count

else 
add word to list

}
}
/* Once all words have been logged, 
the list should printed out */

Using pseudocode, create a detailed description of the control flow and data structures that
you will use for this program. Your method should attempt to minimize space, synchroniza-
tion overhead, and memory latency. This problem allows you a lot of flexibility, so state all
assumptions and design decisions.
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CHAPTER 4

 

Workload-Driven Evaluation

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

4.1 Introduction

 

The field of computer architecture is becoming increasingly quantitative. Design features are
adopted only after detailed evaluations of tradeoffs. Once systems are built, they are evaluated
and compared both by architects to understand their tradeoffs and by users to make procurement
decisions. In uniprocessor design, with a rich base of existing machines and widely used applica-
tions, the process of evaluating tradeoffs is one of careful extrapolation from known quantities.
Isolated performance characteristics of the machines can be obtained from microbenchmarks,
small programs that stress a particular machine feature. Popular workloads are codified in stan-
dard benchmarks suites, such as the Standard Performance Evaluation Corporation (SPEC)
benchmark suite [SPE89] for engineering workloads, and measurements are made on a range of
existing design alternatives. Based on these measurements, assessments of emerging technology,
and expected changes in requirements, designers propose new alternatives. The ones that appear
promising are typically evaluated through simulation. First, a

 

 simulator

 

, a program that simulates
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the design with and without the proposed feature of interest, is written. Then a number of pro-
grams, or multiprogrammed workloads, representative of those that are likely to run on the
machine are chosen. These workloads are run through the simulator and the performance impact
of the feature determined. This, together with the estimated cost of the feature in hardware and
design time, determines whether the feature will be included. Simulators are written to be flexi-
ble, so organizational and performance parameters can be varied to understand their impact as
well. 

Good workload-driven evaluation is a difficult and time consuming process, even for uniproces-
sor systems. The workloads need to be renewed as technology and usage patterns change. Indus-
try-standard benchmark suites are revised every few years. In particular, the input data sets used
for the programs affect many of the key interactions with the systems, and determine whether or
not the important features of the system are stressed. For example, to take into account the huge
increases in processor speeds and changes in cache sizes, a major change from SPEC92 to
SPEC95 was the use of larger input data sets to stress the memory system. Accurate simulators
are costly to develop and verify, and the simulation runs consume huge amounts of computing
time. However, these efforts are well rewarded, because good evaluation yields good design.

As multiprocessor architecture has matured and greater continuity has been established from one
generation of machines to the next, a similar quantitative approach has been adopted. Whereas
early parallel machines were in many cases like bold works of art, relying heavily on the
designer’s intuition, modern design involves considerable evaluation of proposed design features.
Here too, workloads are used to evaluate real machines as well as to extrapolate to proposed
designs and explore tradeoffs through software simulation. For multiprocessors, the workloads of
interest are either parallel programs or multiprogrammed mixes of sequential and parallel pro-
grams. Evaluation is a critical part of the new, engineering approach to multiprocessor architec-
ture; it is very important that we understand the key issues in it before we go forward into the
core of multiprocessor architecture and our own evaluation of tradeoffs in this book. 

Unfortunately, the job of workload-driven evaluation for multiprocessor architecture is even
more difficult than for uniprocessors, for several reasons: 

 

Immaturity of parallel applications 

 

It is not easy to obtain “representative” workloads for
multiprocessors, both because their use is relatively immature and because several new
behavioral axes arise to be exercised. 

 

Immaturity of parallel programming languages 

 

The software model for parallel program-
ming has not stabilized, and programs written assuming different models can have very dif-
ferent behavior.

 

Sensitivity of behavioral differences

 

 Different workloads, and even different decisions made
in parallelizing the same sequential workload, can present vastly different execution charac-
teristics to the architecture. 

 

New degrees of freedom 

 

There are several new degrees of freedom in the architecture. The
most obvious is the number of processors. Others include the organizational and performance
parameters of the extended memory hierarchy, particularly the communication architecture.
Together with the degrees of freedom of the workload (i.e. application parameters) and the
underlying uniprocessor node, these parameters lead to a very large design space for experi-
mentation, particularly when evaluating an idea or tradeoff in a general context rather than
evaluating a fixed machine. The high cost of communication makes performance much more
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sensitive to interactions among all these degrees of freedom than it is in uniprocessors, mak-
ing it all the more important that we understand how to navigate the large parameter space. 

 

Limitations of simulation

 

 Simulating multiprocessors in software to evaluate design decisions
is more resource intensive than simulating uniprocessors. Multiprocessor simulations con-
sume a lot of memory and time, and unfortunately do not speed up very well when parallel-
ized themselves. Thus, although the design space we wish to explore is larger, the space that
we can actually explore is often much smaller. We have to make careful tradeoffs in deciding
which parts of the space to simulate. 

Our understanding of parallel programs from Chapters 2 and 3 will be critical in dealing with
these issues. Throughout this chapter, we will learn that effective evaluation requires understand-
ing the important properties of both workloads and architectures, as well as how these properties
interact. In particular, the relationships among application parameters and the number of proces-
sors determine fundamental program properties such as communication to computation ratio,
load balance, and temporal and spatial locality. These properties interact with parameters of the
extended memory hierarchy to influence performance, in application-dependent and often dra-
matic ways (see Figure 4-1). Given a workload, choosing parameter values and understanding

their scaling relationships and interactions is a crucial aspect of workload-driven evaluation, with
far-reaching implications for evaluating both real machines and architectural tradeoffs. It affects
the experiments we design for adequate coverage as well as the conclusions of our evaluations,
and helps us restrict the number of experiments or parameter combinations we must examine.

An important goal of this chapter is to highlight the key interactions of workload properties and
these parameters or 

 

sizes

 

, illustrate their significance and point out the important pitfalls. While
there is no universal formula for evaluation, the chapter articulates a methodology for both evalu-
ating real machines and assessing tradeoffs through simulation This methodology is followed in
several illustrative evaluations throughout the book. It is important that we not only perform good

(a) Ocean on Origin2000 (b) Barnes-Hut on two machines

Figure  4-1  Impact of problem size on parallel performance. 

For many applications (like Ocean on the left), the effect is dramatic, at least until the problem size becomes large enough for the
number of processors. For others, like the Barnes-Hut galaxy simulation on the right, the effect is much smaller for interesting prob-
lem sizes.
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evaluations ourselves, but also understand the limitations of our own and other people’s studies
so we can keep them in perspective as we make architectural decisions. 

The chapter begins by discussing the fundamental issue of scaling workload parameters as the
number of processors or size of the system increases, and the implications for performance met-
rics and the behavioral characteristics of programs. The interactions with parameters of the
extended memory hierarchy and how they should be incorporated into the actual design of exper-
iments will be discussed in the next two sections, which examine the two major types of evalua-
tions. 

Section 4.3 outlines a methodology for evaluating a real machine. This involves first understand-
ing the types of benchmarks we might use and their roles in such evaluation—including
microbenchmarks, kernels, applications, and multiprogrammed workloads—as well as desirable
criteria for choosing them. Then, given a workload we examine how to choose its parameters to
evaluate a machine, illustrating the important considerations and providing examples of how
inappropriate or limited choices may lead us to incorrect conclusions. The section ends with a
summary of the roles of various metrics that we might use to interpret and present results.

Section 4.4 extends this methodological discussion to the more challenging problem of evaluat-
ing an architectural tradeoff in a more general context through simulation. Having understood
how to perform workload-driven evaluation, in Section 4.5 provide the methodologically relevant
characteristics of the workloads used in the illustrative evaluations presented in the book. Some
important publicly available workload suites for parallel computing and their philosophies are
described in APPENDIX A. 

 

4.2 Scaling Workloads and Machines

 

Suppose we have chosen a parallel program as a workload, and we want to use it to evaluate a
machine. For a parallel machine, there are two things we might want to measure: the 

 

absolute
performance

 

, and the 

 

performance improvement due to parallelism

 

. The latter is typically mea-
sured as the speedup, which was defined in Chapter 1 (Section 1.2.1) as the absolute performance
achieved on 

 

p

 

 processors divided by that achieved on a single processor. Absolute performance
(together with cost) is most important to the end user or buyer of a machine. However, in itself it
does not tell us much about how much of the performance comes from the use of parallelism and
the effectiveness of the communication architecture rather than the performance of an underlying
single-processor node. Speedup tells us this, but with the caveat that it is easier to obtain good
speedup when the individual nodes have lower performance. Both are important, and both should
be measured.

Absolute performance is best measured as work done per unit of time. The amount of work to be
done is usually defined by the input configuration on which the program operates. This input con-
figuration may either be available to the program up front, or it may specify a set of continuously
arriving inputs to a “server” application, such as a system that processes a bank’s transactions or
responds to inputs from sensors. For example, suppose the input configuration, and hence work,
is kept fixed across the set of experiments we perform. We can then treat the work as a fixed point
of reference and define performance as the reciprocal of execution time. In some application
domains, users find it more convenient to have an explicit representation of work, and use a
work-per-unit-time metric even when the input configuration is fixed; for example in a transac-
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tion processing system it could be the number of transactions serviced per minute, in a sorting
application the number of keys sorted per second, and in a chemistry application the number of
bonds computed per second. It is important to realize that even though work is explicitly repre-
sented performance is measured with reference to a particular input configuration or amount of
work, and that these metrics are derived from measurements of execution time (together with the
number of application events of interest). Given a fixed problem configuration, there is no funda-
mental advantage to these metrics over execution time. In fact, we must be careful to ensure that
the measure of work being used is indeed a meaningful measure from the application perspective,
not something that one can cheat against. We shall discuss desirable properties of work metrics
further as we go along, and return to some of the more detailed issues in metrics in Section 4.3.5.
For now, let us focus on evaluating the improvement in absolute performance due to parallelism,
i.e. due to using 

 

p

 

 processors rather than one. 

With execution time as our measure of performance, we saw in Chapter 1 that we could simply
run the program with the same input configuration on one and 

 

p

 

 processors, and measure the

improvement or speedup as . With operations per second, we can measure

speedup as . There is a question about how we should measure

performance on one processor; for example, it is more honest to use the performance of the best
sequential program running on one processor rather than the parallel program itself running on
one processor, a point we shall return to in Section 4.3.5. But this is quite easily addressed. As the
number of processors is changed, we can simply run the problem on the different numbers of pro-
cessors and compute speedups accordingly. Why then all the fuss about scaling? 

 

4.2.1 Why Worry about Scaling?

 

Unfortunately, there are several reasons why speedup measured on a fixed problem is limited as
the 

 

only

 

 way of evaluating the performance improvement due to parallelism across a range of
machine scales. 

Suppose the fixed problem size we have chosen is relatively small, appropriate for evaluating a
machine with few processors and exercising their communication architectures. As we increase
the number of processors for the same problem size, the overheads due to parallelism (communi-
cation, load imbalance) increase relative to useful computation. There will come a point when the
problem size is unrealistically small to evaluate the machine at hand. The high overheads will
lead to uninterestingly small speedups, which reflect not so much the capabilities of the machine
as the fact that an inappropriate problem size was used (say one that does not have enough con-
currency for the large machine). In fact, there will come a point when using more processors does
not improve performance, and may even hurt it as the overheads begin to dominate useful work
(see Figure 4-2(a)). A user would not run this problem on a machine that large, so it is not appro-
priate for evaluating this machine. The same is true if the problem takes a very small amount of
time on the large machine. 

On the other hand, suppose we choose a problem that is realistically large for a machine with
many processors. Now we might have the opposite problem in evaluating the performance
improvement due to parallelism. This problem may be too big for a single processor, in that it
may have data requirements that are far too large to fit in the memory of a single node. On some
machines it may not be runnable on a single processor; on others the uniprocessor execution will

T ime 1 proc( )
Time p procs( )
---------------------------------------

OperationsPerSecond p procs( )
OperationsPerSecond 1 proc( )

-------------------------------------------------------------------------------------
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thrash severely to disk; and on still others the overflow data will be allocated in other node’s
memories in the extended hierarchy, leading to a lot of artifactual communication and hence poor
performance. When enough processors are used, the data will fit in their collective memories,
eliminating this artifactual communication if the data are distributed properly. The usual speedup
is augmented by the great reduction in this artifactual communication, and the result is a speedup
far beyond the number of processors used. Once this has happened, the increase in speedup will
behave in a more usual way as the number of processors is increased, but the overall speedup
over a uniprocessor is still 

 

superlinear

 

 in the number of processors. This situation holds for any
level of the memory hierarchy, not just main memory; for example, the aggregate cache capacity
of the machine grows as processors are added. An example using cache capacity is illustrated for
the equation solver kernel in Figure 4-2(b). This greatly superlinear speedup due to memory sys-
tem effects is not fake. Indeed, from a user’s perspective the availability of more, distributed
memory is an important advantage of parallel systems over uniprocessor workstations, since it
enables them to run much larger problems and to run them much faster. However, the superlinear
speedup does not allow us to separate out the two effects, and as such does not help us evaluate
the effectiveness of the machine’s communication architecture. 

Finally, using the same problem size (input configuration) as the number of processors is
changed often does not reflect realistic usage of the machine. Users often want to use more pow-
erful machines to solve larger problems rather than to solve the same problem faster. In these
cases, since problem size is changed together with machine size in practical use of the machines,
it should be changed when evaluating the machines as well. Clearly, this has the potential to over-
come the above problems with evaluating the benefits of parallelism. Together with an apprecia-

Figure  4-2  Speedups on the SGI Origin2000 as the number of processors increases.

(a) shows the speedup for a small problem size in the Ocean application. The problem size is clearly very appropriate for a machine
with 8 or so processors. At a little beyond 16 processors, the speedup has saturated and it is no longer clear that one would run this
problem size on this large a machine. And this is clearly the wrong problem size to run on or evaluate a machine with 32 or more pro-
cessors, since we’d be better off running it on a machine with 8 or 16 processors! (b) shows the speedup for the equation solver kernel
illustrating superlinear speedups when a processor’s working set fits in cache by the time 16 processors are used, but does not fit and
performs poorly when fewer processors are used. 
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tion for how technology scales (for example, processor speeds relative to memory and network
speeds), understanding scaling and its implications is also very important for designing next-gen-
eration machines and determining appropriate resource distributions for them [RSG93].

We need well-defined scaling models for how problem size should be changed with machine
size, so that we can evaluate machines against these models. The measure of performance is
always work per unit of time. However, if the problem size is scaled the work done does not stay
constant, so we cannot simply compare execution times to determine speedup. Work must be rep-
resented and measured, and the question is how. We will discuss these issues in this section, and
illustrate the implications of the scaling models for program characteristics such as the communi-
cation to computation ratio, load balance, and data locality in the extended memory hierarchy.
For simplicity, we focus on the case where the workload is a single parallel application, not a
multiprogrammed load. But first, we need to clearly define two terms that we have used infor-
mally so far: 

 

scaling a machine

 

, and 

 

problem size

 

. 

 

Scaling a Machine 

 

means making it more (or less) powerful. This can be done by making any
component of the machine bigger, more sophisticated, or faster: the individual processors, the
caches, the memory, the communication architecture or the I/O system. Since our interest is in
parallelism, we define machine size as the number of processors. We assume that the individual
node, its local memory system, and the per-node communication capabilities remain the same as
we scale; scaling a machine up thus means adding more nodes, each identical to the ones already
present in the machine. For example, scaling a machine with 

 

p

 

 processors and 

 

p*m

 

 megabytes of
total memory by a factor of 

 

k

 

 results in a machine with 

 

k*p 

 

processors and 

 

k*p*m

 

 megabytes of
total memory.

 

Problem size

 

 refers to a specific problem instance or input configuration. It is usually specified
by a vector of input parameters, not just a single parameter 

 

n

 

 (an 

 

n

 

-by-

 

n

 

 grid in Ocean or 

 

n

 

 parti-
cles in Barnes-Hut). For example, in Ocean, the problem size is specified by a vector 

 

V 

 

= (

 

n, 

 

ε

 

,

 

∆

 

t, T

 

), where 

 

n

 

 is the grid size in each dimension (which specifies the spatial resolution of our
representation of the ocean), 

 

ε

 

 is the error tolerance used to determine convergence of the multi-
grid equation solver, 

 

∆

 

t

 

 is the temporal resolution, i.e. the physical time between time-steps, and

 

T

 

 is the number of time-steps performed. In a transaction processing system, it is specified by the
number of terminals used, the rate at which users at the terminals issue transactions, the mix of
transactions, etc. Problem size is a major factor that determines the work done by the program.

Problem size should be distinguished from 

 

data set size

 

. The data set size for a parallel program
is the amount of storage that would be needed to run the program, assuming no replication; i.e.
the amount of main memory that would be needed to fit the problem on a single processor. This is
itself distinct from the actual 

 

memory usage

 

 of the program, which is the amount of memory used
by the parallel program including replication. The data set size typically depends on a small num-
ber of program parameters, most notably the one above that is usually represented as 

 

n

 

. In Ocean,
for example, the data set size is determined solely by 

 

n

 

. The number of instructions and the exe-
cution time, however, are not, and depend on all the other problem size parameters as well. The
problem size vector will also cause the number of instructions issued (and the execution time) to
change. Thus, while the problem size vector 

 

V

 

 determines many important properties of the
application program—such as its data set size, the number of instructions it executes and its exe-
cution time—it is not identical to any one of these. 
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4.2.2 Key Issues in Scaling

 

Given these definitions, there are two major questions to address when scaling a problem to run
on a larger machine:

 

Under what constraints should the problem be scaled

 

? To define a scaling model, some prop-
erty must be kept fixed as the machine scales. For example, we may scale so the data set size
per processor remains fixed, or the execution time, or the number of transactions executed per
second, or the number of particles or rows of a matrix assigned to each processor. 

 

How should the problem be scaled

 

? That is, how should the parameters in the problem-size
vector

 

 V

 

 be changed to meet the chosen constraints? 

To simplify the discussion, we shall begin by pretending that the problem size is determined by a
single parameter 

 

n

 

, and examine scaling models and their impact under this assumption. Later, in
Section 4.2.4, we shall examine the more subtle issue of scaling workload parameters relative to
one another. 

 

4.2.3 Scaling Models 

 

Many aspects of a problem and its execution may be used as the basis for scaling constraints. We
can divide them into two categories: 

 

user-oriented properties

 

, and 

 

resource-oriented properties

 

.
Examples of user-oriented properties that we might keep fixed as we scale are the number of par-
ticles per processor, the number of rows of a matrix per processor, the number of transactions
issued to the system per processor, or the number of I/O operations performed per processor.
Examples of resource-oriented constraints are execution time and the total amount of memory
used per processor. Each of these defines a distinct scaling model, since the amount of work done
for a given number of processors is different when scaling is performed under different con-
straints. Whether user- or resource-oriented constraints are more appropriate, and which
resource- or user-oriented constraint is most useful, depends on the application domain. Our job,
or the job of people constructing benchmarks, is to ensure that the scaling constraints we use are
meaningful for the domain at hand. User-oriented constraints are usually much easier to follow
(e.g. simply change the number of particles linearly with the number of processors). However,
large-scale programs are in practice often run under tight resource constraints, and resource con-
straints are more universal across application domains (time is time and memory is memory,
regardless of whether the program deals with particles or matrices). We will therefore use
resource constraints to illustrate the effects of scaling models. Let us examine the three most pop-
ular resource-oriented models for the constraints under which an application should be scaled to
run on a 

 

k

 

 times larger machine:

 

Problem constrained (PC) scaling 

 

Here, the problem size is kept fixed, i.e. is not scaled at all,
despite the concerns with a fixed problem size discussed earlier. The same input configuration
is used regardless of the number of processors on the machine. 

 

Time constrained (TC) scaling 

 

Here, the wall-clock execution time needed to complete the
program is held fixed. The problem is scaled so that the new problem’s execution time on the
large machine is the same as the old problem’s execution time on the small machine [Gus88]. 

 

Memory constrained

 

 

 

(MC) scaling 

 

Here, the amount of main memory used per processor is
held fixed. The problem is scaled so that the new problem uses exactly 

 

k

 

 times as much main
memory (including data replication) as the old problem. Thus, if the old problem just fit in the
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memory of the small machine, then the new problem will just fit in the memory of the large
machine.

More specialized models are more appropriate in some domains. For example, in its commercial
online transaction processing benchmark, the Transaction Processing Council (TPC, discussed
later) dictates a scaling rule in which the number of user terminals that generate transactions and
the size of the database are scaled proportionally with the “computing power” of the system
being evaluated, measured in a specific way. In this as well as in TC and MC scaling, scaling to
meet resource constraints often requires some experimentation to find the appropriate input, since
resource usage doesn’t usually scale cleanly with input parameters. Memory usage is sometimes
more predictable—especially if there is no need for replication in main memory—but it is diffi-
cult to predict the input configuration that would take the same execution time on 256 processors
that another input configuration took on 16. Let us look at each of PC, TC and MC scaling a little
further, and see what “work per unit of time” translates to under them. 

 

Problem Constrained Scaling

 

The assumption in PC scaling is that a user wants to use the larger machine to solve the same
problem faster, rather than to solve a larger problem. This is not an unusual situation. For exam-
ple, if a video compression algorithm currently handles only one frame per second, our goal in
using parallelism may not be to compress a larger image in one second, but rather to compress 30
frames per second and hence achieve real-time compression for that frame size. As another
example, if a VLSI routing tool takes a week to route a complex chip, we may be more interested
in using additional parallelism to reduce the routing time rather than to route a larger chip. How-
ever, as we saw in Figure 4-2, the PC scaling model in general makes it difficult to keep achiev-
ing good speedups on larger machines. Since work remains fixed, we can use the formulations of
the speedup metric that we discussed earlier:

.

 

Time constrained scaling 

 

This model assumes that users have a certain amount of time that they can wait for a program to
execute regardless of the scale of machine being used, and they want to solve the largest possible
problem in that fixed amount of time (think of a user who can afford to buy eight hours of com-
puter time at a computer center, or one who is willing to wait overnight for a run to complete but
needs to have the results ready to analyze the next morning). While in PC scaling the problem
size is kept fixed and the execution time varies, in TC scaling the problem size increases but the
execution time is kept fixed. Since performance is work divided by time, and since time stays
fixed as the system is scaled, speedup can be measured as the increase in the amount of work
done in that execution time: 

,

The question is how to measure work. If we measure it as actual execution time on a single pro-
cessor, then we would have to run the larger (scaled) problem size on a single processor of the
machine to obtain the numerator. But this is fraught with the same thrashing difficulty as before,
either in the caches or in the main memory or both, and may frequently lead to superlinear speed-
ups. The desirable properties for a work metric are:

SpeedupPC p processors( ) Time 1 processors( )
Time p processor( )
------------------------------------------------=

SpeedupTC p processors( ) Work p processors( )
Work 1 processor( )
--------------------------------------------------=
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Ease of measurement and architectural independence

 

 The metric should be easy to measure
and as architecture-independent as possible. Ideally, it should be easily modeled with an ana-
lytical expression based only on the application, and we should not have to perform any addi-
tional experiments to measure the work in the scaled-up problem. 

 

Linear scaling 

 

The measure of work should scale linearly with sequential time complexity of
the algorithm. 

 

Example  4-1 

 

Why is the linear scaling property important for a work metric? Illustrate with an
example. 

 

Answer

 

The linear scaling property is important if we want the ideal speedup to be linear in
the number of processors (ignoring computational non-determinism and memory
system artifacts that can make the speedup superlinear). To see this, suppose we use
as our work metric the number of rows 

 

n

 

 in the square matrices that we multiply in
matrix multiplication. Let us ignore memory system artifacts. If the uniprocessor
problem has  rows, then its execution “time” or the number of multiplication
operations it needs to execute will be proportional to . This is the problem size.
Since the problem is deterministic, ignoring memory system artifacts the best we
can hope 

 

p

 

 processors to do in the same time is  operations, which
corresponds to -by-  matrices, even if we assume no load
imbalance and no communication cost. If we measure work as the number of rows,
then the speedup even in this idealized case will be  instead of 

 

p

 

. Using the
number of points in the matrix ( ) as the work metric also does not work from this
perspective, since it would result in an ideal time-constrained speedup of . 

The ideal case for measuring work is a measure that satisfies both the above conditions, and is an
intuitive parameter from a user’s perspective. For example, in sorting integer keys using a method
called radix sorting (discussed further in Section 4.5.1), the sequential complexity grows linearly
with the number of keys to be sorted, so we can use keys/second as the measure of performance.
However, such a measure is difficult to find in real applications, particularly when multiple appli-
cation parameters are scaled and affect execution time in different ways (see Section 4.2.4). So
what should we do? 

If we can indeed find a single intuitive parameter that has the desirable properties, then we can
use it. If not, we can try to find a measure that can be easily computed from an intuitive parameter
and that scales linearly with the sequential complexity. The Linpack benchmark, which performs
matrix factorization, does this. It is known that when compiled well the benchmark should take

 operations of a certain type to factorize an 

 

n

 

-by-

 

n

 

 matrix, and the rest of the operations are

either proportional to or completely dominated by these. This number of operations is easily
computed from the input matrix dimension 

 

n

 

, clearly satisfies the linear scaling property, and
used as the measure of work. 

Real applications are often more complex, since there are multiple parameters to be scaled. Even
so, as long as we have a well-defined rule for scaling them together we may be able to construct a
measure of work that is linear in the combined effect of the parameters on sequential complexity.
However, such work counts may no longer be simple or intuitive to the user, and they require

n0
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either the evaluator to know a lot about the application or the benchmark provider to provide such
information. Also, in complex applications analytical predictions are usually simplified (e.g. they
are average case, or they do not reflect “implementation” activities that can be quite significant),
so the actual growth rates of instructions or operations executed can be a little different than
expected. 

If none of these mechanisms works, the most general technique is to actually run the best sequen-
tial algorithm on a uniprocessor with the base problem and with the scaled problem, and deter-
mine how some work measure has grown. If a certain type of high-level operation, such as a
particle-particle interaction, is known to always be directly proportional to the sequential com-
plexity, then we can count these operations. More generally, and what we recommend if possible,
is to measure the time taken to run the problem on a uniprocessor assuming that all memory ref-
erences are cache hits and take the same amount of time (say a single cycle), thus eliminating
artifacts due to the memory system. This work measure reflects what actually goes on when run-
ning the program, yet avoids the thrashing and superlinearity problems, and we call it the perfect-
memory execution time. Notice that it corresponds very closely to the sequential busy-useful time
introduced in Section 3.5. Many computers have system utilities that allow us to profile computa-
tions to obtain this perfect-memory execution time. If not, we must resort to measuring how
many times some high-level operation occurs. 

Once we have a work measure, we can compute speedups as described above. However, deter-
mining the input configuration that yields the desired execution time may take some iterative
refinement. 

Memory constrained scaling 

This model is motivated by the assumption that the user wants to run the largest problem possible
without overflowing the machine’s memory, regardless of execution time. For example, it might
be important for an astrophysicist to run an N-body simulation with the largest number of parti-
cles that the machine can accommodate, to increase the resolution with which the particles sam-
ple the universe. An improvement metric that has been used with MC scaling is scaled speedup,
which is defined as the speedup of the larger (scaled) problem on the larger machine, that is, it is
the ratio of the time that the scaled problem would take to run on a single processor to the time
that it takes on the scaled machine. Presenting scaled speedups under MC scaling is often attrac-
tive to vendors because such speedups tend to be high. This is because what we are really mea-
suring is the problem-constrained speedup on a very large problem, which tends to have a low
communication to computation ratio and abundant concurrency. In fact, the problem will very
likely not fit in a single node’s memory and may take a very long time on a uniprocessor due to
thrashing (if it runs at all), so the measured scaled speedup is likely to be highly superlinear. The
scaled problem is not what we run on a uniprocessor anyway under this model, so this is not an
appropriate speedup metric.

Under MC scaling, neither work nor execution time are held fixed. Using work divided by time
as the performance metric as always, we can define speedup as: 

SpeedupMC p processors( ) Work p procs⋅( )
Time p procs⋅〈 〉
------------------------------------------ Time 1 proc⋅( )

Work 1 proc⋅( )
---------------------------------------×=

IncreaseInWork
IncreaseInExecutionTime
---------------------------------------------------------------------=
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If the increase in execution time were only due to the increase in work and not due to overheads
of parallelism—and if there were no memory system artifacts, which are usually less likely under
MC scaling—the speedup would be p, which is what we want. Work is measured as discussed
above for TC scaling. 

MC scaling is indeed what many users may want to do. Since data set size grows fastest under it
compared to other models, parallel overheads grow relatively slowly and speedups often tend to
be better than for other scaling models. However for many types of applications MC scaling leads
to a serious problem: The execution time—for the parallel execution—can become intolerably
large. This problem can occur in any application where the serial execution time grows more rap-
idly than the memory usage. 

Example  4-2 Matrix factorization is a simple example in which the serial execution time grows
more rapidly than the memory usage (data set size). Show how MC scaling leads to
a rapid increase in parallel execution time for this application. 

Answer While the data-set size and memory usage for an n-by-n matrix grows as O(n2) in
matrix factorization, the execution time on a uniprocessor grows as O(n3). Assume
that a 10000-by-10000 matrix takes about 800 MB of memory and can be
factorized in 1 hour on a uniprocessor. Now consider a scaled machine consisting of
a thousand processors. On this machine, under MC scaling we can factorize a
320,000-by-320,000 matrix. However, the execution time of the parallel program
(even assuming perfect speedup) will now increase to about 32 hours. The user may
not be willing to wait this much longer. 

Of the three models, time constrained scaling is increasingly recognized as being the most gener-
ally viable. However, one cannot claim any model to be the most realistic for all applications and
all users. Different users have different goals, work under different constraints, and are in any
case unlikely to follow a given model very strictly. Nonetheless, for applications that don’t run
continuously these three models are useful, comprehensive tools for an analysis of scaled perfor-
mance. Let us now examine a simple example—the equation solver kernel from Chapter 2—to
see how it interacts with different scaling models and how they affect its architecturally relevant
behavioral characteristics. 

Impact of Scaling Models on the Equation Solver Kernel

For an n-by-n grid, the memory requirement of the simple equation solver is O(n2). Computa-
tional complexity is O(n2) times the number of iterations to convergence, which we conserva-
tively assume to be O(n) (the number of iterations taken for values to flow from one boundary to
the other). This leads to a sequential computational complexity of O(n3). 

Execution Time and Memory Requirements Consider the execution time and memory require-
ments under the three scaling models, assuming “speedups” due to parallelism equal to p in all
cases. 

PC Scaling As the same n-by-n grid is divided among more processors p, the memory require-
ments per processor decrease linearly with p, as does the execution time assuming linear
speedup. 
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TC Scaling By definition, the execution time stays the same. Assuming linear speedup, this
means that if the scaled grid size is k-by-k, then k3/p = n3, so k = . The amount of memory
needed per processor is therefore k2/p = n2/ , which diminishes as the cube root of the number
of processors. 

MC Scaling By definition, the memory requirements per processor stay the same at O(n2) where
the base grid for the single processor execution is n-by-n. This means that the overall size of the

grid increases by a factor of p, so the scaled grid is now -by-  rather than n-by-n. Since it

now takes  iterations to converge, the sequential time complexity is . This means
that even assuming perfect speedup due to parallelism, the execution time of the scaled problem

on p processors is  or . Thus, the parallel execution time is greater than the

sequential execution time of the base problem by a factor of , growing with the square root of
the number of processors. Even under the linear speedup assumption, a problem that took 1 hour
on one processor takes 32 hours on a 1024-processor machine under MC scaling. 

For this simple equation solver, then, the execution time increases quickly under MC scaling, and
the memory requirements per processor decrease under TC scaling. 

Execution Characteristics Let us consider the effects of different scaling models on the concur-
rency, communication-to-computation ratio, synchronization and I/O frequency, and temporal
and spatial locality. Let us examine each.

Concurrency. The concurrency in this kernel is proportional to the number of grid points. It
remains fixed at n2 under PC scaling, grows proportionally to p under MC scaling, and grows
proportionally to  under TC scaling. 

Communication to computation ratio The communication to computation ratio is the perimeter to
area ratio of the grid partition assigned to each processor; that is, it is inversely proportional to
the square root of the number of points per processor. Under PC scaling, the ratio grows as √p.
Under MC scaling the size of a partition does not change, so neither does the communication to
computation ratio. Finally, under TC scaling, the size of a processor’s partition diminishes as the
cube root of the number of processors, so the ratio increases as the sixth root of p. 

Synchronization and I/O Frequency The equation solver synchronizes at the end of every grid
sweep, to determine convergence. Suppose that it also performed I/O then, e.g. outputting the
maximum error at the end of each sweep. Under PC scaling, the work done by each processor in
a given sweep decreases linearly as the number of processors increases, so assuming linear
speedup the frequency of synchronization and I/O grows linearly with p. Under MC scaling the
frequency remains fixed, and under TC scaling it increases as the cube root of p. 

Working Set Size (Temporal Locality) The size of the important working set in this solver is
exactly the size of a processor’s partition of the grid. Thus, it and the cache requirements dimin-
ish linearly with p under PC scaling, stay constant under MC scaling, and diminish as the cube
root of p under TC scaling. Thus, although the problem size grows under TC scaling, the working
set size of each processor diminishes. 
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Spatial Locality Spatial locality is best within a processor’s partition and at row-oriented bound-
aries, and worst at column-oriented boundaries. Thus, it decreases as a processor’s partition
becomes smaller and column-oriented boundaries become larger relative to partition area. It
therefore remains just as good under MC scaling, decreases quickly under PC scaling, and
decreases less quickly under TC scaling. 

Message Size in Message Passing An individual message is likely to be a border row or column
of a processor’s partition which is the square root of partition size. Hence message size here
scales similarly to the communication to computation ratio. 

It is clear from the above that we should expect the lowest parallelism overhead and highest
speedup as defined above under MC scaling, next under TC scaling, and that we should expect
speedups to degrade quite quickly under PC scaling, at least once the overheads start to become
significant relative to useful work. It is also clear that the choice of application parameters as well
as the scaling model affect architectural interactions with the extended memory hierarchy such as
spatial and temporal locality. Unless it is known that a particular scaling model is the right one
for an application, or that one is inappropriate, for all the reasons discussed in this section it is
appropriate to evaluate a machine under all three scaling models. We shall see the interactions
with architectural parameters and their importance for evaluation in more detail in the next cou-
ple of sections, where we discuss actual evaluations. First, let us take a brief look at the other
important but more subtle aspect of scaling: how to scale application parameters to meet the con-
straints of a given scaling model. 

4.2.4 Scaling Workload Parameters

Let us now take away our simplifying assumption that a workload has only a single parameter.
For instance, the Ocean application has a vector of four parameters: n, ε, ∆t, T, that the simple
equation solver kernel does not expose. Scaling workload parameters is not an issue under PC
scaling. However, under TC or MC scaling, how should the parameters of a workload be scaled
to meet the prescribed time or memory constraints? The main point to be made here is that the
different parameters are often related to one another, and it may not make sense to scale only one
of them without scaling others, or to scale them independently. Each parameter may make its
own unique contribution to a given execution characteristic (time, memory usage, communica-
tion to computation ratio, working sets, etc.). For example, in the Barnes-Hut application the exe-

cution time grows not just as but as , where θ is the force-calculation accuracy

parameter and ∆t is the physical interval between time-steps; both θ and ∆t should be scaled as n
changes. Even the simple equation solver kernel has another parameter ε, which is the tolerance
used to determine convergence of the solver. Making this tolerance smaller—as should be done
as n scales in a real application—increases the number of iterations needed for convergence, and
hence increases execution time without affecting memory requirements. Thus the grid size, mem-
ory requirements and working set size would increase much more slowly under TC scaling, the
communication to computation ratio would increase more quickly, and the execution time would
increase more quickly under MC scaling. As architects using workloads, it is very important that
we understand the relationships among parameters from an application user’s viewpoint, and
scale the parameters in our evaluations according to this understanding. Otherwise we are liable
to arrive at incorrect architectural conclusions. 

n nlog
1

θ2 t∆
-----------n nlog
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The actual relationships among parameters and the rules for scaling them depend on the domain
and the application. There are no universal rules, which makes good evaluation even more inter-
esting. For example, in scientific applications like Barnes-Hut and Ocean, the different applica-
tion parameters usually govern different sources of error in the accuracy with which a physical
phenomenon (such as galaxy evolution) is simulated; appropriate rules for scaling these parame-
ters together are therefore driven by guidelines for scaling different types of error. Ideally, bench-
mark suites will describe the scaling rules—and may even encode them in the application,
leaving only one free parameter—so the architect does not have to worry about learning them.
Exercises 4.11 and 4.12 illustrate the importance of proper application scaling. We will see that
scaling parameters appropriately can often lead to quantitatively and sometimes even qualita-
tively different architectural results than scaling only the data set size parameter n. 

4.3 Evaluating a Real Machine

Having understood the importance of scaling problem size with machine size, and the effects that
problem and machine size have on fundamental behavioral characteristics and architectural inter-
actions, we are now ready to develop specific guidelines for the two major types of workload-
driven evaluation: evaluating a real machine, and evaluating an architectural idea or tradeoff.
Evaluating a real machine is in many ways simpler: the machine characteristics and parameters
are fixed, and all we have to worry about is choosing appropriate workloads and workload param-
eters. When evaluating an architectural idea or tradeoff in a general context, organizational and
performance parameters of the architecture can become variable as well, and the evaluation is
usually done through simulation, so the set of issues to consider becomes larger. This section pro-
vides a prescriptive template for evaluating a real machine. The use of microbenchmarks to iso-
late performance characteristics is discussed first. Then, we discuss the major issues in choosing
workloads for an evaluation. This is followed by guidelines for evaluating a machine once a
workload is chosen, first when the number of processors is fixed, and then when it is allowed to
be varied. The section concludes with a discussion of appropriate metrics for measuring the per-
formance of a machine and for presenting the results of an evaluation. All these issues in evaluat-
ing a real machine, discussed in this section, are relevant to evaluating an architectural idea or
tradeoff as well; the next section builds upon this discussion, covering the additional issues that
arise in the latter type of evaluation.

4.3.1 Performance Isolation using Microbenchmarks

As a first step in evaluating a real machine, we might like to understand its basic performance
capabilities; that is, the performance characteristics of the primitive operations provided by the
programming model, communication abstraction, or hardware-software interface. This is usually
done with small, specially written programs called microbenchmarks [SGC93], that are designed
to isolate these performance characteristics (latencies, bandwidths, overheads etc.). 

Five types of microbenchmarks are used in parallel systems, the first three of which are used for
uniprocessor evaluation as well:

Processing microbenchmarks measure the performance of the processor on non memory-ref-
erencing operations such as arithmetic operations, logical operations and branches. 

Local memory microbenchmarks detect the organization, latencies and bandwidths of the lev-
els of the cache hierarchy and main memory within the node, and measure the performance of
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local read and write operations satisfied at different levels, including those that cause TLB
misses and page faults. 

Input-output microbenchmarks measure the characteristics of I/O operations such as disk
reads and writes of various strides and lengths.

Communication microbenchmarks measure data communication operations such as message
sends and receives or remote loads and stores of different types, and 

Synchronization microbenchmarks measure the performance of different types of synchroni-
zation operations such as locks and barriers.

The communication and synchronization microbenchmarks depend on the communication
abstraction or programming model used. They may involve one or a pair of processors— e.g. a
single remote read miss, a send-receive pair, or the acquisition of a free lock—or they may be
collective, such as broadcast, reduction, all-to-all communication, probabilistic communication
patterns, many processors contending for a lock, or barriers. Different microbenchmarks may be
designed to stress uncontended latency, bandwidth, overhead and contention. 

For measurement purposes, microbenchmarks are usually implemented as repeated sets of the

primitive operations, e.g. ten thousand remote reads in a row. They often have simple parameters
that can be varied to obtain a fuller characterization. For example, the number of processors used
may be a parameter to a microbenchmark that measures the performance of a collective commu-
nication operation among a group of processors. Similarly, the stride between consecutive reads
may be a parameter to a local memory microbenchmark, and may be set to ensure that subse-
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Figure  4-3  Results of a microbenchmark experiment on a single processing node of the Cray T3D multiprocessor. 

The microbenchmark consists of a large number of loads from a local array. The Y-axis shows the time per load in nanoseconds. The
X-axis is the stride between successive loads in the loop, i.e. the difference in the addresses of the memory locations being accessed.
And the different curves correspond to the size of the array (ArraySize) being strided through. When ArraySize is less than 8KB, the
array fits in the processor cache so all loads are hits and take 6.67 ns to complete. For larger arrays, we see the effects of cache
misses. The average access time is the weighted sum of hit and miss time, until there is an inflection when the stride is longer than a
cache block (32 words or 128 bytes) and every reference misses. The next rise occurs due to some references causing page faults,
with an inflection when the stride is large enough (16KB) for every consecutive reference does so. The final rise is due to conflicts at
the memory banks in the 4-bank main memory, with an inflection at 64K stride when consecutive references hit the same bank. 

for i ← 0 to ArraySize-1 by stride do

load A[i];

The Microbenchmark

for times ← 0 to10,000 do
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quent reads map to the same cache block or that they fall on different pages. Figure 4-3 shows a
typical profile of a machine obtained using a local memory microbenchmark. As mentioned
above, the role of microbenchmarks is to isolate and understand the performance of basic system
capabilities. A more ambitious hope, not achieved so far, is that if workloads can be characterized
as weighted sums of different primitive operations, then a machine’s performance on a given
workload can be predicted from its performance on the corresponding microbenchmarks. We will
discuss more specific microbenchmarks when we measure real systems in later chapters. 

Having isolated the performance characteristics, the next step is to evaluate the machine on more
realistic workloads. There are three major axes we must navigate: the workloads, their problem
sizes, and the number of processors (or the machine size). Lower level machine parameters, such
as organizational granularities and the performance parameters of the communication architec-
ture, are fixed when evaluating a real machine. We begin by discussing the issues in choosing
workloads. Then, assuming that we have chosen a workload, we will examine how to evaluate a
machine with it. For simplicity, we will first assume that another axis, the number of processors,
is fixed as well, and use our understanding of parameter interactions to see how to choose prob-
lem sizes to evaluate the fixed-size machine. Finally, we will discuss varying the number of pro-
cessors as well, using the scaling models we have just developed. 

4.3.2 Choosing Workloads

Beyond microbenchmarks, workloads or benchmarks used for evaluation can be divided into
three classes in increasing order of realism and complexity: kernels, applications, and multipro-
grammed workloads. Each has its own role, advantages and disadvantages. 

Kernels These are well-defined parts of real applications, but are not complete applications them-
selves. They can range from simple kernels such as a parallel matrix transposition or a simple
near-neighbor grid sweep, to more complex, substantial kernels that dominate the execution
times of their applications. Examples of the latter from scientific computing include matrix fac-
torization and iterative methods to solve partial differential equations, such as our equation solver
kernel, while examples from information processing may include complex database queries used
in decision support applications or sorting a set of numbers in ascending order. Kernels expose
higher-level interactions that are not present in microbenchmarks, and as a result lose a degree of
performance isolation. Their key property is that their performance-relevant characteristics—
communication to computation ratio, concurrency, and working sets, for example—can be easily
understood and often analytically determined, so that observed performance as a result of the
interactions can be easily explained in light of these characteristics. 

Complete Applications Complete applications consist of multiple kernels, and exhibit higher-
level interactions among kernels that an individual kernel cannot reveal. The same large data
structures may be accessed in different ways by multiple kernels in an application, and different
data structures accessed by different kernels may interfere with one another in the memory sys-
tem. In addition, the data structures that are optimal for a kernel in isolation may not be the best
ones to use in the complete application, which must strike a balance among the needs of its dif-
ferent parts. The same holds for partitioning techniques. If there are two independent kernels,
then we may decide to not partition each among all processes, but rather to share processes
among them. Different kernels that share a data structure may be partitioned in ways that strike a
between their different access patterns to the data, leading to the maximum overall locality. The
presence of multiple kernels in an application introduces many subtle interactions, and the per-
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formance-related characteristics of complete applications usually cannot be exactly determined
analytically. 

Multiprogrammed Workloads These consist of multiple sequential and parallel applications run-
ning together on the machine. The different applications may either time-share the machine or
space-share it (different applications running on disjoint subsets of the machine’s processors) or
both, depending on the operating system’s multiprogramming policies. Just as whole applications
are complicated by higher level interactions among the kernels that comprise them, multipro-
grammed workloads involve complex interactions among whole applications themselves.

As we move from kernels to complete applications and multiprogrammed workloads, we gain in
realism, which is very important. However, we lose in our ability to describe the workloads con-
cisely, to explain and interpret the results unambiguously, and to isolate performance factors. In
the extreme, multiprogrammed workloads are difficult to design: Which applications should be
included in such a workload and in what proportion?. It is also difficult to obtain repeatable
results from multiprogrammed workloads due to subtle timing-dependent interactions with the
operating system. Each type of workload has its place. However, the higher-level interactions
exposed only by complete applications and multiprogrammed workloads, and the fact that they
are the workloads that will actually be run on the machine by users, make it important that we use
them to ultimately determine the overall performance of a machine, the value of an architectural
idea, or the result of a tradeoff. Let us examine some important issues in choosing such work-
loads (applications, multiprogrammed loads and even complex kernels) for an evaluation. 

The desirable properties of a set of workloads are representativeness, coverage of behavioral
properties, and adequate concurrency.

Representativeness of Application Domains

If we are performing an evaluation as users looking to procure a machine, and we know that the
machine will be used to run only certain types of applications (say databases, transaction pro-
cessing, or ocean simulation), then this part of our job is easy. On the other hand, if our machine
may be used to run a wide range of workloads, or if we are designers trying to evaluate a machine
to learn lessons for the next generation, we should choose a mix of workloads representative of a
wide range of domains. Some important domains for parallel computing today include scientific
applications that model physical phenomena; engineering applications such as those in com-
puter-aided design, digital signal processing, automobile crash simulation, and even simulations
used to evaluate architectural tradeoffs; graphics and visualization applications that render
scenes or volumes into images; media processing applications such as image, video and audio
analysis and processing, speech and handwriting recognition; information management applica-
tions such as databases and transaction processing; optimization applications such as crew sched-
uling for an airline and transport control; artificial intelligence applications such as expert
systems and robotics; multiprogrammed workloads; and the operating system itself, which is a
particularly complex parallel application.

Coverage of Behavioral Properties

Workloads may vary substantially in terms of the entire range of performance related characteris-
tics discussed in Chapter 3. As a result, a major problem in evaluation is that it is very easy to lie
with or be misled by workloads. For example, a study may choose workloads that stress the fea-
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ture for which an architecture has an advantage (say communication latency), but do not exercis-
ing aspects it performs poorly (say contention or communication bandwidth). For general-
purpose evaluation, it is important that the workloads we choose taken together stress a range of
important performance characteristics. For example, we should choose workloads with low and
high communication to computation ratios, small and large working sets, regular and irregular
access patterns, and localized and collective communication. If we are interested in particular
architectural characteristics, such as aggregate bandwidth for all-to-all communication among
processors, then we should choose at least some workloads that stress those characteristics. 

Also, real parallel programs will not always be highly optimized for good performance along the
lines discussed in Chapter 3, not just for the specific machine at hand but even in more generic
ways. This may be either because the effort involved in optimizing programs is more than the
user is willing to expend, or because the programs are generated with the help of automated tools.
The level of optimization can greatly affect important execution characteristics. In particular,
there are three important levels to consider:

Algorithmic The decomposition and assignment of tasks may be less than optimal, and certain
algorithmic enhancements for data locality such as blocking may not be implemented; for
example, strip-oriented versus block-oriented assignment for a grid computation (see
Section 2.4.3). 

Data structuring The data structures used may not interact optimally with the architecture,
causing artifactual communication; for example, two-dimensional versus four-dimensional
arrays to represent a two-dimensional grid in a shared address space (see Section 3.4.1). 

Data layout, distribution and alignment Even if appropriate data structures are used, they
may not be distributed or aligned appropriately to pages or cache blocks, causing artifactual
communication in shared address space systems. 

Where appropriate, we should therefore evaluate the robustness of machines or features to work-
loads with different levels of optimization. 

Concurrency

The dominant performance bottleneck in a workload may be the computational load imbalance,
either inherent to the partitioning method or due to the way synchronization is orchestrated (e.g.
using barriers instead of point to point synchronization). If this is true, then the workload may not
be appropriate for evaluating a machine’s communication architecture, since there is little that the
architecture can do about this bottleneck: Even great improvements in communication perfor-
mance may not affect overall performance much. While it is useful to know what kinds of work-
loads and problem sizes do not afford enough concurrency for the number of processors at
hand—since this may limit the applicability of a machine of that size—to evaluate communica-
tion architectures we should ensure that our workloads have adequate concurrency and load bal-
ance. A useful concept here is that of algorithmic speedup. This is the speedup—according to the
scaling model used—assuming that all memory references and communication operations take
zero time. By completely ignoring the performance impact of data access and communication,
algorithmic speedup measures the computational load balance in the workload, together with the
extra work done in the parallel program. This highly idealized performance model is called a
PRAM or parallel random access machine [FoW78] (albeit completely unrealistic, it has in fact
traditionally been most widely used to evaluate the complexity of parallel algorithms). In general,
we should isolate performance limitations due to workload characteristics that a machine cannot
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do much about from those that it can. It is also important that the workload take long enough to
run to be interesting on a machine of the size being evaluated, and be realistic in this sense,
though this is often more a function of the input problem size than inherently of the workload
itself. 

Many efforts have been made to define standard benchmark suites of parallel applications to
facilitate workload-driven architectural evaluation. They cover different application domains and
have different philosophies, and some of them are described in APPENDIX A. While the work-
loads that will be used for the illustrative evaluations in the book are a very limited set, we will
keep the above criteria in mind in choosing them. For now, let us assume that a parallel program
has been chosen as a workload, and see how we might use it to evaluate a real machine. We first
keep the number of processors fixed, which both simplifies the discussion and also exposes the
important interactions more cleanly. Then, we discuss varying the number of processors as well. 

4.3.3 Evaluating a Fixed-Size Machine

Since the other major axes in evaluating a real machine (the programs in the workload and the
machine size) are fixed, the only variable here is the parameters the workload. In discussing the
implications of scaling models, we saw how these application parameters interact with the num-
ber of processors to affect some of the most important execution characteristics of the program.
While the number of processors is fixed here, changing problem size itself can dramatically
affect all these characteristics and hence the results of an evaluation. In fact, it may even change
the nature of the dominant bottleneck; i.e. whether it is communication, load imbalance or local
data access. This already tells us that it is insufficient to use only a single problem size in an eval-
uation, even when the number of processors is fixed. 

We can use our understanding of parameter implications to actually choose problem sizes for a
study, if we extend it to include not only behavioral characteristics of the program but also how
they interact with organizational parameters of the extended memory hierarchy. Our goal is to
obtain adequate coverage of realistic behaviors while at the same time restricting the number of
problem sizes we need. We do this in a set of structured steps, in the process demonstrating the
pitfalls of choosing only a single size or a narrow range of sizes. The simple equation solver ker-
nel will be used to illustrate the steps quantitatively, even though it is not a full-fledged workload.
For the quantitative illustration, let us assume that we are evaluating a cache-coherent shared
address space machine with 64 single-processor nodes, each with 1 MB of cache and 64MB of
main memory. The steps are as follows. 

1.Appeal to higher powers. The high-level goals of the study may choose the problem sizes for
us. For example, we may know that users of the machine are interested in only a few specified
problem sizes. This simplifies our job, but is uncommon and not a general-purpose methodology.
It does not apply to the equation solver kernel. 

2. Determine a range of problem sizes. Knowledge of real usage may identify a range below
which problems are unrealistically small for the machine at hand and above which the execution
time is too large or users would not want to solve problems. This too is not particularly useful for
the equation solver kernel. Having identified a range, we can go on to the next step. 

3. Use inherent behavioral characteristics. Inherent behavioral characteristics help us choose
problem sizes within the selected range such as communication to computation ratio and load



Evaluating a Real Machine

9/10/97 DRAFT: Parallel Computer Architecture 215

balance. Since the inherent communication to computation ratio usually decreases with increas-
ing data set size, large problems may not stress the communication architecture enough—at least
with inherent communication—while small problems may over-stress it unrepresentatively and
potentially hide other bottlenecks. Similarly, concurrency often increases with data set size, giv-
ing rise to a tradeoff we must navigate: We would like to choose at least some sizes that are large
enough to be load balanced but not so large that the inherent communication becomes too small.
The size of the problem relative to the number of processors may also affect the fractions of exe-
cution time spent in different phases of the application, which may have very different load bal-
ance, synchronization and communication characteristics. For example, in the Barnes-Hut
application case study smaller problems cause more of the time to be spent in the tree-building
phase, which doesn’t parallelize very well and has much worse properties than the force-calcula-
tion phase which usually dominates in practice. We should be careful not to choose unrepresenta-
tive scenarios in this regard. 

Example  4-3 How would you use the above inherent behavioral characteristics to choose
problem sizes for the equation solver kernel?

Answer For this kernel, enough work and load balance might dictate that we have partitions
that are at least 32-by-32 points. For a machine with 64 (8x8) processors, this
means a total grid size of at least 256-by-256. This grid size requires the
communication of 4*32 or 128 grid elements in each iteration, for a computation of
32*32 or 1K points. At five floating point operations per point and 8 bytes per grid
point, this is an inherent communication to computation ratio of one byte every five
floating point operations. Assuming a processor that can deliver 200 MFLOPS on
this calculation, this implies a bandwidth of 40MB/s. This is quite small for modern
multiprocessor networks, even despite its burstiness. Let us assume that below
5MB/s communication is asymptotically small for our system. Then, from the
viewpoint of inherent communication to computation ratio there is no need to run
problems larger than 256-by-256 points (only 64K*8B or 512KB) per processor, or
2K by 2K grids overall. 

Finally, we proceed to the most complex step:

4. Use temporal and spatial locality interactions. These inherent characteristics vary smoothly
with problem size, so to deal with them alone we can pick a few sizes that span the interesting
spectrum. If their rate of change is very slow, we may not need to choose many sizes. Experience
shows that about three is a good number in most cases. For example, for the equation solver ker-
nel we might have chosen 256-by-256, 1K-by-1K, and 2K-by-2K grids. Unlike the previous
properties, the interactions of temporal and spatial locality with the architecture exhibit thresh-
olds in their performance effects, including the generation of artifactual communication as prob-
lem size changes. We may need to extend our choice of problem sizes to obtain enough coverage
with respect to these thresholds. At the same time, the threshold nature can help us prune the
parameter space. Let us look separately at effects related to temporal and spatial locality. 

Temporal locality and working sets 

Working sets fitting or not fitting in a local replication store can dramatically affect execution
characteristics such as local memory traffic and artifactual communication, even if the inherent
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communication and computational load balance do not change much. In applications like Ray-
trace, the important working sets are large and consist of data that are mostly assigned to remote
nodes, so artifactual communication due to limited replication capacity may dominate inherent
communication. Unlike inherent communication this tends to grow rather than diminish with
increasing problem size. We should include problem sizes that represent both sides of the thresh-
old (fitting and not fitting) for the important working sets, if these problem sizes are realistic in
practice. In fact, when realistic for the application we should also include a problem size that is
very large for the machine, e.g. such that it almost fills the memory. Large problems often exer-
cise architectural and operating system interactions that smaller problems do not, such as TLB
misses, page faults, and a large amount of traffic due to cache capacity misses. The following ide-
alized example helps illustrate how we might choose problem sizes based on working sets. 

0  

Example  4-4 Suppose that an application has the idealized miss rate versus cache size curve
shown in Figure 4-4(a) for a fixed problem size and number of processors, and for
the cache organization of our machine. If C is the machine’s cache size, how should

this curve influence the choice of problem sizes used to evaluate the machine?

Answer We can see that for the problem size (and number of processors) shown, the first
working set fits in the cache of size C, the second fits only partially, and the third
does not fit. Each of these working sets scales with problem size in its own way.
This scaling determines at what problem size that working set might no longer fit in
a cache of size C, and therefore what problem sizes we should choose to cover the

Figure  4-4  Choosing problem sizes based on working sets fitting in the cache. 

The graph on the left shows the working set curve (miss rate versus cache size) for a fixed problem size with our chosen number of
processors. C is the cache size of our machine. This curve identifies three knees or working sets, two very sharply defined and one less
so. The graph on the right shows, for each of the working sets, a curve depicting whether or not they fit in the cache of size C as the
problem size increases. A knee in a curve represents the problem size at which that working set no longer fits. We can see that a prob-
lem of size P1 fits WS1 and WS2 but not WS3, problem P2 fits WS1 and part of WS2 but not WS3, P3 fits WS1 only, while P4 does not
fit any working set in the cache. 
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representative cases. In fact, if the curve truly consists of sharp knees, then we can
draw a different type of curve, this time one for each important working set. This
curve, shown in Figure 4-4(b), depicts whether or not that working set fits in our
cache of size C as the problem size changes. If the problem size at which a knee in
this curve occurs for an important working set is within the range of problem sizes
that we have already determined to be realistic, then we should ensure that we
include a problem size on each side of that knee. Otherwise, we should ignore the
unrealistic side. Not doing this may cause us to either miss important effects related
to stressing the memory or communication architecture, or observe substantial
effects that are not representative of reality. The fact that the curves are flat on both
sides of a knee in this example means that if all we care about from the cache is the
miss rate then we need to choose only one problem size on each side of each knee
for this purpose, and prune out the rest.1 

We shall discuss the use of working sets in more detail when we examine choosing parameters
for a simulation study in the next section, where the cache size becomes a variable as well. 

Example  4-5 How might working sets influence our choice of problem sizes for the equation
solver? 

Answer The most important working sets for the equation solver are encountered when a
couple of subrows of a partition fit in the cache, and when a processor’s entire
partition fit in the cache. Both are very sharply defined in this simple kernel. Even
with the largest grid we chose based on inherent communication to computation
ratio (2K-by-2K), the data set size per processor is only 0.5MB, so both these
working sets fit comfortably in the cache (if a 4-d array representation is used, there
are essentially no conflict misses). Two subrows not fitting in a 1MB cache would
imply a subrow of 64K points, so a total grid of 64*8 or 512K-by-512K points. This
is a data set of 32GB per processor, which is far too large to be realistic. However,
having the other important working set—the whole partition—not fit in a 1MB
cache is realistic. It leads to either a lot of local memory traffic or a lot of artifactual
communication, if data are not placed properly, and we would like to represent such
a situation. We can do this by choosing one problem size such that its working set
(here partition size) is larger than 1MB per processor, e.g. 512 -by-512 points
(2MB) per processor or 4K-by-4K points overall. This does not come close to
filling the machine’s memory, so we should choose one more problem size for that

1.   Pruning a flat region of the miss rate curve is not necessarily appropriate if we also care about other
aspects of cache behavior than miss rate which are also affected by cache size. We shall see an example
when we discuss tradeoffs among cache coherence protocols in Chapter 5. 
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purpose, say 16K-by-16K points overall or 32MB per processor. We now have five
problem sizes: 256-by-256, 1K-by-1K, 2K-by-2K, 4K-by-4K and 16K-by-16K. 

Spatial locality 

Consider the equation solver again, and suppose that the data structure used to represent the grid
in a shared address space is a two-dimensional array. A processor’s partition, which is its impor-
tant working set, may not remain in its cache across grid sweeps, due to either limited capacity or
cache conflicts which may be quite frequent now that the subrows of a partition are not contigu-
ous in the address space (the non-contiguity and its effects will be examined again in Chapters 5
and 8). If so, it is important that a processor’s partition be allocated in its local memory on a dis-
tributed-memory machine. The granularity of allocation in main memory is a page, which is typ-
ically 4-16KB. If the size of a subrow is less than the page size, proper allocation becomes very
difficult and there will be a lot of artifactual communication. However, as soon as that threshold
in size is crossed, allocation is not a problem anymore and there is little artifactual communica-
tion. Both situations may be realistic, and we should try to represent both. If the page size is
4KB, then our first three problems have a subrow smaller than 4KB so they cannot be distributed
properly, while the last two have subrows greater than or equal to 4K so can be distributed well
provided the grid is aligned to a page boundary. We do not need to expand our set of problem
sizes for this purpose. 

A more stark example of spatial locality interactions is found in a program and an architectural
interaction that we have not yet discussed. The program, called Radix, is a sorting program that
will be described later in this chapter, and the architectural interaction, called false sharing, will
be discussed in Chapter 5. However, we show the result to illustrate the importance of consider-
ing spatial interactions in our choice of problem sizes. Figure 4-5 shows how the miss rate for
this program running on a cache-coherent shared address space machine changes with cache
block size, for two different problem sizes n (sorting 256K integers and 1M integers) using the
same number of processors p. The false sharing component of the miss rate leads to a lot of arti-
factual communication, and in this application can completely destroy performance. Clearly, for
the given cache block size on our machine, false sharing may or not destroy the performance of
radix sorting depending simply on the problem size we choose. It turns out that for a given cache
block size false sharing is terrible if the ratio of problem size to number of processors is smaller
than a certain threshold, and almost non-existent if it is bigger. Some applications display these
threshold effects in spatial locality interactions with problem size, others do not. Identifying the
presence of such thresholds requires a deep enough understanding of the application’s locality
and its interaction with architectural parameters, and illustrates some of the subtleties in evalua-
tion. 

The simple equation solver summarizes the dependence of most execution characteristics on
problem size, some exhibiting knees on threshold in interaction with architectural parameters and
some not. With n-by-n grids and p processes, if the ratio n/p is large, communication to computa-
tion ratio is low, the important working sets are unlikely to fit in the processor caches leading to a
high capacity miss rate, and spatial locality is good even with a two-dimensional array represen-
tation. The situation is completely the opposite when n/p is small: high communication to com-
putation ratio, poor spatial locality and false sharing, and few local capacity misses. The
dominant performance bottleneck thus changes from local access in one case to communication
in the other. Figure 4-6 illustrates these effects for the Ocean application as a whole, which uses
kernels similar to the equation solver. 
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While there are no absolute formulae for choosing problem sizes to evaluate a machine, and the
equation solver kernel is a trivial example, the above steps are useful guidelines. We should also
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Figure  4-5  Impact of problem size and number of processors on the spatial locality behavior of Radix sorting. 

The miss rate is broken down into cold/capacity misses, true sharing (inherent communication) misses, and misses due to false shar-
ing of data. As the block size increases for a given problem size and number of processors, there comes a point when the ratio men-
tioned in the text becomes smaller than the block size, and substantial false sharing is experienced. This is clearly a threshold effect,
and happens at different block sizes for different problem sizes. A similar effect would have been observed if the problem size were
kept constant and the number of processors changed. 

Figure  4-6  Effects of problem size, number of processors and working set fitting in the cache.

The figure shows the effects on the memory behavior of the Ocean application in a shared address space. The traffic (in bytes per
floating point operation or FLOP) is broken down into cold/capacity traffic, true sharing (inherent communication) traffic, and traffic
due to false sharing of data. The true sharing (inherent communication) traffic increases with the number of processors, and decreases
from the smaller problem to the larger. As the number of processors increases for a given problem size, the working set starts to fit in
the cache and a domination by local misses is replaced by a domination by communication. This change occurs at a larger number of
processors for the larger problem, since the working set is proportional to n2/p. If we focus on the 8-processor breakdown for the two
problem sizes, we see that for the small problem the traffic is dominantly remote (since the working set fits in the cache) while for the
larger problem it is dominantly local (since the working set does not fit in the cache), 
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ensure that the results we obtain for a machine are not due to artifacts that can be easily removed
in the program, including systematic cache conflict misses and some kinds of contention. These
may be useful for evaluating the robustness of the machine, but should not be the only situations
we evaluate. Despite the number of issues to consider, experience shows that the number of prob-
lems sizes needed to evaluate a fixed-size machine with an application is usually quite small. If
we are to compare two machines, it is useful to choose problem sizes that exercise the above sce-
narios on both machines. 

4.3.4 Varying Machine Size

Now suppose we want to evaluate the machine as the number of processors changes. We have
already seen how we might scale the problem size, under different scaling models, and what met-
rics we might use for performance improvement due to parallelism. The issue that remains is how
to choose a fixed problem size, at some machine size, as a starting point from which to scale. One
strategy is to start from the problem sizes we chose above for a fixed number of processors and
then scale them up or down according to the different scaling models. We may narrow down our
range of base problem sizes to three: a small, a medium and a large, which with three scaling
models will result in nine sets of performance data and speedup curves. However, it may require
care to ensure that the problem sizes, when scaled down, will stress the capabilities of smaller
machines. 

A simpler strategy is to start with a few well-chosen problem sizes on a uniprocessor and scale up
from there under all three models. Here too, it is reasonable to choose three uniprocessor problem
sizes. The small problem should be such that its working set fits in the cache on a uniprocessor,
and its communication to computation ratio exercises the communication architecture even for a
relatively small number of processors. This problem will not be very useful under PC scaling on
large machines, but should remain fine under TC and at least MC scaling. The large problem
should be such that its important working set does not fit in the cache on a uniprocessor, if this is
realistic for the application. Under PC scaling the working set may fit at some point (if it shrinks
with increasing number of processors), while under MC scaling it is likely not to and to keep
generating capacity traffic. A reasonable choice for a large problem is one that fills most of the
memory on a single node, or takes a large amount of time on it. Thus, it will continue to almost
fill the memory even on large systems under MC scaling. The medium sized problem can be cho-
sen to be in between in some judicious way; if possible, even it should take a substantial amount
of time on the uniprocessor. The outstanding issue is how to explore PC scaling for problem sizes
that don’t fit in a single node’s memory. Here the solution is to simply choose such a problem
size, and measure speedup relative to a number of processors for which the problem fits in mem-
ory. 

4.3.5 Choosing Performance Metrics

In addition to choosing parameters, an important question in evaluating or comparing machines
is the metrics that should be chosen for the evaluation. Just as it is easy in parallel computing to
mislead by not choosing workloads and parameters appropriately, it is also easy to convey the
wrong impression by not measuring and presenting results in meaningful ways. In general, both
cost and performance are important metrics. In comparing two machines, it is not just their per-
formance that matters but also their cost. And in evaluating how well a machine scales as
resources (for example processors and memory) are added, it is not only how performance
increases that matters but also how cost increases. Even if speedup increases much less than lin-
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early, if the cost of the resources needed to run the program don’t increase much more quickly
than that then it may indeed be cost-effective to use the larger machine [WH95]. Overall, some
measure of “cost-performance” is more appropriate than simply performance. However, cost and
performance can be measured separately, and cost is very dependent on the marketplace. The
focus here is on metrics for measuring performance. 

We have already discussed absolute performance and performance improvement due to parallel-
ism and argued that they are both useful metrics. Here, we first examine some subtler issues in
using these metrics to evaluate and especially compare machines, and then understand the role of
other metrics that are based on processing rate (e.g. megaflops), resource utilization, and prob-
lem size. As we shall see, some metrics are clearly important and should always be presented,
while the utility of others depends on what we are after and the environment in which we operate.
After discussing metrics, we will discuss some general issues regarding the presentation of
results in Section 4.3.6. We focus on issues that pertain especially to multiprocessors.

Absolute Performance 

As discussed earlier, to a user of a system the absolute performance is the performance metric
that matters the most. Suppose that execution time is our absolute performance metric. Time can
be measured in different ways. First, there is a choice between user time and wall-clock time for a
workload. User time is the time the machine spent executing code from the particular workload
or program in question, thus excluding system activity and other programs that might be time-
sharing the machine, while wall-clock time is the total elapsed time for the workload—including
all intervening activity—as measured by a clock hanging on the wall. Second, there is the issue
of whether to use the average or the maximum execution time over all processes of the program. 

Since users ultimately care about wall-clock time, we must measure and present this when com-
paring systems. However, if other user programs—not just the operating system—interfere with a
program’s execution due to multiprogramming, then wall-clock time does not help understand
performance bottlenecks in the particular program of interest. Note that user time for that pro-
gram may also not be very useful in this case, since interleaved execution with unrelated pro-
cesses disrupts the memory system interactions of the program as well as its synchronization and
load balance behavior. We should therefore always present wall-clock time and describe the exe-
cution environment (batch or multiprogrammed), whether or not we present more detailed infor-
mation geared toward enhancing understanding. 

Similarly, since a parallel program is not finished until the last process has terminated, it is the
time to this point that is important, not the average over processes. Of course, if we truly want to
understand performance bottlenecks we would like to see the execution profiles of all pro-
cesses—or a sample—broken down into different components of time (refer back to Figure 3-12
on page 162, for example). The components of execution time tell us why one system outper-
forms another, and also whether the workload is appropriate for the investigation under consider-
ation (e.g. is not limited by load imbalance). 

Performance Improvement or Speedup

We have already discussed the utility of both absolute performance and performance improve-
ment or speedup in obtaining insights into the performance of a parallel machine. The question
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that was left open in measuring speedup for any scaling model is what the denominator in the
speedup ratio—performance on one processor—should actually measure. There are four choices:

(1) Performance of the parallel program on one processor of the parallel machine

(2) Performance of a sequential implementation of the same algorithm on one processor of the
parallel machine

(3) Performance of the “best” sequential algorithm and program for the same problem on one
processor of the parallel machine

(4) Performance of the “best” sequential program on an agreed-upon standard machine. 

The difference between (1) and (2) is that the parallel program incurs overheads even when run
on a uniprocessor, since it still executes synchronization, parallelism management instructions or
partitioning code, or tests to omit these. These overheads can sometimes be significant. The rea-
son that (2) and (3) are different is that the best sequential algorithm may not be possible or easy
to parallelize effectively, so the algorithm used in the parallel program may be different than the
best sequential algorithm.

Using performance as defined by (3) clearly leads to a better and more honest speedup metric
than (1) and (2). From an architect’s point of view, however, in many cases it may be okay to use
definition (2). Definition (4) fuses uniprocessor performance back into the picture, and thus
results in a comparison metric that is similar to absolute performance. 

Processing Rate

A metric that is often quoted to characterize the performance of machines is the number of com-
puter operations that they execute per unit time (as opposed to operations that have meaning at
application level, such as transactions or chemical bonds). Classic examples are MFLOPS (mil-
lions of floating point operations per second) for numerically intensive programs and MIPS (mil-
lions of instructions per second) for general programs. Much has been written about why these
are not good general metrics for performance, even though they are popular in the marketing lit-
erature of vendors. The basic reason is that unless we have an unambiguous, machine-indepen-
dent measure of the number of FLOPs or instructions needed to solve a problem, these measures
can be artificially inflated by using inferior, brute-force algorithms that perform many more
FLOPs and take much longer, but produce higher MFLOPS ratings. In fact, we can even inflate
the metric by artificially inserting useless but cheap operations that don’t access memory). And if
the number of operations needed is unambiguously known, then using these rate-based metrics is
no different than using execution time. Other problems with MFLOPS, for example, include the
fact that different floating point operations have different costs, that even in FLOP-intensive
applications modern algorithms use smarter data structures that have many integer operations,
and that these metrics are burdened with a legacy of misuse (e.g. for publishing peak hardware
performance numbers). While MFLOPS and MIPS are in the best case useful for understanding
the basic hardware capabilities, we should be very wary of using them as the main indication of a
machine’s performance. 

Utilization

Architects sometimes measure success by how well (what fraction of the time) they are able to
keep their processing engines busy executing instructions rather than stalled due to various over-
heads. It should be clear by now, however, that processor utilization is not a metric of interest to a
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user and not a good sole performance metric at all. It too can be arbitrarily inflated, is biased
toward slower processors, and does not say much about end performance or performance bottle-
necks. However, it may be useful as a starting point to decide whether to start looking more
deeply for performance problems in a program or machine. Similar arguments hold for the utili-
zation of other resources; utilization is useful in determining whether a machine design is bal-
anced among resources and where the bottlenecks are, but not useful for measuring and
comparing performance. 

Size or Configuration

To compare two systems—or a system with and without a particular enhancement—as the num-
ber of processors changes, we could compare performance for a number of well-chosen problem
sizes and under different scaling models, using execution time and perhaps speedup as the met-
rics. However, the results obtained are still dependent on the base problem sizes chosen, and per-
forming the comparison may take a lot of experiments. There is another performance metric that
is useful for comparison in some such situations. It is based on the fact that for a given number of
processors the inherent overheads of parallelism—inherent communication, load imbalance and
synchronization—usually grow relative to useful computation as the problem size is made
smaller. From the perspective of evaluating a machine’s communication architecture, then, a use-
ful comparison metric as the number of processors increases is the smallest problem size that the
machine can run which still achieving a certain measure of parallel “goodness”.; for example, the
smallest problem that the machine can run with a specified “desirable” or “acceptable” parallel
efficiency, where parallel efficiency is defined as speedup divided by the number of processors.1

By keeping parallel efficiency fixed as the number of processors increases, in a sense this intro-
duces a new scaling model that we might call efficiency-constrained scaling, and with it a perfor-
mance metric which is the smallest problem size needed. Curves of problem size versus number
of processors that maintain a fixed parallel efficiency have been called isoefficiency curves
[KuG91]. 

By focusing on the smallest problem sizes that can deliver the desired parallel efficiency, this
metric stresses the performance of the mechanisms provided for parallelism, and is particularly
useful for comparison when the uniprocessor nodes in the systems being compared are equiva-
lent. However, it may fail when the dominant bottleneck in practice is artifactual communication
of a type that increases rather than reduces when smaller problems are run. An example is capac-
ity-induced communication due to nonlocal data in working sets not fitting in the cache. Also,
while it stresses communication performance it may not stress the local memory system perfor-
mance of a processing node. In itself, it does not provide for complete evaluation or comparison
of systems. Note that the a similar metric may be useful even when the number of processors is
kept fixed and some other parameter like a latency or bandwidth is varied to understand its
impact on parallel performance. 

1.  Of course, the notion of a smallest problem is ill-defined when different application parameters can be
varied independently by a user, since the same execution time or memory usage may be achieved with dif-
ferent combinations of parameters which have different execution characteristics with regard to parallelism.
However, it is uniquely defined given a hard and fast scaling relationship among application parameters (see
Section 4.2), or if the user only has direct control over a single parameter and the application automatically
scales other parameters appropriately.
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In summary, from a user’s point of view in comparing machines the performance metric of great-
est interest is wall-clock execution time (there are of course cost issues to consider). However,
from the viewpoint of an architect, a programmer trying to understand a program’s performance
or a user interested more generally in the performance of a machine, it is best to look at both exe-
cution time and speedup. Both these should be presented in the results of any study. Ideally exe-
cution time should be broken up into its major components as discussed in Section 3.5. To
understand performance bottlenecks, it is very useful to see these component breakdowns on a
per-process basis or as some sort of statistic (beyond an average) over processes. In evaluating
the impact of changes to the communication architecture, or in comparing parallel machines
based on equivalent underlying nodes, size- or configuration-based metrics like the minimum
problem size need to achieve a certain goal can be very useful. Metrics like MFLOPS, MIPS and
processor utilization can be used for specialized purposes, but using them to truly represent per-
formance requires a lot of assumptions about the knowledge and integrity of the presenter, and
they are burdened with a legacy of misuse. 

4.3.6 Presenting Results

Given a selected metric(s), there is the issue of how to summarize and finally present the results
of a study across a range of applications or workloads The key point here is that although aver-
ages and variances over workloads are a concise way to present results, they are not very mean-
ingful particularly for parallel architectures. We have seen the reasons for this: the vast difference
among applications with regard to parallel execution characteristics (and even the sharp varia-
tions with problem size etc. that we have discussed), the strong dependence of performance on
these characteristics, and the lack of a standard accepted suite of workloads that can be consid-
ered representative of general-purpose parallel computing. Uniprocessors suffer from some of
these problems too, but in much smaller degree. For parallel machines in particular, it is very
important to present performance results per application or workload. 

An article written in humorous vein [Bai93] and subtitled “Twelve Ways to Fool the Masses”
highlights some of these misleading practices that we should guard against. The twelve practices
listed are:

Compare 32-bit results to others’ 64-bit results The manipulation of 32-bit quantities (such as
“single-precision” floating point numbers), is faster than that of 64-bit quantities (“double-
precision” floating point), particularly on machines that do not have 64-bit wide data paths. 

Present inner kernel results instead of the whole application An inner kernel can be heavily
optimized for parallelism or otherwise good performance, but what a user cares about is the
performance on the whole application. Amdahl’s Law quickly comes into play here.

Use optimized assembly code and compare with others’ Fortran or C codes. 

Scale problem size with number of processors, but don’t tell For example, speedup curves
under memory-constrained scaling usually look much better than with a constant problem
size. 

Quote performance results linearly projected to a full system We could obtain results that
show 90% parallel efficiency on a machine with 8 processors (i.e. 7.2-fold speedup), and
project that we would also obtain 90% efficiency (57.6-fold speedup) with 64 processors.
However, there is little a priori reason to believe that this should be the case. 

Compare with scalar, unoptimized, uniprocessor results on Crays At least in high-perfor-
mance scientific computing, the Cray supercomputers have long been the standard to com-
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pare against. We could therefore compare the performance of our 256-processor parallel
machine on an application with the same application running non-vectorized on a single pro-
cessor of the latest parallel Cray machine, and simply say that our machine “beat the Cray”. 

Compare with old code on an obsolete system Instead of using our new and improved appli-
cation on a single processor of the latest Cray machine, as above, we could simply use a older
dusty-deck version of the application on a much older Cray machine. 

Use parallel code as base instead of best sequential one As discussed in Section 4.2, this can
inflate speedups. 

Quote performance in terms of utilization, speedups, peak MFLOPS per dollar, and leave out
execution time See Section 4.3.5. 

Use inefficient algorithms to get high MFLOPS rates Again, see Section 4.3.5. 

Measure parallel times on a dedicated system, but uniprocessor times on a busy system. 

Show pretty pictures and videos, but don’t talk about performance. 

We should be aware of these ways to mislead both to avoid them ourselves and to avoid being
misled by others. 

4.4 Evaluating an Architectural Idea or Tradeoff

Imagine that you are an architect at a computer company, getting ready to design your next-gen-
eration multiprocessor. You have a new architectural idea that you would like to decide whether
or not to include in the machine. You may have a wealth of information about performance and
bottlenecks from the previous-generation machine, which in fact may have been what prompted
to you to pursue this idea in the first place. However, your idea and this data are not all that is
new. Technology and technological assumptions have changed since the last machine, ranging
from the level of integration to the cache sizes and organizations used by microprocessors. The
processor you will use may be not only a lot faster but also a lot more sophisticated (e.g. four-
way issue and dynamically scheduled versus single-issue and statically scheduled), and it may
have new capabilities that affect the idea at hand. The operating system has likely changed too, as
has the compiler and perhaps even the workloads of interest. And these software components
may change further by the time the machine is actually built and sold. The feature you are inter-
ested in has a significant cost, in both hardware and particularly design time. And you have dead-
lines to contend with. 

In this sea of change, the relevance of the data that you have in making quantitative decisions
about performance and cost is questionable. At best, you could use it together with your intuition
to make informed and educated guesses. But if the cost of the feature is high, you would probably
want to do more. What you can do is build a simulator that models your system. You fix every-
thing else—the compiler, the operating system, the processor, the technological and architectural
parameters—and simulate the system with the feature of interest absent and then present, and
judge its performance impact. 

Building accurate simulators for parallel systems is difficult. There are many complex interac-
tions in the extended memory hierarchy that are difficult to model correctly, particularly those
having to do with contention. Processors themselves are becoming much more complex, and
accurate simulation demands that they too be modeled in detail. However, even if you can design
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a very accurate simulator that mimics your design, there is still a big problem. Simulation is
expensive; it takes a lot of memory and time. The implication for you is that you cannot simulate
life-sized problem and machine sizes, and will have to scale down your simulations somehow.
This is the first major issue that will be discussed in this section. 

Now suppose that your technological parameters are not fixed. You are starting with a clean slate,
and want to know how well the idea would work with different technological assumptions. Or
you are a researcher, seeking to determine the benefits of an idea in a general context. Now, in
addition to the earlier axes of workload, problem size, and machine size, the parameters of the
machine are also variable. These parameters including the number of processors, the cache size
and organization, the granularities of allocation, communication and coherence, and the perfor-
mance characteristics of the communication architecture such as latency, occupancy and band-
width. Together with the parameters of the workload, this leads to a vast parameter space that we
must navigate. The high cost and the limitations of simulation make it all the more important that
we prune this design space while not losing too much coverage. We will discuss the methodolog-
ical considerations in choosing parameters and pruning the design space, using a particular eval-
uation as an example. First, let us take a quick look at multiprocessor simulation. 

4.4.1 Multiprocessor Simulation

While multiple processes and processing nodes are simulated, the simulation itself may be run on
a uniprocessor workstation. A reference generator plays the role of the processors on the parallel
machine. It simulates the activities of the processors, and issues memory references (together
with a process identifier that tells which processor the reference is from) or commands such as
send/receive to a memory system and interconnection network simulator, which represents all the
caches and memories in the system (see Figure 4-7). If the simulation is being run on a unipro-
cessor, the different simulated processes time-share the uniprocessor, scheduled by the reference
generator. One example of scheduling may be to deschedule a process every time it issues a refer-
ence to the memory system simulator, and allow another process to run until it issues its next ref-
erence. Another example would be to reschedule processes every simulated clock cycle. The
memory system simulator simulates all the caches and main memories on the different process-
ing nodes, as well as the interconnection network itself. It can be arbitrarily complex in its simu-
lation of data paths, latencies and contention. 

The coupling between the reference generator (processor simulator) and the memory system sim-
ulator can be organized in various ways, depending on the accuracy needed in the simulation and
the complexity of the processor model. One option is trace-driven simulation. In this case, a trace
of the instructions executed by each process is obtained by running the parallel program on one
system, and the same trace is fed into the simulator that simulates the extended memory hierar-
chy of a different multiprocessor system. Here, the coupling or flow of information is only in one
direction: from the reference generator (here just a trace) to the memory system simulator. the
more popular form of simulation is execution-driven simulation, which provides coupling in both
directions. 

In execution-driven simulation, when the memory system simulator receives a reference or com-
mand from the reference generator, it simulates the path of the reference through the extended
memory hierarchy—including contention with other references, and returns to the reference gen-
erator the time that the reference took to be satisfied. This information, together with concerns
about fairness and preserving the semantics of synchronization events, is used by the reference
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generator to determine which simulated process to schedule next. Thus, there is feedback from
the memory system simulator to the reference generator, providing more accuracy than trace-
driven simulation. To allow for maximum concurrency in simulating events and references, most
components of the memory system and network are also modeled as separate communicating
threads scheduled by the simulator. A global notion of simulated time—i.e. time that would have
been seen by the simulated machine, not real time that the simulator itself runs for—is main-
tained by the simulator. It is what we look up in determining the performance of workloads on
the simulated architecture, and it is used to make scheduling decisions. In addition to time, simu-

lators usually keep extensive statistics about the occurrence of various events of interest. This
provides us with a wealth of detailed performance information that would be difficult if not
impossible to measure on a real system, but some of these types of information may be tainted by
a lack of credibility since it is after all simulation. Accurate execution-driven simulation is also
much more difficult when complex, dynamically scheduled, multiple-issue processors have to be
modeled []. Some of the tradeoffs in simulation techniques are discussed in Exercise 4.8. 

Given that the simulation is done in software, and involves many processes or threads that are
being very frequently rescheduled (more often for more accuracy) it should not be surprising that
simulation is very expensive, and that we need to scale down parameters for it. Research is also
being done in performing simulation itself as a parallel application to speed it up, and in using
hardware emulation instead of simulation [RHL+93, Gol93, cite Dubois]

4.4.2 Scaling Down Problem and Machine Parameters for Simulation

The tricky part about scaling down problem and machine parameters is that we want the scaled
down machine running the smaller problem to be representative of the full-scale machine running
the larger problem. Unfortunately, there are no good general formulas for this. But it is an impor-
tant issue, since it is the reality of most architectural tradeoff evaluation. We should at least
understand the limitations of such scaling, recognize which parameters can be scaled down with
confidence and which cannot, and develop guidelines that help us avoid pitfalls. Let us first
examine scaling down the problem size and number of processors, and then explain some further
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Figure  4-7  Execution-driven multiprocessor simulation.
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difficulties associated with lower-level machine parameters. We focus again on a cache-coherent
shared address space communication abstraction for concreteness.

Problem parameters and number of processors

Consider problem parameters first. We should first look for those problem parameters, if any, that
affect simulation time greatly but do not have much impact on execution characteristics related to
parallel performance. An example is the number of time-steps executed in many scientific com-
putations, or even the number of iterations in the simple equation solver. The data values manip-
ulated can change a lot across time-steps, but the behavioral characteristics often don’t change
very much. In such cases, after initialization and the cold-start period, which we now ignore, we
can run the simulation for a few time-steps and ignore the rest.1 

Unfortunately, many if not most application parameters affect execution characteristics related to
parallelism. When scaling these parameters we must also scale down the number of processors,
since otherwise we may obtain highly unrepresentative behavioral characteristics. This is difficult
to do in a representative way, because we are faced with many constraints that are individually
very difficult to satisfy, and that might be impossible to reconcile. These include:

Preserving the distribution of time spent in program phases The relative amounts of time
spent performing different types of computation, for example in different phases of an appli-
cation, will most likely change with problem and machine size.

Preserving key behavioral characteristics. These include the communication to computation
ratio, load balance, and data locality, which may all scale in different ways! 

Preserving scaling relationships among application parameters. See Section 4.2.4.

Preserving contention and communication patterns. This is particularly difficult, since bursti-
ness for example is difficult to predict or control. 

A more realistic goal than preserving true representativeness when scaling down might be to at
least cover a range of realistic operating points with regard to some key behavioral characteristics
that matter most for a study, and avoid unrealistic scenarios. In this sense scaled down simula-
tions are not in fact quantitatively representative of any particular reality, but can be used to gain
insight and rough estimates. With this more modest and realistic goal, let us assume that we have
scaled down application parameters and the number of processors in some way, and see how to
scale other machine parameters. 

Other machine parameters

Scaled down problem and machine sizes interact differently with low-level machine parameters
than the full-scale problems would. We must therefore choose parameters with considerable care. 

1.  We may have to omit the initialization and cold-start periods of the application from the measurements,
since their impact is much larger in the run with reduced time-steps than it would be in practice. If we
expect that the behavior over long periods of time may change substantially, then we can dump out the pro-
gram state periodically from an execution on a real machine of the problem configuration we are simulating,
and start a few sample simulations with these dumped out states as their input data sets (again not measuring
cold-start in each sample). Other sampling techniques can also be used to reduce simulation cost.
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Consider the size of the cache or replication store. Suppose that the largest problem and machine
configuration that we can simulate for the equation solver kernel is a 512-by-512 grid with 16
processors. If we don’t scale the 1MB per-processor cache down, we will never be able to repre-
sent the situation where the important working set doesn’t fit in the cache. The key point with
regard to scaling caches is that it should be done based on an understanding of how working sets
scale and on our discussion of realistic and unrealistic operating points. Not scaling the cache
size at all, or simply scaling it down proportionally with data set size or problem size are inappro-
priate in general, since cache size interacts most closely with working set size, not with data set
or problem size. We should also ensure that the caches we use don’t become extremely small,
since these can suffer from unrepresentative mapping and fragmentation artifacts. Similar argu-
ments apply to other replication stores than processor caches, especially those that hold commu-
nicated data. 

Example  4-6 In the Barnes-Hut application, suppose that the size of the most important working
set when running a full-scale problem with n=1M particles is 150KB, that the target
machine has 1MB per-processor caches, and that you can only simulate an
execution with n=16K particles. Would it be appropriate to scale the cache size
down proportionally with the data set size? How would you choose the cache size?

Answer We know from Chapter 3 that the size of the most important working set in Barnes-
Hut scales as log n, where n is the number of particles and is proportional to the size
of the data set. The working set of 150KB fits comfortably in the full-scale 1MB
cache on the target machine. Given its slow growth rate, this working set is likely to
always fit in the cache for realistic problems. If we scale the cache size
proportionally to the data set for our simulations, we get a cache size of 1MB *
16K/1M or 16KB. The size of the working set for the scaled down problem is

150KB *  or 70KB, which clearly does not fit in the scaled down 16KB

cache. Thus, this form of scaling has brought us to an operating point that is not
representative of reality. We should rather choose a cache size large enough to
always hold this working set. 

As we move to still lower level parameters of the extended memory hierarchy, including perfor-
mance parameters of the communication architecture, scaling them representatively becomes
increasingly difficult. For example, interactions with cache associativity are very difficult to pre-
dict, and the best we can do is leave the associativity as it is. The main danger is with retaining a
direct mapped cache when cache sizes are scaled down very low, since this is particularly suscep-
tible to mapping conflicts that wouldn’t occur in the full-scale cache. Interactions with organiza-
tional parameters of the communication architecture—such as the granularities of data
allocation, transfer and coherence—are also complex and unpredictable unless there is near-per-
fect spatial locality, but keeping them fixed can lead to serious, unrepresentative artifacts in some
cases. We shall see some examples in the Exercises. Finally, performance parameters like
latency, occupancy, and bandwidth are also very difficult to scale down appropriately with all the
others. For example, should the average end-to-end latency of a message be kept the same or
reduced according to the number of hops traversed, and how should aggregate bandwidth be
treated.

16Klog
1Mlog

------------------
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In summary, the best approach to simulation is to try to run the problem sizes of interest to the
extent possible. However, by following the guidelines and pitfalls discussed above, we can at
least ensure that we cover the important types of operating points with regard to some key execu-
tion characteristics when we scale down, and guide our designs by extrapolating with caution.
We can be reasonably confident about scaling with respect to some parameters and characteris-
tics, but not others, and our confidence relies on our understanding of the application. This is
okay for understanding whether certain architectural features are likely to be beneficial or not,
but it is dangerous to use scaled down situations to try to draw precise quantitative conclusions. 

4.4.3 Dealing with the Parameter Space: An Example Evaluation

Consider now the problem of the large parameter space opened up by trying to evaluate an idea in
a general context, so that lower-level machine parameters are also variable. Let us now examine
an actual evaluation that we might perform through simulation, and through it see how we might
deal with the parameter space. Assume again a cache-coherent shared address space machine
with physically distributed memory. The default mechanism for communication is implicit com-
munication in cache blocks through loads and stores. We saw in Chapter 3 that the impact of end-
point communication overhead and network latency can be alleviated by communicating in larger
messages. We might therefore wish to understand the utility of adding to such an architecture a
facility to explicitly send larger messages, called a block transfer facility, which programs can
use in addition to the standard transfer mechanisms for cache blocks. In the equation solver, a
process might send an entire border subrow or subcolumn of its partition to its neighbor process
in a single block transfer. 

In choosing workloads for such an evaluation, we would of course choose at least some with
communication that is amenable to being structured in large messages, such as the equation
solver. The more difficult problem is navigating the parameter space. Our goals are three-fold:
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Figure  4-8  Choosing cache sizes for scaled down problem and machines. 

Based on our understanding of the sizes and scaling of working sets, we first decide what regions of the curve are realistic for full-
scale problems running on the machine with full-scale caches (left graph). We then project or measure what the working set curve
looks like for the smaller problem and machine size that we are simulating (right graph), prune out the corresponding unrealistic
regions in it, and pick representative operating points (cache sizes) for the realistic regions as discussed in Section 4.4. For regions
that cannot be pruned we can perform sensitivity analysis as necessary.
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To avoid unrealistic execution characteristics We should avoid combinations of parameters
(or operating points) that lead to unrealistic behavioral characteristics; that is, behavior that
wouldn’t be encountered in practical use of the machine.

To obtain good coverage of execution characteristics We should try to ensure that important
characteristics that may arise in real usage are represented. 

To prune the parameter space Even in the realistic subspaces of parameter values, we should
try to prune out points when possible based on application knowledge, to save time and
resources, without losing much coverage, and to determine when explicit sensitivity analysis
is necessary.

We can prune the space based on the goals of the study, restrictions on parameters imposed by
technology or the use of specific building blocks, and an understanding of parameter interactions.
Let us go through the process of choosing parameters, using the equation solver kernel as an
example. Although we shall examine the parameters one by one, issues that arise in later stages
may make us revisit decisions that were made earlier. 

Problem size and number of processors

We choose these based on the considerations of inherent program characteristics that we have
discussed in evaluating a real machine and in scaling down for simulation. For example, if the
problem is large enough that the communication to computation ratio is very small, then block
transfer is not going to help overall performance much. Nor if the problem is small enough that
load imbalance is the dominant bottleneck. 

What about other architectural parameters? Since problem and machine size as well as these
architectural parameters are now variables, we could either fix the latter first and then choose
problem size and machine sizes as in Section 4.3, or do the reverse. The reality usually is that we
pick one first and then iterate in a brief feedback loop to arrive at a good compromise. Here, we
assume that we fix the problem and machine sizes first, primarily because these are limited by
simulation resources. Given a problem size and number of processors, let us examine choosing
other parameters. For the equation solver, we assume that we are using a 512-by-512 grid and 16
processors. 

Cache/Replication size

Once again, we choose cache sizes based on knowledge of the working set curve. In evaluating a
real machine we saw how to choose problem sizes given a cache size (and organization) and
number of processors. Clearly, if we know the curve and how the important working sets scale
with problem size and number of processors, we can keep these fixed and choose cache sizes as
well.

Example  4-7 Since the equation solver kernel has sharply defined working sets, it provides a
good example for choosing cache sizes for simulation. How might you choose the
cache sizes in this case? 

Answer Figure 4-9 illustrates the method using the well-defined working sets of the
equation solver. In general, while the sizes of important working sets often depend
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on application parameters and the number of processors, their nature and hence the
general shape of the curve usually does not change with these parameters. For an
important working set, suppose we know its size and how it scales with these
parameters (as we do know for the equation solver, see Figure 4-9). If we also know
the range of cache sizes that are realistic for target machines, we can tell whether it
is (i) unrealistic to expect that working set to fit in the cache in practical situations,
(ii) unrealistic to expect that working set to not fit in the cache, or (iii) realistic to
expect it to fit for some practical combinations of parameter values and to not fit for
others.1 Thus, we can tell which of the regions between knees in the curve may be
representative of realistic situations and which are not. Given the problem size and
number of processors, we know the working set curve versus cache size, and can
choose cache sizes to avoid unrepresentative regions, cover representative ones,
and prune flat regions by choosing only a single cache size from them (if all we
care about from a cache is its miss rate). 

Whether or not the important working sets fit in the cache affects the benefits from block transfer
greatly, in interesting ways. The effect depends on whether these working sets consist of locally
or nonlocally allocated data. If they consist mainly of local data—as in the equation solver when
data are placed properly—and if they don’t fit in the cache, the processor spends more of its time
stalled on the local memory system. As a result, communication time becomes relatively less
important and block transfer is likely to help less (block transferred data also interferes more with
the local bus traffic, causing contention). However, if the working sets are mostly nonlocal data,
we have an opposite effect: If they don’t fit in the cache, then there is more communication and

1.  Whether a working set of a given size fits in the cache may depend on cache associativity and perhaps
even block size in addition to cache size, but it is usually not a major issue in practice if we assume there is
at least 2-way associativity as we shall see later, and we can ignore these effects for now. 
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Figure  4-9  Picking cache sizes for an evaluation using the equation solver kernel.

Knee 1 corresponds roughly to a couple of subrows of either B or n/√p elements, depending on whether the grid traversal is blocked
or not, and knee 2 to a processor’s partition of the matrix, i.e. data set n2 divided by p. The latter working set may or may not fit in
the cache depending on n and p, so both Y and Z are realistic operating points and should be represented. For the first working set, it
is conceivable that it not fit in the caches if the traversal is not blocked, but as we have seen in realistically large caches this is very
unlikely. If the traversal is blocked, the block size B is chosen so the former working set always fits. Operating point X is therefore
representative of an unrealistic region and is ignored. Blocked matrix computations are similar in this respect. 
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hence a greater opportunity for block transfer to help performance. Again, proper evaluation
requires that we understand the applications well enough. 

Of course, a working set curve is not always composed of relatively flat regions separated by
sharply defined knees. If there are knees but the regions they separate are not flat (Figure 4-
10(a)), we can still prune out entire regions as before if we know them to be unrealistic. However,
if a region is realistic but not flat, or if there aren’t any knees until the entire data set fits in the
cache (Figure 4-10(b)), then we must resort to sensitivity analysis, picking points close to the
extremes as well as perhaps some in between.

The remaining question is determining the sizes of the knees and the shape of the curve between
them. In simple cases, we may be able to do this analytically. However, complex algorithms and
many other factors such as constant factors and the effects of cache block size and associativity
may be difficult to analyze. In these cases, we can obtain the curve for a given a problem size and
number of processors by measurement (simulation) with different cache sizes. The simulations
needed are relatively inexpensive, since working set sizes do not depend on detailed timing-
related issues such as latencies, bandwidths, occupancies and contention, which therefore do not
need to be simulated. How the working sets change with problem size or number of processors
can then be analyzed or measured again as appropriate. Fortunately, analysis of growth rates is
usually easier than predicting constant factors. Lower-level issues like block size and associativ-
ity often don’t change working sets too much for large enough caches and reasonable cache orga-
nizations (other than direct-mapped caches) [WOT+95]. 

Cache block size and associativity

In addition to the problem size, number of processors and cache size, the cache block size is
another important parameter for the benefits of block transfer. The issues are a little more
detailed. Long cache blocks themselves act like small block transfers for programs with good
spatial locality, making explicit block transfer relatively less effective in these cases. On the other
hand, if spatial locality is poor then the extra traffic caused by long cache blocks (due to fragmen-
tation or false-sharing) can consume a lot more bandwidth than necessary. Whether this wastes
bandwidth for block transfer as well depends on whether block transfer is implemented by pipe-
lining whole cache blocks through the network or only the necessary words. Block transfer itself
increases bandwidth requirements, since it causes the same amount of communication to be per-
formed in hopefully less time. If block transfer is implemented with cache block transfers, then
with poor spatial locality it may hurt rather than help when available bandwidth is limited, since
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Figure  4-10  Miss rate versus cache size curves that are not knees separated by flat regions. 
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it may increase contention for the available bandwidth. Often, we are able to restrict the range of
interesting block sizes either due to constraints of current technology or because of limits
imposed by the set of building blocks we might use. For example, almost all microprocessors
today support cache blocks between 32 and 128 bytes, and we may have already chosen a micro-
processor that has a 128-byte cache block. When thresholds occur in the interactions of problem
size and cache block size (for instance in the sorting example discussed earlier), we should
ensure that we cover both sides of the threshold. 

While the magnitude of the impact of cache associativity impact is very difficult to predict, real
caches are built with small associativity (usually at most 4-way) so the number of choices to con-
sider is small. If we must choose a single associativity, we are best advised to avoid direct-
mapped caches unless we know that the machines of interest will have them. 

Performance Parameters of the Communication Architecture

Overhead The higher the overhead of initiating the transfer of a cache block (on a miss, say) the
more important it is to amortize it by structuring communication in larger, block transfers. This is
true as long as the overhead of initiating a block transfer is not so high as to swamp out the bene-
fits, since the overhead of explicitly initiating a block transfer may be larger than of automatically
initiating the transfer of a cache block. 

Network transit time The higher the network transit time between nodes, the greater the benefit of
amortizing it over large block transfers (there are limits to this, which will be discussed when we
examine block transfer in detail in Chapter 11). The effects of changing latency usually do not
exhibit knees or thresholds, so to examine a range of possible latencies we simply have to per-
form sensitivity analysis by choosing a few points along the range. Usually, we would choose
latencies based on the target latencies of the machines of interest; for example, tightly coupled
multiprocessors typically have much smaller latencies than workstations on a local area network. 

Transfer Bandwidth We have seen that available bandwidth is an important issue for our block
transfer study. Bandwidth also exhibits a strong knee effect, which is in fact a saturation effect:
Either there is enough bandwidth for the needs of the application, or there is not. And if there is,
then it may not matter too much whether the available bandwidth is four times what is needed or
ten times. We can therefore pick one bandwidth that is less than that needed and one that is much
more. Since the block transfer study is particularly sensitive to bandwidth, we may also choose
one that is closer to the borderline. In choosing bandwidths, we should be careful to consider the
burstiness in the bandwidth demands of the application; choices based on average bandwidth
needs over the whole application may lead to unrepresentative contention effects. 

Revisiting choices 

Finally, we may often need to revise our earlier choices for parameter values based on interac-
tions with parameters considered later. For example, if we are forced to use small problem sizes
due to lack of simulation time or resources, then we may be tempted to choose a very small cache
size to represent a realistic case where an important working set does not fit in the cache. How-
ever, choosing a very small cache may lead to severe artifacts if we simultaneously choose a
direct-mapped cache or a large cache block size (since this will lead to very few blocks in the
cache and potentially a lot of fragmentation and mapping conflicts). We should therefore recon-
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sider our choice of problem size and number of processors for which we want to represent this
situation. 

4.4.4 Summary

The above discussion shows that the results of an evaluation study can be very biased and mis-
leading if we don’t cover the space adequately: We can easily choose a combination of parame-
ters and workloads that demonstrates good performance benefits from a feature such as block
transfer, and can just as easily choose a combination that doesn’t. It is therefore very important
that we incorporate the above methodological guidelines in our architectural studies, and under-
stand the relevant interactions between hardware and software. 

While there are a lot of interactions, we can fortunately identify certain parameters and properties
that are high-level enough for us to reason about, that do not depend on lower-level timing details
of the machine, and upon which key behavioral characteristics of applications depend crucially.
We should ensure that we cover realistic regimes of operation with regard to these parameters
and properties. They are: application parameters, the number of processors, and the relationship
between working sets and cache/replication size (that is, the question of whether or not the
important working sets fit in the caches). Some benchmark suites provide the basic characteris-
tics for their applications, together with their dependence on these parameters, so that architects
do not have to reproduce them [WOT+95]. 

It is also important to look for knees and flat regions in the interactions of application characteris-
tics and architectural parameters, since these are useful for both coverage and pruning. Finally,
the high-level goals and constraints of a study can also help us prune the parameter space. 

This concludes our discussion of methodological issues in workload-driven evaluation. In the rest
of this chapter, we introduce the rest of the parallel programs that we shall use most often as
workloads in the book, and describe the basic methodologically relevant characteristics of all
these workloads as well as the three we will use that were described in previous chapters (Ocean,
Barnes-Hut, and Raytrace). 

4.5 Illustrating Workload Characterization

We shall use workloads extensively in this book to quantitatively illustrate some of the architec-
tural tradeoffs we discuss, and to evaluate our case-study machines. Systems that support a
coherent shared address space communication abstraction will be discussed in Chapters 5 and 8,
while message passing and non-coherent shared address space will be discussed in Chapter 7.
Our programs for the abstractions are written in the corresponding programming models. Since
programs for the two models are written very differently, as seen in Chapter 2, we illustrate our
characterization of workloads with the programs used for a coherent shared address space. In
particular, we use six parallel applications and computational kernels that run in batch mode (i.e.
one at a time) and do not include operating system activity, and a multiprogrammed workload
that includes operating system activity. While the number of applications we use is small, we try
to choose applications that represent important classes of computation and have widely varying
characteristics. 
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4.5.1 Workload Case Studies

All of the parallel programs we use for shared address space architectures are taken from the
SPLASH2 application suite (see APPENDIX A). Three of them (Ocean, Barnes, and Raytrace)
have already been described and used to illustrate performance issues in previous chapters. In
this section, we briefly describe the workloads that we will use but haven’t yet discussed: LU,
Radix (which we have used as an example to illustrate interactions of problem size with cache
block size), Radiosity and Multiprog. Of these, LU and Radix are computational kernels, Radios-
ity is a real application, and Multiprog is a multiprogrammed workload. Then, in Section 4.5.2,
we measure some methodologically relevant execution characteristics of the workloads, includ-
ing the breakdown of memory references, the communication to computation ratio and how it
scales, and the size and scaling of the important working sets. We will use this characterization in
later chapters to justify our use of default memory system parameters, and to pick the cache sizes
that we shall use with these applications and data sets. 

LU

Dense LU factorization is the process of converting a dense matrix A into two matrices L, U that
are lower- and upper-triangular, respectively, and whose product equals A (i.e. A=LU)1. Its utility
is in solving linear systems of equations, and it is encountered in scientific applications as well as
optimization methods such as linear programming. In addition to its importance, LU factorization
is a well-structured computational kernel that is nontrivial, yet familiar and fairly easy to under-
stand. 

LU factorization works like Gaussian elimination, eliminating one variable at a time by subtract-
ing rows of the matrix by scalar multiples of other rows. The computational complexity of LU

factorization is O(n3) while the size of the data set is O(n2). As we know from the discussion of
temporal locality in Chapter 3, this is an ideal situation to exploit temporal locality by blocking.
In fact, we use a blocked LU factorization, which is far more efficient both sequentially and in
parallel than an unblocked version. The n-by-n matrix to be factored is divided into B-by-B
blocks, and the idea is to reuse a block as much as possible before moving on to the next block.

We now think of the matrix as consisting of  blocks rather than of n-by-n elements and

eliminate and update blocks at a time just as we would elements, but using matrix operations like
multiplication and inversion on small B-by-B blocks rather than scalar operations on elements.
Sequential pseudocode for this “blocked” LU factorization is shown in Figure 4-11.

Consider the benefits of blocking. If we did not block the computation, a processor would com-
pute an element, then compute its next assigned element to the right, and so forth until the end of
the current row, after which it would proceed to the next row. When it returned to the first active
element of the next row, it would re-references a perimeter row element (the one it used to com-
pute the corresponding active element of the previous row). However, by this time it has streamed

1.  A matrix is called dense if a substantial proportion of its elements are non-zero (matrices that have
mostly zero entries are called sparse matrices). A lower-triangular matrix such as L is one whose entries are
all 0 above the main diagonal, while an upper-triangular matrix such as U has all 0’s below the main diago-
nal. The main diagonal is the diagonal that runs from the top left corner of the matrix to the bottom right
corner. 

n
B
--- by n

B
---––
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through data proportional to an entire row of the matrix, and with large matrices that perimeter
row element might no longer be in the cache. In the blocked version, we proceed only B elements
in a direction before returning to previously referenced data that can be reused. The operations
(matrix multiplications and factorizations) on the B-by-B blocks each involve O(B3) computation
and data accesses, with each block element being accessed B times. If the block size B is chosen
such that a block of B-by-B or B2 elements (plus some other data) fits in the cache, then in a given
block computation only the first access to an element misses in the cache. Subsequent accesses
hit in the cache, resulting in B2 misses for B3 accesses or a miss rate of . 

Figure 4-12 provides a pictorial depiction of the flow of information among blocks within an
outer loop iteration, and also shows how we assign blocks to processors in the parallel version.
Because of the nature of the computation, blocks toward the top left of the matrix are active only
in the first few outer loop iterations of the computation, while blocks toward the bottom right
have a lot more work associated with them. Assigning contiguous rows or squares of blocks to
processes (a domain decomposition of the matrix) would therefore lead to poor load balance. We
therefore interleave blocks among processes in both dimensions, leading to a partitioning called a
two-dimensional scatter decomposition of the matrix: The processes are viewed as forming a

two-dimensional -by-  grid, and this grid of processes is repeatedly stamped over the
matrix of blocks like a cookie cutter. A process is responsible for computing the blocks that are
assigned to it in this way, and only it writes to those blocks. The interleaving improves—but does
not eliminate—load balance, while the blocking preserves locality and allows us to use larger
data transfers on message passing systems. 

The drawback of using blocks rather than individual elements is that it increases task granularity
(the decomposition is into blocks rather than elements) and hurts load balance: Concurrency is
reduced since there are fewer blocks than elements, and the maximum load imbalance per itera-

for k ← 0 to N-1 do /*loop over all diagonal blocks */ 

factorize block Ak,k;

for j ← k+1 to N-1 do /* for all blocks in the row of, and
 to the right of, this diagonal block */

Ak,j ← Ak,j * (Ak,k)
-1; /* divide by diagonal block */

for i ← k+1 to N-1 do  /* for all rows below this diagonal block*/

for j ← k+1 to N-1 do /* for all blocks in the corr. row */

Ai,j ← Ai,j - Ai,k* (Ak,j)
T;

endfor

endfor

endfor

endfor

Figure  4-11  Pseudocode describing sequential blocked dense LU factorization. 

N is the number of blocks (N = n/B), and Ai,j represents the block in the ith row and jth column of matrix A. In the kth iteration of this
outer loop, we call the block Ak,k on the main diagonal of A the diagonal block, and the kth row and column the perimeter row and
perimeter column, respectively (see also Figure 4-12). Note that the kth iteration does not touch any of the elements in the first k-1
rows or columns of the matrix; that is, only the shaded part of the matrix in the square region to the right of and below the pivot ele-
ment is “active” in the current outer loop iteration. The rest of the matrix has already been computed in previous iterations, and will
be inactive in this and all subsequent outer loop iterations in the factorization.

1
B
---

p p
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tion is the work associated with a block rather than a single element. In sequential LU factoriza-
tion, the only constraint on block size is that the two or three blocks used in a block computation
fit in the cache. In the parallel case, the ideal block size B is determined by a tradeoff between
data locality and communication overhead (particularly on a message-passing machine) pushing
toward larger blocks on one hand and load balance pushing toward smaller blocks on the other.
The ideal block size therefore depends on the problem size, number of processors, and other
architectural parameters. In practice block sizes of 16-by-16 or 32-by-32 elements appear to
work well on large parallel machines. 

Data can also be reused across different block computations. To reuse data from remote blocks,
we can either copy blocks explicitly in main memory and keep them around or, on cache-coher-
ent machines perhaps rely on caches being large enough to do this automatically. However, reuse
across block computations is typically not nearly as important to performance as reuse within
them, so we do not make explicit copies of blocks in main memory. 

For spatial locality, since the unit of decomposition is now a two-dimensional block, the issues
are quite similar to those discussed for the simple equation solver kernel in Section 3.4.1. We are
therefore led to a three- or four-dimensional array data structure to represent the matrix in a
shared address space. This allows us to distribute data among memories at page granularity (if
blocks are smaller than a page, we can use one more dimension to ensure that all the blocks
assigned to a process are contiguous in the address space). However, with blocking the capacity
miss rate is small enough that data distribution in main memory is often not a major problem,

Figure  4-12  Parallel blocked LU factorization: flow of information, partitioning and parallel pseudocode. 

The flow of information within an outer (k) loop iteration is shown by the solid arrows. Information (data) flows from the diagonal
block (which is first factorized) to all blocks in the perimeter row in the first phase. In the second phase, a block in the active part of
the matrix needs the corresponding elements from the perimeter row and perimeter column. 
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unlike in the equation solver kernel. The more important reason to use high-dimensional arrays is
to reduce cache mapping conflicts across subrows of a block as well as across blocks, as we shall
see in Chapter 5 (Section 5.7). These are very sensitive to the size of the array and number of pro-
cessors, and can easily negate most of the benefits of blocking. 

No locks are used in this computation. Barriers are used to separate outer loop iterations as well
as phases within an iteration (e.g. to ensure that the perimeter row is computed before the blocks
in it are used). Point-to-point synchronization at the block level could have been used instead,
exploiting more concurrency, but barriers are much easier to program. 

Radix

The Radix program sorts a series of integers, called keys, using the radix sorting method. Sup-
pose there are n integers to be sorted, each of size b bits. The algorithm uses a radix of r bits,
where r is chosen by the user. This means the b bits representing a key can be viewed as a set of

 groups of r bits each. The algorithm proceeds in  phases or iterations, each phase
sorting the keys according to their values in the corresponding group of r bits, starting with the
lowest-order group (see Figure 4-13).1 The keys are completely sorted at the end of these 

phases. Two one-dimensional arrays of size n integers are used: one stores the keys as they
appear in the input to a phase, and the other the output from the phase. The input array for one
phase is the output array for the next phase, and vice versa. 

The parallel algorithm partitions the n keys in each array among the p processes so that process 0
get the first n/p keys, processor 1 the next n/p keys, and so on. The portion of each array assigned
to a process is allocated in the corresponding processor’s local memory (when memory is physi-
cally distributed). The n/p keys in the input array for a phase that are assigned to a process are
called its local keys for that phase. Within a phase, a process performs the following steps:

1. Make a pass over the local n/p keys to build a local (per-process) histogram of key values.
The histogram has 2r entries. If a key encountered has the value i in the r bits corresponding
to the current phase, then the ith bin of the histogram is incremented. 

2. When all processes have completed the previous step (determined by barrier synchronization
in this program), accumulate the local histograms into a global histogram. This is done with a

1.  The reason for starting with the lowest-order group of r bits rather than the highest-order one is that this
leads to a “stable” sort; i.e. keys with the same value appear in the output in the same order relative to one
another as they appeared in the input. 

b r⁄ b r⁄

r-1 bits r bits r bits r bits
(iter 0)(iter 1)...iter (b/r) - 1

Figure  4-13  A b-bit number (key) divided into  groups of r bits each. 

The first iteration of radix sorting uses the least significant r bits, etc. 

b r⁄

b bits

b r⁄
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parallel prefix computation, as discussed in Exercise 4.13. The global histogram keeps track
of both how many keys there are of each value, and also for each of the p process-id values j,
how many keys there are of a given value that are owned by processes whose id is less than j. 

3. Make another pass over the local n/p keys. For each key, use the global and local histograms
to determine which position in the output array this key should go to, and write the key value
into that entry of the output array. Note that the array element that will be written is very
likely (expected likelihood (p-1)/p) to be nonlocal (see Figure 4-14). This phase is called the
permutation phase. 

A more detailed description of the algorithm and how it works can be found in [BL+91]. In a
shared address space implementation, communication occurs when writing the keys in the per-
mutation phase (or reading them in the binning phase of the next iteration if they stay in the writ-
ers’ caches), and in constructing the global histogram from the local histograms. The
permutation-related communication is all-to-all personalized (i.e. every process sends some keys
to every other) but is irregular and scattered, with the exact patterns depending on the distribution
of keys and the iteration. The synchronization includes global barriers between phases, and finer-
grained synchronization in the phase that builds the global histogram. The latter may take the
form of either mutual exclusion or point-to-point event synchronization, depending on the imple-
mentation of this phase (see Exercises).

Radiosity

The radiosity method is used in computer graphics to compute the global illumination in a scene
containing diffusely reflecting surfaces. In the hierarchical radiosity method, a scene is initially
modeled as consisting of k large input polygons or patches. Light transport interactions are com-
puted pairwise among these patches. If the light transfer between a pair of patches is larger than a
threshold, then one of them (the larger one, say) is subdivided, and interactions computed
between the resulting patches and the other patch. This process continues until the light transfer
between all pairs is low enough. Thus, patches are hierarchically subdivided as necessary to
improve the accuracy of computing illumination. Each subdivision results in four subpatches,
leading to a quadtree per patch. If the resulting final number of undivided subpatches is n, then
with k original patches the complexity of this algorithm is O(n+k2). A brief description of the
steps in the algorithm follows. Details can be found in [HSA91, Sin93]. 

proc 0 proc 1 proc 2 proc p...

proc 0 proc 1 proc 2 proc p...

Input array

Output array

Figure  4-14  The permutation phase of a radix sorting iteration.

In each of the input and output arrays (which change places in successive iterations), keys (entries) assigned to a process are allo-
cated in the corresponding processor’s local memory. 
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The input patches that comprise the scene are first inserted into a binary space partitioning (BSP)
tree [FAG83] to facilitate efficient visibility computation between pairs of patches. Every input
patch is initially given an interaction list of other input patches which are potentially visible from
it, and with which it must therefore compute interactions. Then, radiosities are computed by the
following iterative algorithm:

1. For every input patch, compute its radiosity due to all patches on its interaction list, subdivid-
ing it or other patches hierarchically and computing their interactions recursively as necessary
(see below and Figure 4-15). 

2. Starting from the patches at the leaves of the quadtrees, add all the area-weighted patch radi-
osities together to obtain the total radiosity of the scene, and compare it with that of the previ-
ous iteration to check for convergence within a fixed tolerance. If the radiosity has not
converged, return to step 1. Otherwise, go to step 3.

3. Smooth the solution for display. 

Most of the time in an iteration is spent in step 1. Suppose a patch i is traversing its interaction

list to compute interactions with other patches (quadtree nodes). Consider an interaction between
patch i and another patch j on its interaction list. The interaction involves computing the inter-vis-
ibility of the two patches and the light transfer between them (the actual light transfer is the prod-
uct of the actual inter-visibility and the light transfer that would have happened assuming full
inter-visibility). Computing inter-visibility involves traversing the BSP tree several times from
one patch to the other1; in fact, visibility computation is a very large portion of the overall execu-

Polygon A

Polygon B

Polygon C

Polygon D

interactions

leaf patches

patches

input
polygon

Figure  4-15  Hierarchical subdivision of input polygons into quadtrees as the radiosity computation progresses.

Binary trees are shown instead of quadtrees for clarity, and only one patch’s interactions lists are shown. 
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tion time. If the result of an interaction says that the “source” patch i should be subdivided, then
four children are created for patch i—if they don’t already exist due to a previous interaction—
and patch j is removed from i’s interaction list and added to each of i’s children’s interaction lists,
so that those interactions can be computed later. If the result is that patch j should be subdivided,
then patch j is replaced by its children on patch i’s interaction list. This means that interactions
will next be computed between patch i and each of patch j’s children. These interactions may
themselves cause subdivisions, so the process continues recursively (i.e.if patch j’s children are
further subdivided in the course of computing these interactions, patch i ends up computing inter-
actions with a tree of patches below patch j; since the four children patches from a subdivision
replace the parent in-place on i’s interaction list, the traversal of the tree comprising patch j’s
descendants is depth-first). Patch i’s interaction list is traversed fully in this way before moving
on to the next patch (perhaps a descendant of patch i, perhaps a different patch) and its interaction
list. Figure 4-16 shows an example of this hierarchical refinement of interactions. The next itera-

tion of the iterative algorithm starts with the quadtrees and interaction lists as they are at the end
of the current iteration. 

1.  Visibility is computed by conceptually shooting a number of rays between the two patches, and seeing
how many of the rays reach the destination patch without being occluded by intervening patches in the
scene. For each such conceptual ray, determining whether it is occluded or not is done efficiently by travers-
ing the BSP tree from the source to the destination patch. 

A

A1 A2 B1 B2

B

A21 A22 B11 B12 B22B21

(3) After three more refinements

A B

A1 A2

(2) After the 1st refinement

A B

(1) Before refinement

Figure  4-16  Hierarchical refinement of interactions and interaction lists.
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Parallelism is available at three levels in this application: across the k input polygons, across the
patches that these polygons are subdivided into—i.e. the patches in the quadtrees—and across
the interactions computed for a patch. All three levels involve communication and synchroniza-
tion among processors. We obtain the best performance by defining a task to be either a patch and
all its interactions or a single patch-patch interaction, depending on the size of the problem and
the number of processors. 

Since the computation and subdivisions are highly unpredictable, we have to use task queues
with task stealing. The parallel implementation provides every processor with its own task queue.
A processor’s task queue is initialized with a subset of the initial polygon-polygon interactions.
When a patch is subdivided, new tasks involving the subpatches are enqueued on the task queue
of the processor that did the subdivision. A processor processes tasks from its queue until there
are no tasks left. Then, it steals tasks from other processors’ queues. Locks are used to protect the
task queues and to provide mutually exclusive access to patches as they are subdivided (note that
to different patches, assigned to two different processes, may have the same patch on their inter-
action list, so both processes may try to subdivide the latter patch at the same time). Barrier syn-
chronization is used between phases. The parallel algorithm is non-deterministic, and has highly
unstructured and unpredictable execution characteristics and access patterns. 

Multiprog

The workloads we have discussed so far include only parallel application programs running one
at a time. As we said at the beginning of the previous chapter, a very common use of multiproces-
sors, particularly small-scale shared-address-space multiprocessors, is as throughput engines for
multiprogrammed workloads. The fine-grained resource sharing supported by these machines
allows a single operating system image to service the multiple processors efficiently. Operating
system activity is often itself a substantial component of such workloads, and the operating sys-
tem constitutes an important, complex parallel application in itself. The final workload we study
is a multiprogrammed (time-shared) workload, consisting of a number of sequential applications
and the operating system itself. The applications are two UNIX file compress jobs, and two
parallel compilations—or pmakes—in which multiple files needed to create an executable are
compiled in parallel. The operating system is a version of UNIX produced by Silicon Graphics
Inc., called IRIX version 5.2. 

4.5.2 Workload Characteristics

We now quantitatively measure some important basic characteristics of all our workloads, includ-
ing the breakdown of memory references, the communication to computation ratio and how it
scales, and the size and scaling of the important working sets. We use this characterization to jus-
tify our choice of memory system parameters, and to pick the cache sizes that we shall use with
these applications and data sets in the rest of our evaluations (according to the methodology
developed in this chapter). We present data for 16-processor executions for our parallel applica-
tions, and 8-processor executions of the multiprogrammed workload. For these simulations we
assume that each processor has a single-level, 1 Mbyte large, 4-way set-associative cache with
64-byte cache blocks. 
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Data Access and Synchronization Characteristics

Table 4-1 summarizes the basic reference counts and dynamic frequency of synchronization
events (locks and global barriers) in the different workloads. From left-to-right the columns are:
program name, input data-set, total instructions executed, total number of floating-point opera-
tions executed, reads, writes, shared-reads, shared-writes, barriers, lock-unlock pairs. A dash in a
table entry means that the entry is not applicable for that application (e.g. Radix has no floating
point operations). The input data sets are the default data sets that we shall use for these programs
in the simulation experiments in the rest of the book, unless otherwise mentioned. The data sets
are chosen to be large enough to be of practical interest for a machine of about 64 processors (the
size we will measure in Chapter 8), but small enough to simulate in reasonable time. They are at
the small end of the data sets one might run in practice on 64-processor machines, but are quite
appropriate for the bus-based machines we consider here. How the characteristics of interest
scale with problem size is usually discussed qualitatively or analytically, and sometimes mea-
sured. 

In all the programs throughout the book, we begin keeping track of behavioral and timing statis-
tics after the child processes are created by the parent. Previous references (by the main process)
are issued to the memory system simulator and simulated, but are not included in the statistics. In
most of the applications, measurement begins exactly after the child processes are created. The
exceptions are Ocean and Barnes-Hut. In both these cases we are able to take advantage of the
fact that we can drastically reduce the number of time-steps for the purpose of simulation (as dis-
cussed in Section 4.4.2) but have to then ignore cold-start misses and allow the application to set-
tle down before starting measurement. We simulate a small number of time-steps—six for Ocean
and five for Barnes-Hut—and start tracking behavioral and timing statistics after the first two
time-steps (though we do simulate the first two as well). For the Multiprog workload, statistics
are gathered from a checkpoint taken close to the beginning of the pmake. While for all other
applications we consider only application data references, for the Multiprog workload we also
consider impact of instruction references, and furthermore separate out kernel references and
user application references. The statistics are presented separately for kernel and user references,
and in some cases these are further split into instruction and data references.

As per our discussion in this chapter, we quantitatively characterize the following basic proper-
ties of the program here: concurrency and load balance (to show that the programs are appropri-
ate for the machine sizes we with to examine), inherent communication to computation ratio, and
working sets. We also discuss analytically or qualitatively how these characteristics scale with
key problem parameters and the number of processors. More detailed architectural measurements
will be made in later chapters. 

Concurrency and Load Balance

We characterize load balance by measuring the algorithmic speedups we discussed earlier; i.e.
speedups on an a PRAM, an architectural model that assumes that memory references have zero
latency (they just cost the instruction it takes to issue the reference) regardless of whether they
are satisfied in the cache, local memory or have to traverse the network. On such an architecture,
which is of course impossible to realize in practice, deviations from ideal speedup are attributable
to load imbalance, serialization due to critical sections, and the overheads of redundant computa-
tion and parallelism management.
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Table 4-1  General statistics about application programs. For the parallel programs, shared reads and writes simply refer to all 
non-stack references issued by the application processes. All such references do not necessarily point to data that are truly 

shared by multiple processes. The Multiprog workload is not a parallel application, so does not access shared data. A dash in a 
table entry means that measurement is not applicable to or is not measured for that application. 

Application Data Set

Total 
Instr 
(M)

Total 
Flops 
(M)

Total 
Refs 
(M)

Total 
Reads 

(M)

Total 
Writes

 (M)

Shared
 Reads 

(M)

Shared
 Writes 

(M)
Bar-
riers Locks

LU
512x512 matrix
16x16 blocks 489.52 92.20 151.07 103.09 47.99 92.79 44.74 66 0

Ocean

258x258 grids
tolerance=10-7

4 time-steps 376.51 101.54 99.70 81.16 18.54 76.95 16.97 364 1296

Barnes

16K particles
θ = 1.0
3 time-steps 2002.74 239.24 720.13 406.84 313.29 225.04 93.23 7 34516

Radix
256K points
radix = 1024 84.62 — 14.19 7.81 6.38 3.61 2.18 11 16

RayTrace Car scene 833.35 — 290.35 210.03 80.31 161.10 22.35 0 94456

Radiosity Room scene 2297.19 — 769.56 486.84 282.72 249.67 21.88 10 210485

Multiprog: 
User

SGI Irix 5.2, 
two pmakes + 
two compress 
jobs

1296.43 — 500.22 350.42 149.80 — — — —

Multiprog: 
Kernel 668.10 — 212.58 178.14 34.44 — — — 621505

Figure  4-17  PRAM speedups for the six parallel applications. 

Ideal speedup simply means a speedup of p with p processors. 
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Figure 4-17 shows the PRAM speedups for the programs for up to 64 processors with the default
data sets. Three of the programs (Barnes, Ocean and Raytrace) speed up very well all the way to
64 processors even with the relatively small default data sets. The dominant phases in these pro-
grams are data parallel across a large data set (all the particles in Barnes, an entire grid in Ocean,
and the image plane in Raytrace), and have limited parallelism and serialization only in some
global reduction operations and in portions of some particular phases that are not dominant in
terms of number of instructions executed (e.g. tree building and near the root of the upward pass
in Barnes, and the higher levels of the multigrid hierarchy in Ocean). 

The programs that do not speed up fully well for the higher numbers of processors with these
data sets are LU, Radiosity, and Radix. The reasons in all these cases have to do with the sizes of
the input data-sets rather than the inherent nature of load imbalance in the applications them-
selves. In LU, the default data set results in considerable load imbalance for 64 processors,
despite the block-oriented decomposition. Larger data sets reduce the imbalance by providing
more blocks per processor in each step of the factorization. For Radiosity, the imbalance is also
due to the use of a small data set, though it is very difficult to analyze. Finally, for Radix the poor
speedup at 64 processors is due to the prefix computation when accumulating local histograms
into a global histogram (see Section ), which cannot be completely parallelized. The time spent
in this prefix computation is O( ) while the time spent in the other phases is O( ), so the
fraction of total work in this unbalanced phase decreases as the number of keys being sorted
increases. Thus, even these three programs can be used to evaluate larger machines as long as
larger data sets are chosen. 

We have therefore satisfied our first criterion of not choosing parallel programs that are inher-
ently unsuitable for the machine sizes we want to evaluate, and of understanding how to choose
data sets for these programs that make them appropriate in this regard. Let us now examine the
inherent communication to computation ratios and working set sizes of the programs. 

Communication to Computation Ratio

We include in the communication to computation ratio inherent communication as well as com-
munication due to the first time a word is accessed by a processor, if it happens to be nonlocally
allocated (cold start misses). Where possible, data is distributed appropriately among physically
distributed memories, so we can consider this cold start communication to be quite fundamental.
To avoid artifactual communication due to finite capacity or issues related to spatial locality (see
Section 3.4.1), we simulate infinite per-processor caches and a single-word cache block. We mea-
sure communication to computation ratio as the number of bytes transferred per instruction, aver-
aged over all processors. For floating-point intensive applications (LU and Ocean) we use bytes
per FLOP (floating point operation) instead of per instruction, since FLOPs are less sensitive to
vagaries of the compiler than instructions. 

We first present the communication to computation (measured as indicated above) for the base
problem size shown in Table 4-1 versus the number of processors used. This shows how the ratio
increases with the number of processors under constant problem size scaling. Then, where possi-
ble we describe analytically how the ratio depends on the data set size and the number of proces-
sors (Table 4-2). The effects of other application parameters on the communication to
computation ratio are discussed qualitatively. 

plog n p⁄
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Figure 4-18 shows the first set of results for our six parallel programs. The programs for which

we measure bytes per instruction are shown on a different graph than the ones for which we mea-
sure bytes per FLOP, and Radix is shown in a separate graph due to the need for a different scale
on the Y-axis. The first thing we notice is that for the communication to computation ratios are
generally quite small. With processors operating at 200 million instructions per second (MIPS), a
ratio of 0.1 byte per instruction is about 20MB/sec of traffic. Actual traffic is much higher than
inherent—both due to artifactual communication and also because control information is sent
along with data in each transfer—and this communication is averaged over the entire execution
of the program, but it still quite small for modern, high-performance multiprocessor networks.
The only application for which the ratio becomes quite high is Radix, so for this application com-
munication bandwidth is very important to model carefully in evaluations. One reason for the low
communication to computation ratios is that the applications we are using have been very well
optimized in their assignments for parallel execution. Applications that run on real machines in
reality will likely fall more toward higher communication to computation ratios. 

The next observation we can make from the figure is that the growth rates of communication to
computation ratio are very different across applications. These growth rates with the number of
processors and with data set size (not shown in the figures) are summarized in Table 4-2. The

Figure  4-18  Communication to computation ratio versus processor count for the base problem size in
the six parallel applications
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Table 4-2  Growth Rates of Communication-to-Computation Ratio. 

Code Growth Rate of Comm/Comp Ratio

LU  / 

Ocean  / 

Barnes approximately  / 

Radiosity unpredictable

Radix (P-1)/P

Raytrace unpredictable
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absolute numbers would change dramatically if we used a different data set size (problem size) in
some applications (e.g. Ocean and LU), but at least inherent communication would not change
much in others. Artifactual communication is a whole different story, and we shall examine com-
munication traffic due to it in the context of different architectural types in later chapters. 

While growth rates are clearly fundamental, it is important to realize that growth rates in them-
selves do not reveal the constant factors in the expressions for communication to computation
ratio, which can often be more important than growth rates in practice. For example, if a pro-
gram’s ratio increases only as the logarithm of the number of processors, or almost not at all as in
Radix, this does not mean that its ratio is small. In fact, although its ratio will asymptotically
become smaller than that of an application whose ratio grows as the square root of the number of
processors, it may actually be much larger for all practical machine sizes if its constant factors
are much larger. The constant factors for our applications can be determined from the absolute
values of the communication to computation ratio in the results we present.

Working Set Sizes

The inherent working set sizes of a program are best measured using fully associative caches and
a one-word cache block, and simulating the program with different cache sizes to find knees in
the miss rate versus cache size curve. Ideally, the cache sizes should be changed with very fine
granularity in the vicinity of knees in order to identify the locations of knees precisely. Finite
associativity can make the size of cache needed to hold the working set larger than the inherent
working set size, as can the use of multi-word cache blocks (due to fragmentation). We come
close to measuring inherent working set sizes by using one-level fully associative caches per pro-
cessor, with a least-recently-used (LRU) cache replacement policy and 8-byte cache blocks. We
use caches sizes that are powers of two, and change cache sizes at a finer granularity in areas
where the change in miss rate with cache size is substantial. 

Figure 4-19 shows the resulting miss rate versus cache size curves for our six parallel applica-
tions, with the working sets labeled as level 1 working set (lev1WS), level 2 working set
(lev2WS), etc. In addition to these working sets, some of the applications also have tiny working
sets that do not scale with problem size or the number of processors and are therefore always
expected to fit in a cache; we call these the level 0 working sets (lev0WS). They typically consist
of stack data that are used by the program as temporary storage for a given primitive calculation
(such as a particle-cell interaction in Barnes-Hut) and reused across these. These are marked on
the graphs when they are visible, but we do not discuss them further.

We see that in most cases the working sets are very sharply defined. Table 4-3 summarizes how
the different working sets scale with application parameters and the number of processors,
whether they are important to performance (at least on efficient cache-coherent machines), and
whether they can be expected to not fit in a modern secondary cache for realistic problem sizes
(with a reasonable degree of cache associativity, at least beyond direct-mapped). The cases in
which it is reasonable to expect a working set that is important to performance on an efficient
cache-coherent machine to not fit in a modern secondary cache are those with a “Yes” in each of
the last two columns of the table; i.e. Ocean, Radix and Raytrace. Recall that in Ocean, all the
major computations operate on (and stream through) a process’s partition of one or more grids. In
the near-neighbor computations, fitting a subrow of a partition in the cache allows us to reuse that
subrow, but the large working set consists of a process’s partitions of entire grids that it might
benefit from reusing. Whether or not this large working set fits in a modern secondary cache
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Figure  4-19  Working set curves for the six parallel applications in sixteen-processor executions. 

The graphs show miss rate versus cache size for fully associative first-level caches per processor and an 8-byte cache block. 

Program Working Set 1 Growth Rate 

Imp
orta
nt?

Realistic 
to not fit 
in cache? Working Set 2 Growth Rate 

Imp
orta
nt?

Realistic 
to not fit 
in cache?

U One block Fixed(B) Yes No partition of DS No Yes

cean A few subrows Yes No partition of DS Yes Yes

arnes Tree data for 1 body Yes No partition of DS No Yes

adiosity BSP tree Yes No Unstructured Unstructured No Yes

adix Histogram Radix r Yes No partition of DS Yes Yes

aytrace Unstructured Unstructured Yes No Unstructured Unstructured Yes Yes

DS P⁄
P DS⁄ DS P⁄

DSlog( ) θ2⁄ DS P⁄
polygons( )log

DS P⁄

Table 4-3  Important working sets and their growth rates for the SPLASH-2 suite.  
represents the data set size, and  is the number of processes. 
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therefore depends on the grid size and the number of processors. In Radix, a process streams
through all its n/p keys, at the same time heavily accessing the histogram data structure (of size
proportional to the radix used). Fitting the histogram in cache is therefore important, bit this
working set is not clearly defined since the keys are being streamed through at the same time. The
larger working set is when a process’s entire partition of the key data set fits in the cache, which
may or may not happen depending on n and p. partitions that a process might reuse. Finally, in
Raytrace we have seen that the working set is diffuse and ill-defined, and can become quite large
depending on the characteristics of the scene being traced and the viewpoint. For the other appli-
cations, we expect the important working sets to fit in the cache for realistic problem and
machine sizes. We shall take this into account as per our methodology when we evaluate archi-
tectural tradeoffs in the following chapters. In particular, for Ocean, Radix and Raytrace we shall
choose cache sizes that both fit and do not fit the larger working set, since both situations are rep-
resentative of practice. 

4.6 Concluding Remarks

We now have a good understanding of the major issues in workload-driven evaluation for multi-
processors: choosing workloads, scaling problems and machines, dealing with the large parame-
ter space, and presenting results. For each issue, we have a set of guidelines and steps to follow,
an understanding of how to avoid pitfalls, and a means to understand the limitations of our own
and other investigations. We also have a basis for our own quantitative illustration and evaluation
of architectural tradeoffs in the rest of the book. However, our experiments will mostly serve to
illustrate important points rather than evaluate tradeoffs comprehensively, since the latter would
require a much wider range of workloads and parameter variations.

We’ve seen that workloads should be chosen to represent a wide range of applications, behavioral
patterns, and levels of optimization. While complete applications and perhaps multiprogrammed
workloads are indispensable, there is a role for simpler workloads such as microbenchmarks and
kernels as well. 

We have also seen that proper workload-driven evaluation requires an understanding of the rele-
vant behavioral properties of the workloads and their interactions with architectural parameters.
While this problem is complex, we have provided guidelines for dealing with the large parame-
ters space—for evaluating both real machines as well as architectural tradeoffs—and pruning it
while still obtaining coverage of realistic situations. 

The importance of understanding relevant properties of workloads was underscored by the scal-
ing issue. Both execution time and memory may be constraints on scaling, and applications often
have more than one parameter that determines execution properties. We should scale programs
based on an understanding of these parameters, their relationships, and their impact on execution
time and memory requirements. We saw that realistic scaling models driven by the needs of
applications lead to very different results of architectural significance than naive models that
scale only a single application parameter.

Many interesting issues also arose in our discussion of choosing metrics to evaluate the goodness
of a system or idea and presenting the results of a study. For example, we saw that execution time
(preferably with a breakdown into its major components) and speedup are both very useful met-
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rics to present, while rate-based metrics such as MFLOPS or MIPS or utilization metrics are too
susceptible to problems. 

Finally, with this chapter we have described all of the workloads that we shall use in our own
illustrative workload-driven evaluation of real systems and architectural tradeoffs in the rest of
the book, and have quantified their basic characteristics. We are now on a firm footing to use
them as we proceed to examine detailed architectural issues in the remainder of the book. 
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4.8 Exercises

4.1  Design a few simple exercises. 

4.2  <4.2> Scaling

a. What is the fundamental problem with TC scaling? Illustrate it with an example.

b. Suppose you had to evaluate the scalability of a system. One possibility is to measure the
speedups under different scaling models as defined in this chapter. Another is to see the
how the problem size needed to get say 70% parallel efficiency scales. What are the
advantages and particularly disadvantages or caveats for each of these? What would you
actually do? 

4.3  <4.3.5> Your boss asks you to compare two types of systems based on same uniprocessor
node, but with some interesting differences in their communication architectures. She tells
you that she cares about only 10 particular applications. She orders you to come up with a
single numeric measure of which is better, given a fixed number of processors and a fixed
problem size for each application, despite your arguments based on reading this chapter that
averaging over parallel applications is not such a good idea. What additional questions would
you ask her before running the applications with those problem sizes on the systems. What
measure of average would you report to her and why (explain in some detail). 

4.4  <4.3.5> Often, a system may display good speedups on an application even though its com-
munication architecture is not well suited to the application. Why might this happen? Can you
design a metric alternative to speedup that measures the effectiveness of the communication
architecture for the application? Discuss some of the issues and alternatives in designing such
a metric. 

4.5  <4.3> A research paper you read proposes a communication architecture mechanism and tells
you that starting from a given communication architecture on a machine with 32 processors,
the mechanism improves performance by 40% on some workloads that are of interest to you.
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Is this enough information for you to decide to include that mechanism in the next machine
you design? If not, list the major reasons why, and say what other information you would
need. Assume that the machine you are to design also has 32 processors. 

4.6  <4.3> Suppose you had to design experiments to compare different methods for implement-
ing locks on a shared address space machine. What performance properties would you want
to measure, and what “microbenchmark” experiments would you design? What would be
your specific performance metrics? Now answer the same questions for global barriers. 

4.7  <4.3> You have designed a method for supporting a shared address space communication
abstraction transparently in software across bus-based shared memory multiprocessors like
the Intel Pentium Quads discussed in Chapter 1. With a node or Quad, coherent shared mem-
ory is supported with high efficiency in hardware; across nodes, it is supported much less effi-
ciently and in software. Given a set of applications and the problem sizes of interest, you are
about to write a research report evaluating your system. What are the interesting performance
comparisons you might want to perform to understand the effectiveness of your cross-node
architecture? What experiments would you design, what would each type of experiment tell
you, and what metrics would you use? Your system prototype has 16 bus-based multiproces-
sor nodes with 4 processors in each, for a total of 64 processors. 

4.8  <4.4.1> Two types of simulations are often used in practice to study architectural tradeoffs:
trace-driven and execution-driven. In trace-driven simulation, a trace of the instructions exe-
cuted by each process is obtained by running the parallel program on one system, and the
same trace is fed into the simulator that simulates the extended memory hierarchy of a differ-
ent multiprocessor system. In execution-driven simulation, the instruction generator and the
memory system simulator are coupled together in both directions. The instruction generator
generates a memory instruction from a process; that instruction is simulated by the memory
system simulator, and the time at which the operation completes is fed back to the instruction
generator, which uses this timing information to determine which process to issue an instruc-
tion from next and when to issue the next instruction from a particular process. 

a. What are the major tradeoffs between trace-driven and instruction-driven simulation? 
Under what conditions do you expect the results (say a program’s execution time) to be 
significantly different. 

b. What aspects of a system do you think it is most difficult to simulate accurately (proces-
sor, memory system, network, communication assist, latency, bandwidth, contention)?
Which of these do you think are most important, and which would you compromise on?

c. How important do you think it is to simulate the processor pipeline appropriately when
trying to evaluate the impact of tradeoffs in the communication architecture. For example,
while many modern processors are superscalar and dynamically scheduled, a single-issue
statically scheduled processor is much easier to simulate. Suppose the real processor you
want to model is 200MHz with 2-way issue but achieved a perfect memory CPI of 1.5.
Could you model it as a single-issue 300MHz processor for a study that wants to under-
stand the impact of changing network transit latency on end performance? What are the
major issues to consider?

4.9  <4.4> You are the evaluation specialist for your company. The head of engineering comes to
you with a proposal for an enhancement to the communication architecture, and wants you to
evaluate its performance benefits for three applications—Radix, Barnes-Hut, and Ocean—
using your simulation technology. No further guidelines are given. Your simulation technol-
ogy is capable of simulating up to 256 processors and up to 8M keys for Radix, up to 32K
bodies for Barnes-Hut, and up to a 2050-by-2050 grid size for Ocean. Design a set of experi-



Exercises

9/10/97 DRAFT: Parallel Computer Architecture 255

ments that you would report results for to your boss, as well as the manner in which you
would report the results. 

4.10  <4.4> Consider the familiar iterative nearest-neighbor grid computation on a two-dimen-
sional grid, with subblock partitioning. Suppose we use a four-dimensional array representa-
tion, where the first two dimensions are pointers to the appropriate partition. The full-scale
problem we are trying to evaluate is a 8192-by-8192 grid of double-precision elements with
256 processors, with 256KB of direct-mapped cache with a 128B cache block size per pro-
cessor. We cannot simulate this, but instead simulate a 512-buy-512 grid problem with 64
processors. 

a. What cache sizes would you choose, and why? 

b. List some of the dangers of choosing too small a cache. 

c. What cache block size and associativity would you choose, and what are the issues and
caveats involved?

d. To what extent would you consider the results representative of the full-scale problem on
the larger machine? Would you use this setup to evaluate the benefits of a certain commu-
nication architecture optimization? To evaluate the speedups achievable on the machine
for that application? 

4.11  <4.2.3, 4.2.4> In scientific applications like the Barnes-Hut galaxy simulation, a key issue
that affects scaling is error. These applications often simulate physical phenomena that occur
in nature, using several approximations to represent a continuous phenomenon by a discrete
model and solve it using numerical approximation techniques. Several application parameters
represent distinct sources of approximation and hence of error in the simulation. For example,
in Barnes-Hut the number of particles n represents the accuracy with which the galaxy is
sampled (spatial discretization), the time-step interval ∆t represents the approximation made
in discretizing time, and the force calculation accuracy parameter θ determines the approxi-
mation in that calculation. The goal of an application scientist in running larger problems is
usually to reduce the overall error in the simulation and have it more accurately reflect the
phenomenon being simulated. While there are no universal rules for how scientists will scale
different approximations, a principle that has both intuitive appeal and widespread practical
applicability for physical simulations is the following: All sources of error should be scaled
so that their error contributions are about equal. 

For the Barnes-Hut galaxy simulation, studies in astrophysics [Her87,BH89] show that while
some error contributions are not completely independent, the following rules emerge as being
valid in interesting parameter ranges:

• n: An increase in n by a factor of s leads to a decrease in simulation error by a factor of √s. 

• ∆t: The method used to integrate the particle orbits over time has a global error of the order of
∆t2. Thus, reducing the error by a factor of √s (to match that due to a s-fold increase in n)
requires a decrease in ∆t by a factor of . This means  more time-steps to simulate a
fixed amount of physical time, which we assume is held constant. 

• θ: The force-calculation error is proportional to θ2 in the range of practical interest. Reducing
the error by a factor of  thus requires a decrease in θ by a factor of . 

Assume throughout this exercise that the execution time of a problem size on p processors is
1/p of the execution time on one processor; i.e. perfect speedup for that problem size under
problem-constrained scaling. 

s4 s4

s s4
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a. How would you scale the other parameters, θ and ∆t if n is increased by a factor of s? Call 
this rule realistic scaling, as opposed to naive scaling, which scales only the number of 
particles n.

b. In a sequential program, the data set size is proportional to n and independent of the other
parameters. Do the memory requirements grow differently under realistic and naive scal-
ing in a shared address space (assume that the working set fits in the cache)? In message
passing?

c. The sequential execution time grows roughly as , (assuming that a fixed

amount of physical time is simulated). If n is scaled by a factor of s, how does the parallel
execution time on p processors scale under realistic and under naive scaling, assuming
perfect speedup?

d. How does the parallel execution time grow under MC scaling, both naive and realistic,
when the number of processors increases by a factor of k? If the problem took a day on the
base machine (before it was scaled up), how long will it take in the scaled up case on the
bigger machine under both the naive and realistic models?

e. How does the number of particles that can be simulated in a shared address space grow
under TC scaling, both realistic and naive, when the number of processors increases by a
factor of k?

f. Which scaling model appears more practical for this application: MC or TC?

4.12  <4.2.3, 4.2.4> For the Barnes-Hut example, how do the following execution characteristics
scale under realistic and naive MC, TC and PC scaling?

a. The communication to computation ratio. Assume first that it depends only on n and the 
number of processors p, varying as , and roughly plot the curves of growth rate of 
this ratio with the number of processors under the different models. Then comments on 
the effects of the other parameters under the different scaling models. 

b. The sizes of the different working sets, and hence the cache size you think is needed for
good performance on a shared address space machine. Roughly plot the growth rate for
the most important working set with number of processors under the different models.
What major methodological conclusion in scaling does this reinforce? Comment on any
differences in these trends and the amount of local replication needed in the locally essen-
tial trees version of message passing. 

c. The frequency of synchronization (per unit computation, say), both locks and barriers.
Describe qualitatively at least. 

d. The average frequency and size of input/output operations, assuming that every processor
prints out the positions of all its assigned bodies (i) every ten time-steps, (ii) every fixed
amount of physical time simulated (e.g. every year of simulated time in the galaxy’s evo-
lution). 

e. The number of processors likely to share (access) a given piece of body data during force
calculation in a coherent shared address space at a time. As we will see in Chapter 8, this
information is useful in the design of cache coherence protocols for scalable shared
address space machines. 

f. The frequency and size of messages in an explicit message passing implementation,
focusing on the communication needed for force calculation and assuming that each pro-
cessor sends only one message to each other communicating the data that the latter needs
from the former to compute its forces. 

1
t∆

----- 1

θ2
----- n nlog⋅ ⋅

p n⁄
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4.13  <4.5> The radix sorting application required a parallel prefix computation to compute the
global histogram from local histograms. A simplified version of the computation is as fol-
lows. Suppose each of the p processes has a local value it has computed (think of this as rep-
resenting the number of keys for a given digit value in the local histogram of that process).
The goal is to compute an array of p entries, in which entry i is the sum of all the local values
from processors 0 through i-1. Describe and implement the simplest linear method to com-
pute this output array. Then design a parallel method with a shorter critical path [Hint: you
can use a tree structure]. Implement the latter method, and compare its performance with that
of the simple linear method on a machine of your choice. You may use the simplified example
here, or the fuller example where the “local value” is in fact an array with one entry per radix
digit, and the output array is two-dimensional, indexed by process identifier and radix digit.
That is, the fuller example does the computation for each radix digit rather than just one. 
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CHAPTER 5

 

Shared Memory Multiprocessors

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

5.1 Introduction

 

The most prevalent form of parallel architecture is the multiprocessor of moderate scale that pro-
vides a global physical address space and symmetric access to all of main memory from any pro-
cessor, often called a Symmetric Multiprocessor or SMP. Every processor has its own cache adn
all the processors and memory modules attach to the same interconnect, usually a shared bus.
SMPs dominate the server market and are becoming more common on the desktop. They are also
important building blocks for larger scale systems. The efficient sharing of resources, such as
memory and processors, makes these machines attractive as “throughput engines” for multiple
sequential jobs with varying memory and CPU requirements, and the ability to access all shared
data efficiently using ordinary loads and stores from any of the processors makes them attractive
for parallel programming. The automatic movement and replication of shared data in the local
caches can significantly ease the programming task. These features are also very useful for the
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operating system, whose different processes share data structures and can easily run on different
processors. 

From the viewpoint of the layers of the communication architecture in Figure 5-1, the hardware
directly supports the shared address space programming model. User processes can read and
write shared virtual addresses, and these operations are realized by individual loads and stores of
shared physical addresses that are uniformly and efficiently accessible from any processor. In
fact, the relationship between the programming model and the hardware operation is so close,
that they both are often referred to simply as “shared memory.” A message passing programming
model can be supported by an intervening software layer—typically a runtime library—that man-
ages portions of the shared address space explicitly as message buffers per process. A send-
receive operation pair is realized by copying data between buffers. The operating system need not
be involved, since address translation and protection on these shared buffers is provided by the
hardware. For portability, most message passing programming interfaces have been implemented
on popular SMPs, as well as traditional message passing machines. In fact, such implementations
often deliver higher message passing performance than traditional message passing systems—as
long as contention for the shared bus and memory does not become a bottleneck—largely
because of the lack of operating system involvement in communication. The operating system is
still there for input/output and multiprogramming support. 

Since all communication and local computation generates memory accesses in a shared address
space, from a system architect’s perspective the key high-level design issue is the organization of
the extended memory hierarchy. In general, memory hierarchies in multiprocessors fall primarily
into four categories, as shown in Figure 5-2, which correspond loosely to the scale of the multi-
processor being considered. The first three are symmetric multiprocessors (all of main memory is
equally far away from all processors), while the fourth is not. 

In the first category, the “shared cache” approach (Figure 5-2a), the interconnect is located
between the processors and a shared first-level cache, which in turn connects to a shared main-
memory subsystem. Both the cache and the main-memory system may be interleaved to increase
available bandwidth. This approach has been used for connecting very small numbers (2-8) of
processors. In the mid 80s it was a common technique to connect a couple of processors on a
board; today, it is a possible strategy for a multiprocessor-on-a-chip, where a small number of
processors on the same chip share an on-chip first-level cache. However, it applies only at a very
small scale, both because the interconnect between the processors and the shared first level cache

Figure  5-1  Layers of abstraction of the communication architecture for bus-based SMPs. 
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is on the critical path that determines the latency of cache access and because the shared cache
must deliver tremendous bandwidth to the processors pounding on it.

In the second category, the “bus-based shared memory” approach (Figure 5-2b), the interconnect
is a shared bus located between the processor’s private caches and the shared main-memory sub-
system. This approach has been widely used for small- to medium-scale multiprocessors consist-
ing of up to twenty or thirty processors. It is the dominant form of parallel machine sold today,
and essentially all modern microprocessors have invested considerable design effort to be able to
support “cache-coherent” shared memory configurations. For example, the Intel Pentium Pro
processor can attach to a coherent shared bus without any glue logic, and low-cost bus-based
machines that use these processors have greatly increased the popularity of this approach. The
scaling limit for these machines comes primarily due to bandwidth limitations of the shared bus
and memory system. 

The last two categories are intended to be scalable to many processing nodes. The third category,
the “dance-hall” approach, also places the interconnect between the caches and main memory,
but the interconnect is now a scalable point-to-point network and memory is divided into many
logical modules that connect to logically different points in the interconnect. This approach is
symmetric, all of main memory is uniformly far away from all processors, but its limitation is
that all of memory is indeed 

 

far

 

 away from all processors: Especially in large systems, several

Figure  5-2  Common memory hierarchies found in multiprocessors.
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“hops” or switches in the interconnect must be traversed to reach any memory module. The
fourth category, the “distributed memory” approach, is not symmetric: A scalable interconnect is
located between processing nodes but each node has its local portion of the global main memory
to which it has faster access (Figure 5-2c). By exploiting locality in the distribution of data, the
hope is that most accesses will be satisfied in the local memory and will not have to traverse the
network. This design is therefore most attractive for scalable multiprocessors, and several chap-
ters are devoted to the topic later in the book. Of course, it is also possible to combine multiple
approaches into a single machine design—for example a distributed memory machine whose
individual nodes are bus-based SMPs, or sharing a cache other than at the first level.

In all cases, caches play an essential role in reducing the average memory access time as seen by
the processor and in reducing the bandwidth requirement each processor places on the shared
interconnect and memory system. The bandwidth requirement is reduced because the data
accesses issued by a processor that are satisfied in the cache do not have to appear on the bus;
otherwise, every access from every processor would appear on the bus which would quickly
become saturated. In all but the shared cache approach, each processor has at least one level of its
cache hierarchy that is private and this raises a critical challenge, namely that of 

 

cache coher-
ence

 

. The problem arises when a memory block is present in the caches of one or more proces-
sors, and another processor modifies that memory block. Unless special action is taken, the
former processors will continue to access the old, stale copy of the block that is in their caches. 

Currently, most small-scale multiprocessors use a shared bus interconnect with per-processor
caches and a centralized main memory, while scalable systems use physically distributed main
memory. Dancehall and shared cache approaches are employed in relatively specific settings, that
change as technology evolves. This chapter focuses on the logical design of multiprocessors that
exploit the fundamental properties of a bus to solve the cache coherence problem. The next chap-
ter expands on the hardware design issues associated with realizing these cache coherence tech-
niques. The basic design of scalable distributed-memory multiprocessors will be addressed in
Chapter 7, and issues specific to scalable cache coherence in Chapter 8.

In Section 5.2 describes the cache coherence problem for shared-memory architectures in detail.
Coherence is a key hardware design concept and is a necessary part of our intuitive notion the
memory abstraction. However, parallel software often makes stronger assumptions about how
memory behaves. Section 5.3 extends the discussion of ordering begun in Chapter 1 and intro-
duces the concept of memory consistency which defines the semantics of shared address space.
This issue has become increasingly important in computer architecture and compiler design; a
large fraction of the reference manuals for most recent instruction set architectures is devoted to
the memory model. Section 5.4 presents what are called “snooping” or “snoopy” protocols for
bus-based machines and shows how they satisfy the conditions for coherence as well as for a use-
ful consistency model. The basic design space of snooping protocols is laid out in Section 5.5 and
the operation of commonly used protocols is described at the state transition level. The tech-
niques used for quantitative evaluation several design tradeoffs at this level are illustrated using
aspects of the methodology for workload driven evaluation of Chapter 4.

The latter portions of the chapter examine the implications these cache coherent shared memory
architectures have for software that runs on them. Section 5.6 examines how the low-level syn-
chronization operations make use of the available hardware primitives on cache coherent multi-
processors, and how the algorithms can be tailored to use the machine efficiently. Section 5.7
discusses the implications for parallel programming more generally, putting together our knowl-
edge of parallel programs from Chapters 2 and 3 and of bus-based cache-coherent architecture
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from this chapter. In particular, it discusses how temporal and spatial data locality may be
exploited to reduce cache misses and traffic on the shared bus. 

 

5.2 Cache Coherence

 

Think for a moment about your intuitive model of what a memory should do. It should provide a
set of locations holding values, and when a location is read it should return the latest value writ-
ten to that location. This is the fundamental property of the memory abstraction that we rely on in
sequential programs when we use memory to communicate a value from a point in a program
where it is computed to other points where it is used. We rely on the same property of a memory
system when using a shared address space to communicate data between threads or processes
running on one processor. A read returns the latest value written to the location, regardless of
which process wrote it. Caching does not interfere with the use of multiple processes on one pro-
cessor, because they all see the memory through the same cache hierarchy. We would also like to
rely on the same property when the two processes run on different processors that share a mem-
ory. That is, we would like the results of a program that uses multiple processes to be no different
when the processes run on different physical processors than when they run (interleaved or multi-
programmed) on the same physical processor. However, when two processes see the shared
memory through different caches, there is a danger that one may see the new value in its cache
while the other still sees the old value.

 

5.2.1 The Cache Coherence Problem

 

The cache coherence problem in multiprocessors is both pervasive and performance critical. The
problem is illustrated by the following example.

 

Example  5-1 

 

Figure 5-3 shows three processors with caches connected via a bus to shared main
memory. A sequence of accesses to location 

 

u 

 

is

 

 

 

made by the processors. First,
processor P1 reads 

 

u

 

 from main memory, bringing a copy into its cache. Then
processor P3 reads 

 

u

 

 from main memory, bringing a copy into its cache. Then
processor P3 writes location 

 

u

 

 

 

changing its value from 5 to 7. With a write-through
cache, this will cause the main memory location to be updated; however, when
processor P1 reads location 

 

u

 

 again (action 4), it will unfortunately read the stale
value 5 from its own cache instead of the correct value 7 from main memory. What
happens if the caches are writeback instead of write through? 

 

Answer

 

The situation is even worse with writeback caches. P3’s write would merely set the
dirty (or modified) bit associated with the cache block holding location 

 

u

 

 and
would not update main memory right away. Only when this cache block is
subsequently replaced from P3’s cache would its contents be written back to main
memory. Not only will P1 read the stale value, but when processor P2 reads
location 

 

u

 

 (action 5) it will miss in its cache and read the stale value of 5 from main
memory, instead of 7. Finally, if multiple processors write distinct values to
location 

 

u

 

 in their write-back caches, the final value that will reach main memory
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will be determined by the order in which the cache blocks containing 

 

u

 

 are
replaced, and will have nothing to do with the order in which the writes to 

 

u

 

 occur.

Cache coherence problems arise even in uniprocessors when I/O operations occur. Most I/O
transfers are performed by DMA devices that move data between memory and the peripheral
component. A DMA device sitting on the main memory bus may read a stale value for a location
in main memory, because the latest value for that location is in the processor’s write-back cache.
Similarly, when the DMA device writes to a location in main memory, unless special action is
taken, the processor may continue to see the old value if that location was previously present in
its cache. Since I/O operations are much less frequent than memory operations, several simple
solutions have been adopted in uniprocessors. For example, segments of memory space used for
I/O may be marked as uncacheable, or the processor may always use uncached loads-stores for
locations used to communicate with I/O devices. For I/O devices that transfer large blocks of
data, such as disks, operating system support is often enlisted to ensure coherence. In many sys-
tems the page of memory from/to which the data is to be transferred is flushed by the operating
system from the processor’s cache before the I/O is allowed to proceed. In still other systems, all
I/O traffic is made to flow through the processor cache hierarchy, thus maintaining coherence.
This, of course, pollutes the cache hierarchy with data that may not be of immediate interest to
the processor. Today, essentially all microprocessors provide support for cache coherence; in
addition to making the chip “multiprocessor ready”, this also solves the I/O coherence problem.

Clearly, the behavior described in Example 5-1 violates our intuitive notion of what a memory
should do. Rreading and writing of shared variables is expected to be a frequent event in multi-
processors; it is the way that multiple processes belonging to a parallel application communicate
with each other, so we do not want to disallow caching of shared data or invoke the operating sys-
tem on all shared references. Rather, cache coherence needs to be addressed as a basic hardware
design issue; for example, stale cached copies of a shared location must be eliminated when the
location is modified, by either invalidating them or updating them with the new value. The oper-
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Figure  5-3  Example cache coherence problem

The figure shows three processors with caches connected by a bus to main memory. “u” is a location in memory
whose contents are being read and written by the processors. The sequence in which reads and writes are done is
indicated by the number listed inside the circles placed next to the arc. It is easy to see that unless special action is
taken when P3 updates the value of u to 7, P1 will subsequently continue to read the stale value out of its cache, and
P2 will also read a stale value out of main memory.
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ating system itself benefits greatly from transparent, hardware-supported coherent sharing of its
data structures, and is in fact one of the most widely used parallel applications on these machines. 

Before we explore techniques to provide coherence, it is useful to define the coherence property
more precisely. Our intuitive notion, “each read should return the last value written to that loca-
tion,” is problematic for parallel architecture because “last” may not be well defined. Two differ-
ent processors might write to the same location at the same instant, or one processor may write so
soon after another that due to speed of light and other factors, there is not time to propagate the
earlier update to the later writer. Even in the sequential case, “last” is not a chronological notion,
but latest 

 

in program order

 

. For now, we can think of program order in a single process as the
order in which memory operations are presented to the processor by the compiler. The subtleties
of program order will be elaborated on later, in Section 5.3. The challenge in the parallel case is
that program order is defined for the operations in each individual process, and we need to make
sense of the collection of program orders.

Let us first review the definitions of some terms in the context of uniprocessor memory systems,
so we can extend the definitions for multiprocessors. By 

 

memory operation

 

, we mean a single
read (load), write (store), or read-modify-write access to a memory location. Instructions that
perform multiple reads and writes, such as appear in many complex instruction sets, can be
viewed as broken down into multiple memory operations, and the order in which these memory
operations are executed is specified by the instruction. These memory operations within an
instruction are assumed to execute 

 

atomically

 

 with respect to each other in the specified order,
i.e. all aspects of one appear to execute before any aspect of the next. A memory operation 

 

issues

 

when it leaves the processor’s internal environment and is presented to the memory system,
which includes the caches, write-buffers, bus, and memory modules. A very important point is
that the processor only observes the state of the memory system by issuing memory operations;
thus, our notion of what it means for a memory operation to be 

 

performed

 

 is that it appears to
have taken place from the perspective of the processor. A write operation is said to 

 

perform with
respect to the processor

 

 when a subsequent read by the processor returns the value produced by
either that write or a later write. A read operation is said to perform with respect to the processor
when subsequent writes issued by that processor cannot affect the value returned by the read.
Notice that in neither case do we specify that the physical location in the memory chip has actu-
ally been accessed. Also, ‘subsequent’ is well defined in the sequential case, since reads and
writes are ordered by the program order.

The same definitions for operations performing with respect to a processor apply in the parallel
case; we can simply replace “the processor” by “a processor” in the definitions. The challenge for
ordering, and for the intuitive notions of ‘subsequent’ and ‘last’, now is that we do not have one
program order; rather, we have separate program orders for every process and these program
orders interact when accessing the memory system. One way to sharpen our intuitive notion of a
coherent memory system is to picture what would happen if there were no caches. Every write
and every read to a memory location would access the physical location at main memory, and
would be performed with respect to all processors at this point, so the memory would impose a
serial order on all the read and write operations to the location. Moreover, the reads and writes to
the location from any individual processor should be in program order within this overall serial
order. We have no reason to believe that the memory system should interleave independent
accesses from different processors in a particular way, so any interleaving that preserves the indi-
vidual program orders is reasonable. We do assume some basic fairness; eventually the opera-
tions from each processor should be performed. Thus, our intuitive notion of “last” can be viewed
as most recent in some hypothetical serial order that maintains the properties discussed above.
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Since this serial order must be consistent, it is important that all processors see the writes to a
location in the same order (if they bother to look, i.e. to read the location). 

Of course, the total order need not actually be constructed at any given point in the machine
while executing the program. Particularly in a system with caches, we do not want main memory
to see all the memory operations, and we want to avoid serialization whenever possible. We just
need to make sure that the program behaves as if some serial order was enforced.

More formally, we say that a multiprocessor memory system is 

 

coherent

 

 if the results of any exe-
cution of a program are such that, for each location, it is possible to construct a hypothetical
serial order of all operations to the location (i.e., put all reads/writes issued by all processors into
a total order) which is consistent with the results of the execution and in which: 

1. operations issued by any particular processor occur in the above sequence in the order in
which they were issued to the memory system by that processor, and 

2. the value returned by each read operation is the value written by the last write to that location
in the above sequence.

Implicit in the definition of coherence is the property that all writes to a location (from the same
or different processes) are seen in the same order by all processes. This property is called 

 

write
serialization

 

. It means that if read operations by processor P1 to a location see the value produced
by write 

 

w1

 

 (from P2, say) before the value produced by write 

 

w2

 

 (from P3, say), then reads by
another processor P4 (or P2 or P3) should also not be able to see 

 

w2

 

 before 

 

w1

 

. There is no need
for an analogous concept of read serialization, since the effects of reads are not visible to any pro-
cessor but the one issuing the read.

The results of a program can be viewed as the values returned by the read operations in it, per-
haps augmented with an implicit set of reads to all locations at the end of the program. From the
results, we cannot determine the order in which operations were actually executed by the
machine, but only orders in which they appear to execute. In fact, it is not even important in what
order things actually happen in the machine or when which bits change, since this is not detect-
able; all that matters is the order in which things appear to happen, as detectable from the results
of an execution. This concept will become even more important when we discuss memory con-
sistency models. Finally, the one additional definition that we will need in the multiprocessor
case is that of an operation completing: A read or write operation is said to 

 

complete

 

 when it has
performed with respect to all processors.

 

5.2.2 Cache Coherence Through Bus Snooping

 

A simple and elegant solution to the cache coherence problem arises from the very nature of a
bus. The bus is a single set of wires connecting several devices, each of which can observe every
bus transaction, for example every read or write on the shared bus. When a processor issues a
request to its cache, the controller examines the state of the cache and takes suitable action,
which may include generating bus transactions to access memory. Coherence is maintained by
having each cache controller ‘snoop’ on the bus and monitor the transactions, as illustrated in
Figure 5-4 [Goo83]. The snooping cache controller also takes action if a bus transaction is rele-
vant to it, i.e. involves a memory block of which it has a copy in its cache. In fact, since the allo-
cation and replacement of data in caches are managed at the granularity of a cache block (usually
several words long) and cache misses fetch a block of data, most often coherence is maintained at
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the granularity of a cache block as well. That is, either an entire cache block is in valid state or
none of it is. Thus, a cache block is the granularity of allocation in the cache, of data transfer
between caches and of coherence. 

The key properties of a bus that support coherence are the following: All transactions that appear
on the bus are visible to all cache controllers, and they are visible to the controllers in the same
order (the order in which they appear on the bus). A coherence protocol must simply guarantee
that all the necessary transactions in fact appear on the bus, in response to memory operations,
and that the controllers take the appropriate actions when they see a relevant transaction. 

The simplest illustration of maintaining coherence is a system that has single-level write-through
caches. It is basically the approach followed by the first commercial bus-based SMPs in the mid
80’s. In this case, every write operation causes a write transaction to appear on the bus, so every
cache observes every write. If a snooping cache has a copy of the block, it either invalidates or
updates its copy. Protocols that invalidate other cached copies on a write are called 

 

invalidation-
based protocols

 

, while those that update other cached copies are called 

 

update-based protocols

 

.
In either case, the next time the processor with the invalidated or updated copy accesses the
block, it will see the most recent value, either through a miss or because the updated value is in
its cache. The memory always has valid data, so the cache need not take any action when it
observes a read on the bus.

 

Example  5-2 

 

Consider the scenario that was shown in Figure 5-3. Assuming write through
caches, show how the bus may be used to provide coherence using an invalidation-
based protocol. 

 

Answer

 

When processor P3 writes 7 to location 

 

u

 

, P3’s cache controller generates a bus
transaction to update memory. Observing this bus transaction as relevant, P1’s
cache controller invalidates its own copy of block containing 

 

u

 

. The main memory
controller will update the value it has stored for location 

 

u

 

 to 7. Subsequent reads to

 

u

 

 from processors P1 and P2 (actions 4 and 5) will both miss in their private caches
and get the correct value of 7 from the main memory.

In general, a snooping-based cache coherence scheme ensures that:

 

•

 

all “necessary” transactions appear on the bus, and

 

•

 

each cache monitors the bus for relevant transactions and takes suitable actions.

The check to determine if a bus transaction is relevant to a cache is essentially the same tag match
that is performed for a request from the processor. The suitable action may involve invalidating or
updating the contents or state of that memory block, and/or supplying the latest value for that
memory block from the cache to the bus.

A 

 

snoopy cache coherence protocol 

 

ties together two basic facets of computer architecture: bus
transactions and the state transition diagram associated with a cache block. Recall, a bus transac-
tion consists of three phases: arbitration, command/address and data. In the arbitration phase,
devices that desire to perform (or master) a transaction assert their bus request and the bus arbiter
selects one of these and responds by asserting its grant signal. Upon grant, the device places the
command, e.g. read or write, and the associated address on the bus command and address lines.
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All devices observe the address and one of them recognizes that it is responsible for the particular
address. For a read transaction, the address phase is followed by data transfer. Write transactions
vary from bus to bus in whether the data is transferred during or after the address phase. For most
busses, the slave device can assert a wait signal to hold off the data transfer until it is ready. This
wait signal is different from the other bus signals, because it is a wired-OR across all the proces-
sors, i.e., it is a logical 1 if any device asserts it. The master does not need to know which slave
device is participating in the transfer, only that there is one and it is not yet ready.

The second basic notion is that each block in a uniprocessor cache has a state associated with it,
along with the tag and data, indicating the disposition of the block, e.g., invalid, valid, dirty. The
cache policy is defined by the 

 

cache block state transition diagram

 

, which is a finite state
machine. Transitions for a block occur upon access to an address that maps to the block. For a
write-through, write-no-allocate cache [HeP90] only two states are required: valid and invalid.
Initially all the blocks are invalid. (Logically, all memory blocks that are not resident in the cache
can be viewed as being in either a special “not present” state, or in “invalid” state.) When a pro-
cessor read operation misses, a bus transaction is generated to load the block from memory and
the block is marked valid. Writes generate a bus transaction to update memory and the cache
block if it is present in valid state. Writes never change the state of the block. (If a block is
replaced, it may be marked invalid until the memory provides the new block, whereupon it
becomes valid.) A write-back cache requires an additional state, indicating a “dirty” or modified
block. 

In a multiprocessor system, a block has a state in each cache, and these cache states change
according to the state transition diagram. Thus, we can think of a block’s “cache state” as being a
vector of 

 

p

 

 states instead of a single state, where 

 

p

 

 is the number of caches. The cache state is
manipulated by a set of 

 

p

 

 distributed finite state machines, implemented by the cache controllers.
The state machine or state transition diagram that governs the state changes is the same for all
blocks and all caches, but the current states of a block in different caches is different. If a block is
not present in a cache, we can assume it to be in a special “not present” state or even in invalid
state. 

Figure  5-4  Snoopy cache-coherent multiprocessor

Multiple processors with private caches are placed on a shared bus. Each processor’s cache controller continuously “snoops” on
the bus watching for relevant transactions, and updates its state suitably to keep its local cache coherent.
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In a snoopy cache coherence scheme, each cache controller receives two sets of inputs: the pro-
cessor issues memory requests, and the bus snooper informs about transactions from other
caches. In response to either, the controller updates the state of the appropriate block in the cache
according to the current state and the state transition diagram. It responds to the processor with
requested data, potentially generating new bus transactions to obtain the data. It responds to bus
transactions generated by others by updating its state, and sometimes intervenes in completing
the transaction. Thus, a snoopy protocol is a distributed algorithm represented by a collection of
such cooperating finite state machines. It is specified by the following components:

1. the set of states associated with memory blocks in the local caches;

2. the state transition diagram, which takes as inputs the current state and the processor request
or observed bus transaction, and produces as output the next state for the cache block; and

3. the actual actions associated with each state transition, which are determined in part by the set
of feasible actions defined by the bus, cache, and processor design.

The different state machines for a block do not operate independently, but are coordinated by bus
transactions. 

A simple invalidation-based protocol for a coherent write-through no-allocate cache is described
by the state diagram in Figure 5-5. As in the uniprocessor case, each cache block has only two
states: invalid (I) and valid (V) (the “not present” state is assumed to be the same as invalid). The
transitions are marked with the input that causes the transition and the output that is generated
with the transition. For example, when a processor read misses in the cache a BusRd transaction
is generated, and upon completion of this transaction the block transitions up to the “valid” state.
Whenever the processor issues a write to a location, a bus transaction is generated that updates
that location in main memory with no change of state. The key enhancement to the uniprocessor
state diagram is that when the bus snooper sees a write transaction for a memory block that is
cached locally, it sets the cache state for that block to invalid thereby effectively discarding its
copy. Figure 5-5 shows this bus-induced transition with a dashed arc. By extension, if any one
cache generates a write for a block that is cached by any of the others, all of the others will inval-
idate their copies. The collection of caches thus implements a single writer, multiple reader disci-
pline. 

To see that this simple write-through invalidation protocol provides coherence, we need to show
that a total order on the memory operations for a location can be constructed that satisfies the two
conditions. Assume for the present discussion that memory operations are 

 

atomic

 

, in that only
one transaction is in progress on the bus at a time and a processor waits until its transaction is fin-
ished before issuing another memory operation. That is, once a request is placed on the bus, all
phases of the transaction including the data response complete before any other request from any
processor is allowed access to the bus. With single-level caches, it is natural to assume that inval-
idations are applied to the caches, and the write completes, during the bus transaction itself.
(These assumptions will be relaxed when we look at protocol implementations in more detail and
as we study high performance designs with greater concurrency.) We may assume that the mem-
ory handles writes and reads in the order they are presented to it by the bus. In the write-through
protocol, all writes go on the bus and only one bus transaction is in progress at a time, so all
writes to a location are serialized (consistently) by the order in which they appear on the shared
bus, called the 

 

bus order

 

. Since each snooping cache controller performs the invalidation during
the bus transaction, invalidations are performed by all cache controllers in bus order. 
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Processors “see” writes through read operations. However, reads to a location are not completely
serialized, since read hits may be performed independently and concurrently in their caches with-
out generating bus transactions. To see how reads may be inserted in the serial order of writes,
and guarantee that all processors see writes in the same order (write serialization), consider the
following scenario. A read that goes on the bus (a read miss) is serialized by the bus along with
the writes; it will therefore obtain the value written by the most recent write to the location in bus
order. The only memory operations that do not go on the bus are read hits. In this case, the value
read was placed in the cache by either the most recent write to that location by the same proces-
sor, or by its most recent read miss (in program order). Since both these sources of the value
appear on the bus, read hits also see the values produced in the consistent bus order. 

More generally, we can easily construct a hypothetical serial order by observing the following
partial order imposed by the protocol:

A memory operation  is subsequent to a memory operation  if the operations are 
issued by the same processor and  follows  in program order. 

A read operation is subsequent to a write operation  if the read generates a bus transaction 
that follows that for .

A write operation is subsequent to a read or write operation  if  generates a bus transac-
tion and the transaction for the write follows that for .

A write operation is subsequent to a read operation if the read does not generate a bus transac-
tion (is a hit) and is not already separated from the write by another bus transaction.

I

V

PrRd / BusRd

PrRd / --

PrWr / BusWr

BusWr / --

Figure  5-5  Snoopy coherence for a multiprocessor with write-through no-write-allocate caches. 

There are two states, valid (V) and invalid (I) with intuitive semantics. The notation A/B (e.g. PrRd/BusRd) means if you observe
A then generate transaction B. From the processor side, the requests can be read (PrRd) or write (PrWr). From the bus side, the
cache controller may observe/generate transactions bus read (BusRd) or bus write (BusWr).

Processor initiated transactions

Bus-snooper initiated transactions

PrWr / BusWr

M2 M1
M2 M1

W
W

M M
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The “subsequent” ordering relationship is transitive. An illustration of this partial order is
depicted in Figure 5-6, where the bus transactions associated with writes segment the individual
program orders. The partial order does not constrain the ordering of read bus transactions from
different processors that occur between two write transactions, though the bus will likely estab-
lish a particular order. In fact, any interleaving of read operations in the segment between two
writes is a valid serial order, as long as it obeys program order. 

Of course, the problem with this simple write-through approach is that every store instruction
goes to memory, which is why most modern microprocessors use write-back caches (at least at
the level closest to the bus). This problem is exacerbated in the multiprocessor setting, since
every store from every processor consumes precious bandwidth on the shared bus, resulting in
poor scalability of such multiprocessors as illustrated by the example below.

 

Example  5-3 

 

Consider a superscalar RISC processor issuing two instructions per cycle running at
200MHz. Suppose the average CPI (clocks per instruction) for this processor is 1,
15% of all instructions are stores, and each store writes 8 bytes of data. How many
processors will a GB/s bus be able to support without becoming saturated?

 

Answer

 

A single processor will generate 30 million stores per second (0.15 stores per
instruction * 1 instruction per cycle * 1,000,000/200 cycles per second), so the total
write-through bandwidth is 240Mbytes of data per second per processor (ignoring
address and other information, and ignoring read misses). A GB/s bus will therefore
support only about four processors.

For most applications, a write-back cache would absorb the vast majority of the writes. However,
if writes do not go to memory they do not generate bus transactions, and it is no longer clear how
the other caches will observe these modifications and maintain cache coherence. A somewhat
more subtle concern is that when writes are allowed to occur into different caches concurrently
there is no obvious order to the sequence of writes. We will need somewhat more sophisticated
cache coherence protocols to make the “critical” events visible to the other caches and ensure
write serialization.

Figure  5-6  Partial order of memory operations for an execution with the write-through invalidation protocol

Bus transactions define a global sequence of events, between which individual processors read locations in program order. The
execution is consistent with any total order obtained by interleaving the processor orders within each segment.
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Before we examine protocols for write-back caches, let us step back to the more general ordering
issue alluded to in the introduction to this chapter and examine the semantics of a shared address
space as determined by the memory consistency model.

 

5.3 Memory Consistency

 

Coherence is essential if information is to be transferred between processors by one writing a
location that the other reads. Eventually, the value written will become visible to the reader,
indeed all readers. However, it says nothing about when the write will become visible. Often, in
writing a parallel program we want to ensure that a read returns the value of a particular write,
that is we want to establish an order between a write and a read. Typically, we use some form of
event synchronization to convey this dependence and we use more than one location. 

Consider, for example, the code fragments executed by processors P1 and P2 in Figure 5-7,
which we saw when discussing point-to-point event synchronization in a shared address space in
Chapter 2. It is clear that the programmer intends for process P2 to spin idly until the value of the
shared variable 

 

flag

 

 changes to 1, and to then print the value of variable A as 1, since the value
of A was updated before that of flag by process P1. In this case, we use accesses to another
location (flag) to preserve order among different processes’ accesses to the same location (A).
In particular, we assume that the write of A becomes visible to P2 before the write to flag, and
that the read of flag by P2 that breaks it out of its while loop completes before its read of A. These
program orders within P1 and P2’s accesses are not implied by coherence, which, for example,
only requires that the new value for A eventually become visible to processor P2, not necessarily
before the new value of flag is observed.

The programmer might try to avoid this issue by using a barrier, as shown in Figure 5-8. We
expect the value of A to be printed as 1, since A was set to 1 before the barrier (note that a print
statement is essentially a read). There are two potential problems even with this approach. First,
we are adding assumptions to the meaning of the barrier: Not only do processes wait at the bar-
rier till all have arrived, but until all writes issued prior to the barrier have become visible to other
processors. Second, a barrier is often built using reads and writes to ordinary shared variables
(e.g. b1 in the figure) rather than with specialized hardware support. In this case, as far as the
machine is concerned it sees only accesses to different shared variables; coherence does not say
anything at all about orders among these accesses.

Figure  5-7  Requirements of event synchronization through flags

The figure shows two processors concurrently executing two distinct code fragments. For programmer intuition to be maintained, it
must be the case that the printed value of A is 1. The intuition is that because of program order, if flag equals 1 is visible to processor
P2, then it must also be the case that A equals 1 is visible to P2.

P1  P2

/* Assume initial value of A and flag is 0 */

A = 1; while (flag == 0); /* spin idly */

flag = 1; print A;
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Clearly, we expect more from a memory system than “return the last value written” for each loca-
tion. To establish order among accesses to the location (say A) by different processes, we some-
times expect a memory system to respect the order of reads and writes to different locations (A
and flag or A and b1) issued by a given process. Coherence says nothing about the order in
which the writes issued by P1 become visible to P2, since these operations are to different loca-
tions. Similarly, it says nothing about the order in which the reads issued to different locations by
P2 are performed relative to P1. Thus, coherence does not in itself prevent an answer of 0 being
printed by either example, which is certainly not what the programmer had in mind.

In other situations, the intention of the programmer may not be so clear. Consider the example in
Figure 5-9. The accesses made by process P1 are ordinary writes, and A and B are not used as

synchronization variables. We may intuitively expect that if the value printed for B is 2 then the
value printed for A is 1 as well. However, the two print statements read different locations before
printing them, so coherence says nothing about how the writes by P1 become visible. (This
example is a simplification of Dekker’s algorithm to determine which of two processes arrives at
a critical point first, and hence ensure mutual exclusion. It relies entirely on writes to distinct
locations becoming visible to other processes in the order issued.) Clearly we need something
more than coherence to give a shared address space a clear semantics, i.e., an ordering model that
programmers can use to reason about the possible results and hence correctness of their pro-
grams. 

A memory consistency model for a shared address space specifies constraints on the order in
which memory operations must appear to be performed (i.e. to become visible to the processors)
with respect to one another. This includes operations to the same locations or to different loca-
tions, and by the same process or different processes, so memory consistency subsumes coher-
ence.

P1  P2

/* Assume initial value of A is 0 */

A = 1; ... 

BARRIER(b1) BARRIER(b1)

print A;

Figure  5-8  Maintaining orders among accesses to a location using explicit synchronization through barriers. 

P1  P2

/* Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B; 

(1b) B = 2; (2b) print A;

Figure  5-9  Orders among accesses without synchronization.
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5.3.1 Sequential Consistency

In discussing the fundamental design issues for a communication architecture in Chapter 1
(Section 1.4), we described informally a desirable ordering model for a shared address space: the
reasoning one goes through to ensure a multithreaded program works under any possible inter-
leaving on a uniprocessor should hold when some of the threads run in parallel on different pro-
cessors. The ordering of data accesses within a process was therefore the program order, and that
across processes was some interleaving of the program orders. That is, the multiprocessor case
should not be able to cause values to become visible in the shared address space that no interleav-
ing of accesses from different processes can generate. This intuitive model was formalized by
Lamport as sequential consistency (SC), which is defined as follows [Lam79].1

Sequential Consistency A multiprocessor is sequentially consistent if the result of any execu-
tion is the same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor occur in this sequence in the order
specified by its program.

Figure 5-10 depicts the abstraction of memory provided to programmers by a sequentially con-
sistent system [AdG96]. Multiple processes appear to share a single logical memory, even
though in the real machine main memory may be distributed across multiple processors, each
with their private caches and write buffers. Every processor appears to issue and complete mem-
ory operations one at a time and atomically in program order—that is, a memory operation does
not appear to be issued until the previous one has completed—and the common memory appears
to service these requests one at a time in an interleaved manner according to an arbitrary (but
hopefully fair) schedule. Memory operations appear atomic in this interleaved order; that is, it

1.  Two closely related concepts in the software context are serializability[Papa79] for conccurent updates to
a database and linearizability[HeWi87] for concurrent objects.

Figure  5-10  Programmer’s abstraction of the memory subsystem under the sequential consistency model. 

The model completely hides the underlying concurrency in the memory-system hardware, for example, the possible existence of dis-
tributed main memory, the presence of caches and write buffers, from the programmer.

P1 P2 Pn

Memory

Processors
issuing memory references
as per program order

The “switch” is randomly
set after each memory
reference
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should appear globally (to all processors) as if one operation in the consistent interleaved order
executes and completes before the next one begins. 

As with coherence, it is not important in what order memory operations actually issue or even
complete. What matters is that they appear to complete in an order that does not violate sequen-
tial consistency. In the example in Figure 5-9, under SC the result (0,2) for (A,B) would not be
allowed under sequential consistency—preserving our intuition—since it would then appear that
the writes of A and B by process P1 executed out of program order. However, the memory opera-
tions may actually execute and complete in the order 1b, 1a, 2b, 2a. It does not matter that they
actually complete out of program order, since the results of the execution (1,2) is the same as if
the operations were executed and completed in program order. On the other hand, the actual exe-
cution order 1b, 2a, 2b, 1a would not be sequentially consistent, since it would produce the result
(0,2) which is not allowed under SC. Other examples illustrating the intuitiveness of sequential
consistency can be found in Exercise 5.4. Note that sequential consistency does not obviate the
need for synchronization. SC allows operations from different processes to be interleaved arbi-
trarily and at the granularity of individual instructions. Synchronization is needed if we want to
preserve atomicity (mutual exclusion) across multiple memory operations from a process, or if
we want to enforce certain orders in the interleaving across processes. 

The term “program order” also bears some elaboration. Intuitively, program order for a process is
simply the order in which statements appear in the source program; more specifically, the order
in which memory operations appear in the assembly code listing that results from a straightfor-
ward translation of source statements one by one to assembly language instructions. This is not
necessarily the order in which an optimizing compiler presents memory operations to the hard-
ware, since the compiler may reorder memory operations (within certain constraints such as
dependences to the same location). The programmer has in mind the order of statements in the
program, but the processor sees only the order of the machine instructions. In fact, there is a “pro-
gram order” at each of the interfaces in the communication architecture—particularly the pro-
gramming model interface seen by the programmer and the hardware-software interface—and
ordering models may be defined at each. Since the programmer reasons with the source program,
it makes sense to use this to define program order when discussing memory consistency models;
that is, we will be concerned with the consistency model presented by the system to the program-
mer.

Implementing SC requires that the system (software and hardware) preserve the intuitive con-
straints defined above. There are really two constraints. The first is the program order require-
ment discussed above, which means that it must appear as if the memory operations of a process
become visible—to itself and others—in program order. The second requirement, needed to
guarantee that the total order or interleaving is consistent for all processes, is that the operations
appear atomic; that is, it appear that one is completed with respect to all processes before the next
one in the total order is issued. The tricky part of this second requirement is making writes appear
atomic, especially in a system with multiple copies of a block that need to be informed on a
write. Write atomicity, included in the definition of SC above, implies that the position in the total
order at which a write appears to perform should be the same with respect to all processors. It
ensures that nothing a processor does after it has seen the new value produced by a write
becomes visible to other processes before they too have seen the new value for that write. In
effect, while coherence (write serialization) says that writes to the same location should appear to
all processors to have occurred in the same order, sequential consistency says that all writes (to
any location) should appear to all processors to have occurred in the same order. The following
example shows why write atomicity is important. 
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Example  5-4 Consider the three processes in Figure 5-11. Show how not preserving write
atomicity violates sequential consistency. 

Answer Since P2 waits until A becomes 1 and then sets B to 1, and since P3 waits until B
becomes 1 and only then reads value of A, from transitivity we would infer that P3
should find the value of A to be 1. If P2 is allowed to go on past the read of A and
write B before it is guaranteed that P3 has seen the new value of A, then P3 may
read the new value of B but the old value of A from its cache, violating our
sequentially consistent intuition. 

Each process’s program order imposes a partial order on the set of all operations; that is, it
imposes an ordering on the subset of the operations that are issued by that process. An interleav-
ing (in the above sense) of the operations from different processes defines a total order on the set
of all operations. Since the exact interleaving is not defined by SC, interleaving the partial (pro-
gram) orders for different processes may yield a large number of possible total orders. The fol-
lowing definitions apply:

Sequentially Consistent Execution An execution of a program is said to be sequentially con-
sistent if the results it produces are the same as those produced by any one of these possible 
total orders (interleavings as defined earlier). That is, there should exist a total order or inter-
leaving of program orders from processes that yields the same result as that actual execution. 

Sequentially Consistent System A system is sequentially consistent if any possible execution 
on that system corresponds to (produces the same results as) some possible total order as 
defined above. 

Of course, an implicit assumption throughout is that a read returns the last value that was written
to that same location (by any process) in the interleaved total order.

5.3.2 Sufficient Conditions for Preserving Sequential Consistency

It is possible to define a set of sufficient conditions that the system should obey that will guaran-
tee sequential consistency in a multiprocessor—whether bus-based or distributed, cache-coherent
or not. The following set, adapted from their original form [DSB86,ScD87], are commonly used
because they are relatively simple without being overly restrictive: 

1. Every process issues memory requests in the order specified by the program.

2. After a write operation is issued, the issuing process waits for the write to complete before
issuing its next operation.

A=1; while (A==0);
B=1; while (B==0);

print A;

P1 P2 P3

Figure  5-11  Example illustrating the importance of write atomicity for sequential consistency. 
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3. After a read operation is issued, the issuing process waits for the read to complete, and for the
write whose value is being returned by the read to complete, before issuing its next operation.
That is, if the write whose value is being returned has performed with respect to this proces-
sor (as it must have if its value is being returned) then the processor should wait until the
write has performed with respect to all processors.

The third condition is what ensures write atomicity, and it is quite demanding. It is not a simple
local constraint, because the load must wait until the logically preceding store has become glo-
bally visible. Note that these are sufficient, rather than necessary conditions. Sequential consis-
tency can be preserved with less serialization in many situations. This chapter uses these
conditions, but exploits other ordering constraints in the bus-based design to establish completion
early. 

With program order defined in terms of the source program, it is clear that for these conditions to
be met the compiler should not change the order of memory operations that it presents to the pro-
cessor. Unfortunately, many of the optimizations that are commonly employed in both compilers
and processors violate the above sufficient conditions. For example, compilers routinely reorder
accesses to different locations within a process, so a processor may in fact issue accesses out of
the program order seen by the programmer. Explicitly parallel programs use uniprocessor com-
pilers, which are concerned only about preserving dependences to the same location. Advanced
compiler optimizations designed to improve performance—such as common sub-expression
elimination, constant propagation, and loop transformations such as loop splitting, loop reversal,
and blocking [Wol96]—can change the order in which different locations are accessed or even
eliminate memory references.1 In practice, to constrain compiler optimizations multithreaded
and parallel programs annotate variables or memory references that are used to preserve orders.
A particularly stringent example is the use of the volatile qualifier in a variable declaration,
which prevents the variable from being register allocated or any memory operation on the vari-
able from being reordered with respect to operations before or after it. 

Example  5-5 How would reordering the memory operations in Figure 5-7 affect semantics in a
sequential program (only one of the processes running), in a parallel program
running on a multiprocessor, and in a threaded program in which the two processes
are interleaved on the same processor. How would you solve the problem?

Answer The compiler may reorder the writes to A and flag with no impact on a sequential
program. However, this can violate our intuition for both parallel programs and
concurrent uniprocessor programs. In the latter case, a context switch can happen
between the two reordered writes, so the process switched in may see the update to
flag without seeing the update to A. Similar violations of intuition occur if the
compiler reorders the reads of flag and A. For many compilers, we can avoid these
reorderings by declaring the variable flag to be of type volatile integer

1.  Note that register allocation, performed by modern compilers to eliminate memory operations, can be
dangerous too. In fact, it can affect coherence itself, not just memory consistency. For the flag synchroniza-
tion example in Figure 5-7, if the compiler were to register allocate the flag variable for process P2, the pro-
cess could end up spinning forever: The cache-coherence hardware updates or invalidates only the memory
and the caches, not the registers of the machine, so the write propagation property of coherence is violated.
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instead of just integer. Other solutions are also possible, and will be discussed in
Chapter 9. 

Even if the compiler preserves program order, modern processors use sophisticated mechanisms
like write buffers, interleaved memory, pipelining and out-of-order execution techniques
[HeP90]. These allow memory operations from a process to issue, execute and/or complete out of
program order. These architectural and compiler optimizations work for sequential programs
because there the appearance of program order requires that dependences be preserved only
among accesses to the same memory location, as shown in Figure 5-12. 

Preserving sequential consistency in multiprocessors is quite a strong requirement; it limits com-
piler reordering and out of order processing techniques. The problem is that the out of order pro-
cessing of operations to shared variables by a process can be detected by other processes. Several
weaker consistency models have been proposed, and we will examine these in the context of
large scale shared address space machines in Chapter 6. For the purposes of this chapter, we will
assume the compiler does not perform optimizations that violate the sufficient conditions for
sequential consistency, so the program order that the processor sees is the same as that seen by
the programmer. On the hardware side, to satisfy the sufficient conditions we need mechanisms
for a processor to detect completion of its writes so it may proceed past them—completion of
reads is easy, it is when the data returns to the processor—and mechanisms to preserve write ato-
micity. For all the protocols and systems considered in this chapter, we will see how they satisfy
coherence (including write serialization), how they can satisfy sequential consistency (in particu-
lar, how write completion is detected and write atomicity is guaranteed), and what shortcuts can
be taken while still satisfying the sufficient conditions.

The serialization imposed by transactions appearing on the shared bus is very useful in ordering
memory operations. The reader should verify that the 2-state write-through invalidate protocol
discussed above actually provides sequential consistency, not just coherence, quite easily. The
key observation is that writes and read misses to all locations, not just to individual locations, are
serialized in bus order. When a read obtains the value of a write, the write is guaranteed to have
completed, since it caused a previous bus transaction. When a write is performed, all previous
writes have completed.

write A
write B
read A
read B

Figure  5-12  Preserving orders in a sequential program running on a uniprocessor.

Only the orders corresponding to the two dependence arcs must be preserved. The first two operations can be reordered without a
problem, as can the last two or the middle two. 
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5.4 Design Space for Snooping Protocols

The beauty of snooping-based cache coherence is that the entire machinery for solving a difficult
problem boils down to a small amount of extra interpretation on events that naturally occur in the
system. The processor is completely unchanged. There are no explicit coherence operations
inserted in the program. By extending the requirements on the cache controller and exploiting the
properties of the bus, the loads and stores that are inherent to the program are used implicitly to
keep the caches coherent and the serialization of the bus maintains consistency. Each cache con-
troller observes and interprets the memory transactions of others to maintain its internal state.
Our initial design point with write-through caches is not very efficient, but we are now ready to
study the design space for snooping protocols that make efficient use of the limited bandwidth of
the shared bus. All of these use write-back caches, allowing several processors to write to differ-
ent blocks in their local caches concurrently without any bus transactions. Thus, extra care is
required to ensure that enough information is transmitted over the bus to maintain coherence. We
will also see how the protocols provide sufficient ordering constraints to maintain write serializa-
tion and a sequentially consistent memory model. 

Recall that with a write-back cache on a uniprocessor, a processor write miss causes the cache to
read the entire block from memory, update a word, and retain the block as modified (or dirty) so it
may be written back on replacement. In a multiprocessor, this modified state is also used by the
protocols to indicate exclusive ownership of the block by a cache. In general, a cache is said to be
the owner of a block if it must supply the data upon a request for that block [SwS86]. A cache is
said to have an exclusive copy of a block if it is the only cache with a valid copy of the block
(main memory may or may not have a valid copy). Exclusivity implies that the cache may modify
the block without notifying anyone else. If a cache does not have exclusivity, then it cannot write
a new value into the block before first putting a transaction on the bus to communicate with oth-
ers. The data may be in the writer’s cache in a valid state, but since a transaction must be gener-
ated this is called a write miss just like a write to a block that is not present or invalid in the
cache. If a cache has the block in modified state, then clearly it is both the owner and has exclu-
sivity. (The need to distinguish ownership from exclusivity will become clear soon.)

On a write miss, then, a special form of transaction called a read-exclusive is used to tell other
caches about the impending write and to acquire a copy of the block with exclusive ownership.
This places the block in the cache in modified state, where it may now be written. Multiple pro-
cessors cannot write the same block concurrently, which would lead to inconsistent values: The
read-exclusive bus transactions generated by their writes will be serialized by the bus, so only
one of them can have exclusive ownership of the block at a time. The cache coherence actions are
driven by these two types of transactions: read and read-exclusive. Eventually, when a modified
block is replaced from the cache, the data is written back to memory, but this event is not caused
by a memory operation to that block and is almost incidental to the protocol. A block that is not
in modified state need not be written back upon replacement and can simply be dropped, since
memory has the latest copy. Many protocols have been devised for write-back caches, and we
will examine the basic alternatives.

We also consider update-based protocols. Recall that in update-based protocols, when a shared
location is written to by a processor its value is updated in the caches of all other processors hold-
ing that memory block1. Thus, when these processors subsequently access that block, they can do
so from their caches with low latency. The caches of all other processors are updated with a sin-
gle bus transaction, thus conserving bandwidth when there are multiple sharers. In contrast, with
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invalidation-based protocols, on a write operation the cache state of that memory block in all
other processors’ caches is set to invalid, so those processors will have to obtain the block
through a miss and a bus transaction on their next read. However, subsequent writes to that block
by the same processor do not create any further traffic on the bus, until the block is read by
another processor. This is attractive when a single processor performs multiple writes to the same
memory block before other processors read the contents of that memory block. The detailed
tradeoffs are quite complex and they depend on the workload offered to the machine; they will be
illustrated quantitatively in Section 5.5. In general, invalidation-based strategies have been found
to be more robust and are therefore provided as the default protocol by most vendors. Some ven-
dors provide an update protocol as an option to be used selectively for blocks corresponding to
specific data structures or pages.

The choices made for the protocol, update versus invalidate, and caching strategies directly affect
the choice of states, the state transition diagram, and the associated actions. There is substantial
flexibility available to the computer architect in the design task at this level. Instead of listing all
possible choices, let us consider three common coherence protocols that will illustrate the design
options. 

5.4.1 A 3-state (MSI) Write-back Invalidation Protocol

The first protocol we consider is a basic invalidation-based protocol for write-back caches. It is
very similar to the protocol that was used in the Silicon Graphics 4D series multiprocessor
machines [BJS88]. The protocol uses the three states required for any write-back cache in order
to distinguish valid blocks that are unmodified (clean) from those that are modified (dirty). Spe-
cifically, the states are invalid (I), shared (S), and modified (M). Invalid has the obvious meaning.
Shared means the block is present in unmodified state in this cache, main memory is up-to-date,
and zero or more other caches may also have an up-to-date (shared) copy. Modified, also called
dirty, was discussed earlier; it means that only this processor has a valid copy of the block in its
cache, the copy in main memory is stale, and no other cache may have a valid copy of the block
(in either shared or modified state). Before a shared or invalid block can be written and placed in
the modified state, all the other potential copies must be invalidated via a read-exclusive bus
transaction. This transaction serves to order the write as well as cause the invalidations and hence
ensure that the write becomes visible to others. 

The processor issues two types of requests: reads (PrRd) and writes (PrWr). The read or write
could be to a memory block that exists in the cache or to one that does not. In this latter case, the
block currently in the cache will have to be replaced by the newly requested block, and if the
existing block is in modified state its contents will have to be written back to main memory.

We assume that the bus allows the following transactions: 

Bus Read (BusRd): The cache controller puts the address on the bus and asks for a copy that 
it does not intend to modify. The memory system (possibly another cache) supplies the data. 

1.  This is a write-broadcast scenario. Read-broadcast designs have also been investigated, in which the
cache containing the modified copy flushes it to the bus on a read, at which point all other copies are
updated too.
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This transaction is generated by a PrRd that misses in the cache, and the processor expects a 
data response as a result. 

Bus Read-Exclusive (BusRdX): The cache controller puts the address on the bus and asks for 
an exclusive copy that it intends to modify. The memory system (possibly another cache) sup-
plies the data. All other caches need to be invalidated. This transaction is generated by a PrWr 
to a block that is either not in the cache or is in the cache but not in modified state. Once the 
cache obtains the exclusive copy, the write can be performed in the cache. The processor may 
require an acknowledgment as a result of this transaction. 

Writeback (BusWB): The cache controller puts the address and the contents for the memory 
block on the bus. The main memory is updated with the latest contents. This transaction is 
generated by the cache controller on a writeback; the processor does not know about it, and 
does not expect a response. 

The Bus Read-Exclusive (sometimes called read-to-own) is a new transaction that would not
exist except for cache coherence. The other new concept needed to support write-back protocols
is that in addition to changing the state of cached blocks, the cache controller can intervene in the
bus transaction and “flush” the contents of the referenced block onto the bus, rather than allow
the memory to supply the data. Of course, the cache controller can also initiate new bus transac-
tions as listed above, supply data for writebacks, or pick up data supplied by the memory system.

Figure  5-13  Basic 3-state invalidation protocol. 

I, S, and M stand for Invalid, Shared, and Modified states respectively. The notation A / B means that if we observe from processor-side
or bus-side event A, then in addition to state change, generate bus transaction or action B. “--” means null action. Transitions due to
observed bus transactions are shown in dashed arcs, while those due to local processor actions are shown in bold arcs. If multiple A / B
pairs are associated with an arc, it simply means that multiple inputs can cause the same state transition. For completeness, we need to
specify actions from each state corresponding to each observable event. If such transitions are not shown, it means that they are uninter-
esting and no action needs to be taken. Replacements and the writebacks they may cause are not shown in the diagram for simplicity.
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State Transitions

The state transition diagram that governs a block in each cache in this snoopy protocol is as
shown in Figure 5-13. The states are organized so that the closer the state is to the top the more
tightly the block is bound to that processor. A processor read to a block that is ‘invalid’ (including
not present) causes a BusRd transaction to service the miss. The newly loaded block is promoted
from invalid to the ‘shared’ state, whether or not any other cache holds a copy. Any other caches
with the block in the ‘shared’ state observe the BusRd, but take no special action, allowing the
memory to respond with the data. However, if a cache has the block in the ‘modified’ state (there
can only be one) and it observes a BusRd transaction on the bus, then it must get involved in the
transaction since the memory copy is stale. This cache flushes the data onto the bus, in lieu of
memory, and demotes its copy of the block to the shared state. The memory and the requesting
cache both pick up the block. This can be accomplished either by a direct cache-to-cache transfer
across the bus during this BusRd transaction, or by signalling an error on the BusRd transaction
and generating a write transaction to update memory. In the latter case, the original cache will
eventually retry its request and obtain the block from memory. (It is also possible to have the
flushed data be picked up only by the requesting cache but not by memory, leaving memory still
out-of-date, but this requires more states [SwS86]). 

Writing into an invalid block is a write miss, which is serviced by first loading the entire block
and then modifying the desired bytes within it. The write miss generates a read exclusive bus
transaction, which causes all other cached copies of the block to be invalidated, thereby granting
the requesting cache exclusive ownership of the block. The block is raised to the ‘modified’ state
and is then written. If another cache later requests exclusive access, then in response to its Bus-
RdX transaction this block will be demoted to the invalid state after flushing the exclusive copy
to the bus.

The most interesting transition occurs when writing into a shared block. As discussed earlier this
is treated essentially like a write miss, using a read-exclusive bus transaction to acquire exclusive
ownership, and we will refer to it as a miss throughout the book. The data that comes back in the
read-exclusive can be ignored in this case, unlike when writing to an invalid or not present block,
since it is already in the cache. In fact, a common optimization to reduce data traffic in bus proto-
cols is to introduce a new transaction, called a bus upgrade or BusUpgr, for this situation. A
BusUpgr which obtains exclusive ownership just like a BusRdX, by causing other copies to be
invalidated, but it does not return the data for the block to the requestor. Regardless of whether a
BusUpgr or a BusRdX is used (let us continue to assume BusRdX), the block transitions to mod-
ified state. Additional writes to the block while it is in the modified state generate no additional
bus transactions.

A replacement of a block from a cache logically demotes a block to invalid (not present) by
removing it from the cache. A replacement therefore causes the state machines for two blocks to
change states in that cache: the one being replaced from its current state to invalid, and the one
being brought in from invalid to its new state. The latter state change cannot take place before the
former, which requires some care in implementation. If the block being replaced was in modified
state, the replacement transition from M to I generates a write-back transaction. No special action
is taken by the other caches on this transaction. If the block being replaced was in shared or
invalid state, then no action is taken on the bus. Replacements are not shown in the state diagram
for simplicity. 
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Note that to specify the protocol completely, for each state we must have outgoing arcs with
labels corresponding to all observable events (the inputs from the processor and bus sides), and
also actions corresponding to them. Of course, the actions can be null sometimes, and in that case
we may either explicitly specify null actions (see states S and M in the figure), or we may simply
omit those arcs from the diagram (see state I). Also, since we treat the not-present state as invalid,
when a new block is brought into the cache on a miss the state transitions are performed as if the
previous state of the block was invalid. 

Example  5-6 Using the MSI protocol, show the state transitions and bus transactions for the
scenario depicted in Figure 5-3.

Answer The results are shown in Figure 5-14.

With write-back protocols, a block can be written many times before the memory is actually
updated. A read may obtain data not from memory but rather from a writer’s cache, and in fact it
may be this read rather than a replacement that causes memory to be updated. Also, write hits do
not appear on the bus, so the concept of “performing a write” is a little different. In fact, it is often
simpler to talk, equivalently, about the write being “made visible.” A write to a shared or invalid
block is made visible by the bus read-exclusive transaction it triggers. The writer will “observe”
the data in its cache; other processors will experience a cache miss before observing the write.
Write hits to a modified block are visible to other processors, but are observed by them only after
a miss through a bus transaction. Formally, in the MSI protocol, the write to a non-modified
block is performed or made visible when the BusRdX transaction occurs, and to a modified block
when the block is updated in the writer’s cache. 

Satisfying Coherence

Since both reads and writes to local caches can take place concurrently with the write-back proto-
col, it is not obvious that it satisfies the conditions for coherence, much less sequential consis-
tency. Let’s examine coherence first. The read-exclusive transaction ensures that the writing

Proc. Action State in P1 State in P2 State in P3 Bus Action Data Supplied By

1. P1 reads u S -- -- BusRd Memory

2. P3 reads u S -- S BusRd Memory

3. P3 writes u I -- M BusRdX Memory

4. P1 reads u S -- S BusRd P3’s cache

5. P2 reads u S S S BusRd Memory

Figure  5-14  The 3-state invalidation protocol in action for processor transactions shown in Figure 5-3. 

The figure shows the state of the relevant memory block at the end of each transaction, the bus transaction generated, if any, and the
entity supplying the data.
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cache has the only valid copy when the block is actually written in the cache, just like a write in
the write-through protocol. It is followed immediately by the corresponding write being per-
formed in the cache, before any other bus transactions are handled by that cache controller.The
only difference from a write-through protocol, with regard to ordering operations to a location, is
that not all writes generate bus transactions. However, the key here is that between two transac-
tions for that block that do appear on the bus, only one processor can perform such write hits; this
is the processor, say P, that performed the most recent read-exclusive bus transaction w for the
block. In the serialization, this write hit sequence therefore appears in program order between w
and the next bus transaction for that block. Reads by processor P will clearly see them in this
order with respect to other writes. For a read by another processor, there is at least one bus trans-
action that separates its completion from the completion of these write hits. That bus transaction
ensures that this read also sees the writes in the consistent serial order. Thus, reads by all proces-
sors see all writes in the same order. 

Satisfying Sequential Consistency

To see how sequential consistency is satisfied, let us first appeal to the definition itself and see
how a consistent global interleaving of all memory operations may be constructed. The serializa-
tion for the bus, in fact, defines a total order on bus transactions for all blocks, not just those to a
single block. All cache controllers observe read and read-exclusive transactions in the same
order, and perform invalidations in this order. Between consecutive bus transactions, each proces-
sor performs a sequence of memory operations (read and writes) in program order. Thus, any
execution of a program defines a natural partial order:

A memory operation  is subsequent to operation  if (i) the operations are issued by the 
same processor and  follows  in program order, or (ii)  generates a bus transaction 
that follows the memory operation for .

This partial order looks graphically like that of Figure 5-6, except the local sequence within a
segment has reads and writes and both read-exclusive and read bus transactions play important
roles in establishing the orders. Between bus transactions, any interleaving of the sequences from
different processors leads to a consistent total order. In a segment between bus transactions, a
processor can observe writes by other processors, ordered by previous bus transactions that it
generated, as well as its own writes ordered by program order. 

We can also see how SC is satisfied in terms of the sufficient conditions, which we will return to
when we look further at implementing protocols. Write completion is detected when the read-
exclusive bus transaction occurs on the bus and the write is performed in the cache. The third
condition, which provides write atomicity, is met because a read either (i) causes a bus transac-
tion that follows that of the write whose value is being returned, in which case the write must
have completed globally before the read, or (ii) follows in program order such a read by the same
processor, or (iii) follows in program order on the same processor that performed the write, in
which case the processor has already waited for the read-exclusive transaction and the write to
complete globally. Thus, all the sufficient conditions are easily guaranteed. 

Lower-Level Design Choices

To illustrate some of the implicit design choices that have been made in the protocol, let us exam-
ine more closely the transition from the M state when a BusRd for that block is observed. In
Figure 5-13 we transition to state S and the contents of the memory block are placed on the bus.

M j Mi
M j Mi M j

Mi
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While it is imperative that the contents are placed on the bus, it could instead have transitioned to
state I. The choice of going to S versus I reflects the designer’s assertion that it is more likely that
the original processor will continue reading that block than it is that the new processor will soon
write to that memory block. Intuitively, this assertion holds for mostly-read data, which is com-
mon in many programs. However, a common case where it does not hold is for a flag or buffer
that is used to transfer information back and forth between two processes: one processor writes it,
the other reads it and modifies it, then the first reads it and modifies it, and so on. The problem
with betting on read sharing in this case is that each write is preceded by an invalidate, thereby
increasing the latency of the ping-pong operation. Indeed the coherence protocol used in the
early Synapse multiprocessor made the alternate choice of directly going from M to I state on a
BusRd. Some machines (Sequent Symmetry (model B) and the MIT Alewife) attempt to adapt
the protocol when the access pattern indicates such migratory data [CoF93,DDS94]. The imple-
mentation of the protocol can also affect the performance of the memory system, as we will see
later in the chapter.

5.4.2 A 4-state (MESI) Write-Back Invalidation Protocol

A serious concern with our MSI protocol arises if we consider a sequential application running
on a multiprocessor; such multiprogrammed use in fact constitutes the most common workload
on small-scale multiprocessors. When it reads in and modifies a data item, in the MSI protocol
two bus transactions are generated even though there are never any sharers. The first is a BusRd
that gets the memory block in S state, and the second is a BusRdX (or BusUpgr) that converts the
block from S to M state. By adding a state that indicates that the block is the only (exclusive)
copy but is not modified and loading the block in this state, we can save the latter transaction
since the state indicates that no other processor is caching the block. This new state, called exclu-
sive-clean or exclusive-unowned or sometime simply exclusive, indicates an intermediate level of
binding between shared and modified. It is exclusive, so unlike the shared state it can perform a
write and move to modified state without further bus transactions; but it does imply ownership, so
unlike in the modified state the cache need not reply upon observing a request for the block
(memory has a valid copy). Variants of this MESI protocol are used in many modern micropro-
cessors, including the Intel Pentium, PowerPC 601, and the MIPS R4400 used in the Silicon
Graphics Challenge multiprocessors. It was first published by researchers at the University of
Illinois at Urbana-Champaign [PaP84] and is often referred to as the Illinois protocol [ArB86]. 

The MESI protocol consists of four states: modified(M) or dirty, exclusive-clean (E), shared (S),
and invalid (I). I and M have the same semantics as before. E, the exclusive-clean or just exclu-
sive state, means that only one cache (this cache) has a copy of the block, and it has not been
modified (i.e., the main memory is up-to-date). S means that potentially two or more processors
have this block in their cache in an unmodified state.

State Transitions

When the block is first read by a processor, if a valid copy exists in another cache then it enters
the processor’s cache in the S state as usual. However, if no other cache has a copy at the time
(for example, in a sequential application), it enters the cache in the E state. When that block is
written by the same processor, it can directly transition from E to M state without generating
another bus transaction, since no other cache has a copy. If another cache had obtained a copy in
the meantime, the state of the block would have been downgraded from E to S by the snoopy pro-
tocol. 
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This protocol places a new requirement on the physical interconnect of the bus. There must be an
additional signal, the shared signal (S), available to the controllers in order to determine on a
BusRd if any other cache currently holds the data. During the address phase of the bus transac-
tion, all caches determine if they contain the requested block and, if so, assert the shared signal.
This is a wired-OR line, so the controller making the request can observe whether there are any
other processors caching the referenced memory block and thereby decide whether to load a
requested block in the E state or the S state.

Figure 5-15 shows the state transition diagram for the MESI protocol, still assuming that the
BusUpgr transaction is not used. The notation BusRd(S) means that when the bus read transac-

tion occurred the signal “S” was asserted, and BusRd(S) means “S” was unasserted. A plain
BusRd means that we don’t care about the value of S for that transition. A write to a block in any
state will elevate the block to the M state, but if it was in the E state no bus transaction is
required. Observing a BusRd will demote a block from E to S, since now another cached copy
exists. As usual, observing a BusRd will demote a block from M to S state and cause the block to
be flushed on to the bus; here too, the block may be picked up only by the requesting cache and
not by main memory, but this will require additional states beyond MESI [SwS86]. Notice that it

PrWr / --

PrWr / BusRdX

BusRd / Flush

PrRd / 

BusRdX / Flush’

BusRd /

BusRdX /Flush

PrWr / BusRdX

PrRd / 

BusRdX / Flush

PrWr / --

PrRd / --

PrRd / --
BusRd / Flush’

Figure  5-15  State transition diagram for the Illinois MESI protocol. 

M, E, S, I stand for the Modified (dirty), Exclusive, Shared and Invalid states respectively. The notation is the same as that in Figure 5-
13. The E state helps reduce bus traffic for sequential programs where data are not shared. Whenever feasible, the protocol also makes
caches, rather than main memory, supply data for BusRd and BusRdX transactions. Since multiple processors may have a copy of the
memory block in their cache, we need to select only one to supply the data on the bus. Flush’ is true only for that processor; the
remaining processors take null action. 
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is possible for a block to be in the S state even if no other copies exist, since copies may be
replaced (S -> I) without notifying other caches. The arguments for coherence and sequential
consistency being satisfied here are the same as in the MSI protocol.

Lower-Level Design Choices

An interesting question for the protocol is who should supply the block for a BusRd transaction
when both the memory and another cache have a copy of it. In the original Illinois version of the
MESI protocol the cache, rather than main memory, supplied the data, a technique called cache-
to-cache sharing. The argument for this approach was that caches being constructed out of
SRAM, rather than DRAM, could supply the data more quickly. However, this advantage is not
quite present in many modern bus-based machines, in which intervening in another processor’s
cache to obtain data is often more expensive than obtaining the data from main memory. Cache-
to-cache sharing also adds complexity to a bus-based protocol. Main memory must wait until it is
sure that no cache will supply the data before driving the bus, and if the data resides in multiple
caches then there needs to be a selection algorithm to determine which one will provide the data.
On the other hand, this technique is useful for multiprocessors with physically distributed mem-
ory, as we will see in Chapter 6, because the latency to obtain the data from a nearby cache may
be much smaller than that for a far away memory unit. This effect can be especially important for
machines constructed as a network of SMP nodes, because caches within the SMP node may
supply the data. The Stanford DASH multiprocessor [LLJ+92] used such cache-to-cache trans-
fers for this reason. 

5.4.3 A 4-state (Dragon) Write-back Update Protocol

We now look at a basic update-based protocol for writeback caches, an enhanced version of
which is used in the SUN SparcServer multiprocessors [Cat94]. This protocol was first proposed
by researchers at Xerox PARC for their Dragon multiprocessor system [McC84,TLS88]. 

The Dragon protocol consists of four states: exclusive-clean (E), shared-clean (SC), shared-mod-
ified (SM), and modified(M). Exclusive-clean (or exclusive) again means that only one cache
(this cache) has a copy of the block, and it has not been modified (i.e., the main memory is up-to-
date). The motivation for adding the E state in Dragon is the same as that for the MESI protocol.
SC means that potentially two or more processors (including this cache) have this block in their
cache, and main memory may or may not be up-to-date. SM means that potentially two or more
processor’s have this block in their cache, main memory is not up-to-date, and it is this proces-
sor’s responsibility to update the main memory at the time this block is replaced from the cache.
A block may be in SM state in only one cache at a time. However, it is quite possible that one
cache has the block in SM state while others have it in SC state. Or it may be that no cache has it
in SM state but some have it in SC state. This is why when a cache has the block in SC state
memory may or may not be up to date; it depends on whether some cache has it in SM state. M
means, as before, that the block is modified (dirty) in this cache alone, main memory is stale, and
it is this processor’s responsibility to update main memory on replacement. Note that there is no
explicit invalid (I) state as in the previous protocols. This is because Dragon is an update-based
protocol; the protocol always keeps the blocks in the cache up-to-date, so it is always okay to use
the data present in the cache. However, if a block is not present in a cache at all, it can be imag-
ined to be there in a special invalid or not-present state.1
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The processor requests, bus transactions, and actions for the Dragon protocol are similar to the
Illinois MESI protocol. The processor is still assumed to issue only read (PrRd) and write (PrWr)
requests. However, given that we do not have an invalid state in the protocol, to specify actions
when a new memory block is first requested by the processor, we add two more request types:
processor read-miss (PrRdMiss) and write-miss (PrWrMiss). As for bus transactions, we have
bus read (BusRd), bus update (BusUpd), and bus writeback (BusWB). The BusRd and BusWB
transactions have the usual semantics as defined for the earlier protocols. BusUpd is a new trans-
action that takes the specific word written by the processor and broadcasts it on the bus so that all
other processors’ caches can update themselves. By only broadcasting the contents of the specific
word modified rather than the whole cache block, it is hoped that the bus bandwidth is more effi-
ciently utilized. (See Exercise  for reasons why this may not always be the case.) As in the MESI
protocol, to support the E state there is a shared signal (S) available to the cache controller. This
signal is asserted if there are any processors, other than the requestor, currently caching the refer-
enced memory block. Finally, as for actions, the only new capability needed is for the cache con-
troller to update a locally cached memory block (labeled Update) with the contents that are being
broadcast on the bus by a relevant BusUpd transaction.

1.  Logically there is another state as well, but it is rather crude. A mode bit is provided with each block to
force a miss when the block is accessed. Initialization software reads data into every line in the cache with
the miss mode turned on, to ensure that the processor will miss the first time it references a block that maps
to that line.

E SC

SM M

PrWr / --
PrRd / --

PrRd / --

PrRd / --

Figure  5-16  State-transition diagram for the Dragon update protocol. 

The four states are valid-exclusive (E), shared-clean (SC), shared-modified (SM), and modified (M). There is no invalid (I) state
because the update protocol always keeps blocks in the cache up-to-date.
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State Transitions

Figure 5-16 shows the state transition diagram for the Dragon update protocol. To take a proces-
sor-centric view, one can also explain the diagram in terms of actions taken when a processor
incurs a read-miss, a write-hit, or a write-miss (no action is ever taken on a read-hit).

Read Miss: A BusRd transaction is generated. Depending on the status of the shared-signal 
(S), the block is loaded in the E or SC state in the local cache. More specifically, if the block 
is in M or SM states in one of the other caches, that cache asserts the shared signal and sup-
plies the latest data for that block on the bus, and the block is loaded in local cache in SC state 
(it is also updated in main memory; if we did not want to do this, we would need more states). 
If the other cache had it in state M, it changes its state to SM. If no other cache has a copy, 
then the shared line remains unasserted, the data are supplied by the main memory and the 
block is loaded in local cache in E state.

Write: If the block is in the SM or M states in the local cache, then no action needs to be 
taken. If the block is in the E state in the local cache, then it internally changes to M state and 
again no further action is needed. If the block is in SC state, however, a BusUpd transaction is 
generated. If any other caches have a copy of the data, they update their cached copies, and 
change their state to SC. The local cache also updates its copy of the block and changes its 
state to SM. If no other cache has a copy of the data, the shared-signal remains unasserted, the 
local copy is updated and the state is changed to M. Finally, if on a write the block is not 
present in the cache, the write is treated simply as a read-miss transaction followed by a write 
transaction. Thus first a BusRd is generated, and then if the block was also found in other 
caches (i.e., the block is loaded locally in the SC state), a BusUpd is generated.

Replacement: On a replacement (arcs not shown in the figure), the block is written back to 
memory using a bus transaction only if it is in the M or SM state. If it is in the SC state, then 
either some other cache has it in SM state, or noone does in which case it is already valid in 
main memory. 

Example  5-7 Using the Dragon update protocol, show the state transitions and bus transactions
for the scenario depicted in Figure 5-3.

Answer The results are shown in Figure 5-17. We can see that while for processor actions 3
and 4 only one word is transferred on the bus in the update protocol, the whole
memory block is transferred twice in the invalidation-based protocol. Of course, it
is easy to construct scenarios where the invalidation protocol does much better than
the update protocol, and we will discuss the detailed tradeoffs later in Section 5.5.

Lower-Level Design Choices

Again, many implicit design choices have been made in this protocol. For example, it is feasible
to eliminate the shared-modified state. In fact, the update-protocol used in the DEC Firefly multi-
processor did exactly that. The reasoning was that every time the BusUpd transaction occurs, the
main memory can also update its contents along with the other caches holding that block, and
therefore, a shared-modified state is not needed. The Dragon protocol was instead based on the
assumption that since caches use SRAM and main memory uses DRAM, it is much quicker to
update the caches than main memory, and therefore it is inappropriate to wait for main memory
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to be updated on all BusUpd transactions. Another subtle choice, for example, relates to the
action taken on cache replacements. When a shared-clean block is replaced, should other caches
be informed of that replacement via a bus-transaction, so that if there is only one remaining cache
with a copy of the memory block then it can change its state to valid-exclusive or modified? The
advantage of doing this would be that the bus transaction upon the replacement may not be in the
critical path of a memory operation, while the later bus transaction it saves might be. 

Since all writes appear on the bus in an update protocol, write serialization, write completion
detection, and write atomicity are all quite straightforward with a simple atomic bus, a lot like
they were in the write-through case. However, with both invalidation and update based protocols,
there are many subtle implementation issues and race conditions that we must address, even with
an atomic bus and a single-level cache. We will discuss these in Chapter 6, as well as more realis-
tic scenarios with pipelined buses, multi-level cache hierarchies, and hardware techniques that
can reorder the completion of memory operations like write buffers. Nonetheless, we can quanti-
tatively examine protocol tradeoffs at the state diagram level that we have been considering so
far. 

5.5 Assessing Protocol Design Tradeoffs 

Like any other complex system, the design of a multiprocessor requires many decisions to be
made. Even when a processor has been picked, the designer must decide on the maximum num-
ber of processors to be supported by the system, various parameters of the cache hierarchy (e.g.,
number of levels in the hierarchy, and for each level the cache size, associativity, block size, and
whether the cache is write-through or writeback), the design of the bus (e.g., width of the data
and address buses, the bus protocol), the design of the memory system (e.g., interleaved memory
banks or not, width of memory banks, size of internal buffers), and the design of the I/O sub-
system. Many of the issues are similar to those in uniprocessors [Smi82], but accentuated. For
example, a write-through cache standing before the bus may be a poor choice for multiprocessors
because the bus bandwidth is shared by many processors, and memory may need to be inter-
leaved more because it services cache misses from multiple processors. Greater cache associativ-
ity may also be useful in reducing conflict misses that generate bus traffic. 

Proc. Action State in P1 State in P2 State in P3 Bus Action Data Supplied By

1. P1 reads u E -- -- BusRd Memory

2. P3 reads u SC -- SC BusRd Memory

3. P3 writes u SC -- SM BusUpd P3

4. P1 reads u SC -- SM null --

5. P2 reads u SC SC SM BusRd P3

Figure  5-17  The Dragon update protocol in action for processor transactions shown in Figure 5-3. 

The figure shows the state of the relevant memory block at the end of each transaction, the bus transaction generated, if any, and the
entity supplying the data.
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A crucial new design issue for a multiprocessor is the cache coherence protocol. This includes
protocol class (invalidation or update), protocol states and actions, and lower-level implementa-
tion tradeoffs that we will examine later. Protocol decisions interact with all the other design
issues. On one hand, the protocol influences the extent to which the latency and bandwidth char-
acteristics of system components are stressed. On the other, the performance characteristics as
well as organization of the memory and communication architecture influence the choice of pro-
tocols. As discussed in Chapter 4, these design decisions need to be evaluated relative to the
behavior of real programs. Such evaluation was very common in the late 1980s, albeit using an
immature set of parallel programs as workloads [ArB86,AgG88,EgK88,EgK89a,EgK89b]. 

Making design decisions in real systems is part art and part science. The art is the past experi-
ence, intuition, and aesthetics of the designers, and the science is workload-driven evaluation.
The goals are usually to meet a cost-performance target and to have a balanced system so that no
individual resource is a performance bottleneck yet each resource has only minimal excess
capacity. This section illustrates some key protocol tradeoffs by putting the workload driven eval-
uation methodology from Chapter 4 to action. 

The basic strategy is as follows. The workload is executed on a simulator of a multiprocessor
architecture, which has two coupled parts: a reference generator and a memory system simulator.
The reference generator simulates the application program’s processes and issues memory refer-
ences to the simulator. The simulator simulates the operation of the caches, bus and state
machines, and returns timing information to the reference generator, which uses this information
to determine from which process to issue the next reference. The reference generator interleaves
references from different processes, preserving timing relationships from the simulator as well as
the synchronization relationships in the parallel program. By observing the state transitions in the
simulator, we can determine the frequency of various events such as cache misses and bus trans-
actions. We can then evaluate the effect of protocol choices in terms of other design parameters
such as latency and bandwidth requirements. 

Choosing parameters according to the methodology of Chapter 4, this section first establishes the
basic state transition characteristics generated by the set of applications for the 4-state, Illinois
MESI protocol. It then illustrates how to use these frequency measurements to obtain a prelimi-
nary quantitative analysis of design tradeoffs raised by the example protocols above, such as the
use of the fourth, exclusive state in the MESI protocol and the use of BusUpgr rather then Bus-
RdX transactions for the S->M transition. It also illustrates more traditional design issues, such
as how the cache block size—the granularity of both coherence and communication—impacts
the latency and bandwidth needs of the applications. To understand this effect, we classify cache
misses into categories such as cold, capacity, and sharing misses, examine the effect of block size
on each, and explain the results in light of application characteristics. Finally, this understanding
of the applications is used to illustrate the tradeoffs between invalidation-based and update-based
protocols, again in light of latency and bandwidth implications.

One important note is that this analysis is based on the frequency of various important events, not
the absolute times taken or therefore the performance. This approach is common in studies of
cache architecture, because the results transcend particular system implementations and technol-
ogy assumptions. However, it should be viewed as only a preliminary analysis, since many
detailed factors that might affect the performance tradeoffs in real systems are abstracted away.
For example, measuring state transitions provides a means of calculating miss rates and bus traf-
fic, but realistic values for latency, overhead, and occupancy are needed to translate the rates into
the actual bandwidth requirements imposed on the system. And the bandwidth requirements
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themselves do not translate into performance directly, but only indirectly by increasing the cost
of misses due to contention. To obtain an estimate of bandwidth requirements, we may artificially
assume that every reference takes a fixed number of cycles to complete. The difficulty is incorpo-
rating contention, because it depends on the timing parameters used and on the burstiness of the
traffic which is not captured by the frequency measurements. 

The simulations used in this section do not model contention, and in fact they do not even pretend
to assume a realistic cost model. All memory operations are assumed to complete in the same
amount of time (here a single cycle) regardless of whether they hit or miss in the cache. There are
Three main reasons for this. First, the focus is on understanding inherent protocol behavior and
tradeoffs in terms of event frequencies, not so much on performance. Second, since we are exper-
imenting with different cache block sizes and organizations, we would like the interleaving of
references from application processes on the simulator to be the same regardless of these choices;
i.e. all protocols and block sizes should see the same trace of references. With execution-driven
simulation, this is only possible if we make the cost of every memory operation the same in the
simulations (e.g., one cycle), whether it hits or misses. Otherwise, if a reference misses with a
small cache block but hits with a larger one (for example) then it will be delayed by different
amounts in the interleaving in the two cases. It would therefore be difficult to determine which
effects are inherently due to the protocol and which are due to the particular parameter values
chosen. The third reason is that realistic simulations that model contention would take a lot more
time. The disadvantage of using this simple model is that the timing model may affect some of
the frequencies we observe; however, this effect is small for the applications we study. 

5.5.1 Workloads

The illustrative workloads for coherent shared address space architectures include six parallel
applications and computational kernels and one multiprogrammed workload. The parallel pro-
grams run in batch mode with exclusive access to the machine and do not include operating sys-
tem activity, at least in the simulations, while the multiprogrammed workload includes operating
system activity. The number of applications we use is relatively small, but they are primarily for
illustration and we try to choose programs that represent important classes of computation and
have widely varying characteristics. 

The parallel applications used here are taken from the SPLASH2 application suite (see Appendix
A) and were described in previous chapters. Three of them (Ocean, Barnes-Hut, and Raytrace)
were used as case studies for developing parallel programs in Chapters 2 and 3. The frequencies
of basic operations for the applications is given in Table 4-1. We now study them in more detail
to assess design tradeoffs in cache coherency protocols.

Bandwidth requirement under the MESI protocol

Driving the address traces for the workloads depicted in Table 4-1 through a cache simulator
modeling the Illinois MESI protocol generates the state-transition frequencies in Table 5-1. The
data are presented as number of state-transitions of a particular type per 100 references issued by
the processors. Note that in the tables, a new state NP (not-present) is introduced. This addition
helps to clarify transitions where on a cache miss, one block is replaced (creating a transition
from one of I, E, S, or M to NP) and a new block is brought in (creating a transition from NP to
one of I, E, S, or M). For example, we can distinguish between writebacks done due to replace-
ments (M -> NP transitions) and writebacks done because some other processor wrote to a modi-
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fied block that was cached locally (M -> I transitions). Note that the sum of state transitions can
be greater than 100, even though we are presenting averages per 100 references, because some
references cause multiple state transitions. For example, a write-miss can cause two-transitions in
the local processor’s cache (e.g., S -> NP for the old block, and NP -> M) for the incoming block,
plus transitions in other processor’s cache invalidating their copies (I/E/S/M -> I).1 This low-level
state-transition frequency data is an extremely useful way to answer many different kinds of
“what-if” questions. As a first example, we can determine the bandwidth requirement these appli-
cations would place on the memory system.

1.  For the Multiprog workload, to speed up the simulations a 32Kbyte instruction cache is used as a filter,
before passing the instruction references to the 1 Mbyte unified instruction and data cache. The state transi-
tion frequencies for the instruction references are computed based only on those references that missed in
the L1 instruction cache. This filtering does not affect any of the bus-traffic data that we will generate using
these numbers. Also, for Multiprog we present data separately for kernel instructions, kernel data refer-
ences, user instructions, and user data references. A given reference may produce transitions of multiple
types. For example, if a kernel instruction miss causes a modified user-data-block to be written back, then
we will have one transition for kernel instructions from NP -> E/S and another transition for user data refer-
ence category from M -> NP.

Table 5-1  State transitions per 1000 data memory references issued by the applications. The 
data assumes 16 processors, 1 Mbyte 4-way set-associative caches, 64-byte cache blocks, and the 

Illinois MESI coherence protocol.

Appln. From/To NP I E S M

NP 0 0 0.0011 0.0362 0.0035

I 0.0201 0 0.0001 0.1856 0.0010

Barnes-Hut E 0.0000 0.0000 0.0153 0.0002 0.0010

S 0.0029 0.2130 0 97.1712 0.1253

M 0.0013 0.0010 0 0.1277 902.782

NP 0 0 0.0000 0.6593 0.0011

I 0.0000 0 0 0.0002 0.0003

LU E 0.0000 0 0.4454 0.0004 0.2164

S 0.0339 0.0001 0 302.702 0.0000

M 0.0001 0.0007 0 0.2164 697.129

NP 0 0 1.2484 0.9565 1.6787

I 0.6362 0 0 1.8676 0.0015

Ocean E 0.2040 0 14.0040 0.0240 0.9955

S 0.4175 2.4994 0 134.716 2.2392

M 2.6259 0.0015 0 2.2996 843.565

NP 0 0 0.0068 0.2581 0.0354

I 0.0262 0 0 0.5766 0.0324

Radiosity E 0 0.0003 0.0241 0.0001 0.0060

S 0.0092 0.7264 0 162.569 0.2768

M 0.0219 0.0305 0 0.3125 839.507

NP 0 0 0.0030 1.3153 5.4051
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Example  5-8 Suppose that the integer-intensive applications run at 200 MIPS per processor, and
the floating-point intensive applications at 200 MFLOPS per processor. Assuming
that cache block transfers move 64 bytes on the data lines and that each bus

I 0.0485 0 0 0.4119 1.7050

Radix E 0.0006 0.0008 0.0284 0.0001 0

S 0.0109 0.4156 0 84.6671 0.3051

M 0.0173 4.2886 0 1.4982 906.945

NP 0 0 1.3358 0.15486 0.0026

I 0.0242 0 0.0000 0.3403 0.0000

Raytrace E 0.8663 0 29.0187 0.3639 0.0175

S 1.1181 0.3740 0 310.949 0.2898

M 0.0559 0.0001 0 0.2970 661.011

NP 0 0 0.1675 0.5253 0.1843

Multiprog I 0.2619 0 0.0007 0.0072 0.0013

User E 0.0729 0.0008 11.6629 0.0221 0.0680

Data S 0.3062 0.2787 0 214.6523 0.2570

References M 0.2134 0.1196 0 0.3732 772.7819

NP 0 0 3.2709 15.7722 0

Multiprog I 0 0 0 0 0

User E 1.3029 0 46.7898 1.8961 0

Instruction S 16.9032 0 0 981.2618 0

References M 0 0 0 0 0

NP 0 0 1.0241 1.7209 4.0793

Multiprog I 1.3950 0 0.0079 1.1495 0.1153

Kernel E 0.5511 0.0063 55.7680 0.0999 0.3352

Data S 1.2740 2.0514 0 393.5066 1.7800

References M 3.1827 0.3551 0 2.0732 542.4318

NP 0 0 2.1799 26.5124 0

Multiprog I 0 0 0 0 0

Kernel E 0.8829 0 5.2156 1.2223 0

Instruction S 24.6963 0 0 1075.2158 0

References M 0 0 0 0 0

Table 5-1  State transitions per 1000 data memory references issued by the applications. The 
data assumes 16 processors, 1 Mbyte 4-way set-associative caches, 64-byte cache blocks, and the 

Illinois MESI coherence protocol.

Appln. From/To NP I E S M
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transaction involves six bytes of command and address on the address lines, what is
the traffic generated per processor?

Answer The first step is to calculate the amount of traffic per instruction. We determine
what bus-action needs to be taken for each of the possible state-transitions and how
much traffic is associated with each transaction. For example, a M --> NP transition
indicates that due to a miss a cache block needs to be written back. Similarly, an S -
> M transition indicates that an upgrade request must be issued on the bus. The bus
actions corresponding to all possible transitions are shown in Table 5-2. All
transactions generate six bytes of address traffic and 64 bytes of address traffic,
except BusUpgr, which only generates address traffic.

At this point in the analysis the cache parameters and cache protocol are pinned
down (they are implicit in the state-transition data since they were provided to the
simulator in order to generate the data.) and the bus design parameters are pinned
down as well. We can now compute the traffic generated by the processors. Using
Table 5-2 we can convert the transitions per 1000 memory references in Table 5-1
to bus transactions per 1000 memory references, and convert this to address and
data traffic by multiplying by the traffic per transaction. Using the frequency of
memory accesses in Table 4-1 we convert this to traffic per instruction, or per
MFLOPS. Finally, multiplying by the assuming processing rate, we get the address
and data bandwidth requirement for each application. The result of this calculation
is shown by left-most bar in Figure 5-18. 

The calculation in the example above gives the average bandwidth requirement under the
assumption that the bus bandwidth is enough to allow the processors to execute at full rate. In
practice. This calculation provides a useful basis for sizing the system. For example, on a
machine such as the SGI Challenge with 1.2 GB/s of data bandwidth, the bus provides sufficient
bandwidth to support 16 processors on the applications other than Radix. A typical rule of thumb
is to leave 50% “head room” to allow for burstiness of data transfers. If the Ocean and Multiprog
workloads were excluded, the bus could support up to 32 processors. If the bandwidth is not suf-
ficient to support the application, the application will slow down due to memory waits. Thus, we
would expect the speedup curve for Radix to flatten out quite quickly as the number of processors
grows. In general a multiprocessor is used for a variety of workloads, many with low per-proces-
sor bandwidth requirements, so the designer will choose to support configurations of a size that
would overcommit the bus on the most demanding applications.

Table 5-2  Bus actions corresponding to state transitions in Illinois MESI protocol.

From/To NP I E S M

NP -- -- BusRd BusRd BusRdX

I -- -- BusRd BusRd BusRdX

E -- -- -- -- --

S -- -- not poss. -- BusUpgr

M BusWB BusWB not poss. BusWB --
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5.5.2 Impact of Protocol Optimizations

Given this base design point, we can evaluate protocol tradeoffs under common machine param-
eter assumptions.

Example  5-9 We have described two invalidation protocols in this chapter -- the basic 3-state
invalidation protocol and the Illinois MESI protocol. The key difference between
them is the existence of the valid-exclusive state in the latter. How much bandwidth
savings does the E state buy us?

Answer The main advantage of the E state is that when going from E->M, no traffic need be
generated. In this case, in the 3-state protocol we will have to generate a BusUpgr
transaction to acquire exclusive ownership for that memory block. To compute
bandwidth savings, all we have to do is put a BusUpgr for the E->M transition in
Table 5-2, and then recompute the traffic as before. The middle bar in Figure 5-18
shows the resulting bandwidth requirements. 

The example above illustrates how anecdotal rationale for a more complex design may not stand
up to quantitative analysis. We see that, somewhat contrary to expectations, the E state offers
negligible savings. This is true even for the Multiprog workload, which consists primarily of
sequential jobs. The primary reason for this negligible gain is that the fraction of E->M transi-
tions is quite small. In addition, the BusUpgr transaction that would have been needed for the S-
>M transition takes only 6 bytes of address traffic and no data traffic.

Example  5-10 Recall that for the 3-state protocol, for a write that finds the memory block in
shared state in the cache we issue a BusUpgr request on the bus, rather than a
BusRdX. This saves bandwidth, as no data need be transferred for a BusUpgr, but it
does complicate the implementation, since local copy of data can be invalidated in
the cache before the upgrade request comes back. The question is how much
bandwidth are we saving for taking on this extra complexity.

Answer To compute the bandwidth for the less complex implementation, all we have to do
is put in BusRdX in the E->M and S->M transitions in Table 5-2 and then
recompute the bandwidth numbers. The results for all applications are shown in the
right-most bar in Figure 5-18. While for most applications the difference in
bandwidth is small, Ocean and Multiprog kernel-data references show that it can be
as large as 10-20% on demanding applications.

The performance impact of these differences in bandwidth requirement depend on how the bus
transactions are actually implemented. However, this high level analysis indicates to the designer
where more detailed evaluation is required.

Finally, as we had discussed in Chapter 3, given the input data-set sizes we are using for the
above applications, it is important that we run the Ocean, Raytrace, Radix applications for
smaller 64 Kbyte cache sizes. The raw state-transition data for this case are presented in Table 5-
3  below, and the per-processor bandwidth requirements are shown in Figure 5-19. As we can see,



Assessing Protocol Design Tradeoffs

9/10/97 DRAFT: Parallel Computer Architecture 297

Figure  5-18  Per processor bandwidth requirements for the various applications assuming 200MIPS/MFLOPS processors. 

The top bar-chart shows data for SPLASH-2 applications and the bottom chart data for the Multiprog workload. The traffic is split into
data traffic and address+command bus traffic. The leftmost bar shows traffic for the Illinois MESI protocol, the middle bar for the case
where we use the basic 3-state invalidation protocol without the E state as described in Section 5.4.1, and the right most bar shows the
traffic for the 3-state protocol when we use BusRdX instead of BusUpgr for S -> M transitions.
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not having one of the critical working sets fit in the processor cache can dramatically increase the
bandwidth required. A 1.2 Gbyte/sec bus can now barely support 4 processors for Ocean and
Radix, and 16 processors for Raytrace. 

5.5.3 Tradeoffs in Cache Block Size

The cache organization is a critical performance factor of all modern computers, but it is espe-
cially so in multiprocessors. In the uniprocessor context, cache misses are typically categorized
into the “three-Cs”: compulsory, capacity, and conflict misses [HiS89,PH90]. Many studies have
examined how cache size, associativity, and block size affect each category of miss. Compulsory
misses, or cold misses, occur on the first reference to a memory block by a processor. Capacity
misses occur when all the blocks that are referenced by a processor during the execution of a pro-
gram do not fit in the cache (even with full associativity), so some blocks are replaced and later
accessed again. Conflict or collision misses occur in caches with less than full associativity, when
the collection of blocks referenced by a program that map to a single cache set do not fit in the
set. They are misses that would not have occurred in a fully associative cache. 

Capacity misses are reduced by enlarging the cache. Conflict misses are reduced by increasing
the associativity or increasing the number of blocks (increasing cache size or reducing block
size). Cold misses can only be reduced by increasing the block size, so that a single cold miss
will bring in more data that may be accessed as well. What makes cache design challenging is
that these factors trade-off against one another. For example, increasing the block size for a fixed
cache capacity will reduce the number of blocks, so the reduced cold misses may come at the
cost of increased conflict misses. In addition, variations in cache organization can affect the miss
penalty or the hit time, and therefore cycle time.

Table 5-3  State transitions per 1000 memory references issued by the applications. The data 
assumes 16 processors, 64 Kbyte 4-way set-associative caches, 64-byte cache blocks, and the 

Illinois MESI coherence protocol.

Appln. From/To NP I E S M

NP 0 0 26.2491 2.6030 15.1459

I 1.3305 0 0 0.3012 0.0008

Ocean E 21.1804 0.2976 452.580 0.4489 4.3216

S 2.4632 1.3333 0 113.257 1.1112

M 19.0240 0.0015 0 1.5543 387.780

NP 0 0 3.5130 0.9580 11.3543

I 1.6323 0 0.0001 0.0584 0.5556

Radix E 3.0299 0.0005 52.4198 0.0041 0.0481

S 1.4251 0.1797 0 56.5313 0.1812

M 8.5830 2.1011 0 0.7695 875.227

NP 0 0 7.2642 3.9742 0.1305

I 0.0526 0 0.0003 0.2799 0.0000

Raytrace E 6.4119 0 131.944 0.7973 0.0496

S 4.6768 0.3329 0 205.994 0.2835

M 0.1812 0.0001 0 0.2837 660.753
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Cache-coherent multiprocessors introduce a fourth category of misses: coherence misses. These
occur when blocks of data are shared among multiple caches, and are of two types: true sharing
and false sharing. True sharing occurs when a data word produced by one processor is used by
another. False sharing occurs when independent data words for different processors happen to be
placed in the same block. The cache block size is the granularity (or unit) of fetching data from
the main memory, and it is typically also used as the granularity of coherence. That is, on a write
by a processor, the whole cache block is invalidated in other processors’ caches. A true sharing
miss occurs when one processor writes some words in a cache block, invalidating that block in
another processor’s cache, and then the second processor reads one of the modified words. It is
called a “true” sharing miss because the miss truly communicates newly defined data values that
are used by the second processor; such misses are “essential” to the correctness of the program in
an invalidation-based coherence protocol, regardless of interactions with the machine organiza-
tion. On the other hand, when one processor writes some words in a cache block and then another
processor reads (or writes) different words in the same cache block, the invalidation of the block
and subsequent cache miss occurs as well, even though no useful values are being communicated
between the processors. These misses are thus called false-sharing misses [DSR+93]. As cache
block size is increased, the probability of distinct variables being accessed by different proces-
sors but residing on the same cache block increases. Technology pushes in the direction of large
cache block sizes (e.g., DRAM organization and access modes, and the need to obtain high-band-

Figure  5-19  Per processor bandwidth requirements for the various applications assuming 200MIPS/MFLOPS processors and 64
Kbyte caches.

The traffic is split into data traffic and address+cmd bus traffic. The leftmost bar shows traffic for the Illinois MESI protocol, the mid-
dle bar for the case where we use the basic 3-state invalidation protocol without the E state as described in Section 5.4.1, and the right
most bar shows the traffic for the 3-state protocol when we use BusRdX instead of BusUpgr for S -> M transitions.
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width data transfers by amortizing overhead), so it is important to understand the potential
impact of false sharing misses and how they may be avoided.

True-sharing misses are inherent to a given parallel decomposition and assignment; like cold
misses, the only way to decrease them is by increasing the block size and increasing spatial local-
ity of communicated data. False sharing misses, on the other hand, are an example of the artifac-
tual communication discussed in Chapter 3, since they are caused by interactions with the
architecture. In contrast to true sharing and cold misses, false sharing misses can be decreased by
reducing the cache block size, as well as by a host of other optimizations in software (orchestra-
tion) and hardware. Thus, there is a fundamental tension in determining the best cache block size,
which can only be resolved by evaluating the options against real programs.

A Classification of Cache Misses

The flowchart in Figure 5-20 gives a detailed algorithm for classification of misses.1 Understand-
ing the details is not very important for now—it is enough for the rest of the chapter to under-
stand the definitions above—but it adds insight and is a useful exercise. In the algorithm, we
define the lifetime of a block as the time interval during which the block remains valid in the
cache, that is, from the occurrence of the miss until its invalidation, replacement, or until the end
of simulation. Observe that we cannot classify a cache miss when it occurs, but only when the
fetched memory block is replaced or invalidated in the cache, because we need to know if during
the block’s lifetime the processor used any words that were written since the last true-sharing or
essential miss. Let us consider the simple cases first. Cases 1 and 2 are straightforward cold
misses occurring on previously unwritten blocks. Cases 7 and 8 reflect false and true sharing on a
block that was previously invalidated in the cache, but not discarded. The type of sharing is deter-
mined by whether the word(s) modified since the invalidation are actually used. Case 11 is a
straightforward capacity (or conflict) miss, since the block was previously replaced from the
cache and the words in the block have not been accessed since last modified. All of the other
cases refer to misses that occur due to a combination of factors. For example, cases 4 and 5 are
cold misses because this processor has never accessed the block before, however, some other pro-
cessor has written the block, so there is also sharing (false or true, depending on which words are
accessed). Similarly, we can have sharing (false or true) on blocks that were previously discarded
due to capacity. Solving only one of the problems may not necessarily eliminate such misses.
Thus, for example, if a miss occurs due to both false-sharing and capacity problems, then elimi-
nating the false-sharing problem by reducing block size will likely not eliminate that miss. On
the other hand, sharing misses are in some sense more fundamental than capacity misses, since
they will remain there even if the size of cache is increased to infinity.

Example  5-11 To illustrate the definitions that we have just given, Table 5-4 below shows how to
classify references issued by three processors P1, P2, and P3. For this example, we

1.  In this classification we do not distinguish conflict from capacity misses, since they both are a
result of the available resources becoming full and the difference between them (set versus entire
cache) does not shed additional light on multiprocessor issues.
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assume that each processor’s cache consists of a single 4-word cache block. We
also assume that the caches are all initially empty.

Impact of Block Size on Miss Rate

Applying the classification algorithm of Figure 5-20 to simulated runs of a workload we can
determine how frequently the various kinds of misses occur in programs and how the frequencies
change with variations in cache organization, such as block size. Figure 5-21 shows the decom-
position of the misses for the example applications running on 16 processors, 1 Mbyte 4-way set
associative caches, as the cache block size is varied from 8 bytes to 256 bytes. The bars show the
four basic types of misses, cold misses (cases 1 and 2), capacity misses (case 11), true-sharing
misses, (cases 4, 6, 8, 10, 12), and false-sharing misses (cases 3, 5, 7, and 9). In addition, the fig-
ure shows the frequency of upgrades, which are writes that find the block in the cache but in
shared state. They are different than the other types of misses in that the cache already has the
valid data so all that needs to be acquired is exclusive ownership, and they are are not included in
the classification scheme of Figure 5-20. However, they are still usually considered to be misses
since they generate traffic on the interconnect and can stall the processor.  

While the table only shows data for the default data-sets, in practice it is very important to exam-
ine the results as input data-set size and number of processors are scaled, before drawing conclu-
sions about the false-sharing or spatial locality of an application. The impact of such scaling is
elaborated briefly in the discussion below.

Table 5-4  Classifying misses in an example reference stream from 3 processors. If 
multiple references are listed in the same row, we assume that P1 issues before P2 and P2 

issues before P3. The notation ld/st wi refers to load/store of word i. The notation Pi.j 
points to the memory reference issued by processor i at row j.

Seq. P1 P2 P3 Miss Classification

1 ld w0 ld w2
P1 and P3 miss; but we will classify later on replace/
inval

2 st w2 P1.1: pure-cold miss; P3.2: upgrade

3 ld w1 P2 misses, but we will classify later on replace/inval

4 ld w2 ld w7 P2 hits; P3 misses; P3.1: cold miss

5 ld w5 P1 misses

6 ld w6 P2 misses; P2.3: cold-true-sharing miss (w2 accessed)

7 st w6 P1.5: cold miss; p2.7: upgrade; P3.4: pure-cold miss

8 ld w5 P1 misses

9 ld w6 ld w2 P1 hits; P3 misses

10 ld w2 ld w1 P1, P2 miss; P1.8: pure-true-share miss; P2.6: cold miss

11 st w5 P1 misses; P1.10: pure-true-sharing miss

12 st w2 P2.10: capacity miss; P3.11: upgrade

13 ld w7 P3 misses; P3.9: capacity miss

14 ld w2 P3 misses; P3.13: inval-cap-false-sharing miss

15 ld w0 P1 misses; P1.11: capacity miss
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Figure  5-21  Breakdown of application miss rates as a function of cache block size for 1MB per-processor caches. 

Conflict misses are included in capacity misses. The breakdown and behavior of misses varies greatly across applications, but there are
some sommon trends. Cold misses and capacity misses tend to decrease quite quickly with block size due to spatial locality. True shar-
ing misses. True sharing misses also tend to decrease, while false sharing misses increase. While the false sharing component is usually
small for small block sizes, it sometimes remains small and sometimes increases very quickly. 
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For each individual application the miss characteristics change with block size much as we would
expect, however, the overall characteristics differ widely across the sample programs. Cold,
capacity and true sharing misses decrease with block size because the additional data brought in
with each miss is accessed before the block is replaced, due to spatial locality. However, false
sharing misses tend to increase with block size. In all cases, true sharing is a significant fraction
of the misses, so even with ideal, infinite caches the miss rate and bus bandwidth will not go to
zero. However, the size of the true sharing component varies significantly. Furthermore, some
applications show substantial increase in false sharing with block size, while others show almost
none. Below we investigate the properties of the applications that give rise to these differences
observed at the machine level.

Relation to Application Structure 

Multi-word cache blocks exploit spatial locality by prefetching data surrounding the accessed
address. Of course, beyond a point larger cache blocks can hurt performance by: (i) prefetching
unneeded data (ii) causing increased conflict misses, as the number of distinct blocks that can be
stored in a finite-cache decreases with increasing block size; and (iii) causing increased false-
sharing misses. Spatial locality in parallel programs tends to be lower than in sequential pro-
grams because when a memory block is brought into the cache some of the data therein will
belong to another processor and will not be used by the processor performing the miss. As an
extreme example, some parallel decompositions of scientific programs assign adjacent elements
of an array to be handled by different processors to ensure good load balance, and in the process
substantially decrease the spatial locality of the program.

The data in Figure 5-21 show that LU and Ocean have both good spatial locality and little false
sharing. There is good spatial locality because the miss-rates drop proportionately to increases in
cache block size and there are essentially no false sharing misses. This is in large part because
these matrix codes use architecturally-aware data-structures. For example, a grid in Ocean is not
represented as a single 2-D array (which can introduce substantial false-sharing), but as a 2-D
array of blocks each of which is itself a 2-D array. Such structuring, by programmers or compil-
ers, ensures that most accesses are unit-stride and over small blocks of data, and thus the nice
behavior. As for scaling, the spatial locality for these applications is expected to remain good and
false-sharing non-existent both as the problem size is increased and as the number of processors
is increased. This should be true even for cache blocks larger than 256 bytes.

The graphics application Raytrace also shows negligible false sharing and somewhat poor spatial
locality. The false sharing is small because the main data structure (collection of polygons consti-
tuting the scene) is read-only. The only read-write sharing happens on the image-plane data struc-
ture, but that is well controlled and thus only a small factor. This true-sharing miss rate reduces
well with increasing cache block size. The reason for the poor spatial locality of capacity misses
(although the overall magnitude is small) is that the access pattern to the collection of polygons is
quite arbitrary, since the set of objects that a ray will bounce off is unpredictable. As for scaling,
as problem size is increased (most likely in the form of more polygons) the primary effect is
likely to be larger capacity miss rates; the spatial locality and false-sharing should not change. A
larger number of processors is in most ways similar to having a smaller problem size, except that
we may see slightly more false sharing in the image-plane data structure.

The Barnes-Hut and Radiosity applications show moderate spatial locality and false sharing.
These applications employ complex data structures, including trees encoding spatial information
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and arrays where records assigned to each processor are not contiguous in memory. For example,
Barnes-Hut operates on particle records stored in an array. As the application proceeds and parti-
cles move in physical space, particle records get reassigned to different processors, with the
result that after some time adjacent particles most likely belong to different processors. True
sharing misses then seldom see good spatial locality because adjacent records within a cache
block are often not touched. For the same reason, false sharing becomes a problem at large block
sizes, as different processors write to records that are adjacent within a cache block. Another rea-
son for the false-sharing misses is that the particle data structure (record) brings together (i) fields
that are being modified by the owner of that particle (e.g., the current force on this particle), and
(ii) fields that are read-only by other processors and that are not being modified in this phase
(e.g., the current position of the particle). Since these two fields may fall in the same cache block
for large block sizes, false-sharing results. It is possible to eliminate such false-sharing by split-
ting the particle data structure but that is not currently done, as the absolute magnitude of the
miss-rate is small. As problem size is scaled and number of processors is scaled, the behavior of
Barnes-Hut is not expected to change much. This is because the working set size changes very
slowly (as log of number of particles), spatial locality is determined by the record size of one par-
ticle and thus remains the same, and finally because the sources of false sharing are not sensitive
to number of processors. Radiosity is, unfortunately, a much more complex application whose
behavior is difficult to reason about with larger data sets or more processors; the only option is to
gather empirical data showing the growth trends.

The poorest sharing behavior is exhibited by Radix, which not only has a very high miss rate (due
to cold and true sharing misses), but which gets significantly worse due to false sharing misses
for block sizes of 128 bytes or more. The false-sharing in Radix arises as follows. Consider sort-
ing 256K keys, using a radix of 1024, and 16 processors. On average, this results in 16 keys per
radix per processor (64 bytes of data), which are then written to a contiguous portion of a global
array at a random (for our purposes) starting point. Since 64 bytes is smaller than the 128 byte
cache blocks, the high potential for false-sharing is clear. As the problem size is increased (e.g.,
to 4 million keys above), it is clear that we will see much less false sharing. The effect of increas-
ing number of processors is exactly the opposite. Radix illustrates clearly that it is not sufficient
to look at a given problem size, a given number of processors, and based on that draw conclu-
sions of whether false-sharing or spatial locality are or are not a problem. It is very important to
understand how the results are dependent on the particular parameters chosen in the experiment
and how these parameters may vary in reality.

Data for the Multiprog workload for 1 Mbyte caches are shown in Figure 5-22. The data are
shown separately for user-code, user-data, kernel-code, and kernel data. As one would expect, for
code, there are only cold and capacity misses. Furthermore, we see that the spatial locality is
quite low. Similarly, we see that the spatial locality in data references is quite low. This is true for
the application data misses, because gcc (the main application causing misses in Multiprog)
uses a large number of linked lists, which obviously do not offer good spatial locality. It is also
somewhat interesting that we have an observable fraction of true-sharing misses, although we are
running only sequential applications. They arise due to process migration; when a sequential pro-
cess migrates from one processor to another and then references memory blocks that it had writ-
ten while it was executing on the other processor, they appear as true sharing misses. We see that
the kernel data misses, far outnumber the user data misses and have just as poor spatial locality.
While the spatial locality in cold and capacity misses is quite reasonable, the true-sharing misses
do not decrease at all for kernel data.
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It is also interesting to look at the behavior of Ocean, Radix, and Raytrace for smaller 64 Kbyte
caches. The miss-rate results are shown in Figure 5-23. As expected, the overall miss rates are
higher and capacity misses have increased substantially. However, the spatial locality and false-
sharing trends are not changed significantly as compared to the results for 1 Mbyte caches,
mostly because these properties are fairly fundamental to data structure and algorithms used by a
program and are not too sensitive to cache size. The key new interaction is for the Ocean applica-
tion, where the capacity misses indicate somewhat poor spatial locality. The reason is that
because of the small cache size data blocks are being thrown out of the cache due to interference
before the processor has had a chance to reference all of the words in a cache block. Results for
false sharing and spatial locality for other applications can be found in the literature
[TLH94,JeE91]. 

Impact of Block Size on Bus Traffic

Let us briefly examine impact of cache-block size on bus traffic rather than miss rate. Note that
while the number of misses and total traffic generated are clearly related, their impact on
observed performance can be quite different. Misses have a cost that may contribute directly to
performance, even though modern microprocessors try hard to hide the latency of misses by
overlapping it with other activities. Traffic, on the other hand, affects performance only indirectly
by causing contention and hence increasing the cost of other misses. For example, if an applica-
tion program’s misses are halved by increasing the cache block size but the bus traffic is doubled,
this might be a reasonable trade-off if the application was originally using only 10% of the avail-
able bus and memory bandwidth. Increasing the bus/memory utilization to 20% is unlikely to

Figure  5-22  Breakdown of miss rates for Multiprog as a function of cache block size. 

The results are for 1MB caches. Spatial locality for true sharing misses is much better for the applications than for the OS. 
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increase the miss latencies significantly. However, if the application was originally using 75% of
the bus/memory bandwidth, then increasing the block size is probably a bad idea under these cir-
cumstances

Figure 5-24 shows the total bus traffic in bytes/instruction or bytes/FLOP as block size is varied.
There are three points to observe from this graph. Firstly, although overall miss rate decreases for
most of the applications for the block sizes presented, traffic behaves quite differently. Only LU
shows monotonically decreasing traffic for these block sizes. Most other applications see a dou-
bling or tripling of traffic as block size becomes large. Secondly, given the above, the overall traf-
fic requirements for the applications are still small for very large block sizes, with the exception
of Radix. Radix’s large bandwidth requirements (~650 Mbytes/sec per-processor for 128-byte
cache blocks, assuming 200 MIPS processor) reflect its false sharing problems at large block
sizes. Finally, the constant overhead for each bus transaction comprises a significant fraction of
total traffic for small block sizes. Hence, although actual data traffic increases as we increase the
block size, due to poor spatial locality, the total traffic is often minimized at 16-32 bytes.
Figure 5-25 shows the data for Multiprog. While the bandwidth increase from 64 byte cache
blocks to 128 byte blocks is small, the bandwidth requirements jump substantially at 256 byte
cache blocks (primarily due to kernel data references). Finally, in Figure 5-26 we show traffic
results for 64 Kbyte caches. Notice that for Ocean, even 64 and 128 byte cache blocks do not
look so bad. 

Figure  5-23  Breakdown of application miss-rates as a function of cache block size for 64 Kbyte caches.

Capacity misses are now a much larger fraction of the overall miss rate. Capacity miss rate decreases differently with
block size for different applications. 
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Figure  5-24  Traffic (in bytes/instr or bytes/flop) as a function of cache block size with 1 Mbyte per-processor caches. 

Data traffic increases quite quickly with block size when communication misses dominate, except for applications like LU that have
excellent spatial locality on all types of misses. Address and command bus traffic tends to decrease with block size since the miss rate
and hence number of blocks transferred decreases. 
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Alleviating the Drawbacks of Large Cache Blocks

The trend towards larger cache block sizes is driven by the increasing gap between processor per-
formance and memory access time. The larger block size amortizes the cost of the bus transaction
and memory access time across a greater amount of data. The increasing density of processor and
memory chips makes it possible to employ large first level and second level caches, so the
prefetching obtained through a larger block size dominates the small increase in conflict misses.
However, this trend potentially bodes poorly for multiprocessor designs, because false sharing
becomes a larger problem. Fortunately there are hardware and software mechanisms that can be
employed to counter the effects of large block size. 

The software techniques to reduce false sharing are discussed later in the chapter. These essen-
tially involve organizing data structures or work assignment so that data accessed by different
processes is not at nearby addresses. One prime example is the use of higher dimensional arrays
so blocks are contiguous. Some compiler techniques have also been developed to automate some
of these techniques of laying out data to reduce false sharing [JeE91]. 

A natural hardware mechanism is the use of sub-blocks. Each cache block has a single address
tag but distinct state bits for each of several sub-blocks. One subblock may be valid while others
are invalid (or dirty). This technique is used in many machines to reduce the memory access time
on a read miss, by resuming the processor when the accessed sub-block is present, or to reduce
the amount of data that is copied back to memory on a replacement. Under false sharing, a write
by one processor may invalidate the sub-block in another processors cache while leaving the
other sub-blocks valid. Alternatively, small cache blocks can be used, but on a miss prefetch

Figure  5-25  Traffic in bytes/instruction as a function of cache block size for Multiprog with 1Mbyte caches.

Traffic increasese quickly with block size for data references from the OS kernel.
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blocks beyond the accessed block. Proposals have also been made for caches with adjustable
block size [DuL92]. 

A more subtle hardware technique is to delay generating invalidations until multiple writes have
been performed. Delaying invalidations and performing them all at once reduces the occurrence
of intervening read misses to false shared data. However, this sort of technique can change the
memory consistency model in subtle ways, so further discussion is deferred until Chapter 6
where we consider weaker consistency models in the context of large scale machines. The other
hardware technique that is important to consider is the use of update protocols, which push
updates into other cached blocks, rather than invalidating those blocks. This option has been the
subject of considerable study.

5.5.4 Update-based vs. Invalidation-based Protocols

A larger design issue is the question of whether writes should cause cached copies to be updated
or invalidated. This has been the subject of considerable debate and various companies have
taken different stands and, in fact, changed their position from one design to the next. The contro-
versy on this topic arises because the relative performance of machines using an update-based
versus an invalidation-based protocol depends strongly on the sharing patterns exhibited by the
workload that is run and on the assumptions on cost of various underlying operations. Intuitively,

Figure  5-26  Traffic (bytes/instr or bytes/flop) as a function of cache block size with 64 Kbyte per-processor
caches.

Traffic increases more slowly now for Ocean than with 1MB caches, since the capacity misses that now dominate
exhibit excellent spatial locality (traversal of a process’s assigned subgrid). However, traffic in Radix increases
quickly once the threshold block size that causes false sharing is exceeded. 

Tr
af

fic
 (b

yt
es

/in
st

r)

0

2

4

6

8

10

12

14

ra
di

x/
8

ra
di

x/
16

ra
di

x/
32

ra
di

x/
64

ra
di

x/
12

8

ra
di

x/
25

6

ra
yt

ra
ce

/8

ra
yt

ra
ce

/1
6

ra
yt

ra
ce

/3
2

ra
yt

ra
ce

/6
4

ra
yt

ra
ce

/1
28

ra
yt

ra
ce

/2
56

Cmd

Bus

Tr
af

fic
 (b

yt
es

/F
LO

P
)

0

1

2

3

4

5

6

oc
ea

n/
8

oc
ea

n/
16

oc
ea

n/
32

oc
ea

n/
64

oc
ea

n/
12

8

oc
ea

n/
25

6

Bus Cmd



Assessing Protocol Design Tradeoffs

9/10/97 DRAFT: Parallel Computer Architecture 311

if the processors that were using the data before it was updated are likely to continue to use it in
the future, updates should perform better than invalidates. However, if the processor holding the
old data is never going to use it again, the updates are useless and just consume interconnect and
controller resources. Invalidates would clean out the old copies and eliminate the apparent shar-
ing. This latter ‘pack rat’ phenomenon is especially irritating under multiprogrammed use of an
SMP, when sequential processes migrate from processor to processor so the apparent sharing is
simply a shadow of the old process footprint. It is easy to construct cases where either scheme
does substantially better than the other, as illustrated by the following example.

Example  5-12 Consider the following two program reference patterns:

Pattern-1: Repeat k times, processor-1 writes new value into variable V and proces-
sors 2 through N read the value of V. This represents a one-producer many-consumer
scenario, that may arise for example when processors are accessing a highly-con-
tended spin-lock.

Pattern-2: Repeat k times, processor-1 writes M-times to variable V, and then proces-
sor-2 reads the value of V. This represents a sharing pattern that may occur between
pairs of processors, where the first accumulates a value into a variable, and then when
the accumulation is complete it shares the value with the neighboring processor.

What is the relative cost of the two protocols in terms of the number of cache-
misses and the bus traffic that will be generated by each scheme? To make the
calculations concrete, assume that an invalidation/upgrade transaction takes 6 bytes
(5 bytes for address, plus 1 byte command), an update takes 14 bytes (6 bytes for
address and command, and 8 bytes of data), and that a regular cache-miss takes 70
bytes (6 bytes for address and command, plus 64 bytes of data corresponding to
cache block size). Also assume that N=16, M=10, k=10, and that initially all caches
are empty. 

Answer With an update scheme, on pattern 1 the first iteration on all N processors will incur
a regular cache miss. In subsequent k-1 iterations, no more misses will occur and
only one update per iteration will be generated. Thus, overall, we will see: misses =
N = 16; traffic = N x RdMiss + (k-1). Update = 16 x 70 + 10 x 14 = 1260 bytes.

With an invalidate scheme, in the first iteration all N processors will incur a regular
cache miss. In subsequent k-1 iterations, processor-1 will generate an upgrade, but
all others will experience a read miss. Thus, overall, we will see: misses = N + (k-1)
x (N-1) = 16 + 9 x 15 = 151; traffic = misses x RdMiss + (k-1). Upgrade = 151 x 70
+ 9 x 6 = 10,624 bytes.

With an update scheme on pattern 2, in the first iteration there will be two regular
cache misses, one for processor-1 and the other for processor-2. In subsequent k-1
iterations, no more misses will be generated, but M updates will be generated each
iteration. Thus, overall, we will see: misses = 2; traffic = 2. RdMiss + M x (k-1).
Update = 2 x 70 + 10 x 9 x 14 = 1400 bytes.

With an invalidate scheme, in the first iteration there will be two regular cache miss.
In subsequent k-1 iterations, there will be one upgrade plus one regular miss each
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iteration. Thus, overall, we will see: misses = 2 + (k-1) = 2 + 9 = 11; traffic = misses
x RdMiss + (k-1) x Upgrade = 11 x 70 + 9 x 6 = 824 bytes.

The example above shows that for pattern-1 the update scheme is substantially superior, while for
pattern-2 the invalidate scheme is substantially superior. This anecdotal data suggests that it
might be possible design schemes that capture the advantages of both update and invalidate pro-
tocols. The success of such schemes will depend on the sharing patterns for real parallel pro-
grams and workloads. Let us briefly explore the design options and then employ the workload
driven evaluation of Chapter 4.

Combining Update and Invalidation-based Protocols

One way to take advantage of both update and invalidate protocols is to support both in hardware
and then to decide dynamically at a page granularity, whether coherence for any given page is to
be maintained using an update or an invalidate protocol. The decision about choice of protocol to
use can be indicated by making a system call. The main advantage of such schemes is that they
are relatively easy to support; they utilize the TLB to indicate to the rest of the coherence sub-
system which of the two protocols to use. The main disadvantage of such schemes is the substan-
tial burden they put on the programmer. The decision task is also made difficult because of the
coarse-granularity at which control is made available.

An alternative is to make the decision about choice of protocol at a cache-block granularity, by
observing the sharing behavior at run time. Ideally, for each write, one would like to be able to
peer into the future references that will be made to that location by all processors and then decide
(in a manner similar to what we used above to compute misses and traffic) whether to invalidate
other copies or to do an update. Since this information is obviously not available, and since there
are substantial perturbations to an ideal model due to cache replacements and multi-word cache
blocks, a more practical scheme is needed. So called “competitive” schemes change the protocol
for a block between invalidate and update based on observed patterns at runtime. The key
attribute of any such scheme is that if a wrong decision is made once for a cache block, the losses
due to that wrong decision should be kept bounded and small [KMR+86]. For example, if a block
is currently using update mode, it should not remain in that mode if one processor is continuously
writing to it but none of the other processors are reading values from that block.

As an example, one class of schemes that has been proposed to bound the losses of update proto-
cols works as follows [GSD95]. Starting with the base Dragon update protocol as described in
Section 5.4.3, associate a count-down counter with each block. Whenever a given cache block is
accessed by the local processor, the counter value for that block is reset to a threshold value, .
Every time an update is received for a block, the counter is decremented. If the counter goes to
zero, the block is locally invalidated. The consequence of the local invalidation is that the next
time an update is generated on the bus, it may find that no other cache has a valid (shared) copy,
and in that case (as per the Dragon protocol) that block will switch to the modified (exclusive)
state and will stop generating updates. If some other processor accesses that block, the block will
again switch to shared state and the protocol will again start generating updates. A related
approach implemented in the Sun SPARCcenter 2000 is to selectively invalidate with some prob-
ability, which is a parameter set when configuring the machine [Cat94]. Other mixed approaches
may also be used. For example, one system uses an invalidation-based protocol for first-level
caches and by default an update-based protocol for the second-level caches. However, if the L2
cache receives a second update for the block while the block in the L1 cache is still invalid, then

k
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the block is invalidated in the L2 cache as well. When the block is thus invalidated in all other L2
caches, writes to the block are no longer placed on the bus. 

Workload-driven Evaluation

To assess the tradeoffs among invalidate, update, and the mixed protocols just described,
Figure 5-27 shows the miss rates, by category for four applications using 1 MBytes, 4-way set
associative caches with a 64 byte block size. The mixed protocol used is the first one discussed in
the previous paragraph. We see that for applications with significant capacity miss rates, this cat-
egory increases with an update protocol. This make sense, because the protocol keeps data in pro-
cessor caches that would have been removed by an invalidation protocol. For applications with
significant true-sharing or false-sharing miss rates, these categories decrease with an invalidation
protocol. After a write update, the other caches holding the blocks can access them without a
miss. Overall, for these categories the update protocol appears to be advantageous and the mixed
protocol falls in between. The category that is not shown in this figure is the upgrade and update
operations for these protocols. This data is presented in Figure 5-28. Note that the scale of the
graphs have changed because update operations are roughly four times more prevalent than
misses. It is useful to separate these operations from other misses, because the way they are han-
dled in the machine is likely to be different. Updates are a single word write, rather than a full
cache block transfer. Because the data is being pushed from where it is being produced, it may
arrive at the consumer before it is even needed, so the latency of these operations may be less
critical than misses. 

The traffic associated with updates is quite substantial. In large part this occurs where multiple
writes are made to the same block. With the invalidate protocol, the first of these writes may

Figure  5-27  Miss rates and their decomposition for invalidate, update, and hybrid protocols. 

1Mbyte caches, 64byte cache blocks, 4-way set-associativity, and threshold k=4 for hybrid protocol.
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cause an invalidation, but the rest can simply accumulate in the block and be transferred in one
bus transaction on a flush or a write-back. Sophisticated update schemes might attempt to delay
the update to achieve a similar effect (by merging writes in the write buffer), or use other tech-
niques to reduce traffic and improve performance [DaS95]. However, the increased bandwidth
demand, the complexity of supporting updates, the trend toward larger cache blocks and the
pack-rat phenomenon with sequential workloads underly the trend away from update-based pro-
tocols in the industry. We will see in Chapter 8 that update protocols also have some other prob-

lems for scalable cache-coherent architectures, making it less attractive for microprocessors to
support them. 

5.6 Synchronization

A critical interplay of hardware and software in multiprocessors arises in supporting synchroni-
zation operations, mutual exclusion, point-to-point events and global events, and there has been
considerable debate over the years on what hardware primitives should be provided in multipro-
cessor machines to support these synchronization operations. The conclusions have changed
from time to time, with changes in technology and machine design style. Hardware support has
the advantage of speed, but moving functionality to software has the advantage of flexibility and
adaptability to different situations. The classic work of Dijkstra [Dij65] and Knuth [Knu66]
shows that it is possible to provide mutual exclusion with only atomic read and write operations
(assuming a sequentially consistent memory). However, all practical synchronization operations
rely on some atomic read-modify-write machine primitive, in which the value of a memory loca-

Figure  5-28  Upgrade and update rates for invalidate, update, and mixed protocols
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tion is read, modified and written back atomically without intervening accesses to the location by
other processors. Simple or sophisticated synchronization algorithms can be built using these
primitives. 

The history of instruction set design offers a glimpse into the evolving hardware support for syn-
chronization. One of the key instruction set enhancements in the IBM 370 was the inclusion of a
sophisticated atomic instruction, the compare-and-swap instruction, to support synchronization
in multiprogramming on uniprocessor or multiprocessor systems. The compare&swap compares
the value in a memory location with the value in a specified register, and if they are equal swaps
the value of the location with the value in a second register. The Intel x86 allows any instruction
to be prefixed with a lock modifier to make it atomic, so with the source and destination being
memory operands much of the instruction set can be used to implement various atomic opera-
tions involving even more than one memory location. Advocates of high level language architec-
ture have proposed that the user level synchronization operations, such a locks and barriers,
should be supported at the machine level, not just the atomic read-modify-write primitives; i.e.
the synchronization “algorithm” itself should be implemented in hardware. The issue became
very active with the reduced instruction set debates, since the operations that access memory
were scaled back to simple loads and stores with only one memory operand. The SPARC
approach was to provide atomic operations involving a register and a memory location, e.g., a
simple swap (atomically swap the contents of the specified register and memory location) and a
compare-and-swap, while MIPS left off atomic primitives in the early instruction sets, as did the
IBM Power architecture used in the RS6000. The primitive that was eventually incorporated in
MIPS was a novel combination of a special load and a conditional store, described below, which
allow higher level synchronization operations to be constructed without placing the burden of full
read-modify-write instructions on the machine implementor. In essence, the pair of instructions
can be used to implement atomic exchange (or higher-level operations) instead of a single
instruction. This approach was later incorporated in the PowerPC and DEC Alpha architectures,
and is now quite popular. Synchronization brings to light an unusually rich family of tradeoffs
across the layers of communication architecture. 

The focus of this section is how synchronization operations can be implemented on a bus-based
cache-coherent multiprocessor. In particular, it describes the implementation of mutual exclusion
through lock-unlock pairs, point-to-point event synchronization through flags, and global event
synchronization through barriers. Not only is there a spectrum of high level operations and of low
level primitives that can be supported by hardware, but the synchronization requirements of
applications vary substantially. Let us begin by considering the components of a synchronization
event. This will make it clear why supporting the high level mutual exclusion and event opera-
tions directly in hardware is difficult and is likely to make the implementation too rigid. Given
that the hardware supports only the basic atomic state transitions, we can examine role of the user
software and system software in synchronization operations, and then examine the hardware and
software design tradeoffs in greater detail.

5.6.1 Components of a Synchronization Event

There are three major components of a given type of synchronization event: 

an acquire method: a method by which a process tries to acquire the right to the synchroniza-
tion (to enter the critical section or proceed past the event synchronization)
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a waiting algorithm: a method by which a process waits for a synchronization to become 
available when it is not. For example, if a process tries to acquire a lock but the lock is not 
free (or proceed past an event but the event has not yet occurred), it must somehow wait until 
the lock becomes free. 

a release method: a method for a process to enable other processes to proceed past a synchro-
nization event; for example, an implementation of the UNLOCK operation, a method for the 
last processes arriving at a barrier to release the waiting processes, or a method for notifying a 
process waiting at a point-to-point event that the event has occurred. 

The choice of waiting algorithm is quite independent of the type of synchronization: What should
a processor that has reached the acquire point do while it waits for the release to happen? There
are two choices here: busy-waiting and blocking. Busy-waiting means that the process spins in a
loop that repeatedly tests for a variable to change its value. A release of the synchronization event
by another processor changes the value of the variable, allowing the process to proceed. Under
blocking, the process does not spin but simply blocks (suspends) itself and releases the processor
if it finds that it needs to wait. It will be awoken and made ready to run again when the release it
was waiting for occurs. The tradeoffs between busy-waiting and blocking are clear. Blocking has
higher overhead, since suspending and resuming a process involves the operating system, and
suspending and resuming a thread involves the runtime system of a threads package, but it makes
the processor available to other threads or processes with useful work to do. Busy-waiting avoids
the cost of suspension, but consumes the processor and memory system bandwidth while wait-
ing. Blocking is strictly more powerful than busy waiting, because if the process or thread that is
being waited upon is not allowed to run, the busy-wait will never end.1 Busy-waiting is likely to
be better when the waiting period is short, whereas, blocking is likely to be a better choice if the
waiting period is long and if there are other processes to run. Hybrid waiting methods can be
used, in which the process busy-waits for a while in case the waiting period is short, and if the
waiting period exceeds a certain threshold, blocks allowing other processes to run. The difficulty
in implementing high level synchronization operations in hardware is not the acquire and release
components, but the waiting algorithm. Thus, it makes sense to provide hardware support for the
critical aspects of the acquire and release and allow the three components to be glued together in
software. However, there remains a more subtle but very important hardware/software interaction
in how the spinning operation in the busy-wait component is realized.

5.6.2 Role of User, System Software and Hardware

Who should be responsible for implementing the internals of high-level synchronization opera-
tions such as locks and barriers? Typically, a programmer wants to use locks, events, or even
higher level operations and not have to worry about their internal implementation. The imple-
mentation is then left to the system, which must decide how much hardware support to provide
and how much of the functionality to implement in software. Software synchronization algo-
rithms using simple atomic exchange primitives have been developed which approach the speed
of full hardware implementations, and the flexibility and hardware simplification they afford are

1.  This problem of denying resources to the critical process or thread is one problem that is actually made
simpler in with more processors. When the processes are timeshared on a single processor, strict busy-wait-
ing without preemption is sure to be a problem. If each process or thread has its own processor, it is guaran-
teed not to be a problem. Realistic multiprogramming environments on a limited set of processors fall
somewhere in between.
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very attractive. As with other aspects of the system design, the utility of faster operations depends
on the frequency of the use of those operations in the applications. So, once again, the best
answer will be determined by a better understanding of application behavior. 

Software implementations of synchronization constructs are usually included in system libraries.
Many commercial systems thus provide subroutines or system calls that implement lock, unlock
or barrier operations, and perhaps some types of other event synchronization. Good synchroniza-
tion library design can be quite challenging. One potential complication is that the same type of
synchronization (lock, barrier), and even the same synchronization variable, may be used at dif-
ferent times under very different runtime conditions. For example, a lock may be accessed with
low-contention (a small number of processors, maybe only one, trying to acquire the lock at a
time) or with high-contention (many processors trying to acquire the lock at the same time). The
different scenarios impose different performance requirements. Under high-contention, most pro-
cesses will spend time waiting and the key requirement of a lock algorithm is that it provide high
lock-unlock bandwidth, whereas under low-contention the key goal is to provide low latency for
lock acquisition. Since different algorithms may satisfy different requirements better, we must
either find a good compromise algorithm or provide different algorithms for each type of syn-
chronization among which a user can choose. If we are lucky, a flexible library can at runtime
choose the best implementation for the situation at hand. Different synchronization algorithms
may also rely on different basic handware primitives, so some may be better suited to a particular
machine than others. A second complication is that these multiprocessors are often used for mul-
tiprogrammed workloads where process scheduling and other resource interactions can change
the synchronization behavior of the processes in a parallel program. A more sophisticated algo-
rithm that addresses multiprogramming effects may provide better performance in practice than a
simple algorithm that has lower latency and higher bandwidth in the dedicated case. All of these
factors make synchronization a critical point of hardware/software interaction.

5.6.3 Mutual Exclusion

Mutual exclusion (lock/unlock) operations are implemented using a wide range of algorithms.
The simple algorithms tend to be fast when there is little contention for the lock, but inefficient
under high contention, whereas sophisticated algorithms that deal well with contention have a
higher cost in the low contention case. After a brief discussion of hardware locks, the simplest
algorithms for memory-based locks using atomic exchange instructions are described. Then, we
discuss how the simplest algorithms can be implemented by using the special load locked and
conditional store instruction pairs to synthesize atomic exchange, in place of atomic exchange
instructions themselves, and what the performance tradeoffs are. Next, we discuss more sophisti-
cated algorithms that can be built using either method of implementing atomic exchange.

Hardware Locks

Lock operations can be supported entirely in hardware, although this is not popular on modern
bus-based machines. One option that was used one some older machines was to have a set of lock
lines on the bus, each used for one lock at a time. The processor holding the lock asserts the line,
and processors waiting for the lock wait for it to be released. A priority circuit determines which-
gets the lock next when there are multiple requestors. However, this approach is quite inflexible
since only a limited number of locks can be in use at a time and waiting algorithm is fixed (typi-
cally busy-wait with abort after timeout). Usually, these hardware locks were used only by the
operating system for specific purposes, one of which was to implement a larger set of software
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locks in memory, as discussed below. The Cray xMP provided an interesting variant of this
approach. A set of registers were shared among the processors, including a fixed collection of
lock registers[**XMP**]. Although the architecture made it possible to assign lock registers to
user processes, with only a small set of such registers it was awkward to do so in a general pur-
pose setting and, in practice, the lock registers were used primarily to implement higher level
locks in memory.

Simple Lock Algorithms on Memory Locations

Consider a lock operation used to provide atomicity for a critical section of code. For the acquire
method, a process trying to obtain a lock must check that the lock is free and if it is then claim
ownership of the lock. The state of the lock can be stored in a binary variable, with 0 representing
free and 1 representing busy. A simple way of thinking about the lock operation is that a process
trying to obtain the lock should check if the variable is 0 and if so set it to 1 thus marking the lock
busy; if the variable is 1 (lock is busy) then it should wait for the variable to turn to 0 using the
waiting algorithm. An unlock operation should simply set the variable to 0 (the release method).
Assembly-level instructions for this attempt at a lock and unlock are shown below (in our
pseudo-assembly notation, the first operand always specifies the destination if there is one).

lock: ld register, location /* copy location to register */

cmp location, #0 /* compare with 0 */

bnz lock /* if not 0, try again */

st location, #1 /* store 1 into location to mark it locked */

ret /* return control to caller of lock */

and

unlock: st location, #0 /* write 0 to location */

ret /* return control to caller */

The problem with this lock, which is supposed to provide atomicity, is that it needs atomicity in
its own implementation. To illustrate this, suppose that the lock variable was initially set to 0, and
two processes P0 and P1 execute the above assembly code implementations of the lock opera-
tion. Process P0 reads the value of the lock variable as 0 and thinks it is free, so it enters the crit-
ical section. Its next step is to set the variable to 1 marking the lock as busy, but before it can do
this process P1 reads the variable as 0, thinks the lock is free and enters the critical section too.
We now have two processes simultaneously in the same critical section, which is exactly what the
locks were meant to avoid. Putting the store of 1 into the location just after the load of the loca-
tion would not help. The two-instruction sequence—reading (testing) the lock variable to check
its state, and writing (setting) it to busy if it is free—is not atomic, and there is nothing to prevent
these operations from different processes from being interleaved in time. What we need is a way
to atomically test the value of a variable and set it to another value if the test succeeded (i.e. to
atomically read and then conditionally modify a memory location), and to return whether the
atomic sequence was executed successfully or not. One way to provide this atomicity for user
processes is to place the lock routine in the operating system and access it through a system call,
but this is expensive and leaves the question of how the locks are supported for the system itself.
Another option is to utilize a hardware lock around the instruction sequence for the lock routine,
but this also tends to be very slow compared to modern processors.
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Hardware Atomic Exchange Primitives

An efficient, general purpose solution to the lock problem is to have an atomic read-modify-write
instruction in the processor’s instruction set. A typical approach is to have and atomic exchange
instruction, in which a value at a location specified by the instruction is read into a register, and
another value—that is either a function of the value read or not—is stored into the location, all in
an atomic operation. There are many variants of this operation with varying degrees of flexibility
in the nature of the value that can be stored. A simple example that works for mutual exclusion is
an atomic test&set instruction. In this case, the value in the memory location is read into a speci-
fied register, and the constant 1 is stored into the location atomically if the value read is 0 (1 and
0 are typically used, though any other constants might be used in their place). Given such an
instruction, with the mnemonic t&s, we can write a lock and unlock in pseudo-assembly lan-
guage as follows:

lock: t&s register, location /* copy location to reg, and if 0 set location to 1 */

bnz register, lock /* compare old value returned with 0 */

/* if not 0, i.e. lock already busy, try again */

ret /* return control to caller of lock */

and

unlock: st location, #0 /* write 0 to location */

ret /* return control to caller */

The lock implementation keeps trying to acquire the lock using test&set instructions, until the
test&set returns zero indicating that the lock was free when tested (in which case the test&set has
set the lock variable to 1, thus acquiring it). The unlock construct simply sets the location associ-
ated with the lock to 0, indicating that the lock is now free and enabling a subsequent lock opera-
tion by any process to succeed. A simple mutual exclusion construct has been implemented in
software, relying on the fact that the architecture supports an atomic test&set instruction. 

More sophisticated variants of such atomic instructions exist, and as we will see are used by dif-
ferent software synchronization algorithms. One example is a swap instruction. Like a test&set,
this reads the value from the specified memory location into the specified register, but instead of
writing a fixed constant into the memory location it writes whatever value was in the register to
begin with. That is, it atomically exchanges or swaps the values in the memory location and the
register. Clearly, we can implement a lock as before by replacing the test&set with a swap
instruction as long as we ensure that the value in the register is 1 before the swap instruction is
executed.

Another example is the family of so-called fetch&op instructions. A fetch&op instruction also
specifies a location and a register. It atomically reads the value of the location into the register,
and writes into the location the value obtained by applying to the current value of the location the
operation specified by the fetch-and-op instruction. The simplest forms of fetch&op to imple-
ment are the fetch&increment and fetch&decrement instructions, which atomically read the cur-
rent value of the location into the register and increment (or decrement) the value in the location
by one. A fetch&add would take another operand which is a register or value to add into the pre-
vious value of the location. More complex primitive operations are possible. For example, the
compare&swap operation takes two register operands plus a memory location; it compares the
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value in the location with the contents of the first register operand, and if the two are equal it
swaps the contents of the memory location with the contents of the second register. 

Performance Issues

Figure 5-29 shows the performance of a simple test&set lock on the SGI Challenge.1 Perfor-
mance is measured for the following pseudocode executed repeatedly in a loop: 

lock(L); critical-section(c); unlock(L);

where c is a delay parameter that determines the size of the critical section (which is only a
delay, with no real work done). The benchmark is configured so that the same total number of
locks are executed as the number of processors increases, reflecting a situation where there is a
fixed number of tasks, independent of the number of processors. Performance is measured as the
time per lock transfer, i.e., the cumulative time taken by all processes executing the benchmark
divided by the number of times the lock is obtained. The uniprocessor time spent in the critical
section itself (i.e. c times the number of successful locks executed) is subtracted from the total
execution time, so that only the time for the lock transfers themselves (or any contention caused
by the lock operations) is obtained. All measurements are in microseconds. 

The upper curve in the figure shows the time per lock transfer with increasing number of proces-
sors when using the test&set lock with a very small critical section (ignore the curves with “back-
off” in their labels for now). Ideally, we would like the time per lock acquisition to be
independent of the number of processors competing for the lock, with only one uncontended bus
transaction per lock transfer, as shown in the curve labelled ideal. However, the figure shows that
performance clearly degrades with increasing number of processors. The problem with the
test&set lock is that every attempt to check whether the lock is free to be acquired, whether suc-
cessful or not, generates a write operation to the cache block that holds the lock variable (writing
the value to 1); since this block is currently in the cache of some other processor (which wrote it
last when doing its test&set), a bus transaction is generated by each write to invalidate the previ-
ous owner of the block. Thus, all processors put transactions on the bus repeatedly. The resulting
contention slows down the lock considerably as the number of processors, and hence the fre-
quency of test&sets and bus transactions, increases. The high degree of contention on the bus and
the resulting timing dependence of obtaining locks causes the benchmark timing to vary sharply
across numbers of processors used and even across executions.  The results shown are for a par-
ticular, representative set of executions with different numbers of processors. 

The major reason for the high traffic of the simple test&set lock above is the waiting method. A
processor waits by repeatedly issuing test&set operations, and every one of these test&set opera-
tions includes a write in addition to a read. Thus, processors are consuming precious bus band-
width even while waiting, and this bus contention even impedes the progress of the one process
that is holding the lock (as it performs the work in its critical section and attempts to release the

1.  In fact, the processor on the SGI Challenge, which is the machine for which synchronization perfor-
mance is presented in this chapter, does not provide a test&set instruction. Rather, it uses alternative primi-
tives that will be described later in this section. For these experiments, a mechanism whose behavior closely
resembles that of test&set is synthesized from the available primitives. Results for real test&set based locks
on older machines like the Sequent Symmetry can be found in the literature [GrT90, MCS87]. 
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lock).There are two simple things we can do to alleviate this traffic. First, we can reduce the fre-
quency with which processes issue test&set instructions while waiting; second, we can have pro-
cesses busy-wait only with read operations so they do not generate invalidations and misses until
the lock is actually released. Let us examine these two possibilities, called the test&set lock with
backoff and the test-and-test&set lock. 

Test&set Lock with Backoff. The basic idea with backoff is to insert a delay after an unsuccessful
attempt to acquire the lock. The delay between test&set attempts should not be too long, otherwise
processors might remain idle even when the lock becomes free. But it should be long enough that
traffic is substantially reduced. A natural question is whether the delay amount should be fixed or
should vary. Experimental results have shown that good performance is obtained by having the
delay vary “exponentially”; i.e. the delay after the first attempt is a small constant k, and then
increases geometrically so that after the ith iteration it is k*ci where c is another constant. Such a
lock is called a test&set lock with exponential backoff. Figure 5-29 also shows the performance
for the test&set lock with backoff for two different sizes of the critical section and the starting
value for backoff that appears to perform best. Performance improves, but still does not scale
very well. Performance results using a real test&set instruction on older machines can be found
in the literature [GrT90, MCS91]. See also Exercise 5.6, which discusses why the performance
with a null critical section is worse than that with a non-zero critical section when backoff is
used. 

Test-and-test&set Lock. A more subtle change to the algorithm is have it use instructions that
do not generate as much bus traffic while busy-waiting. Processes busy-wait by repeatedly read-
ing with a standard load, not a test&set, the value of the lock variable until it turns from 1
(locked) to 0 (unlocked). On a cache-coherent machine, the reads can be performed in-cache by
all processors, since each obtains a cached copy of the lock variable the first time it reads it.
When the lock is released, the cached copies of all waiting processes are invalidated, and the next

Figure  5-29  Performance of test&set locks with increasing number of competing processors on the SGI Challenge. 

The Y axis is the time per lock-unlock pair, excluding the critical section of size c microseconds. The "exp. backoff" refers to expo-
nential backoff, which will be discussed shortly. The irregular nature of the top curve is due to the timing-dependence of the conten-
tion effects caused. Note that since the processor on the SGI Challenge does not provide anatomic read-modify-write primitive but
rather more sophisticated primitives discussed later in this section, the behavior of a test&set is simulated using those primitives for
this experiment. Performance of locks that use test&set and test&set with backoff on older systems can be found in the literature
[GrT90, MCS91]. 
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read of the variable by each process will generate a read miss. The waiting processes will then
find that the lock has been made available, and will only then generate a test&set instruction to
actually try to acquire the lock. 

Before examining other lock algorithms and primitives, it is useful to articulate some perfor-
mance goals for locks and to place the above locks along them. The goals include:

Low latency If a lock is free and no other processors are trying to acquire it at the same time, 
a processor should be able to acquire it with low latency.

Low traffic Suppose many or all processors try to acquire a lock at the same time. They 
should be able to acquire the lock one after the other with as little generation of traffic or bus 
transactions as possible. High traffic can slow down lock acquisitions due to contention, and 
can also slow down unrelated transactions that compete for the bus. 

Scalability Related to the previous point, neither latency nor traffic should scale quickly with 
the number of processors used. Keep in mind that since the number of processors in a bus-
based SMP is not likely to be large, it is not asymptotic scalability that is important. 

Low storage cost The information needed for a lock should be small and should not scale 
quickly with the number of processors. 

Fairness Ideally, processors should acquire a lock in the same order as their requests are 
issued. At least, starvation or substantial unfairness should be avoided. 

Consider the simple atomic exchange or test&set lock. It is very low-latency if the same proces-
sor acquires the lock repeatedly without any competition, since the number of instructions exe-
cuted is very small and the lock variable will stay in that processor’s cache. However, as
discussed earlier it can generate a lot of bus traffic and contention if many processors compete for
the lock. The scalability of the lock is poor with the number of competing processors. The stor-
age cost is low (a single variable suffices) and does not scale with the number of processors. The
lock makes no attempt to be fair, and an unlucky processor can be starved out. The test&set lock
with backoff has the same uncontended latency as the simple test&set lock, generates less traffic
and is more scalable, takes no more storage, and is no more fair. The test-and-test&set lock has
slightly higher uncontended overhead than the simple test&set lock (it does a read in addition to
a test&set even when there is no competition), but generates much less bus traffic and is more
scalable. It too requires negligible storage and is not fair. Exercise 5.6 asks you to count the num-
ber of bus transactions and the time required for each type of lock. 

Since a test&set operation and hence a bus transaction is only issued when a processor is notified
that the lock is ready, and thereafter if it fails it spins on a cache block, there is no need for back-
off in the test-and-test&set lock. However, the lock does have the problem that all processes rush
out and perform both their read misses and their test&set instructions at about the same time
when the lock is released. Each of these test&set instructions generates invalidations and subse-
quent misses, resulting in O(p2) bus traffic for p processors to acquire the lock once each. A ran-
dom delay before issuing the test&set could help to stagger at least the test&set instructions, but
it would increase the latency to acquire the lock in the uncontended case. 

Improved Hardware Primitives: Load-locked, Store-conditional

Several microprocessors provide a pair of instructions called load locked and store conditional to
implement atomic operations, instead of a atomic read-modify-write instructions like test&set.
Let us see how these primitives can be used to implement simple lock algorithms and improve
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performance over a test-and-test&set lock. Then, we will examine sophisticated lock algorithms
that tend to use more sophisticated atomic exchange operations, which can be implemented
either as atomic instructions or with load locked and store conditional. 

In addition to spinning with reads rather than read-modify-writes, which test-and-test&set
accomplishes, it would be nice to implement read-modify-write operations in such a way that
failed attempts to complete the read-modify-write do not generate invalidations. It would also be
nice to have a single primitive that allows us to implement a range of atomic read-modify-write
operations—such as test&set, fetch&op, compare&swap—rather than implement each with a
separate instruction. Using a pair of special instructions rather than a single instruction to imple-
ment atomic access to a variable, let’s call it a synchronization variable, is one way to achieve
both goals. The first instruction is commonly called load-locked or load-linked (LL). It loads the
synchronization variable into a register. It may be followed by arbitrary instructions that manipu-
late the value in the register; i.e. the modify part of a read-modify-write. The last instruction of
the sequence is the second special instruction, called a store-conditional (SC). It writes the regis-
ter back to the memory location (the synchronization variable) if and only if no other processor
has written to that location since this processor completed its LL. Thus, if the SC succeeds, it
means that the LL-SC pair has read, perhaps modified in between, and written back the variable
atomically. If the SC detects that an intervening write has occurred to the variable, it fails and
does not write the value back (or generate any invalidations). This means that the atomic opera-
tion on the variable has failed and must be retried starting from the LL. Success or failure of the
SC is indicated by the condition codes or a return value. How the LL and SC are actually imple-
mented will be discussed later; for now we are concerned with their semantics and performance. 

Using LL-SC to implement atomic operations, lock and unlock subroutines can be written as fol-
lows, where reg1 is the register into which the current value of the memory location is loaded,
and reg2 holds the value to be stored in the memory location by this atomic exchange (reg2 could
simply be 1 for a lock attempt, as in a test&set). Many processors may perform the LL at the
same time, but only the first one that manages to put its store conditional on the bus will succeed
in its SC. This processor will have succeeded in acquiring the lock, while the others will have
failed and will have to retry the LL-SC. 

lock: ll reg1, location /* load-linked the location to reg1 */

bnz reg1, lock /* if location was locked (nonzero), try again*/

sc location, reg2 /* store reg2 conditionally into location*/

beqz  lock /* if SC failed, start again*/

ret /* return control to caller of lock */

and

unlock: st location, #0 /* write 0 to location */

ret /* return control to caller */

If the location is 1 (nonzero) when a process does its load linked, it will load 1 into reg1 and will
retry the lock starting from the LL without even attempt the store conditional.

It is worth noting that the LL itself is not a lock, and the SC itself is not an unlock. For one thing,
the completion of the LL itself does not guarantee obtaining exclusive access; in fact LL and SC
are used together to implement a lock operation as shown above. For another, even a successful
LL-SC pair does not guarantee that the instructions between them (if any) are executed atomi-
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cally with respect to those instructions on other processors, so in fact those instructions do not
constitute a critical section. All that a successful LL-SC guarantees is that no conflicting writes to
the synchronization variable accessed by the LL and SC themselves intervened between the LL
and SC. In fact, since the instructions between the LL and SC are executed but should not be vis-
ible if the SC fails, it is important that they do not modify any important state. Typically, they
only manipulate the register holding the synchronization variable—for example to perform the
op part of a fetch&op—and do not modify any other program variables (modification of the reg-
ister is okay since the register will be re-loaded anyway by the LL in the next attempt). Micropro-
cessor vendors that support LL-SC explicitly encourage software writers to follow this guideline,
and in fact often provide guidelines on what instructions are possible to insert with guarantee of
correctness given their implementations of LL-SC. The number of instructions between the LL
and SC should also be kept small to reduce the probability of the SC failing. On the other hand,
the LL and SC can be used directly to implement certain useful operations on shared data struc-
tures. For example, if the desired function is a shared counter, it makes much more sense to
implement it as the natural sequence (LL, register op, SC, test) than to build a lock and unlock
around the counter update. 

Unlike the simple test&set, the spin-lock built with LL-SC does not generate invalidations if
either the load-linked indicates that the lock is currently held or if the SC fails. However, when
the lock is released, the processors spinning in a tight loop of load-locked operations will miss on
the location and rush out to the bus with read transactions. After this, only a single invalidation
will be generated for a given lock acquisition, by the processor whose SC succeeds, but this will
again invalidate all caches. Traffic is reduced greatly from even the test-and-test&set case, down
from O(p2) to O(p) per lock acquisition, but still scales quickly with the number of processors.
Since spinning on a locked location is done through reads (load-locked operations) there is no
analog of a test-and-test&set to further improve its performance. However, backoff can be used
between the LL and SC to further reduce bursty traffic. 

The simple LL-SC lock is also low in latency and storage, but it is not a fair lock and it does not
reduce traffic to a minimum. More advanced lock algorithms can be used that both provide fair-
ness and reduce traffic. They can be built using both atomic read-modify-write instructions or
LL-SC, though of course the traffic advantages are different in the two cases. Let us consider two
of these algorithms. 

Advanced Lock Algorithms

Especially when using a test&set to implement locks, it is desirable to have only one process
attempt to obtain the lock when it is released (rather than have them all rush out to do a test&set
and issue invalidations as in all the above cases). It is even more desirable to have only one pro-
cess even incur a read miss when a lock is released. The ticket lock accomplishes the first pur-
pose, while the array-based lock accomplishes both goals but at a little cost in space. Both locks
are fair, and grant the lock to processors in FIFO order. 

Ticket Lock. The ticket lock operates just like the ticket system in the sandwich line at a grocery
store, or in the teller line at a bank. Every process wanting to acquire the lock takes a number, and
busy-waits on a global now-serving number—like the number on the LED display that we watch
intently in the sandwich line—until this now-serving number equals the number it obtained. To
release the lock, a process simply increments the now-serving number. The atomic primitive
needed is a fetch&increment, which a process uses to obtain its ticket number from a shared
counter. It may be implemented as an atomic instruction or using LL-SC. No test&set is needed
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to actually obtain the lock upon a release, since only the unique process that has its ticket number
equal now-serving attempts to enter the critical section when it sees the release. Thus, the atomic
primitive is used when a process first reaches the lock operation, not in response to a release. The
acquire method is the fetch&increment, the waiting algorithm is busy-waiting for now-serving to
equal the ticket number, and the release method is to increment now-serving. This lock has
uncontended overhead about equal to the test-and-test&set lock, but generates much less traffic.
Although every process does a fetch and increment when it first arrives at the lock (presumably
not at the same time), the simultaneous test&set attempts upon a release of the lock are elimi-
nated, which tend to be a lot more heavily contended. The ticket lock also requires constant and
small storage, and is fair since processes obtain the lock in the order of their fetch&increment
operations. However, like the simple LL-SC lock it still has a traffic problem. The reason is that
all processes spin on the same variable (now-serving). When that variable is written at a release,
all processors’ cached copies are invalidated and they all incur a read miss. (The simple LL-SC
lock was somewhat worse in this respect, since in that case another invalidation and set of read
misses occurred when a processor succeeded in its SC.) One way to reduce this bursty traffic is to
introduce a form of backoff. We do not want to use exponential backoff because we do not want
all processors to be backing off when the lock is released so none tries to acquire it for a while. A
promising technique is to have each processor backoff from trying to read the now-serving
counter by an amount proportional to when it expects its turn to actually come; i.e. an amount
proportional to the difference in its ticket number and the now-serving counter it last read. Alter-
natively, the array-based lock eliminates this extra read traffic upon a release completely, by hav-
ing every process spin on a distinct location. 

Array-based Lock. The idea here is to use a fetch&increment to obtain not a value but a unique
location to busy-wait on. If there are p processes that might possibly compete for a lock, then the
lock contains an array of p locations that processes can spin on, ideally each on a separate mem-
ory block to avoid false-sharing. The acquire method then uses a fetch&increment operation to
obtain the next available location in this array (with wraparound) to spin on, the waiting method
spins on this location, and the release method writes a value denoting “unlocked” to the next
location in the array after the one that the releasing processor was itself spinning on. Only the
processor that was spinning on that location has its cache block invalidated, and its consequent
read miss tells it that it has obtained the lock. As in the ticket lock, no test&set is needed after the
miss since only one process is notified when the lock is released. This lock is clearly also FIFO
and hence fair. It’s uncontended latency is likely to be similar to that of the test-and-test&set lock
(a fetch&increment followed by a read of the assigned array location), and it is more scalable
than the ticket lock since only one process incurs the read miss. It’s only drawback for a bus-
based machine is that it uses O(p) space rather than O(1), but with both p and the proportionality
constant being small this is usually not a very significant drawback. It has a potential drawback
for distributed memory machines, but we shall discuss this and lock algorithms that overcome
this drawback in Chapter 7. 

Performance

Let us briefly examine the performance of the different locks on the SGI Challenge, as shown in
Figure 5-30. All locks are implemented using LL-SC, since the Challenge provides only these
and not atomic instructions. The test&set locks are implemented by simulating a test&set using
LL-SC, just as they were in Figure 5-29, and are shown as leaping off the graph for reference1. In
particular, every time an SC fails a write is performed to another variable on the same cache
block, causing invalidations as a test&set would. Results are shown for a somewhat more param-
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eterized version of the earlier code for test&set locks, in which a process is allowed to insert a
delay between its release of the lock and its next attempt to acquire it. That is, the code is a loop
over the following body:

lock(L); critical_section(c); unlock(L); delay(d);

Let us consider three cases—(i) c=0, d=0, (ii) c=3.64 µs, d=0, and (iii) c=3.64 µs, d=1.29 µs—
called null, critical-section, and delay, respectively. The delays c and d are inserted in the code as
round numbers of processor cycles, which translates to these microsecond numbers. Recall that
in all cases c and d (multiplied by the number of lock acquisitions by each processor) are sub-
tracted out of the total time, which is supposed to measure the total time taken for a certain num-
ber of lock acquisitions and releases only (see also Exercise 5.6). 

Consider the null critical section case. The first observation, comparing with Figure 5-29, is that
all the subsequent locks we have discussed are indeed better than the test&set locks as expected.
The second observation is that the simple LL-SC locks actually perform better than the more
sophisticated ticket lock and array-based lock. For these locks, that don’t encounter so much con-
tention as the test&set lock, with reasonably high-bandwidth busses the performance of a lock is
largely determined by the number of bus transactions between a release and a successful acquire.
The reason that the LL-SC locks perform so well, particularly at lower processor counts, is that
they are not fair, and the unfairness is exploited by architectural interactions! In particular, when
a processor that does a write to release a lock follows it immediately with the read (LL) for its
next acquire, it’s read and SC are likely to succeed in its cache before another processor can read
the block across the bus. (The bias on the Challenge is actually more severe, since the releasing
processor can satisfy its next read from its write buffer even before the corresponding read-exclu-
sive gets out on the bus.) Lock transfer is very quick, and performance is good. As the number of
processors increases, the likelihood of self-transfers decreases and bus traffic due to invalidations
and read misses increases, so the time per lock transfer increases. Exponential backoff helps
reduce the burstiness of traffic and hence slows the rate of scaling. 

1.  This method of simulating test&set with LL-SC may lead to somewhat worse performance than a true
test&set primitive, but it conveys the trend. 

Figure  5-30  Performance of locks on the SGI Challenge, for three different scenarios. 

(a) null (c=0, d=0) (b) critical-section (c=3.64 µs, d=0) (c) delay (c=3.64 µs, d=1.29 µs)
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At the other extreme (c=3.64, d=1.29), we see the LL-SC lock doing not quite so well, even at
low processor counts. This is because a processor waits after its release before trying to acquire
the lock again, making it much more likely that some other waiting processor will acquire the
lock before it. Self-transfers are unlikely, so lock transfers are slower even at two processors. It is
interesting that performance is particularly worse for the backoff case at small processor counts
when the delay d between unlock and lock is non-zero. This is because with only a few proces-
sors, it is quite likely that while a processor that just released the lock is waiting for d to expire
before doing its next acquire, the other processors are in a backoff period and not even trying to
acquire the lock. Backoff must be used carefully for it to be successful.

Consider the other locks. These are fair, so every lock transfer is to a different processor and
involves bus transactions in the critical path of the transfer. Hence they all start off with a jump to
about 3 bus transactions in the critical path per lock transfer even when two processors are used.
Actual differences in time are due to what exactly the bus transactions are and how much of their
latency can be hidden from the processor. The ticket lock without backoff scales relatively
poorly: With all processors trying to read the now-serving counter, the expected number of bus
transactions between the release and the read by the correct processor is p/2, leading to the
observed linear degradation in lock transfer critical path. With successful proportional backoff, it
is likely that the correct processor will be the one to issue the read first after a release, so the time
per transfer does not scale with p. The array-based lock also has a similar property, since only the
correct processor issues a read, so its performance also does not degrade with more processors. 

The results illustrate the importance of architectural interactions in determining the performance
of locks, and that simple LL-SC locks perform quite well on busses that have high enough band-
width (and realistic numbers of processors for busses). Performance for the unfair LL-SC lock
scales to become as bad as or a little worse than for the more sophisticated locks beyond 16 pro-
cessors, due to the higher traffic, but not by much because bus bandwidth is quite high. When
exponential backoff is used to reduce traffic, the simple LL-SC lock delivers the best average
lock transfer time in all cases. The results also illustrate the difficulty and the importance of
sound experimental methodology in evaluating synchronization algorithms. Null critical sections
display some interesting effects, but meaningful comparison depend on what the synchronization
patterns look like in practice in real applications. An experiment to use LL-SC but guarantee
round-robin acquisition among processors (fairness) by using an additional variable showed per-
formance very similar to that of the ticket lock, confirming that unfairness and self-transfers are
indeed the reason for the better performance at low processor counts. 

Lock-free, Non-blocking, and Wait-free Synchronization

An additional set of performance concerns involving synchronization arise when we consider
that the machine running our parallel program is used in a multiprogramming environment. Other
processes run for periods of time or, even if we have the machine to ourselves, background dae-
mons run periodically, processes take page faults, I/O interrupts occur, and the process scheduler
makes scheduling decisions with limited information on the application requirements. These
events can cause the rate at which processes make progress to vary considerably. One important
question is how the program as a whole slows down when one process is slowed. With traditional
locks the problem can be serious because if a process holding a lock stops or slows while in its
critical section, all other processes may have to wait. This problem has received a good deal of
attention in work on operating system schedulers and in some cases attempts are made to avoid
preempting a process that is holding a lock. There is another line of research that takes the view
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that lock-based operations are not very robust and should be avoided. If a process dies while
holding a lock, other processes hang. It can be observed that many of the lock/unlock operations
are used to support operations on a data structure or object that is shared by several processes, for
example to update a shared counter or manipulate a shared queue. These higher level operation
can be implemented directly using atomic primitives without actually using locks.

A shared data structure is lock-free if its operations do not require mutual exclusion over multiple
instructions. If the operations on the data structure guarantee that some process will complete its
operation in finite amount of time, even if other processes halt, the data structure is non-blocking.
If the data structure operations can guantee that every (non-faulty) process will complete its oper-
ation in a finite amount of time, then the data structure is wait-free.[Her93]. There is a body of lit-
erature that investigates the theory and practice of such data structures, including requirements
on the basic atomic primitives[Her88], general purpose techniques for translating sequential
operations to non-blocking concurrent operations[Her93], specific useful lock-free data struc-
tures [Val95,MiSc96], operating system implementations [MaPu91,GrCh96] and proposals for
architectural support[HeMo93]. The basic approach is to implement updates to a shared object by
reading a portion of the object to make a copy, updating the copy, and then performing an opera-
tion to commit the change only if no conflicting updates have been made. As a simple example,
consider a shared counter. The counter is read into a register, a value is added to the register copy
and the result put in a second register, then a compare-and-swap is performed to update the
shared counter only if its value is the same as the copy. For more sophisticated data structures a
linked structure is used and typically the new element is linked into the shared list if the insert is
still valid. These techniques serve to limit the window in which the shared data structure is in an
inconsistent state, so they improve the robustness, although it can be difficult to make them effi-
cient.

Having discussed the options for mutual exclusion on bus-based machines, let us move on to
point-to-point and then barrier event synchronization. 

5.6.4 Point-to-point Event Synchronization

Point-to-point synchronization within a parallel program is often implemented using busy-wait-
ing on ordinary variables as flags. If we want to use blocking instead of busy-waiting, we can use
semaphores just as they are used in concurrent programming and operating systems [TaW97]. 

Software Algorithms

Flags are control variables, typically used to communicate the occurrence of a synchronization
event, rather than to transfer values. If two processes have a producer-consumer relationship on
the shared variable a, then a flag can be used to manage the synchronization as shown below:

P1 P2

a = f(x); /* set a */ while (flag is 0) do nothing;

flag = 1; b = g(a); /* use a */

If we know that the variable a is initialized to a certain value, say 0, which will be changed to a
new value we are interested in by this production event, then we can use a itself as the synchroni-
zation flag, as follows:
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P1 P2

a = f(x); /* set a */ while (a is 0) do nothing;

b = g(a); /* use a */

This eliminates the need for a separate flag variable, and saves the write to and read of that vari-
able. 

Hardware Support: Full-empty Bits

The last idea above has been extended in some research machines—although mostly machines
with physically distributed memory—to provide hardware support for fine-grained producer-con-
sumer synchronization. A bit, called a full-empty bit, is associated with every word in memory.
This bit is set when the word is “full” with newly produced data (i.e. on a write), and unset when
the word is “emptied” by a processor consuming those data (i.e. on a read). Word-level producer-
consumer synchronization is then accomplished as follows. When the producer process wants to
write the location it does so only if the full-empty bit is set to empty, and then leaves the bit set to
full. The consumer reads the location only if the bit is full, and then sets it to empty. Hardware
preserves the atomicity of the read or write with the manipulation of the full-empty bit. Given
full-empty bits, our example above can be written without the spin loop as:

P1 P2

a = f(x); /* set a */ b = g(a); /* use a */

Full-empty bits raise concerns about flexibility. For example, they do not lend themselves easily
to single-producer multiple-consumer synchronization, or to the case where a producer updates a
value multiple times before a consumer consumes it. Also, should all reads and writes use full-
empty bits or only those that are compiled down to special instructions? The latter requires sup-
port in the language and compiler, but the former is too restrictive in imposing synchronization
on all accesses to a location (for example, it does not allow asynchronous relaxation in iterative
equation solvers, see Chapter 2). For these reasons and the hardware cost, full-empty bits have
not found favor in most commercial machines. 

Interrupts

Another important kind of event is the interrupt conveyed from an I/O device needing attention to
a processor. In a uniprocessor machine there is no question where the interrupt should go, but in
an SMP any processor can potentially take the interrupt. In addition, there are times when one
processor may need to issue an interrupt to another. In early SMP designs special hardware was
provided to monitor the priority of the process on each processor and deliver the I/O interrupt to
the processor running at lowest priority. Such measures proved to be of small value and most
modern machines use simple arbitration strategies. In addition, there is usually a memory
mapped interrupt control region, so at kernel level any processor can interrupt any other by writ-
ing the interrupt information at the associated address.
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5.6.5 Global (Barrier) Event Synchronization

Software Algorithms

Software algorithms for barriers are typically implemented using locks, shared counters and
flags. Let us begin with a simple barrier among p processes, which is called a centralized barrier
since it uses only a single lock, a single counter and a single flag. 

Centralized Barrier

A shared counter maintains the number of processes that have arrived at the barrier, and is there-
fore incremented by every arriving process. These increments must be mutually exclusive. After
incrementing the counter, the process checks to see if the counter equals p, i.e. if it is the last pro-
cess to have arrived. If not, it busy waits on the flag associated with the barrier; if so, it writes the
flag to release the waiting processes. A simple barrier algorithm may therefore look like:

struct bar_type {
int counter;
struct lock_type lock;
int flag = 0;

} bar_name;

BARRIER (bar_name, p) 
{

LOCK(bar_name.lock);

if (bar_name.counter == 0) 

bar_name.flag = 0; /* reset flag if first to reach*/

mycount = bar_name.counter++; /* mycount is a private variable*/

UNLOCK(bar_name.lock);

if (mycount == p) { /* last to arrive */

bar_name.counter = 0; /* reset counter for next barrier */

bar_name.flag = 1; /* release waiting processes */

}

else 

while (bar_name.flag == 0) {};/* busy wait for release */

}

Centralized Barrier with Sense Reversal

Can you see a problem with the above barrier? There is one. It occurs when the same barrier (bar-
rier bar_name above) is used consecutively. That is, each processor executes the following code:
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some computation...

BARRIER(bar1, p);

some more computation...

BARRIER(bar1, p);

The first process to enter the barrier the second time re-initializes the barrier counter, so that is
not a problem. The problem is the flag. To exit the first barrier, processes spin on the flag until it
is set to 1. Processes that see flag change to one will exit the barrier, perform the subsequent com-
putation, and enter the barrier again. Suppose one processor Px gets stuck while in the spin loop;
for example, it gets swapped out by the operating system because it has been spinning too long.
When it is swapped back in, it will continue to wait for the flag to change to 1. However, in the
meantime other processes may have entered the second instance of the barrier, and the first of
these will have reset the flag to 0. Now the flag will only get set to 1 again when all p processes
have registered at the new instance of the barrier, which will never happen since Px will never
leave the spin loop and get to this barrier instance. 

How can we solve this problem? What we need to do is prevent a process from entering a new
instance of a barrier before all processes have exited the previous instance of the same barrier.
One way is to use another counter to count the processes that leave the barrier, and not let a pro-
cess enter a new barrier instance until this counter has turned to p for the previous instance. How-
ever, manipulating this counter incurs further latency and contention. A better solution is the
following. The main reason for the problem in the previous case is that the flag is reset before all
processes reach the next instance of the barrier. However, with the current setup we clearly can-
not wait for all processes to reach the barrier before resetting the flag, since that is when we actu-
ally set the flag for the release. The solution is to have processes wait for the flag to obtain a
different value in consecutive instances of the barrier, so for example processes may wait for the
flag to turn to 1 in one instance and to turn to 0 in the next instance. A private variable is used per
process to keep track of which value to wait for in the current barrier instance. Since by the
semantics of a barrier a process cannot get more than one barrier ahead of another, we only need
two values (0 and 1) that we toggle between each time, so we call this method sense-reversal.
Now the flag need not be reset when the first process reaches the barrier; rather, the process stuck
in the old barrier instance still waits for the flag to reach the old release value (sense), while pro-
cesses that enter the new instance wait for the other (toggled) release value. The value of the flag
is only changed when all processes have reached the barrier instance, so it will not change before
processes stuck in the old instance see it. Here is the code for a simple barrier with sense-rever-
sal.
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BARRIER (bar_name, p) 

{

local_sense = !(local_sense); /* toggle private sense variable */

LOCK(bar_name.lock);

mycount = bar_name.counter++; /* mycount is a private variable*/

if (bar_name.counter == p) { /* last to arrive */

UNLOCK(bar_name.lock);

bar_name.counter = 0; /* reset counter for next barrier */

bar_name.flag = local_sense; /* release waiting processes */

}

else {

UNLOCK(bar_name.lock);

while (bar_name.flag != local_sense) {};/* busy wait for release */

}

}

The lock is not released immediately after the increment of the counter, but only after the condi-
tion is evaluated; the reason for this is left as an exercise (see Exercise 5.7) We now have a cor-
rect barrier that can be reused any number of times consecutively. The remaining issue is
performance, which we examine next. (Note that the LOCK/UNLOCK protecting the increment
of the counter can be replaced more efficiently by a simple LL-SC or atomic increment operation. 

Performance Issues

The major performance goals for a barrier are similar to those for locks:

Low latency (small critical path length) Ignoring contention, we would like the number of 
operations in the chain of dependent operations needed for p processors to pass the barrier to 
be small. 

Low traffic Since barriers are global operations, it is quite likely that many processors will try 
to execute a barrier at the same time. We would like the barrier algorithm to reduce the num-
ber of bus transactions and hence the possible contention. 

Scalability Related to traffic, we would like to have a barrier that scales well to the number of 
processors we may want to support. 

Low storage cost We would of course like to keep the storage cost low. 

Fairness This is not much of an issue since all processors get released at about the same time, 
but we would like to ensure that the same processor does not always become the last one to 
exit the barrier, or to preserve FIFO ordering. 

In a centralized barrier, each processor accesses the lock once, so the critical path length is at
least p. Consider the bus traffic. To complete its operation, a centralized barrier involving p pro-
cessors performs 2p bus transactions to get the lock and increment the counter, two bus transac-
tions for the last processor to reset the counter and write the release flag, and another p-1 bus
transactions to read the flag after it has been invalidated. Note that this is better than the traffic for
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even a test-and-test&set lock to be acquired by p processes, because in that case each of the p
releases causes an invalidation which results in O(p) processes trying to perform the test&set
again, thus resulting in O(p2) bus transactions. However, the contention resulting from these
competing bus transactions can be substantial if many processors arrive at the barrier simulta-
neously, and barriers can be expensive. 

Improving Barrier Algorithms for a Bus

Let us see if we can devise a better barrier for a bus. One part of the problem in the centralized
barrier is that all processors contend for the same lock and flag variables. To address this, we can
construct barriers that cause less processors to contend for the same variable. For example, pro-
cessors can signal their arrival at the barrier through a software combining tree (see Chapter 3,
Section 3.4.2). In a binary combining tree, only two processors notify each other of their arrival
at each node of the tree, and only one of the two moves up to participate at the next higher level
of the tree. Thus, only two processors access a given variable. In a network with multiple parallel
paths, such as those found in larger-scale machines, a combining tree can perform much better
than a centralized barrier since different pairs of processors can communicate with each other in
different parts of the network in parallel. However, with a centralized interconnect like a bus,
even though pairs of processors communicate through different variables they all generate trans-
actions and hence contention on the same bus. Since a binary tree with p leaves has approxi-
mately 2p nodes, a combining tree requires a similar number of bus transactions to the
centralized barrier. It also has higher latency since it requires log p steps to get from the leaves to
the root of the tree, and in fact on the order of p serialized bus transactions. The advantage of a
combining tree for a bus is that it does not use locks but rather simple read and write operations,
which may compensate for its larger uncontended latency if the number of processors on the bus
is large. However, the simple centralized barrier performs quite well on a bus, as shown in
Figure 5-31. Some of the other, more scalable barriers shown in the figure for illustration will be
discussed, along with tree barriers, in the context of scalable machines in Chapter 7. 

Figure  5-31  Performance of some barriers on the SGI Challenge.

Performance is measured as average time per barrier over a loop of many consecutive barriers. The higher critical path latency of the
combining barrier hurts it on a bus, where it has no traffic and contention advantages. 
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Hardware Primitives

Since the centralized barrier uses locks and ordinary reads/writes, the hardware primitives
needed depend on what lock algorithms are used. If a machine does not support atomic primitives
well, combining tree barriers can be useful for bus-based machines as well.

A special bus primitive can be used to reduce the number of bus transactions in the centralized
barrier. This optimization takes advantage of the fact that all processors issue a read miss for the
same value of the flag when they are invalidated at the release. Instead of all processors issuing a
separate read miss bus transaction, a processor can monitor the bus and abort its read miss before
putting it on the bus if it sees the response to a read miss to the same location (issued by another
processor that happened to get the bus first), and simply take the return value from the bus. In the
best case, this “piggybacking” can reduce the number of read miss bus transactions from p to
one. 

Hardware Barriers

If a separate synchronization bus is provided, it can be used to support barriers in hardware too.
This takes the traffic and contention off the main system bus, and can lead to higher-performance
barriers. Conceptually, a wired-AND is enough. A processor sets its input to the gate high when it
reaches the barrier, and waits till the output goes high before it can proceed. (In practice, reusing
barriers requires that more than a single wire be used.) Such a separate hardware mechanism for
barriers is particularly useful if the frequency of barriers is very high, as it may be in programs
that are automatically parallelized by compilers at the inner loop level and need global synchro-
nization after every innermost loop. However, it can be difficult to manage when not all proces-
sors on the machine participate in the barrier. For example, it is difficult to dynamically change
the number of processors participating in the barrier, or to adapt the configuration when pro-
cesses are migrated among processors by the operating system. Having multiple participating
processes per processor also causes complications. Current bus-based multiprocessors therefore
do not tend to provide special hardware support, but build barriers in software out of locks and
shared variables. 

5.6.6 Synchronization Summary

While some bus-based machines have provided full hardware support for synchronization opera-
tions such as locks and barriers, issues related to flexibility and doubts about the extent of the
need for them has led to a movement toward providing simple atomic operations in hardware and
synthesizing higher level synchronization operations from them in software libraries. The pro-
grammer can thus be unaware of these low-level atomic operations. The atomic operations can be
implemented either as single instructions, or through speculative read-write instruction pairs like
load-locked and store-conditional. The greater flexibility of the latter is making them increas-
ingly popular. We have already seen some of the interplay between synchronization primitives,
algorithms, and architectural details. This interplay will be much more pronounced when we dis-
cuss synchronization for scalable shared address space machines in the coming chapters. Theo-
retical research has identified the properties of different atomic exchange operations in terms of
the time complexity of using them to implement synchronized access to variables. In particular, it
is found that simple operations like test&set and fetch&op are not powerful enough to guarantee
that the time taken by a processor to access a synchronized variable is independent of the number
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of processors, while more sophisticated atomic operations like compare&swap and an memory-
to-memory swap are [Her91]. 

5.7 Implications for Software

So far, we have looked at architectural issues and how architectural and protocol tradeoffs are
affected by workload characteristics. Let us now come full circle and examine how the architec-
tural characteristics of these small-scale machines influence parallel software. That is, instead of
keeping the workload fixed and improving the machine or its protocols, we keep the machine
fixed and examine how to improve parallel programs. Improving synchronization algorithms to
reduce traffic and latency was an example of this, but let us look at the parallel programming pro-
cess more generally, particularly the data locality and artifactual communication aspects of the
orchestration step. 

Of the techniques discussed in Chapter 3, those for load balance and inherent communication are
the same here as in that general discussion. In addition, one general principle that is applicable
across a wide range of computations is to try to assign computation such that as far as possible
only one processor writes a given set of data, at least during a single computational phase. In
many computations, processors read one large shared data structure and write another. For exam-
ple, in Raytrace processors read a scene and write an image. There is a choice of whether to par-
tition the computation so the processors write disjoint pieces of the destination structure and
read-share the source structure, or so they read disjoint pieces of the source structure and write-
share the destination. All other considerations being equal (such as load balance and program-
ming complexity), it is usually advisable to avoid write-sharing in these situations. Write-sharing
not only causes invalidations and hence cache misses and traffic, but if different processes write
the same words it is very likely that the writes must be protected by synchronization such as
locks, which are even more expensive. 

The structure of communication is not much of a variable: With a single centralized memory,
there is little incentive to use explicit large data transfers, so all communication is implicit
through loads and stores which lead to the transfer of cache blocks. DMA can be used to copy
large chunks of data from one area of memory to another faster than loads and stores, but this
must be traded off against the overhead of invoking DMA and the possibility of using other
latency hiding techniques instead. And with a zero-dimensional network topology (a bus) map-
ping is not an issue, other than to try to ensure that processes migrate from one processor to
another as little as possible, and is invariably left to the operating system. The most interesting
issues are related to temporal and spatial locality: to reduce the number of cache misses, and
hence reduce both latency as well as traffic and contention on the shared bus. 

With main memory being centralized, temporal locality is exploited in the processor caches. The
specialization of the working set curve introduced in Chapter 3 is shown in Figure 5-32. All
capacity-related traffic goes to the same local bus and centralized memory. The other three kinds
of misses will occur and generate bus traffic even with an infinite cache. The major goal is to
have working sets fit in the cache hierarchy, and the techniques are the same as those discussed in
Chapter 3. 

For spatial locality, a centralized memory makes data distribution and the granularity of alloca-
tion in main memory irrelevant (only interleaving data among memory banks to reduce conten-
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tion may be an issue just as in uniprocessors). The ill effects of poor spatial locality are
fragmentation, i.e. fetching unnecessary data on a cache block, and false sharing. The reasons are
that the granularity of communication and the granularity of coherence are both cache blocks,
which are larger than a word. The former causes fragmentation in communication or data trans-
fer, and the latter causes false sharing (we assume here that techniques like subblock dirty bits are
not used, since they are not found in actual machines). Let us examine some techniques to allevi-
ate these problems and effectively exploit the prefetching effects of long cache blocks, as well as
techniques to alleviate cache conflicts by better spatial organization of data. There are many such
techniques in a programmer’s “bag of tricks”, and we only provide a sampling of the most gen-
eral ones. 

Assign tasks to reduce spatial interleaving of access patterns. It is desirable to assign tasks
such that each processor tends to access large contiguous chunks of data. For example, if an array
computation with n elements is to be divided among p processors, it is better to divide it so that
each processor accesses n/p contiguous elements rather than use a finely interleaved assignment
of elements. This increases spatial locality and reduces false sharing of cache blocks. Of course,
load balancing or other constraints may force us to do otherwise.

Structure data to reduce spatial interleaving of access patterns. We saw an example of this in
the equation solver kernel in Chapter 3, when we used higher-dimensional arrays to keep a pro-
cessor’s partition of an array contiguous in the address space. There, the motivation was to allow
proper distribution of data among physical memories, which is not an issue here. However, the
same technique also helps reduce false sharing, fragmentation of data transfer, and conflict
misses as shown in Figures 5-33 and 5-34, all of which cause misses and traffic on the bus. Con-
sider false sharing and fragmentation for the equation solver kernel and the Ocean application. A
cache block larger than a single grid element may straddle a column-oriented partition boundary
as shown in Figure 5-33(a). If the block is larger than two grid elements, as is likely, it can cause
communication due to false sharing. It is easiest to see if we assume for a moment that there is no
inherent communication in the algorithm; for example, suppose in each sweep a process simply
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Figure  5-32  Data traffic on the shared bus, and its components as a function of cache size.
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added a constant value to each of its assigned grid elements, instead of performing a nearest-
neighbor computation. A cache block straddling a partition boundary would be false-shared as
different processors wrote different words on it. This would also cause fragmentation in commu-
nication, since a process reading its own boundary element and missing on it would also fetch
other elements in the other processor’s partition that are on the same cache block, and that it does
not need. The conflict misses problem is explained in Figure 5-34. The issue in all these cases is
also non-contiguity of partitions, only at a finer granularity (cache line) than for allocation
(page). Thus, a single data structure transformation helps us solve all our spatial locality related
problems in the equation solver kernel. Figure 5-35 illustrates the impact of using higher-dimen-
sional arrays to represent grids or blocked matrices in the Ocean and LU applications on the SGI
Challenge, where data distribution in main memory is not a issue. The impact of conflicts and
false sharing on uniprocessor and multiprocessor performance is clear.

Beware of conflict misses. Figure 5-33 illustrates how allocating power of two sized arrays can
cause cache conflict problems—which can become quite pathological in some cases—since the
cache size is also a power of two. Even if the logical size of the array that the application needs is
a power of two, it is often useful to allocate a larger array that is not a power of two and then
access only the amount needed. However, this can interfere with allocating data at page granular-
ity (also a power of two) in machines with physically distributed memory, so we may have to be
careful. The cache mapping conflicts in these array or grid examples are within a data structure
accessed in a predictable manner, and can thus be alleviated in a structured way. Mapping con-
flicts are more difficult to avoid when they happen across different major data structures (e.g.
across different grids used by the Ocean application), where they may have to be alleviated by ad
hoc padding and alignment. However, they are particularly insidious in a shared address space
when they occur on seemingly harmless shared variables or data structures that a programmer is
not inclined to think about, but that can generate artifactual communication. For example, a fre-

Figure  5-33  Reducing false sharing and fragmentation by using higher-dimensional arrays to keep partitions contiguous in the
address space. 

In the two-dimensional array case, cache blocks straddling partition boundaries cause both fragmentation (a miss brings in data from
the other processor’s partition) as well as false sharing. 
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quently accessed pointer to an important data structure may conflict in the cache with a scalar
variable that is also frequently accessed during the same computation, causing a lot of traffic.
Fortunately, such problems tend to be infrequent in modern caches. In general, efforts to exploit
locality can be wasted if attention is not paid to reducing conflict misses. 
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entries
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The rest of the processor’s
cache entries are not mapped
to by locations in its partition
(but would have been mapped
to by subrows
in other processors’ partitions)
and are thus wasted. 

Figure  5-34  Cache mapping conflicts caused by a two-dimensional array representation in a direct-mapped cache. 

The figure shows the worst case, in which the separation between successive subrows in a process’s partition (i.e. the size of a full
row of the 2-d array) is exactly equal to the size of the cache, so consecutive subrows map directly on top of one another in the
cache. Every subrow accessed knocks the previous subrow out of the cache. In the next sweep over its partition, the processor will
miss on every cache block it references, even if the cache as a whole is large enough to fit a whole partition. Many intermediately
poor cases may be encountered depending on grid size, number of processors and cache size. Since the cache size in bytes is a
power of two, sizing the dimensions of allocated arrays to be powers of two is discouraged.
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Figure  5-35  Effects of using 4-D versus 2-D arrays to represent two-dimensional grid or matrix data structures on the SGI
Challenge. 
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Use per-processor heaps: It is desirable to have separate heap regions for each processor (or
process) from which it allocates data dynamically. Otherwise, if a program performs a lot of very
small memory allocations, data used by different processors may fall on the same cache block.

Copy data to increase locality: If a processor is going to reuse a set of data that are otherwise
allocated non-contiguously in the address space, it is often desirable to make a contiguous copy
of the data for that period to improve spatial locality and reduce cache conflicts. Copying requires
memory accesses and has a cost, and is not useful if the data are likely to reside in the cache any-
way. But otherwise the cost can be overcome by the advantages. For example, in blocked matrix
factorization or multiplication, with a 2-D array representation of the matrix a block is not con-
tiguous in the address space (just like a partition in the equation solver kernel); it is therefore
common to copy blocks used from another processor’s assigned set to a contiguous temporary
data structure to reduce conflict misses. This incurs a cost in copying, which must be traded off
against the benefit of reducing conflicts. In particle-based applications, when a particle moves
from one processor’s partition to another, spatial locality can be improved by moving the
attributes of that particle so that the memory for all particles being handled by a processor
remains contiguous and dense. 

Pad arrays: Beginning parallel programmers often build arrays that are indexed using the pro-
cess identifier. For example, to keep track of load balance, one may have an array each entry of
which is an integer that records the number of tasks completed by the corresponding processor.
Since many elements of such an array fall into a single cache block, and since these elements will
be updated quite often, false sharing becomes a severe problem. One solution is to pad each entry
with dummy words to make its size as large as the cache block size (or, to make the code more
robust, as big as the largest cache block size on anticipated machines), and then align the array to
a cache block. However, padding many large arrays can result in significant waste of memory,
and can cause fragmentation in data transfer. A better strategy is to combine all such variables for
a process into a record, pad the entire record to a cache block boundary, and create an array of
records indexed by process identifier. 

Determine how to organize arrays of records: Suppose we have a number of logical records to
represent, such as the particles in the Barnes-Hut gravitational simulation. Should we represent
them as a single array of n particles, each entry being a record with fields like position, velocity,
force, mass, etc. as in Figure 5-36(a)? Or should we represent it as separate arrays of size n, one
per field, as in Figure 5-36(b)? Programs written for vector machines, such as traditional Cray
computers, tend to use a separate array for each property of an object, in fact even one per field
per physical dimension x, y or z. When data are accessed by field, for example the x coordinate of
all particles, this increases the performance of vector operations by making accesses to memory
unit stride and hence reducing memory bank conflicts. In cache-coherent multiprocessors, how-
ever, there are new tradeoffs, and the best way to organize data depends on the access patterns.
Consider the update phase of the Barnes-Hut application. A processor reads and writes only the
position and velocity fields of all its assigned particles, but its assigned particles are not contigu-
ous in the shared particle array. Suppose there is one array of size n (particles) per field or prop-
erty. A double-precision three-dimensional position (or velocity) is 24 bytes of data, so several of
these may fit on a cache block. Since adjacent particles in the array may be read and written by
other processors, poor spatial locality and false sharing can result. In this case it is better to have
a single array of particle records, where each record holds all information about that particle.

Now consider the force-calculation phase of the same Barnes-Hut application. Suppose we use
an organization by particle rather than by field as above. To compute the forces on a particle, a
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processor reads the position values of many other particles and cells, and it then updates the force
components of its own particle. In updating force components, it invalidates the position values
of this particle from the caches of other processors that are using and reusing them, due to false
sharing, even though the position values themselves are not being modified in this phase of com-
putation. In this case, it would probably be better if we were to split the single array of particle
records into two arrays of size n each, one for positions (and perhaps other fields) and one for
forces. The force array itself could be padded to reduce false-sharing in it. In general, it is often
beneficial to split arrays to separate fields that are used in a read-only manner in a phase from
those fields whose values are updated in the same phase. Different situations dictate different
organizations for a data structure, and the ultimate decision depends on which pattern or phase
dominates performance. 

Align arrays: In conjunction with the techniques discussed above, it is often necessary to align
arrays to cache block boundaries to achieve the full benefits. For example, given a cache block
size of 64 bytes and 8 byte fields, we may have decided to build a single array of particle records
with x, y, z, fx, fy, and fx fields, each 48-byte record padded with two dummy fields to fill a cache
block. However, this wouldn’t help if the array started at an offset of 32 bytes from a page in the
virtual address space, as this would mean that the data for each particle will now span two cache
blocks. Alignment is easy to achieve by simply allocating a little extra memory and suitably
adjusting the starting address of the array. 

As seen above, the organization, alignment and padding of data structures are all important to
exploiting spatial locality and reducing false sharing and conflict misses. Experienced program-
mers and even some compilers use these techniques. As we discussed in Chapter 3, these locality
and artifactual communication issues can be significant enough to overcome differences in inher-
ent communication, and can cause us to revisit our algorithmic partitioning decisions for an
application (recall strip versus subblock decomposition for the simple equation solver as dis-
cussed in Chapter 3, Section 3.2.2). 

x y z vxvyvzfx fy fz

Particle 0 Particle 1 Particle n.. . 

(a) Organization by particle

x y zposition: x y z

P 0 P1 P n. . . 

velocity: vxvyvzvxvyvz vxvyvz

x y z

x y z vxvyvzfx fy fz

force: fx fy fz fx fy fz fx fy fz

(a) Organization by property or field

Figure  5-36  Alternative data structure organizations for record-based data. 
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5.8 Concluding Remarks

Symmetric shared-memory multiprocessors are a natural extension of uniprocessor workstations
and personal-computers. Sequential applications can run totally unchanged, and yet benefit in
performance by getting a larger fraction of a processor’s time and from the large amount of
shared main-memory and I/O capacity typically available on such machines. Parallel applications
are also relative easy to bring up, as all local and shared data are directly accessible from all pro-
cessors using ordinary loads and stores. Computationally intensive portions of a sequential appli-
cation can be selectively parallelized. A key advantage for multiprogrammed workloads is the
fine granularity at which resources can be shared among application processes. This is true both
temporally, in that processors and/or main-memory pages can be frequently reallocated among
different application processes, and also physically, in that main-memory may be split among
applications at the granularity of an individual page. Because of these appealing features, all
major vendors of computer systems, from workstation suppliers like SUN, Silicon Graphics,
Hewlett Packard, Digital, and IBM to personal computer suppliers like Intel and Compaq are pro-
ducing and selling such machines. In fact, for some of the large workstation vendors, these multi-
processors constitute a substantial fraction of their revenue stream, and a still larger fraction of
their net profits due to the higher margins [Hep90] on these higher-end machines. 

The key technical challenge in the design of such machines is the organization and implementa-
tion of the shared memory subsystem, which is used for communication between processors in
addition to handling all regular memory accesses. The majority of small-scale machines found
today use the system bus as the interconnect for communication, and the challenge then becomes
how to keep shared data in the private caches of the processors coherent. There are a large variety
of options available to the system architect, as we have discussed, including the set of states asso-
ciated with cache blocks, choice of cache block size, and whether updates or invalidates are used.
The key task of the system architect is to make choices that will perform well based on predomi-
nant sharing patterns expected in workloads, and those that will make the task of implementation
easier. 

As processor, memory-system, integrated-circuit, and packaging technology continue to make
rapid progress, there are questions raised about the future of small-scale multiprocessors and
importance of various design issues. We can expect small-scale multiprocessors to continue to be
important for at least three reasons. The first is that they offer an attractive cost-performance
point. Individuals or small groups of people can easily afford them for use as a shared resource or
a compute- or file-server. Second, microprocessors today are designed to be multiprocessor-
ready, and designers are aware of future microprocessor trends when they begin to design the
next generation multiprocessor, so there is no longer a significant time lag between the latest
microprocessor and its incorporation in a multiprocessor. As we saw in Chapter 1, the Intel Pen-
tium processor line plugs in “gluelessly” into a shared bus. The third reason is that the essential
software technology for parallel machines (compilers, operating systems, programming lan-
guages) is maturing rapidly for small-scale shared-memory machines, although it still has a sub-
stantial way to go for large-scale machines. Most computer systems vendors, for example, have
parallel versions of their operating systems ready for their bus-based multiprocessors. The design
issues that we have explored in this chapter are fundamental, and will remain important with
progress in technology. This is not to say that the optimal design choices will not change. 

We have explored many of the key design aspects of bus-based multiprocessors at the “logical
level” involving cache block state transitions and complete bus transactions. At this level the
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approach appears to be a rather simple extension of traditional cache controllers. However, much
of the difficulty in such designs, and many of the opportunities for optimization and innovation
occur at the more detailed “physical level.” The next chapter goes down a level deeper into the
hardware design and organization of bus-based cache-coherent multiprocessors and some of the
natural generalizations.
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5.10 Exercises

5.1  Short Answer.

a. Is the cache-coherence problem an issue with processor-level registers as well? Given that 
registers are not kept consistent in hardware, how do current systems guarantee the 
desired semantics of a program under this hardware model? 

b. Consider the following graph indicating the miss rate of an application as a function of 
cache block size. As might be expected, the curve has a U-shaped appearance. Consider 
the three points A, B, and C on the curve. Indicate under what circumstances, if any, each 
may be a sensible operating point for the machine (i.e. the machine might give better per-
formance at that point rather than at the other two points). 

5.2  Bus Traffic

Assume the following average data memory traffic for a bus-based shared memory multipro-
cessor: 

   private reads70%

   private writes20%

   shared reads 8%

   shared writes2%

Also assume that 50% of the instructions (32-bits each) are either loads or stores. With a split
instruction/data cache of 32Kbyte total size, we get hit rates of 97% for private data, 95% for
shared data and 98.5% for instructions. The cache line size is 16 bytes.

We want to place as many processors as possible on a bus that has 64 data lines and 32
address lines. 

The processor clock is twice as fast as that of the bus, and before considering memory penal-
ties the processor CPI is 2.0. How many processors can the bus support without saturating if
we use

   (i) write-through caches with write-allocate strategy?

   (ii) write-back caches?

Ignore cache consistency traffic and bus contention. The probability of having to replace a
dirty block in the write-back caches is 0.3. For reads, memory responds with data 2 cycles
after being presented the address. For writes, both address and data are presented to memory
at the same time. Assume that the bus does not have split transactions, and that processor miss
penalties are equal to the number of bus cycles required for each miss.

A B C

Miss Rate

Cache Line Size
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5.3  Update versus invalidate

a. For the memory reference streams given below, compare the cost of executing them on a 
bus-based machine that (i) supports the Illinois MESI protocol, and (ii) the Dragon proto-
col. Explain the observed performance differences in terms of the characteristics of the 
streams and the coherence protocols.

stream-1: r1 w1 r1 w1 r2 w2 r2 w2 r3 w3 r3 w3

stream-2: r1 r2 r3 w1 w2 w3 r1 r2 r3 w3 w1

stream-3: r1 r2 r3 r3 w1 w1 w1 w1 w2 w3

In the above streams, all of the references are to the same location: r/w indicates read or write, 
and the digit refers to the processor issuing the reference. Assume that all caches are initially 
empty, and use the following cost model: (i) read/write cache-hit: 1 cycle; (ii) misses requir-
ing simple transaction on bus (BusUpgr, BusUpd): 3 cycles, and (iii) misses requiring whole 
cache block transfer = 6 cycles. Assume all caches are write allocated.

b. As miss latencies increase, does an update protocol become more or less preferable as 
compared to an invalidate protocol? Explain.

c. One of the key features of the update protocol is that instead of whole cache blocks, indi-
vidual words are transferred over the bus. Given the design of the SGI Powerpath-2 bus in 
Section 6.6, estimate the peak available bandwidth if all bus transactions were updates. 
Assume that all updates contain 8 bytes of data, and that they also require a 5-cycle trans-
action. Then, given the miss-decomposition data for various applications in Figure 5-21, 
estimate the peak available bus bandwidth on the Powerpath-2 bus for these applications.

d. In a multi-level cache hierarchy, would you propagate updates all the way to the first-level 
cache or only to the second-level cache? Explain the tradeoffs. 

e. Why is update-based coherence not a good idea for multiprogramming workloads typi-
cally found on multiprocessor compute servers today?

f. To provide an update protocol as an alternative, some machines have given control of the 
type of protocol to the software at the granularity of page, that is, a given page can be kept 
coherent either using an update scheme or an invalidate scheme. An alternative to page-
based control is to provide special opcodes for writes that will cause updates rather than 
invalidates. Comment on the advantages and disadvantages.

5.4  Sequential Consistency. 

a. Consider incoming transactions (requests and responses) from the bus down into the 
cache hierarchy, in a system with two-level caches, and outgoing transactions from the 
cache hierarchy to the bus. To ensure SC when invalidations are acknowledged early (as 
soon as they appear on the bus), what ordering constraints must be maintained in each 
direction among the ones described below, and which ones can be reordered? Now con-
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sider the incoming transactions at the first level cache, and answer the question for these. 
Assume that the processor has only one outstanding request at a time. 

b. Given the following code segments, say what results are possible (or not possible) under 
SC. Assume that all variables are initialized to 0 before this code is reached. [

(i) 

(ii) 

(iii) In the following sequence, first consider the operations within a dashed box to be part 
of the same instruction, say a fetch&increment. Then, suppose they are separate instruc-
tions. Answer the questions for both cases. 

c. Is the reordering problem due to write buffers, discussed in Section 5.3.2, also a problem 
for concurrent programs on a uniprocessor? If so, how would you prevent it; if not, why 
not?

d. Can a read complete before a previous write issued by the same processor to the same 
location has completed (for example, if the write has been placed in the writer’s write 
buffer but has not yet become visible to other processors), and still provide a coherent 
memory system? If so, what value should the read return? If not, why not? Can this be 
done and still guarantee sequential consistency?

e. If we cared only about coherence and not about sequential consistency, could we declare a 
write to complete as soon as the processor is able to proceed past it?

Orderings in the upward direction (from bus towards the caches and the processor):

Orderings in the downward direction (from the processor and caches towards the bus):

update

update update

invalidate invalidate

invalidatedata reply
for load instr.

an explicit completion ack
for invalidate or update
in distributed memory
environments

invalidate invalidate invalidate

data request
for dirty data
in local cache

- processor’s single outstanding request can be reordered w.r.t. other replies being generated by the caches;
 - replies to requests (where this caches had data in dirty state) can be reordered, since these distinct requests 
must have been from different processors (as each processor can have only one outstanding load/store request). 
- a writeback can be reorderedw.r.t. above data replies for dirty cache blocks.

P1 P2 P3

A = 1 u = A v = B

B = 1 w = A

P1 P2 P3 P4

A = 1 u = A B = 1 w = B

v = B x = A

P1 P2

u = A v = A

A = u+1 A = v+1
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f. Are the sufficient conditions for SC necessary? Make them less constraining (i) as much 
as possible and (ii) in a reasonable intermediate way, and comment on the effects on 
implementation complexity. 

5.5  Consider the following conditions proposed as sufficient conditions for SC:

• Every process issues memory requests in the order specified by the program.

• After a read or write operation is issued, the issuing process waits for the operation to
complete before issuing its next operation.

• Before a processor Pj can return a value written by another processor Pi, all operations
that were performed with respect to Pi before it issued the store must also be performed
with respect to Pj. 

Are these conditions indeed sufficient to guarantee SC executions? If not, construct a counter-
example, and say why the conditions that were listed in the chapter are indeed sufficient in 
that case. [Hint: to construct the example, think about in what way these conditions are differ-
ent from the ones in the chapter. The example is not obvious.] 

5.6  Synchronization Performance 

a. Consider a 4-processor bus-based multiprocessor using the Illinois MESI protocol. Each 
processor executes a test&set lock to gain access to a null critical section. Assume the 
test&set instruction always goes on the bus, and it takes the same time as a normal read 
transaction. Assume that the initial condition is such that processor-1 has the lock, and 
that processors 2, 3, and 4 are spinning on their caches waiting for the lock to be released. 
The final condition is that every processor gets the lock once and then exits the program. 
Considering only the bus transactions related to lock/unlock code:

(i) What is the least number of transactions executed to get from the initial to the final 
state?

(ii) What is the worst case number of transactions?

(iii) Repeat parts a and b assuming the Dragon protocol.

b. What are the main advantages and disadvantages of exponential backoff in locks? 

c. Suppose all 16 processors in a bus-based machine try to acquire a test-and-test&set lock 
simultaneously. Assume all processors are spinning on the lock in their caches and are 
invalidated by a release at time 0. How many bus transactions will it take until all proces-
sors have acquired the lock if all the critical sections are empty (i.e. each processor simply 
does a LOCK and UNLOCK with nothing in between). Assuming that the bus is fair (ser-
vices pending requests before new ones) and that every bus transaction takes 50 cycles, 
how long would it take before the first processor acquires and releases the lock. How long 
before the last processor to acquire the lock is able to acquire and release it? What is the 
best you could do with an unfair bus, letting whatever processor you like win an arbitra-
tion regardless of the order of the requests? Can you improve the performance by choos-
ing a different (but fixed) bus arbitration scheme than a fair one?

d. If the varaibles used for implementing locks are not cached, will a test&test&set lock still 
generate less traffic than a test&set lock? Explain your answer.

e. For the same machine configuration in the previous exercise with a fair bus, answer the 
same questions about the number of bus transactions and the time needed for the first and 
last processors to acquire and release the lock when using a ticket lock. Then do the same 
for the array-based lock.
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f. For the performance curves for the test&set lock with exponential backoff shown in 
Figure 5-29 on page 321, why do you think the curve for the non-zero critical section was 
a little worse than the curve for the null critical section?

g. Why do we use d to be smaller than c in our lock experiments. What problems might 
occur in measurement if we used d larger than c. (Hint: draw time-lines for two processor 
executions.) How would you expect the results to change if we used much larger values 
for c and d?

5.7  Synchronization Algorithms 

a. Write pseudo code (high-level plus assembly) to implement the ticket lock and array-
based lock using (i) fetch&increment, (ii) LL/SC.

b. Suppose you did not have a fetch&increment primitive but only a fetch&store (a simple 
atomic exchange). Could you implement the array-based lock with this primitive? 
Describe the resulting lock algorithm?

c. Implement a compare&swap operation using LL-SC. 

d. Consider the barrier algorithm with sense reversal that was described in Section 5.6.5. 
Would there be a problem be if the UNLOCK statement were placed just after the incre-
ment of the counter, rather than after each branch of the if condition? What would it be? 

e. Suppose that we have a machinethat supports full/empty bits on every word in hardware. 
This particular machine allows for the following C-code functions:

ST_Special(locn, val) writes val to data location locn and sets the full bit. If the full bit 
was already set, a trap is signalled.

int LD_Special(locn) waits until the data location’s full bit is set, loads the data, clears the 
full bit, and returns the data as the result.

Write a C function swap(i,j) that uses the above primitives to atomically swap the contents 
of two locations A[i] and A[j]. You should allow high concurrency (if multiple PEs want 
to swap distinct paris of locations, they should be able to do so concurrently). You must 
avoid deadlock.

f. The fetch-and-add atomic operation can be used to implement barriers, semaphores and 
other synchronization mechanisms. The semantics of fetch-and-add is such that it 
returns the value before the addition. Use the fetch-and-add primitive to implement a bar-
rier operation suitable for a shared memory multiprocessor. To use the barrier, a processor 
must execute: BARRIER(BAR, N), where N is the number of processes that need to arrive 
at the barrier before any of them can proceed. Assume that N has the same value in each 
use of barrier BAR. The barrier should be capable of supporting the following code:

while (condition) {
Compute stuff
BARRIER(BAR, N);

}

1. A proposed solution for implementing the barrier is the following:
BARRIER(Var B: BarVariable, N: integer) 
{

if (fetch-and-add(B, 1) = N-1) then
B := 0;

else
while (B <> 0) do {};

}
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What is the problem with the above code? Write the code for BARRIER in away that 
avoids the problem.

g. Consider the following implementation of the BARRIER synchronization primitive, used 
repeatedly within an application, at the end of each phase of computation. Assume that 
bar.releasing and bar.count are initially zero and bar.lock is initially 
unlocked. The barrier is described here as a function instead of a macro, for simplicity. 
Note that this function takes no arguments:

struct bar_struct {
 LOCKDEC(lock);

int count, releasing;
} bar;
...

BARRIER()
{

LOCK(bar.lock);
bar.count++;

if (bar.count == numProcs) {
   bar.releasing = 1;
   bar.count--;

} else {
 UNLOCK(bar.lock);

   while (! bar.releasing) 
;

LOCK(bar.lock);
   bar.count--;
   if (bar.count == 0) {
      bar.releasing = 0;
   }

}
UNLOCK(bar.lock);

}

(i) This code fails to provide a correct barrier. Describe the problem with this implementa-
tion.

(ii) Change the code as little as possible so it provides a correct barrier implementation. 
Either clearly indicate your changes on the code above, or thoroughly describe the 
changes below. 

5.8  Protocol Enhancements. Consider migratory data, which are shared data objects that bounce
around among processors, with each processor reading and then writing them. Under the
standard MESI protocol, the read miss and the write both generate bus transactions.

a. Given the data in Table 5-1 estimate max bandwidth that can be saved when using 
upgrades (BusUpgr) instead of BusRdX.

b. It is possible to enhance the state stored with cache blocks and the state-transition dia-
gram, so that such read shortly-followed-by write accesses can be recognized, so that 
migratory blocks can be directly brought in exclusive state into the cache on the first read 
miss. Suggest the extra states and the state-transition diagram extensions to achieve 
above. Using the data in Table 5-1, Table 5-2, and Table 5-3 compute the bandwidth sav-
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ings that can be achieved. Are there any other benefits than bandwidth savings? Discuss 
program situations where the migratory protocol may hurt performance.

c. The Firefly update protocol eliminates the SM state present in the Dragon protocol by 
suitably updating main memory on updates. Can we further reduce the states in the 
Dragon and/or Firefly protocols by merging the E and M states. What are the tradeoffs?

d. Instead of using writeback caches in all cases, it has been observed that processors some-
times write only one word in a cache line.  To optimize for this case, a protocol has been 
proposed with the following characteristics: 

* On the initial write of a line, the processor writes through to the bus, and accepts the line 
into the Reserved state. 

* On a write for a line in the Reserved state, the line transitions to the dirty state, which 
uses writeback instead of writethrough.

(i) Draw the state transitions for this protocol, using the INVALID, VALID, RESERVED 
and MODIFIED states.  Be sure that you show an arc for each of BusRead, BusWrite, 
ProcRead, and ProcWrite for each state.  Indicate the action that the processor takes after 
a slash (e.g. BusWrite/WriteLine).  Since both word and line sized writes are used, indi-
cate FlushWord or FlushLine. 

(ii) How does this protocol differ from the 4-state Illinois protocol? 

(iii) Describe concisely why you think this protocol is not used on a system like the SGI 
Challenge.

e. On a snoopy bus based cache coherent multiprocessor, consider the case when a processor 
writes a line shared by many processors (thus invalidating their caches).  If the line is sub-
sequently reread by the other processors, each will miss on the line. Researchers have pro-
posed a read-broadcast scheme, in which if one processor reads the line, all other 
processors with invalid copies of the line read it into their second level cache as well. Do 
you think this is a good protocol extension?  Give at least two reasons to support your 
choice and at least one that argues the opposite. 

5.9  Miss classification Classify the misses in the following reference stream from three proces-
sors into the categories shown in Figure 5-20 (follow the format in Table 5-4). Assume that
each processor’s cache consists of a single 4-word cache block. 

Seq. No. P1 P2 P3

1 st w0 st w7

2 ld w6 ld w2

3 ld w7

4 ld w2 ld w0

5 st w2

6 ld w2

7 st w2 ld w5 ld w5

8 st w5

9 ld w3 ld w7

10 ld w6 ld w2

11 ld w2 st w7

12 ld w7
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5.10  Software implications and programming. 

a. You are given a bus-based shared-memory machine. Assume that the processors have a 
cache block size of 32 bytes. Now consider the following simple loop:

for i = 0 to 16
for j = 0 to 255 {
A[j] = do_something(A[j]);
}

(i) Under what conditions would it be better to use a dynamically-scheduled loop? 

(ii) Under what conditions would it be better to use a statically-scheduled loop?

(iii) For a dynamically-scheduled inner loop, how many iterations should a PE pick each 
time if A is an array of 4-byte integers? 

b. You are writing an image processing code, where the image is represented as a 2-d array 
of pixels. The basic iteration in this computation looks like:

for i = 1 to 1024

for j = 1 to 1024

 newA[i,j] = (A[i,j-1]+A[i-1,j]+A[i,j+1]+A[i+1,j])/4;

Assume A is a matrix of 4-byte single precision floats stored in row-major order 
(i.e A[i,j] and A[i,j+1] are at consecutive addresses in memory). A starts at mem-
ory location 0. You are writing this code for a 32 processor machine. Each PE has a 32 
Kbyte direct-mapped cache and the cache blocks are 64 bytes.

(i) You first try assigning 32 rows of the matrix to each processor in an interleaved way. 
What is the actual ratio of computation to bus traffic that you expect? State any assump-
tions.

(ii) Next you assign 32 contiguous rows of the matrix to each processor. Answer the same 
questions as above. 

 (iii) Finally, you use a contiguous assignment of columns instead of rows. Answer the 
same questions now. 

(iv) Suppose the matrix A started at memory location 32 rather than address 0. If we use 
the same decomposition as in (iii), do you expect this to change the actual ratio of compu-
tation to traffic generated in the machine? If yes, will it increase or decrease and why? If 
not, why not? 

c. Consider the following simplified N-body code using an O(N^2) algorithm. Estimate the 
number of misses per time-step in the steady-state. Restructure the code using techniques 
suggested in the chapter to increase spatial locality and reduce false-sharing. Try and 
make your restructuring robust with respect to number of processors and cache block size. 

13 ld w2

14 ld w5

15 ld w2

Seq. No. P1 P2 P3
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As a baseline, assume 16 processors, 1 Mbyte direct-mapped caches with a 64-byte block 
size. Estimate the misses for the restructured code. State all assumptions that you make. 
typedef struct moltype {

double x_pos, y_pos, z_pos; /* position components */

double x_vel, y_vel, z_vel; /* velocity components */

double x_f, y_f, z_f; /* force components */

} molecule;

#define numMols 4096

#define numPEs 16

molecule mol[numMols]

main()

{

... declarations ...

for (time=0; time < endTime; time++)

for (i=myPID; i < numMols; i+=numPEs)

{

for (j=0; j < numMols; j++)

{

x_f[i] += x_fn(reads position of mols i & j);

y_f[i] += y_fn(reads position of mols i & j);

z_f[i] += z_fn(reads position of mols i & j);

}

barrier(numPEs);

for (i=myPID; i < numMols; i += numPEs)

{

writes velocity and position components

of mol[i] based on force on mol[i];

}

barrier(numPEs);

}

}
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CHAPTER 6

 

Snoop-based Multiprocessor Design

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

6.1 Introduction 

 

The large differences we see in the performance, cost, and scale of symmetric multiprocessors on
the market rest not so much on the choice of the cache coherence protocol, but rather on the
design and implementation of the oganizational structure that supports the logical operation of
the protocol. The performance impact of protocol trade-offs are well understood and most
machines use a variant of the protocols described in the previous chapter. However, the latency
and bandwidth that is achieved on a protocol depend on the bus design, the cache design, and the
integration with memory, as does the engineering cost of the system. This chapter studies the
more detailed physical design issues in snoop-based cache coherent symmetric multiprocessors.

The abstract state transition diagrams for coherence protocols are conceptually simple, however,
subtle correctness and performance issues arise at the hardware level. The correctness issues arise
mainly because actions that are considered atomic at the abstract level are not necessarily atomic
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at the organizational level. The performance issues arise mainly because we want to want to pipe-
line memory operations and allow many operations to be outstanding, using different compo-
nents of the memory hierarchy, rather than waiting for each operation to complete before starting
the next one. These performance enhancements present further correctness challenges. Modern
communication assist design for aggressive cache-coherent multiprocessors presents a set of
challenges that are similar in complexity and in form to those of modern processor design, which
allows a large number of outstanding instructions and out of order execution.

We need to peel off another layer of the design of snoop-based multiprocessors to understand the
practical requirements embodied by state transition diagrams. We must contend with at least
three issues. First, the implementation must be correct; second, it should offer high performance,
and third, it should require minimal extra hardware. The issues are related. For example, provid-
ing high performance often requires that multiple low-level events be outstanding (in progress) at
a time, so that their latencies can be overlapped. Unfortunately, it is exactly in these situations—
due to the numerous complex interactions between these events—that correctness is likely to be
compromised. The product shipping dates for several commercial systems, even for microproces-
sors that have on-chip coherence controllers, have been delayed significantly because of subtle
bugs in the coherence hardware. 

Our study begins by enumerating the basic correctness requirements on a cache coherent mem-
ory system. A base design, using single level caches and a one transaction at a time atomic bus, is
developed in *** and the critical events in processing individual transactions are outlined. We
assumes an invalidation protocol for concreteness, but the main issues apply directly to update
protocols.*** expands this design to address multilevel cache hierarchies, showing how protocol
events propagate up and down the hierarchy. *** expands the base design to utilize a split trans-
action bus, which allows multiple transactions to be performed in a pipelined fashion, and then
brings together multilevel caches and split-transactions. From this design point, it is a small step
to support multiple outstanding misses from each processor, since all transactions are heavily
pipelined and many take place concurrently. The fundamental underlying challenge throughout is
maintaining the illusion of sequential order, as required by the sequential consistency model.
Having understood the key design issues in general terms, we are ready to study concrete designs
in some detail. *** presents to case studies, the SGI Challenge and the Sun Enterprise, and ties
the machine performance back to software trade-offs through a workload driven study of our
sample applications. Finally, Section *** examines a number of advanced topics which extend
the design techniques in functionality and scale.

 

6.2 Correctness Requirements

 

A cache-coherent memory system must, of course, satisfy the requirements of coherence and pre-
serve the semantics dictated by the memory consistency model. In particular, for coherence it
should ensure that stale copies are found and invalidated/updated on writes and it should provide
write serialization. If sequential consistency is to be preserved by satisfying the sufficient condi-
tions, the design should provide write atomicity and the ability to detect the completion of writes.
In addition, it should have the desirable properties of any protocol implementation, including
cache coherence, which means it should be free of deadlock and livelock, and should either elim-
inate starvation or make it very unlikely. Finally, it should cope with error conditions beyond its
control (e.g., parity errors), and try to recover from them where possible. 
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Deadlock

 

 occurs when operations are still outstanding but all system activity has ceased. In gen-
eral, deadlock can potentially arise where multiple concurrent entities incrementally obtain
shared resources and hold them in a non-preemptible fashion. The potential for deadlock arises
when there is a cycle of resource dependences. A simple analogy is in traffic at an intersection, as
shown in Figure 6-1. In the traffic example, the entities are cars and the resources are lanes. Each
car needs to acquire two lane resources to proceed through the intersection, but each is holding
one.

In computer systems, the entities are typically controllers and the resources are buffers. For
example, suppose two controllers A and B communicate with each other via buffers, as shown in
Figure 6-2(a). A’s input buffer is full, and it refuses all incoming requests until B accepts a
request from it (thus freeing up buffer space in A to accept requests from other controllers), but
B’s input buffer is full too, and it refuses all incoming requests until A accepts a request from it.
Neither controller can accept a request, so deadlock sets in. To illustrate the problem with more
than two controllers, a three-controller example is shown in Figure 6-2(b). It is essential to either
avoid such dependence cycles or break them when they occur.

 

T

 

he system is in 

 

livelock

 

 when no processor is making forward progress in its computation even
though transactions are being executed in the system. Continuing the traffic analogy, each of the

Figure  6-1  Deadlock at a traffic intersection. 

Four cars arrive at an intersection and all proceed one lane each into the intersection. They block one another, since each is occupying
a resource that another needs to make progress. Even if each yields to the car on the right, the intersection is deadlocked. To break the
deadlock, some cars must retreat to allow others to make progress, so that then they themselves can make progress too.

Figure  6-2  Deadlock can easily occur in a system if independent controllers with finite buffering need to communicate with each
other. 

If cycles are possible in the communication graph, then each controller can be stalled waiting for the one in front to free up resources.
We illustrate cases for two and three controllers. 

Full Buffer

Empty Buffer
B

A

B

A

C

(a) (b)



 

Snoop-based Multiprocessor Design

 

358 

 

DRAFT: Parallel Computer Architecture 9/10/97

 

vehicles might elect to back up, clearing the intersection, and then try again to move forward.
However, if they all repeatedly move back and forward at the same time, there will be a lot of
activity but they will end up in the same situation repeatedly with no real progress. In computer
systems, livelock typically arises when independent controllers compete for a common resource,
with one snatching it away from the other before the other has finished with its use for the current
operation.

 

Starvation

 

 does not stop overall progress, but is an extreme form of unfairness in which one or
more processors make no progress while others continue to do so. In the traffic example, the live-
lock problem can be solved by a simple priority scheme. If a northbound car is given higher pri-
ority than an eastbound car, the latter must pull back and let the former through before trying to
move forward again; similarly, a southbound car may have higher priority than a westbound car.
Unfortunately, this does not solve starvation: In heavy traffic, an eastbound car may never pass
the intersection since there may always be a new northbound car ready to go through. North-
bound cars make progress, while eastbound cars are starved. The remedy here is to place an arbi-
ter (e.g. a police officer or traffic light) to orchestrate the resource usage in a fair manner. The
analogy extends easily to computer systems.

In general, the possibility of starvation is considered a less catastrophic problem than livelock or
deadlock. Starvation does not cause the entire system to stop making progress, and is usually not
a permanent state. That is, just because a processor has been starved for some time in the past it
does not mean that it will be starved for all future time (at some point northbound traffic will ease
up, and eastbound cars will get through). In fact, starvation is much less likely in computer sys-
tems than in this traffic example, since it is usually timing dependent and the necessary patholog-
ical timing conditions usually do not persist. Starvation often turns out to be quite easy to
eliminate in bus-based systems, by having the bus arbitration be fair and using FIFO queues to
other hardware resources, rather than rejecting requests and having them be retried. However, in
scalable systems that we will see in later chapters, eliminating starvation entirely can add sub-
stantial complexity to the protocols and can slow down common-case transactions. Many sys-
tems therefore do not completely eliminate starvation, though almost all try to reduce the
potential for it to occur.

In the discussions of how cache coherence protocols ensure write serialization and can satisfy the
sufficient conditions for sequential consistency, the assumption was made that memory opera-
tions are atomic. Here this assumption is made somewhat more realistic: there is a single level of
cache per processor and transactions on the bus are atomic. The cache can hold the processor
while it performs the series of steps involved in a memory operation, so these operations appear
atomic to the processor. The basic issues and tradeoffs that arise in implementing snooping and
state transitions are discussed, along with new issues that arise in providing write serialization,
detecting write completion, and preserving write atomicity. Then, more aggressive systems are
considered, starting with multi-level cache hierarchies, going on to split-transaction (pipelined)
buses, and then examining the combination of the two. In split-transaction buses, a bus transac-
tion is split into request and response phases that arbitrate for the bus separately, so multiple
transactions can be outstanding at a time on the bus. In all cases, writeback caches are assumed,
at least for the caches closest to the bus so they can reduce bus traffic. 
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6.3 Base Design: Single-level Caches with an Atomic Bus

 

Several design decisions must be made even for the simple case of single-level caches and an
atomic bus. First, how should we design the cache tags and controller, given that both the proces-
sor and the snooping agent from the bus side need access to the tags? Second, the results of a
snoop from the cache controllers need to be presented as part of the bus transaction; how and
when should this be done? Third, even though the memory bus is atomic, the overall set of
actions needed to satisfy a processor’s request uses other resources as well (such as cache con-
trollers) and is not atomic, introducing possible race conditions. How should we design protocol
state machines for the cache controllers given this lack of atomicity? Do these factors introduce
new issues with regard to write serialization, write completion detection or write atomicity? And
what deadlock, livelock and starvation issues arise? Finally, writebacks from the caches can
introduce interesting race conditions as well. The next few subsections address these issues one
by one. 

 

6.3.1 Cache controller and tags

 

Consider first a conventional uniprocessor cache. It consists of a storage array containing data
blocks, tags, and state bits, as well as a comparator, a controller, and a bus interface. When the
processor performs an operation against the cache, a portion of the address is used to access a
cache set that potentially contains the block. The tag is compared against the remaining address
bits to determine if the addressed block is indeed present. Then the appropriate operation is per-
formed on the data and the state bits are updated. For example, a write hit to a clean cache block
causes a word to be updated and the state to be set to modified. The cache controller sequences
the reads and writes of the cache storage array. If the operation requires that a block be trans-
ferred from the cache to memory or vice versa, the cache controller initiates a bus operation. The
bus operation involves a sequence of steps from the bus interface; these are typically (1) assert
request for bus, (2) wait for bus grant, (3) drive address and command, (4) wait for command to
be accepted by the relevant device, and (5) transfer data. The sequence of actions taken by the
cache controller is itself implemented as a finite state machine, as is the sequencing of steps in a
bus transaction. It is important not to confuse these state machines with the transition diagram of
the protocol followed by each cache block. 

To support a snoopy coherence protocol, the basic uniprocessor cache controller design must be
enhanced. First, since the cache controller must monitor bus operations as well as respond to pro-
cessor operations, it is simplest to view the cache as having two controllers, a bus-side controller
and a processor-side controller, each monitoring one kind of external event. In either case, when
an operation occurs the controller must access the cache tags. On every bus transaction the bus-
side controller must capture the address from the bus and use it to perform a tag check. If the
check fails (a snoop miss), no action need be taken; the bus operation is irrelevant to this cache. If
the snoop “hits,” the controller may have to intervene in the bus transaction according to the
cache coherence protocol. This may involve a read-modify-write operation on the state bits and/
or trying to obtain the bus to place a block on it. 

With only a single array of tags, it is difficult to allow two controllers to access the array at the
same time. During a bus transaction, the processor will be locked out from accessing the cache,
which will degrade processor performance. If the processor is given priority, effective bus band-
width will decrease because the snoop controller will have to delay the bus transaction until it
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gains access to the tags. To alleviate this problem, many coherent cache designs utilize a

 

 dual

 

-

 

ported

 

 tag and state store or duplicate the tag and state for every block. The data portion of the
cache is not duplicated. If tags are duplicated, the contents of the two sets of tags are exactly the
same, except one set is used by the processor-side controller for its lookups and the other is used
by the bus-side controller for its snoops (see Figure 6-3). The two controllers can read the tags
and perform checks simultaneously. Of course, when the tag for a block is updated (e.g. when the
state changes on a write or a new block is brought into the cache) both copies must ultimately be
modified, so one of the controllers may have to be locked out for a time. For example, if the bus-
side tags are updated by a bus transaction, at some point the processor-side tags will have to be
updated as well. Machine designs can play several tricks to reduce the time for which a controller
is locked out, for example in the above case by having the processor-side tags be updated only
when the cache data are later modified, rather than immediately when the bus-side tags are
updated. The frequency of tag updates is also much smaller than read accesses, so the coherence
snoops are expected to have little impact on processor cache access.

Another major enhancement from a uniprocessor cache controller is that the controller now acts
not only as an initiator of bus transactions, but also as a responder to them. A conventional
responding device, such as the controller for a memory bank, monitors the bus for transactions on
the fixed subset of addresses that it contains, and responds to relevant read or write operations
possibly after some number of “wait” cycles. It may even have to place data on the bus. The
cache controller is not responsible for a fixed subset of addresses, but must monitor the bus and
perform a tag check on every transaction to determine if the transaction is relevant. For an
update-based protocol, many caches may need to snoop the new data off the bus as well. Most
modern microprocessors implement such enhanced cache controllers so that they are “multipro-
cessor-ready”. 

 

6.3.2 Reporting snoop results

 

Snooping introduces a new element to the bus transaction as well. In a conventional bus transac-
tion on a uniprocessor system, one device (the initiator) places an address on the bus, all other
devices monitor the address, and one device (the responder) recognizes it as being relevant. Then
data is transferred between the two devices. The responder acknowledges its role by raising a

Figure  6-3  Organization of single-level snoopy caches. 

For single-level caches there is a duplicate set of tags and state provided to reduce contention. One set is used
exclusively by the processor, while another is used by the bus-snooper. Any changes to cache content or state,
however, involves updating both sets of tags simultaneously.

Tags TagsCached Data

Tags and state used by
the bus snooper

Tags and state used by 
the processor
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wired-OR signal; if no device decides to respond within a time-out window, a bus error occurs.
For snooping caches, each cache must check the address against its tags and the collective result
of the snoop from 

 

all

 

 caches must be reported on the bus before the transaction can proceed. In
particular, the snoop result informs main memory whether it should respond to the request or
some cache is holding a modified copy of the block so an alternative action is necessary. The
questions are when the snoop result is reported on the bus, and how. 

Let us focus first on the “when” question. Obviously, it is desirable to keep this delay as small as
possible so main memory can decide quickly what to do.

 

1

 

 There are three major options:

1. The design could guarantee that the snoop results are available within a 

 

fixed

 

 number of clock
cycles from the issue of the address on the bus. This, in general, requires the use of a dual set
of tags because otherwise the processor, which usually has priority, could be accessing the
tags heavily when the bus transaction appears. Even with a dual set of tags, one may need to
be conservative about the fixed snoop latency, because both sets of tags are made inaccessible
when the processor updates the tags; for example in the E --> M state transition in the Illinois
MESI protocol.

 

2

 

 The advantages of this option are a simple memory system design, and dis-
advantages are extra hardware and potentially longer snoop latency. The Pentium Pro Quads
use this approach—with the ability to extend the snoop phase when necessary (see Chapter 8)
as do the HP Corporate Business Servers [CAH+93] and the Sun Enterprise.

2. The design could alternatively support a 

 

variable

 

 delay snoop. The main memory assumes
that one of the caches will supply the data, until all the cache controllers have snooped and
indicated otherwise. This option may be easier to implement since cache controllers do not
have to worry about tag-access conflicts inhibiting a timely lookup, and it can offer higher
performance since the designer does not have to conservatively assume the worst-case delay
for snoop results. The SGI Challenge multiprocessors use a slight variant of this approach,
where the memory subsystem goes ahead and fetches the data to service the request, but then
stalls if the snoops have not completed by then [GaW93]. 

3. A third alternative is for the main memory subsystem to maintain a bit per block that indi-
cates whether this block is modified in one of the caches or not. This way the memory sub-
system does not have to rely on snooping to decide what action to take, and when controllers
return their snoop results is a performance issue. The disadvantage is the extra complexity
added to the main-memory subsystem.

How should snoop results be reported on the bus? For the MESI scheme, the requesting cache
controller needs to know whether the requested memory block is in other processors’ caches, so
it can decide whether to load the block in exclusive (E) or shared (S) state. Also, the memory sys-
tem needs to know whether any cache has the block in modified state, so that memory need not

 

1.  Note, that on an atomic bus there are ways to make the system less sensitive to the snoop delay. Since
only one memory transaction can be outstanding at any given time, the main memory can start fetching the
memory block regardless of whether it or the cache would eventually supply the data; the main-memory
subsystem would have sit idle otherwise. Reducing this delay, however, is very important for a split transac-
tion-bus, discussed later. There, multiple bus transactions can be outstanding, so the memory subsystem can
be used in the meantime to service another request, for which 

 

it

 

 (and not the cache) may have to supply the
data.

2.  It is interesting that in the base 3-state invalidation protocol we described, a cache-block state is never
updated unless a corresponding bus-transaction is also involved. This usually gives plenty of time to update
the tags.
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respond. One reasonable option is to use three wired-or signals, two for the snoop results and one
indicating that the snoop result is valid. The first signal is asserted when any of the processors’
caches (excluding the requesting processor) has a copy of the block. The second is asserted if any
processor has the block modified in its cache. We don’t need to know the identity of that proces-
sor, since it itself knows what action to take. The third signal is an inhibit signal, asserted until all
processors have completed their snoop; when it is de-asserted, the requestor and memory can
safely examine the other two signals. The full Illinois MESI protocol is more complex because a
block can be preferentially retrieved from another cache rather than from memory even if it is in
shared state. If multiple caches have a copy, a priority mechanism is needed to decide which
cache will supply the data. This is one reason why most commercial machines that use the MESI
protocol limit cache-to-cache transfers. The Silicon Graphics Challenge and the Sun Enterprise
Server use cache-to-cache transfers only for data that are potentially in modified state in the
cache (i.e. are either in exclusive or modified state), in which case there is a single supplier. The
Challenge updates memory in the process of a cache to cache transfer, so it does not need a
shared-modified state, while the Enterprise does not update memory and uses a shared modified
state. 

 

6.3.3 Dealing with Writebacks

 

Writebacks also complicate implementation, since they involve an incoming block as well as an
outgoing one. In general, to allow the processor to continue as soon as possible on a cache miss
that causes a writeback (replacement of modified data in the cache), we would like to delay the
writeback and instead first service the miss that caused it. This optimization imposes two require-
ments. First, it requires the machine to provide additional storage, a 

 

writeback buffer

 

, where the
block being replaced can be temporarily stored while the new block is brought into the cache and
before the bus can be re-acquired for a second transaction to complete the writeback. Second,
before the writeback is completed, it is possible that we see a bus transaction containing the
address of that block. In that case, the controller must supply the data from the writeback buffer
and cancel its earlier pending request to the bus for a writeback. This requires that an address-
comparator be added to snoop on the writeback buffer as well. We will see in Chapter 6 that
writebacks introduce further correctness subtleties in machines with physically distributed mem-
ory.

 

6.3.4 Base Organization

 

Figure 6-4 shows a block-diagram for our resulting base snooping architecture. Each processor
has a single-level write-back cache. The cache is dual tagged, so the bus-side controller and the
processor-side controller can do tag checks in parallel. The processor-side controller initiates a
transaction by placing an address and command on the bus. On a writeback transaction, data is
conveyed from the write-back buffer. On a read transaction, it is captured in the data buffer. The
bus-side controller snoops the write-back tag as well as the cache tags. Bus arbitration places the
requests that go on the bus in a total order. For each transaction, the command and address in the
request phase drive the snoop operation—in this total order. The wired-OR snoop results serve as
acknowledgment to the initiator that all caches have seen the request and taken relevant action.
This defines the operation as being completed, as all subsequent reads and writes are treated as
occurring “after” this transaction. It does not matter that the data transfer occurs a few cycles lat-
ter, because all the caches know that it is coming and can defer servicing additional processor
requests until it arrives.
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Using this simple design, let us examine more subtle correctness concerns that either require the
state machines and protocols to be extended or require care in implementation: non-atomic state
transitions, serialization, deadlock, and starvation.

 

6.3.5 Non-atomic State Transitions

 

The state transitions and their associated actions in our diagrams have so far been assumed to
happen instantaneously or at least atomically. In fact, a request issued by a processor takes some
time to complete, often including a bus transaction. While the bus transaction itself is atomic in
our simple system, it is only one among the set of actions needed to satisfy a processor’s request.
These actions include looking up the cache tags, arbitrating for the bus, the actions taken by other
controllers at their caches, and the action taken by the issuing processor’s controller at the end of
the bus transaction (which may include actually writing data into the block). Taken as a whole,
the set is not atomic. Even with an atomic bus, multiple requests from different processors may
be outstanding in different parts of the system at a time, and it is possible that while a processor

Figure  6-4  Design of a snooping cache for the base machine. 

We assume each processor has a single-level writeback cache, an invalidation protocol is used, the processor can have only one mem-
ory request outstanding, and that the system bus is atomic. To keep the figure simple, we do not show the bus-arbitration logic and
some of the low-level signals and buffers that are needed. We also do not show the coordination signals needed between the bus-side
controller and the processor-side controller.
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(or controller) P has a request outstanding—for example waiting to obtain bus access—a request
from another processor may appear on the bus and need some service from P, perhaps even for
the same memory block as P’s outstanding request. The types of complications that arise are best
illustrated through an example. 

 

Example  6-1 

 

Suppose two processors P1 and P2 cache the same memory block A in shared state,
and both simultaneously issue a write to block A. Show how P1 may have a request
outstanding waiting for the bus while a transaction from P2 appears on the bus, and
how you might solve the complication that results. 

 

Answer

 

Here is a possible scenario. P1’s write will check its cache, determine that it needs
to elevate the block’s state from shared to modified before it can actually write new
data into the block, and issue an upgrade bus request. In the meantime, P2 has also
issued a similar upgrade or read-exclusive transaction for A, and it may have won
arbitration for the bus first. P1’s snoop will see the bus transaction, and must
downgrade the state of block A from shared to invalid in its cache. Otherwise when
P2’s transaction is over A will be in modified state in P2’s cache and in shared state
in P1’s cache, which violates the protocol. To solve this problem, a controller must
be able to check addresses snooped from the bus against its own outstanding
request, and modify the latter if necessary. Thus, when P1 observes the transaction
from P2 and downgrades its block state to invalid, the upgrade bus request it has
outstanding is no longer appropriate and must be replaced with a read-exclusive
request. (If there were no upgrade transactions in the protocol and read-exclusives
were used even on writes to blocks in shared state, the request would not have to be
changed in this case even though the block state would have to be changed. These
implementation requirements should be considered when assessing the complexity
of protocol optimizations.)

A convenient way to deal with the “non-atomic” nature of state transitions, and the consequent
need to sometimes revise requests based on observed events, is to expand the protocol state dia-
gram with intermediate or 

 

transient 

 

states. For example, a separate state can be used to indicate
that an upgrade request is outstanding. Figure 6-5 shows an expanded state diagram for a MESI
protocol. In response to a processor write operation the cache controller begins arbitration for the
bus by asserting a bus request, and transitions to the S->M intermediate state. The transition out
of this state occurs when the bus arbiter asserts BusGrant for this device. At this point the
BusUpgr transaction is placed on the bus and the cache block state is updated. However, if a Bus-
RdX or BusUpgr is observed for this block while in the S->M state, the controller treats its block
as having been invalidated before the transaction. (We could instead retract the bus request and
transition to the I state, whereupon the still pending PrWr would be detected again.) On a proces-
sor read from invalid state, the controller advances to an intermediate state (I-->S,E); the next sta-
ble state to transition to is determined by the value of the shared line when the read is granted the
bus. These intermediate states are typically not encoded in the cache block state bits, which are
still MESI, since it would be wasteful to expend bits in every cache slot to indicate the one block
in the cache that may be in a transient state. They are reflected in the combination of state bits and
controller state. However, when we consider caches that allow multiple outstanding transactions,
it will be necessary to have an explicit representation for the (multiple) blocks from a cache that
may be in a transient state.
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Expanding the number of states in the protocol greatly increases the difficulty of proving that an
implementation is correct, or of testing the design. Thus, designers seek mechanisms that avoid
transient states. The Sun Enterprise, for example, does not use a BusUpgr transaction in the
MESI protocol, but uses the result of the snoop to eliminate unnecessary data transfers in the
BusRdX. Recall, that on a BusRdX the caches holding the block invalidate their copy. If a cache
has the block in the dirty state, it raises the dirty line, thereby preventing the memory from sup-
plying the data, and flushes the data onto the bus. No use is made of the shared line. The trick is
to have the processor that issues the BusRdX to snoop its own tags when the transaction actually
goes on the bus. If the block is still in its cache, it raises the shared line, which waves off the
memory. Since it already has the block, the data phase of the transaction is skipped. The cache
controller does not need a transient state, because regardless of what happens it has one action to
take—place a BusRdX transaction on the bus.

 

6.3.6 Serialization

 

With the non-atomicity of an entire memory operation, care must be taken in the processor-cache
handshake to preserve the order determined by the serialization of bus transactions. For a read,
the processor needs the result of the operation. To gain greater performance on writes, it is tempt-
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Figure  6-5   Expanded MESI protocol state diagram indicating transient states for bus acquisition
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ing to update the cache block and allow the processor continue with useful instructions while the
cache controller acquires exclusive ownership of the block—and possibly loads the rest of the
block—via a bus transaction. The problem is that there is a window between the time the proces-
sor gives the write to the cache and when the cache controller acquires the bus for the read-exclu-
sive (or upgrade) transaction. Other bus transactions may occur in this window, which may
change the state of this or other blocks in the cache. To provide write serialization and SC, these
transactions must appear to the processor as occurring before the write, since that is how they are
serialized by the bus and appear to other processors. Conservatively, the cache controller should
not allow the processor issuing the write to proceed past the write until the read-exclusive trans-
action occurs on the bus and makes the write visible to other processors. In particular, even for
write serialization the issuing processor should not consider the write complete until it has
appeared on the bus and thus been serialized with respect to other writes. 

In fact, the cache does not have to wait until the read-exclusive transaction is finished—i.e. other
copies have actually been invalidated in their caches—before allowing the processor to continue;
it can even service read and write hits once the transaction is on the bus, assuming access to the
block in transit is handled properly. The crux of the argument for coherence and for sequential
consistency presented in Section 5.4 was that all cache controllers observe the exclusive owner-
ship transactions (generated by write operations) in the same order and that the write occurs
immediately after the exclusive ownership transaction. Once the bus transaction starts, the writer
knows that all other caches will invalidate their copies before another bus transaction occurs. The
position of the write in the serial bus order is 

 

committed

 

. The writer never knows where exactly
the invalidation is inserted in the local program order of the other processors; it knows only that it
is before whatever operation generates the next bus transaction and that all processors insert the
invalidations in the same order. Similarly, the writer’s local sequence of memory operations only
become visible at the next bus transaction. This is what is important to maintain the necessary
orderings for coherence and SC, and it allows the writer to 

 

substitute commitment for actual com-
pletion

 

 in following the sufficient conditions for SC. In fact, it is the basic observation that makes
it possible to implement cache coherency and sequential consistency with pipelined busses, mul-
tilevel memory hierarchies, and write buffers. Write atomicity follows the same argument as pre-
sented before in Section 5.4. 

This discussion of serialization raises an important, but somewhat subtle point. Write serializa-
tion and write atomicity have very little to do with when the write-backs occur or with when the
actual location in memory is updated. Either a write or a read can cause a write-back, if it causes
a dirty block to be replaced. The write-backs are bus transactions, but they do not need to be
ordered. On the other hand, a write does not necessarily cause a write-back, even if it misses; it
causes a read-exclusive. What is important to the program is when the new value is bound to the
address. The write completes, in the sense that any subsequent read will return the new or later
value once the BusRdX or BusUpgr transaction takes place. By invalidating the old cache blocks,
it ensures that all reads of the old value precede the transaction. The controller issuing the trans-
action ensures that the write occurs after the bus transaction, and that no other memory opera-
tions intervene.

 

6.3.7 Deadlock

 

A two-phase protocol, such as the request-response protocol of a memory operation, presents a
form of protocol-level deadlock, sometimes called

 

 fetch-deadlock

 

[Lei*92], that is not simply a
question of buffer usage. While an entity is attempting to issue its request, it needs to service
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incoming transactions. The place where this arises in an atomic bus based SMP, is that while the
cache controller is awaiting the bus grant, it needs to continue performing snoops and handling
requests which may cause it to flush blocks onto the bus. Otherwise, the system may deadlock if
two controllers have outstanding transactions that need to be responded to by each other, and
both are refusing to handle requests. For example, suppose a BusRd for a block B appears on the
bus while a processor P1 has a read-exclusive request outstanding to another block A and is wait-
ing for the bus. If P1 has a modified copy of B, its controller should be able to supply the data and
change the state from modified to shared while it is waiting to acquire the bus. Otherwise the cur-
rent bus transaction is waiting for P1’s controller, while P1’s controller is waiting for the bus
transaction to release the bus.

 

6.3.8 Livelock and Starvation

 

The classic potential livelock problem in an invalidation-based cache-coherent memory system is
caused by all processors attempting to write to the same memory location. Suppose that initially
no processor has a copy of the location in its cache. A processor’s write requires the following
non-atomic set of events: Its cache obtains exclusive ownership for the corresponding memory
block—i.e. invalidates other copies and obtains the block in modified state—a state machine in
the processor realizes that the block is now present in the cache in the appropriate state, and the
state-machine re-attempts the write. Unless the processor-cache handshake is designed carefully,
it is possible that the block is brought into the cache in modified state, but before the processor is
able to complete its write the block is invalidated by a BusRdX request from another processor.
The processor misses again and this cycle can repeat indefinitely. To avoid livelock, a write that
has obtained exclusive ownership must be allowed to complete before the exclusive ownership is
taken away.

With multiple processors competing for a bus, it is possible that some processors may be granted
the bus repeatedly while others may not and may become starved. Starvation can be avoided by
using first-come-first-serve service policies at the bus and elsewhere. These usually require addi-
tional buffering, so sometimes heuristic techniques are used to reduce the likelihood of starvation
instead. For example, a count can be maintained of the number of times that a request has been
denied and, after a certain threshold, action is taken so that no other new request is serviced until
this request is serviced.

 

6.3.9 Implementing Atomic Primitives

 

The atomic operations that the above locks need, test&set and fetch&increment, can be imple-
mented either as individual atomic read-modify-write instructions or using an LL-SC pair. Let us
discuss some implementation issues for these primitives, before we discuss all-hardware imple-
mentations of locks. Let us first consider the implementation of atomic exchange or read-modify-
write instructions first, and then LL-SC. 

Consider a simple test&set instruction. It has a read component (the test) and a write component
(the set). The first question is whether the test&set (lock) variable should be cacheable so the
test&set can be performed in the processor cache, or it should be uncacheable so the atomic oper-
ation is performed at main memory. The discussion above has assumed cacheable lock variables.
This has the advantage of allowing locality to be exploited and hence reducing latency and traffic
when the lock is repeatedly acquired by the same processor: The lock variable remains dirty in
the cache and no invalidations or misses are generated. It also allows processors to spin in their
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caches, thus reducing useless bus traffic when the lock is not ready. However, performing the
operations at memory can cause faster transfer of a lock from one processor to another. With
cacheable locks, the processor that is busy-waiting will first be invalidated, at which point it will
try to access the lock from the other processor’s cache or memory. With uncached locks the
release goes only to memory, and by the time it gets there the next attempt by the waiting proces-
sor is likely to be on its way to memory already, so it will obtain the lock from memory with low
latency. Overall, traffic and locality considerations tend to dominate, and lock variables are usu-
ally cacheable so processors can busy-wait without loading the bus. 

A conceptually natural way to implement a cacheable test&set that is not satisfied in the cache
itself is with two bus transactions: a read transaction for the test component and a write transac-
tion for the set component. One strategy to keep this sequence atomic is to lock down the bus at
the read transaction until the write completes, keeping other processors from putting accesses
(especially to that variable) on the bus between the read and write components. While this can be
done quite easily with an atomic bus, it is much more difficult with a split-transaction bus: Not
only does locking down the bus impact performance substantially, but it can cause deadlock if
one of the transactions cannot be immediately satisfied without giving up the bus. 

Fortunately, there are better approaches. Consider an invalidation-based protocol with write-back
caches. What a processor really needs to do is obtain exclusive ownership of the cache block (e.g.
by issuing a single read-exclusive bus transaction), and then it can perform the read component
and the write component in the cache as long as it does not give up exclusive ownership of the
block in between, i.e. it simply buffers and delays other incoming accesses from the bus to that
block until the write component is performed. More complex atomic operations such as fetch-
and-op must retain exclusive ownership until the operation is completed.

An atomic instruction that is more complex to implement is compare-and-swap. This requires
specifying three operands in a memory instruction: the memory location, the register to compare
with, and the value/register to be swapped in. RISC instruction sets are usually not equipped for
this. 

Implementing LL-SC requires a little special support. A typical implementation uses a so called
lock-flag and a lock-address register at each processor. An LL operation reads the block, but also
sets the lock-flag and puts the address of the block in the lock-address register. Incoming invali-
dation (or update) requests from the bus are matched against the lock-address register, and a suc-
cessful match (a conflicting write) resets the lock flag. An SC checks the lock flag as the indicator
for whether an intervening conflicting write has occurred; if so it fails, and if not it succeeds. The
lock flag is also reset (and the SC will fail) if the lock variable is replaced from the cache, since
then the processor may no longer see invalidations or updates to that variable. Finally, the lock-
flag is reset at context switches, since a context switch between an LL and its SC may incorrectly
cause the LL of the old process to lead to the success of an SC in the new process that is switched
in. 

Some subtle issues arise in avoiding livelock when implementing LL-SC. First, we should in fact
not allow replacement of the cache block that holds the lock variable between the LL and the SC.
Replacement would clear the lock flag, as discussed above, and could establish a situation where
a processor keeps trying the SC but never succeeds due to continual replacement of the block
between LL and SC. To disallow replacements due to conflicts with instruction fetches, we can
use split instruction and data caches or set-associative unified caches. For conflicts with other
data references, a common solution is to simply disallow memory instructions between an LL
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and an SC. Techniques to hide latency (e.g. out-of-order issue) can complicate matters, since
memory operations that are not between the LL and SC in the program code may be so in the
execution. A simple solution to this problem is to not allow reorderings past LL or SC operations. 

The second potential livelock situation would occur if two processes continually fail on their
SCs, and each process’s failing SC invalidated or updated the other process’s block thus clearing
the lock-flag. Neither of the two processes would ever succeed if this pathological situation per-
sisted. This is why it is important that an SC not be treated as an ordinary write, but that it not
issuing invalidations or updates when it fails. 

Note that compared to implementing an atomic read-modify-write instruction, LL-SC can have a
performance disadvantage since both the LL and the SC can miss in the cache, leading to two
misses instead of one. For better performance, it may be desirable to obtain (or prefetch) the
block in exclusive or modified state at the LL, so the SC does not miss unless it fails. However,
this reintroduces the second livelock situation above: Other copies are invalidated to obtain
exclusive ownership, so their SCs may fail without guarantee of this processor’s SC succeeding.
If this optimization is used, some form of backoff should be used between failed operations to
minimize (though not completely eliminate) the probability of livelock. 

 

6.4 Multi-level Cache Hierarchies

 

The simple design above was illustrative, but it made two simplifying assumptions that are not
valid on most modern systems: It assumed single-level caches, and an atomic bus. This section
relaxes the first assumption and examines the resulting design issues. 

The trend in microprocessor design since the early 90’s is to have an on-chip first-level cache and
a much larger second-level cache, either on-chip or off-chip.

 

1

 

 Some systems, like the DEC
Alpha, use on-chip secondary caches as well and an off-chip tertiary cache. Multilevel cache
hierarchies would seem to complicate coherence since changes made by the processor to the first-
level cache may not be visible to the second-level cache controller responsible for bus operations,
and bus transactions are not directly visible to the first level cache. However, the basic mecha-
nisms for cache coherence extend naturally to multi-level cache hierarchies. Let us consider a
two-level hierarchy for concreteness; the extension to the multi-level case is straightforward. 

One obvious way to handle multi-level caches is to have independent bus snooping hardware for
each level of the cache hierarchy. This is unattractive for several reasons. First, the first-level
cache is usually on the processor chip, and an on-chip snooper will consume precious pins to
monitor the addresses on the shared bus. Second, duplicating the tags to allow concurrent access
by the snooper and the processor may consume too much precious on-chip real estate. Third, and
more importantly, there is duplication of effort between the second-level and first-level snoops,
since most of the time blocks present in the first-level cache are also present in the second-level
cache so the snoop of the first-level cache is unnecessary.

 

1.  The HP PA-RISC microprocessors are a notable exception, maintaining a large off-chip first level cache
for many years after other vendors went to small on-chip first level caches.
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The solution used in practice is based on this last observation. When using multi-level caches,
designers ensure that they preserve the inclusion property. The 

 

inclusion property 

 

requires that:

1. If a memory block is in the first-level cache, then it must also be present in the second-level
cache. In other words, the contents of the first-level cache must be a subset of the contents of
the second-level cache.

2. If the block is in a modified state (e.g., modified or shared-modified) in the first-level cache,
then it must also be marked modified in the second-level cache.

The first requirement ensures that all bus transactions that are relevant to the L1 cache are also
relevant to L2 cache, so having the L2 cache controller snoop the bus is sufficient. The second
ensures that if a BusRd transaction requests a block that is in modified state in the L1 or L2
cache, then the L2 snoop can immediately respond to the bus. 

 

6.4.1 Maintaining inclusion

 

The requirements for inclusion are not trivial to maintain. Three aspects need to be considered.
Processor references to the first level cache cause it to change state and perform replacements;
these need to be handled in a manner that maintains inclusion. Bus transactions cause the second
level cache to change stage and flush blocks; these need to be forwarded to the first level. Finally,
the modified state must be propagated out to the second level cache.

At first glance it might appear that inclusion would be satisfied automatically, since all first level
cache misses go to the second level cache. The problem, however, is that two caches may choose
different blocks to replace. Inclusion falls out automatically only for certain combinations of
cache configuration. It is an interesting exercise to see what conditions can cause inclusion to be
violated if no special care is taken, so let us do that a little here before we look at how inclusion is
typically maintained. Consider some examples of typical cache hierarchies [BaW88]. For nota-
tional purposes, assume that the L1 cache has associativity 
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Figure  6-6  A bus-based machine containing processors with multi-level caches. 

Coherence is maintained by ensuring the inclusion property, whereby all blocks in the L1 cache are also present in the L2 cache. With
the inclusion property, a L2-snoop also suffices for the L1 cache.
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sponding parameters for the L2 cache are 
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. We also assume that all parameter
values are powers of 2.

 

Set-associative L1 caches with history-based replacement

 

. The problem with replacement 
polices based on the history of accesses to a block, such as least recently used (LRU) replace-
ment, is that the L1 cache sees a different history of accesses than L2 and other caches, since 
all processor references look up the L1 cache but not all get to lower-level caches. Suppose 
the L1 cache is two-way set-associative with LRU replacement, both L1 and L2 caches have 
the same block size (
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that map to the same set in the L1 cache. Assume that m1 and m2 are currently in 
the two available slots within that set in the L1 cache, and are present in the L2 cache as well. 
Now consider what happens when the processor references m3, which happens to collide with 
and replace one of m1 and m2 in the L2 cache as well. Since the L2 cache is oblivious of the 
L1 cache’s access history which determines whether the latter replaces m1 or m2, it is easy to 
see that the L2 cache may replace one of m1 and m2 while the L1 cache may replace the other. 
This is true even if the L2 cache is two-way set associative and m1 and m2 fall into the same 
set in it as well. In fact, we can generalize the above example to see that inclusion can be vio-
lated if L1 is not direct-mapped and uses an LRU replacement policy, regardless of the asso-
ciativity, block size, or cache size of the L2 cache.

Multiple caches at a level. A similar problem with replacements is observed when the first 
level caches are split between instructions and data, even if they are direct mapped, and are 
backed up by a unified second-level cache. Suppose first that the L2 cache is direct mapped as 
well. An instruction block m1 and a data block m2 that conflict in the L2 cache do not conflict 
in the L1 caches since they go into different caches. If m2 resides in the L2 cache and m1 is 
referenced, m2 will be replaced from the L2 cache but not from the L1 data cache, violating 
inclusion. Set associativity in the unified L2 cache doesn’t solve the problem. For example, 
suppose the L1 caches are direct-mapped and the L2 cache is 2-way set associative. Consider 
three distinct memory blocks m1, m2, and m3, where m1 is an instruction block, m2 and m3 are 
data blocks that map to the same set in the L1 data cache, and all three map to a single set in 
the L2 cache. Assume that at a given time m1 is in the L1 instruction cache, m2 is in the L1 
data cache, and they occupy the two slots within a set in the L2 cache. Now when the proces-
sor references m3, it will replace m2 in the L1 data cache, but the L2 cache may decide to 
replace m1 or m2 depending on the past history of accesses to it, thus violating inclusion. This 
can be generalized to show that if there are multiple independent caches that connect to even 
a highly associative cache below, inclusion is not guaranteed.

Different cache block sizes. Finally, consider caches with different block sizes. Consider a 
miniature system with a direct-mapped, unified L1 and L2 caches (a1 = a2 = 1), with block 
sizes 1-word and 2-words respectively (b1 = 1, b2 = 2), and number of sets 4 and 8 respec-
tively (n1 = 4, n2 = 8). Thus, the size of L1 is 4 words, and locations 0, 4, 8,... map to set 0, 
locations 1, 5, 9,... map to set 1, and so on. The size of L2 is 16 words, and locations 0&1, 
16&17, 32&33,... map to set-0, locations 2&3, 18&19, 34&35,... map to set-1, and so on. It is 
now easy to see that while the L1 cache can contain both locations 0 and 17 at the same time 
(they map to sets 0 and 1 respectively), the L2 cache can not do so because they map to the 
same set (set-0) and they are not consecutive locations (so block size of 2-words does not 
help). Hence inclusion can be violated. Inclusion can be shown to be violated even if the L2 
cache is much larger or has greater associativity, and we have already seen the problems when 
the L1 cache has greater associativity.
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In one of the most commonly encountered cases, inclusion is maintained automatically. This is
when the L1 cache is direct-mapped (a1 = 1), L2 can be direct-mapped or set associative (a2 >=
1) with any replacement policy (e.g., LRU, FIFO, random) as long as the new block brought in is
put in both L1 and L2 caches, the block-size is the same (b1 = b2), and the number of sets in the
L1 cache is equal to or smaller than in L2 cache (n1 =< n2). Arranging this configuration is one
popular way to get around the inclusion problem. 

However, many of the cache configurations used in practice do not automatically maintain inclu-
sion on replacements. Instead, the mechanism used for propagating coherency events is extended
to explicitly maintain inclusion. Whenever a block in the L2 cache is replaced, the address of that
block is sent to the L1 cache, asking it to invalidate or flush (if dirty) the corresponding blocks
(there can be multiple blocks if b2 > b1).

Now consider bus transactions seen by the L2 cache. Some, but not all, of the bus transactions
relevant to the L2 cache are also relevant to the L1 cache and must be propagated to it. For exam-
ple, if a block is invalidated in the L2 cache due to an observed bus transaction (e.g., BusRdX),
the invalidation must also be propagated to the L1 cache if the data are present in it.There are sev-
eral ways to do this. One is to inform the L1 cache of all transactions that were relevant to the L2
cache, and to let it ignore the ones whose addresses do not match any of its tags. This sends a
large number of unnecessary interventions to the L1 cache and can hurt performance by making
cache-tags unavailable for processor accesses. A more attractive solution is for the L2 cache to
keep extra state (inclusion bits) with cache blocks, which record whether the block is also present
in the L1 cache. It can then suitably filter interventions to the L1 cache, at the cost of slightly
extra hardware and complexity.

Finally, on a L1 write hit, the modification needs to be communicated to the L2 cache. One solu-
tion is to make the L1 cache write-through. This has the advantage that single-cycle writes are
simple to implement [HP95]. However, writes can consume a substantial fraction of the L2 cache
bandwidth, and a write-buffer is needed between the L1 and L2 caches to avoid processor stalls.
The requirement can also be satisfied with writeback L1 caches, since it is not necessary that the
data in the L2 cache be up-to-date but only that the L2 cache knows when the L1 cache has more
recent data. Thus, the state of the L2 cache blocks is augmented so that blocks can be marked
“modified-but-stale.” The block behaves as modified for the coherency protocol, but data is
fetched from the L1 cache on a flush. (One simple approach is to set both the modified and
invalid bits.) Both the write-through and writeback solutions have been used in many bus-based
multiprocessors. More information on maintaining cache inclusion can be found in [BaW88]. 

6.4.2 Propagating transactions for coherence in the hierarchy

Given that we have inclusion and we propagate invalidations and flushes up to the L1 cache as
necessary, let us see how transactions percolate up and down a processor’s cache hierarchy. The
intra-hierarchy protocol handles processor requests by percolating them downwards (away from
the processor) until either they encounter a cache which has the requested block in the proper
state (shared or modified for a read request, and modified for a write/read-exclusive request) or
they reach the bus. Responses to these processor requests are sent up the cache hierarchy, updat-
ing each cache as they progress towards the processor. Shared responses are loaded into each
cache in the hierarchy in the shared state, while read-exclusive responses are loaded into all lev-
els, except the innermost (L1) in the modified-but-stale state. In the innermost cache, read-exclu-
sive data are loaded in the modified state, as this will be the most up-to-date copy.
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External flush, copyback, and invalidate requests from the bus percolate upward from the exter-
nal interface (the bus), modifying the state of the cache blocks as they progress (changing the
state to invalid for flush and copyback requests, and to shared for copyback requests). Flush and
copyback requests percolate upwards until they encounter the modified copy, at which point a
response is generated for the external interface. For invalidations, it is not necessary for the bus
transaction to be held up until all the copies are actually invalidated. The lowest-level cache con-
troller (closest to the bus) sees the transaction when it appears on the bus, and this serves as a
point of commitment to the requestor that the invalidation will be performed in the appropriate
order. The response to the invalidation may be sent to the processor from its own bus interface as
soon as the invalidation request is placed on the bus, so no responses are generated within the
destination cache hierarchies. All that is required is that certain orders be maintained between the
incoming invalidations and other transactions flowing through the cache hierarchy, which we
shall discuss further in the context of split transaction busses that allow many transactions to be
outstanding at a time. 

Interestingly, dual tags are less critical when we have multi-level caches. The L2 cache acts as a
filter for the L1 cache, screening out irrelevant transactions from the bus, so the tags of the L1
cache are available almost wholly to the processor. Similarly, since the L1 cache acts as a filter
for the L2 cache from the processor side (hopefully satisfying most of processor’s requests), the
L2 tags are almost wholly available for bus snooper’s queries (see Figure 6-7). Nonetheless,
many machines retain dual tags even in multilevel cache designs.

With only one outstanding transaction on the bus at a time, the major correctness issues do not
change much by using a multi-level hierarchy as long as inclusion is maintained. The necessary
transactions are propagated up and down the hierarchy, and bus transactions may be held up until
the necessary propagation occurs. Of course, the performance penalty for holding the processor
write until the BusRdX has been granted is more onerous, so we are motivated to try to decouple
these operations (the penalty for holding the bus until the L1 cache is queried is avoided by the
early commitment optimization above). Before going further down this path, let us remove the
second simplifying assumption, of an atomic bus, and examine a more aggressive, split-transac-
tion bus. We will first return to assuming a single-level processor cache for simplicity, and then
incorporate multi-level cache hierarchies.

Figure  6-7  Organization of two-level snoopy caches. 
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6.5 Split-transaction Bus

An atomic bus limits the achievable bus bandwidth substantially, since the bus wires are idle for
the duration between when the address is sent on the bus and when the memory system or
another cache supply the data or response. In a split-transaction bus, transactions that require a
response are split into two independent sub-transactions, a request transaction and a response
transaction. Other transactions (or sub-transactions) are allowed to intervene between them, so
that the bus can be used while the response to the original request is being generated. Buffering is
used between the bus and the cache controllers to allow multiple transactions to be outstanding
on the bus waiting for snoop and/or data responses from the controllers. The advantage, of
course, is that by pipelining bus operations the bus is utilized more effectively and more proces-
sors can share the same bus. The disadvantage is increased complexity. 

As examples of request-response pairs, a BusRd transaction is now a request that needs a data
response. A BusUpgr does not need a data response, but it does require an acknowledgment indi-
cating that it has committed and hence been serialized. This acknowledgment is usually sent
down toward the processor by the requesting processor’s bus controller when it is granted the bus
for the BusUpgr request, so it does not appear on the bus as a separate transaction. A BusRdX
needs a data response and an acknowledgment of commitment; typically, these are combined as
part of the data response. Finally, a writeback usually does not have a response. 

The major complications caused by split transaction buses are: 

1. A new request can appear on the bus before the snoop and/or servicing of an earlier request
are complete. In particular, conflicting requests (two requests to the same memory block, at
least one of which is due to a write operation) may be outstanding on the bus at the same
time, a case which must be handled very carefully. This is different from the earlier case of
non-atomicity of overall actions using an atomic bus; there, a conflicting request could be
observed by a processor but before its request even obtained the bus, so the request could be
suitably modified before being placed on the bus. 

2. The number of buffers for incoming requests and potentially data responses from bus to cache
controller is usually fixed and small, so we must either avoid or handle buffers filling up. This
is called flow control, since it affects the flow of transactions through the system. 

3. Since bus/snoop requests are buffered, we need to revisit the issue of when and how snoop
responses and data responses are produced on the bus. For example, are they generated in
order with respect to the requests appearing on the bus or not, and are the snoop and the data
part of the same response transaction?

Example  6-2 Consider the previous example of two processors P1 and P2 having the block
cached in shared state and deciding to write it at the same time (Example 6-1).
Show how a split-transaction bus may introduce complications which would not
arise with an atomic bus. 

Answer With a split-transaction bus, P1 and P2 may generate BusUpgr requests that are
granted the bus on successive cycles. For example, P2 may get the bus before it has
been able to look up the cache for P1’s request and detect it to be conflicting. If they
both assume that they have acquired exclusive ownership, the protocol breaks down
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because both P1 and P2 now think they have the block in modified state. On an
atomic bus this would never happen because the first BusUpgr transaction would
complete—snoops, responses, and all—before the second one got on the bus, and
the latter would have been forced to change its request from BusUpgr to BusRdX.
(Note that even the breakdown on the atomic bus discussed in Example 6-1 resulted
in only one processor having the block in modified state, and the other having it in
shared state.)

The design space for split-transaction, cache-coherent busses is large, and a great deal of innova-
tion is on-going in the industry. Since bus operations are pipelined, one high level design decision
is whether responses need to be kept in the same order as the requests. The Intel Pentium Pro and
DEC Turbo Laser busses are examples of the “in order” approach, while the SGI Challenge and
Sun Enterprise busses allow responses to be out of order. The latter approach is more tolerant of
variations in memory access times (memory may be able to satisfy a later request quicker than an
earlier one, due to memory bank conflicts or off-page DRAM access), but is more complex. A
second key decision is how many outstanding requests are permitted: few or many. In general, a
larger number of outstanding requests allows better bus utilization, but requires more buffering
and design complexity. Perhaps the most critical issue from the viewpoint of the cache coherence
protocol is how ordering is established and when snoop results are reported. Are they part of the
request phase or the response phase? The position adopted on this issue determines how conflict-
ing operations can be handled. Let us first examine one concrete design fully, and then discuss
alternatives. 

6.5.1 An Example Split-transaction Design

The example is based loosely on the Silicon Graphics Challenge bus architecture, the PowerPath
2. It takes the following positions on the three issues. Conflicting requests are dealt with very
simply, if conservatively: the design disallows multiple requests for a block from being outstand-
ing on the bus at once. In fact, it allows only eight outstanding requests at a time on the bus, thus
making the conflict detection tractable. Limited buffering is provided between the bus and the
cache controllers, and flow-control for these buffers is implemented through negative acknowl-
edgment or NACK lines on the bus. That is, if a buffer is full when a request is observed, which
can be detected as soon as the request appears on the bus, the request is rejected and NACKed;
this renders the request invalid, and asks the requestor to retry. Finally, responses are allowed to
be provided in a different order than that in which the original requests appeared on the bus. The
request phase establishes the total order on coherence transactions, however, snoop results from
the cache controllers are presented on the bus as part of the response phase, together with the data
if any. 

Let us examine the high-level bus design and how responses are matched up with requests. Then,
we shall look at the flow control and snoop result issues in more depth. Finally, we shall examine
the path of a request through the system, including how conflicting requests are kept from being
simultaneously outstanding on the bus. 

6.5.2 Bus Design and Request-response Matching

The split-transaction bus design essentially consists of two separate busses, a request bus for
command and address and a response bus for data. The request bus provides the type of request
(e.g., BusRd, BusWB) and the target address. Since responses may arrive out of order with regard
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to requests, there needs to be a way to identify returning responses with their outstanding
requests. When a request (command-address pair) is granted the bus by the arbiter, it is also
assigned a unique tag (3-bits, since there are eight outstanding requests in the base design). A
response consists of data on the data bus as well as the original request tags. The use of tags
means that responses do not need to use the address lines, keeping them available for other
requests. The address and the data buses can be arbitrated for separately. There are separate bus
lines for arbitration, as well as for flow control and snoop results.

Cache blocks are 128 bytes (1024 bits) and the data bus is 256 bits wide in this particular design,
so four cycles plus a one cycle ‘turn-around’ time are required for the response phase. A uniform
pipeline strategy is followed, so the request phase is also five cycles: arbitration, resolution,
address, decode, and acknowledgment. Overall, a complete request-response transaction takes
three or more of these five-cycle phases, as we shall see. This basic pipelining strategy underlies
several of the higher level design decisions. To understand this strategy, let’s follow a single read
operation through to completion, shown in Figure 6-8. In the request arbitration cycle a cache
controller presents its request for the bus. In the request resolution cycle all requests are consid-
ered, a single one is granted, and a tag is assigned. The winner drives the address in the following
address cycle and then all controllers have a cycle to decode it and look up the cache tags to
determine whether there is a snoop hit (the snoop result will be presented on the bus later). At this
point, cache controllers can take the action which makes the operation ‘visible’ to the processor.
On a BusRd, an exclusive block is downgraded to shared; on a BusRdX or BusUpgr blocks are
invalidated. In either case, a controller owning the block as dirty knows that it will need to flush
the block in the response phase. If a cache controller was not able to take the required action dur-
ing the Address phase, say if it was unable to gain access to the cache tags, it can inhibit the com-
pletion of the bus transaction in the A-ack cycle. (During the ack cycle, the first data transfer
cycle for the previous data arbitration cycle can take place, occupying the data lines for four
cycles, see Figure 6-8.) 

After the address phase it is determined which module should respond with the data: the memory
or a cache. The responder may request the data bus during a following arbitration cycle. (Note
that in this cycle a requestor also initiates a new request on the address bus). The data bus arbitra-
tion is resolved in the next cycle and in the address cycle the tag can be checked. If the target is
ready, the data transfer starts on the ack cycle and continues for three additional cycles. After a
single turn-around cycle, the next data transfer (whose arbitration was proceeding in parallel) can
start. The cache block sharing state (snoop result) is conveyed with the response phase and state
bits are set when the data is updated in the cache.

As discussed earlier, writebacks (BusWB) consist only of a request phase. They require use of
both the address and data lines together, and thus must arbitrate for simultaneous use of both
resources. Finally, upgrades (BusUpgr) performed to acquire exclusive ownership for a block
also have only a request part since no data response is needed on the bus. The processor perform-
ing a write that generates the BusUpgr is sent a response by its own bus controller when the
BusUpgr is actually placed on the bus, indicating that the write is committed and has been serial-
ized in the bus order. 

To keep track of the outstanding requests on the bus, each cache controller maintains an eight-
entry buffer, called a request table (see Figure 6-9), Whenever a new request is issued on the bus,
it is added to all request tables at the same index, which is the three-bit tag assigned to that
request, as part of the arbitration process. A request table entry contains the block address associ-
ated with the request, the request type, the state of the block in the local cache (if it has already
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been determined), and a few other bits. The request table is fully associative, so a new request can
be physically placed anywhere in the table; all request table entries are examined for a match by
both requests issued by this processor and by other requests and responses observed from the bus.
A request table entry is freed when a response to the request is observed on the bus. The tag value
associated with that request is reassigned by the bus arbiter only at this point, so there are no con-
flicts in the request tables.

6.5.3 Snoop Results and Conflicting Requests

Like the SGI Challenge, this base design uses variable delay snooping. The snoop portion of the
bus consists of the three wired-or lines discussed earlier: sharing, dirty, and inhibit, which
extends the duration of the current response sub-transaction. At the end of the request phase, it is
determined which module is to respond with the data. However, it may be many cycles before
that data is ready and the responder gains access to the data bus. During this time, other requests
and responses may take place.The snoop results in this design are presented on the bus by all con-
trollers at the time they see the actual response to a request being put on the bus, i.e. during the
response phase. Writeback and upgrade requests do not have a data response, but then they do not
require a snoop response either.

Avoiding conflicting requests is easy: Since every controller has a record of the pending reads in
its request table, no request is issued for a block that has a response outstanding. Writes are per-
formed during the request phase, so even though the bus is pipelined the operations for an indi-
vidual location are serialized as in the atomic case. However, this alone does not ensure
sequential consistency.

6.5.4 Flow Control

In addition to flow control for incoming requests from the bus, flow control may also be required
in other parts of the system. The cache subsystem has a buffer in which responses to its requests
can be stored, in addition to the writeback buffer discussed earlier. If the processor or cache
allows only one outstanding request at a time, this response buffer is only one entry deep. The
number of buffer entries is usually kept small anyway, since a response buffer entry contains not

Figure  6-8  Complete read transaction for a split-transaction bus

A pair of consecutive read operations are performed on consecutive phases. Each phase consist of five specific cycles: arbitration,
resolution, address, decode, and acknowledgment. Transactions are split into to phases: address and data.
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only an address but also a cache block of data and is therefore large. The controller limits the
number of requests it has outstanding so that there is buffer space available for every response.

Flow control is also needed at main memory. Each of the (eight) pending requests can generate a
writeback that main memory must accept. Since writeback transactions do not require a response,
they can happen in quick succession on the bus, possibly overflowing buffers in the main mem-
ory subsystem. For flow control, the Challenge design provides separate NACK (negative
acknowledgment) lines for the address and data portions of bus, since the bus allows independent
arbitration for each portion. Before a request or response sub-transaction has reached its ack
phase and completed, any other processor or the main memory can assert a NACK signal, for
example if it finds its buffers full. The sub-transaction is then canceled everywhere, and must be
retried. One common option, used in the Challenge, is to have the requestor retry periodically
until it succeeds. Backoff and priorities can be used to reduce bandwidth consumption for failed
retries and to avoid starvation. The Sun Enterprise uses an interesting alternative for writes that
encounter a full buffer. In this case, the destination buffer—which could not accommodate the
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data from the write on the first attempt—itself initiates the retry when it has enough buffer space.
The original writer simply keeps watch for the retry transaction on the bus, and places the data on
the data bus. The operation of the Enterprise bus ensures that the space in the destination buffer is
still available when the data arrive. This guarantees that writes will succeed with only one retry
bus transaction, and does not require priority-based arbitration which can slow the bus down. 

6.5.5 Path of a Cache Miss

Given this design, we are ready to examine how various requests may be handled, and the race
conditions that might occur. Let us first look at the case where a processor has a read miss in the
cache, so the request part of a BusRd transaction should be generated. The request first checks
the currently pending entries in the request table. If it finds one with a matching address, there are
two possible courses of action depending on the nature of the pending request:

1. The earlier request was a BusRd request for the same block. This is great news for this pro-
cessor, since the request needn’t be put on the bus but can just grab the data when the
response to the earlier request appears on the bus. To accomplish this, we add two new bits to
each entry in the request-table which say: (i) do I wish to grab the data response for this
request, and (ii) am I the original generator of this request. In our situation these bits will be
set to 1 and 0 respectively. The purpose of the first bit is obvious; the purpose of the second
bit is to help determine in which state (valid-exclusive versus shared) to signal the data
response. If a processor is not the original requestor, then it must assert the sharing line on the
snoop bus when it grabs the response data from the bus, so that all caches will load this block
in shared state and not valid-exclusive. If a processor is the original requestor, it does not
assert the sharing line when it grabs the response from the bus, and if the sharing line is not
asserted at all then it will grab the block in valid-exclusive state. 

2. The earlier request was incompatible with a BusRd, for example, a BusRdX. In this case, the
controller must hold on to the request until it sees a response to the previous request on the
bus, and only then attempt the request. The “processor-side” controller is typically responsi-
ble for this. 

If the controller finds that there are no matching entries in the request-table, it can go ahead and
issue the request on the bus. However, it must watch out for race conditions. For example, when
the controller first examines the request table it may find that there are no conflicting requests,
and so it may request arbitration for the bus. However, before it is granted the bus, a conflicting
request may appear on the bus, and then it may be granted the very next use of the bus. Since this
design does not allow conflicting requests on the bus, when the controller sees a conflicting
request in the slot just before its own it should (i) issue a null request (a no-action request) on the
bus to occupy the slot it had been granted and (ii) withdraw from further arbitration until a
response to the conflicting request has been generated.

Suppose the processor does manage to issue the BusRd request on the bus. What should other
cache controllers and the main memory controller do? The request is entered into the request
tables of all cache controllers, including the one that issued this request, as soon as it appears on
the bus. The controllers start checking their caches for the requested memory block. The main
memory subsystem has no idea whether this block is dirty in one of the processor’s caches, so it
independently starts fetching this block. There are now three different scenarios to consider:

1. One of the caches may determine that it has the block dirty, and may acquire the bus to gener-
ate a response before main memory can respond. On seeing the response on the bus, main
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memory simply aborts the fetch that it had initiated, and the cache controllers that are waiting
for this block grab the data in a state based on the value of the snooping lines. If a cache con-
troller has not finished snooping by the time the response appears on the bus, it will keep the
inhibit line asserted and the response transaction will be extended (i.e. will stay on the bus).
Main memory also receives the response since the block was dirty in a cache. If main mem-
ory does not have the buffer space needed, it asserts the NACK signal provided for flow con-
trol, and it is the responsibility of the controller holding the block dirty to retry the response
transaction later.

2. Main memory may fetch the data and acquire the bus before the cache controller holding the
block dirty has finished its snoop and/or acquired the bus. The controller holding the block
dirty will first assert the inhibit line until it has finished its snoop, and then assert the dirty line
and release the inhibit line, indicating to the memory that it has the latest copy and that mem-
ory should not actually put its data on the bus. On observing the dirty line, memory cancels its
response transaction and does not actually put the data on the bus. The cache with the dirty
block will sometime later acquire the bus and put the data response on it.

3. The simplest scenario is that no other cache has the block dirty. Main memory will acquire
the bus and generate the response. Cache controllers that have not finished their snoop will
assert the inhibit line when they see the response from memory, but once they de-assert it
memory can supply the data (Cache-to-cache sharing is not used for data in shared state).

Processor writes are handled similarly to reads. If the writing processor does not find the data in
its cache in a valid state, a BusRdX is generated. As before, it checks the request table and then
goes on the bus. Everything is the same as for a bus read, except that main memory will not sink
the data response if it comes from another cache (since it is going to be dirty again) and no other
processor can grab the data. If the block being written is valid but in shared state, a BusUpgr is
issued. This requires no response transaction (the data is known to be in main memory as well as
in the writer’s cache); however, if any other processor was just about to issue a BusUpgr for the
same block, it will need to now convert its request to a BusRdX as in the atomic bus. 

6.5.6 Serialization and Sequential Consistency

Consider serialization to a single location. If an operation appearing on the bus is a read (miss),
no subsequent write appearing on the bus after the read should be able to change the value
returned to the read. Despite multiple outstanding transactions on the bus, here this is easy since
conflicting requests to the same location are not allowed simultaneously on the bus. If the opera-
tion is a BusRdX or BusUpgr generated by a write operation, the requesting cache will perform
the write into the cache array after the response phase; subsequent (conflicting) reads to the block
are allowed on the bus only after the response phase, so they will obtain the new value. (Recall
that the response phase may be a separate action on the bus as in a BusRdX or may be implicitly
generated once the request wins arbitration as in a BusUpgr). 

Now consider the serialization of operations to different locations needed for sequential consis-
tency. The logical total order on bus transactions is established by the order in which requests are
granted for the address bus. Once a BusRdX or BusUpgr has obtained the bus, the associated
write is committed. However, with multiple outstanding requests on the bus, the invalidations are
buffered and it may be a while before they are applied to the cache. Commitment of a write does
not guarantee that the value produced by the write is already visible to other processors; only
actual completion guarantees that. The separation between commitment and completion and the
need for buffering multiple outstanding transactions imply the need for further mechanisms to
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ensure that the necessary orders are preserved between the bus and the processor. The following
examples will help make this concrete. 

Example  6-3 Consider the two code fragments shown below. What results for (A,B) are
disallowed under SC? Assuming a single level of cache per processor and multiple
outstanding transactions on the bus, and no special mechanisms to preserve orders
between bus and cache or processor, show how the disallowed results may be
obtained. Assume an invalidation-based protocol, and that the initial values of A
and B are 0. 

Answer In the first example, on the left, the result not permitted under SC is (A,B) = (0,1).
However, consider the following scenario. P1’s write of A commits, so it continues
with the write of B (under the sufficient conditions for SC). The invalidation
corresponding to B is applied to the cache of P2 before that corresponding to A,
since they get reordered in the buffers. P2 incurs a read miss on B and obtains the
new value of 1. However, the invalidation for A is still in the buffer and not applied
to P2’s cache even by the time P2 issues the read of A. The read of A is a hit, and
completes returning the old value 0 for A from the cache. 

In the example on the right, the disallowed result is (0,0). However, consider the
following scenario. P1 issues and commits its write of A, and then goes forward and
completes the read of B, reading in the old value of 0. P2 then writes B, which
commits, so P2 proceeds to read A. The write of B appears on the bus after the write
of A, so they should be serialized in that order and P2 should read the new value of
A. However, the invalidation corresponding to the write of A by P1 is sitting in P2’s
incoming buffer and has not yet been applied to P2’s cache. P2 sees a read hit on A
and completes returning the old value of A which is 0. 

With commitment substituting for commitment and multiple outstanding operations being buff-
ered between bus and processor, the key property that must be preserved for sequential consis-
tency is the following: A processor should not be allowed to actually see the new value due to a
write before previous writes (in bus order, as usual) are visible to it. There are two ways to pre-
serve this property: by not letting certain types of incoming transactions from bus to cache be
reordered in the incoming queues, and by allowing these reorderings but ensuring that the neces-
sary orders are preserved when necessary. Let us examine each approach briefly. 

A simple way to follow the first approach is to ensure that all incoming transactions from the bus
(invalidations, read miss replies, write commitment acknowledgments etc.) propagate to the pro-
cessor in FIFO order. However, such strict ordering is not necessary. Consider an invalidation-
based protocol. Here, there are two ways for a new value to be brought into the cache and made
available to the processor to read without another bus operation. One is through a read miss, and
the other is through a write by the same processor. On the other hand, writes from other proces-

P1 P2 P1 P2

A = 1 rd B A = 1 B = 1

B = 1 rd A rd B rd A
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sors become visible to a processor (even though the values are not yet local) when the corre-
sponding invalidations are applied to the cache. The invalidations due to writes that are previous
to the read miss or local write that provides the new value are already in the queue when the read
miss or local write appears on the bus, and therefore are either in the queue or applied to the
cache when the reply comes back. All we need to ensure, therefore, is that a reply (read miss or
write commitment) does not overtake an invalidation between the bus and the cache; i.e. all pre-
vious invalidations are applied before the reply is received. 

Note that incoming invalidations may be reordered with regard to one another. This is because
the new value corresponding to an invalidation is seen only through the corresponding read miss,
and the read miss reply is not allowed to be reordered with respect to the previous invalidation. In
an update-based protocol, the new value due to a write does not require a read miss and reply, but
rather can be seen as soon as the incoming update has been applied. Writes are made visible
through updates as well. This means that not only should replies not overtake updates, but
updates should not overtake updates either. 

An alternative is to allow incoming transactions from the bus to be reordered on their way to the
cache, but to simply ensure that all previously committed writes are applied to the cache (by
flushing them from the incoming queue) before an operation from the local processor that
enables it to see a new value can be completed. After all, what really matters is not the order in
which invalidations/updates are applied, but the order in which the corresponding new values are
seen by the processor. There are two natural ways to accomplish this. One is to flush the incom-
ing invalidations/updates every time the processor tries to complete an operation that may enable
it to see a new value. In an invalidation-based protocol, this means flushing before the processor
is allowed to complete a read miss or a write that generates a bus transaction; in an update-based
protocol, it means flushing on every read operation as well. The other way is to flush under the
following circumstance: Flush whenever a processor is about to access a value (complete a read
hit or miss) if it has indeed seen a new value since the last flush, i.e. if a reply or an update has
been applied to the cache since the last flush. The fact that operations are reordered from bus to
cache and a new value has been applied to the cache means that there may be invalidations or
updates in the queue that correspond to writes that are previous to that new value; those writes
should now be applied before the read can complete. Showing that these techniques disallow the
undesirable results in the example above is left as an exercise that may help make the techniques
concrete. As we will see soon, the extension of the techniques to multi-level cache hierarchies is
quite natural. 

Regardless of which approach is used, write atomicity is provided naturally by the broadcast
nature of the bus. Writes are committed in the same order with respect to all processors, and a
read cannot see the value produced by a write until that write has committed with respect to all
processors. With the above techniques, we can substitute complete for commit in this statement,
ensuring atomicity. We will discuss deadlock, livelock and starvation issues introduced by a split
transaction bus after we have also introduced multi-level cache hierarchies in this context. First,
let us look at some alternative approaches to organizing a protocol with a split transaction bus. 

6.5.7 Alternative design choices

There are reasonable alternative positions for all of request-response ordering, dealing with con-
flicting requests, and flow control. For example, ensuring that responses are generated in order
with respect to requests—as cache controllers are inclined to do—would simplify the design. The
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fully-associative request table could be replaced with a simple FIFO buffer that stores pending
requests that were observed on the bus. As before, a request is put into the FIFO only when the
request actually appears on the bus, ensuring that all entities (processors and memory system)
have exactly the same view of pending requests. The processors and the memory system process
requests in FIFO order. At the time the response is presented, as in the earlier design, if others
have not completed their snoops they assert the inhibit line and extend the transaction duration.
That is, snoops are still reported together with responses. The difference is in the case where the
memory generates a response first even though a processor has that block dirty in its cache. In the
previous design, the cache controller that had the block dirty released the inhibit line and asserted
the dirty line, and arbitrated for the bus again later when it had retrieved the data. But now to pre-
serve the FIFO order this response has to be placed on the bus before any other request is ser-
viced. So the dirty controller does not release the inhibit line, but extends the current bus
transaction until it has fetched the block from its cache and supplied it on the bus. This does not
depend on anyone else accessing the bus, so there is no deadlock problem. 

While FIFO request-response ordering is simpler, it can have performance problems. Consider a
multiprocessor with an interleaved memory system. Suppose three requests A, B, and C are
issued on the bus in that order, and that A and B go to the same memory bank while C goes to a
different memory bank. Forcing the system to generate responses in order means that C will have
to wait for both A and B to be processed, though data for C will be available much before data for
B is available because of B’s bank conflict with A. This is the major motivation for allowing out
of order responses, since caches are likely to respond to requests in order anyway. 

Keeping responses in order also makes it more tractable to allow conflicting requests to the same
block to be outstanding on the bus. Suppose two BusRdX requests are issued on a block in rapid
succession. The controller issuing the latter request will invalidate its block, as before. The tricky
part with a split-transaction bus is that the controller issuing the earlier request sees the latter
request appear on the bus before the data response that it awaits. It cannot simply invalidate its
block in reaction to the latter request, since the block is in flight and its own write needs to be
performed before a flush or invalidate. With out-of-order responses, allowing this conflicting
request may be difficult. With in-order responses, the earlier requestor knows its response will
appear on the bus first, so this is actually an opportunity for a performance enhancing optimiza-
tion. The earlier-requesting controller responds to the latter request as usual, but notes that the
latter request is pending. When its response block arrives, it updates the word to be written and
“short-cuts” the block back out to the bus, leaving its own block invalid. This optimization
reduces the latency of ping-ponging a block under write-write false sharing.

If there is a fixed delay from request to snoop result, conflicting requests can be allowed even
without requiring data responses to be in order. However, since conflicting requests to a block go
into the same queue at the desintation they themselves are usually responded to in order anyway,
so they can be handled using the shortcut method described above (this is done in the Sun Enter-
prise systems). It is left as an exercise to think about how one might allow conflicting requests
with fixed-delay snoop results when responses to them may appear on the bus out of order.

In fact, as long as there is a well-defined order among the request transactions, they do not even
need to be issued sequentially on the same bus. For example, the Sun SPARCcenter 2000 used
two distinct split-phase busses and the Cray 6400 used four to improve bandwidth for large con-
figurations. Multiple requests may be issued on a single cycle. However, a priority is established
among the busses so that a logical order is defined even among the concurrent requests.
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6.5.8 Putting it together with multi-level caches

We are now ready to combine the two major enhancements to the basic protocol from which we
started: multi-level caches and a split-transaction bus. The base design is a (Challenge-like) split-
transaction bus and a two-level cache hierarchy. The issues and solutions generalize to deeper
hierarchies. We have already seen the basic issues of request, response, and invalidation propaga-
tion up and down the hierarchy. The key new issue we need to grapple with is that it takes a con-
siderable number of cycles for a request to propagate through the cache controllers. During this
time, we must allow other transactions to propagate up and down the hierarchy as well. To main-
tain high bandwidth while allowing the individual units to operate at their own rates, queues are
placed between the units. However, this raises a family of questions related to deadlock and seri-
alization. 

A simple multi-level cache organization is shown in Figure 6-10. Assume that a processor can
have only one request outstanding at a time, so there are no queues between the processor and
first-level cache. A read request that misses in the L1 cache is passed on to the L2 cache (1). If it
misses there, a request is placed on the bus (2). The read request is captured by all other cache
controllers in the incoming queue (3). Assuming the block is currently in modified state in the L1
cache of another processor, the request is queued for L1 service (4). The L1 demotes the block to
shared and flushes it to the L2 cache (5), which places it on the bus (6). The response is captured
by the requestor (7) and passed to the L1 (8), whereupon the word is provided to the processor.

One of the concerns with such queue structures is deadlock. To avoid the fetch deadlock problem
discussed earlier, as before an L2 cache needs to be able to buffer incoming requests or responses
while it has a request outstanding, so that the bus may be freed up. With one outstanding request
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Figure  6-10  Internal queues that may exist inside a multi-level cache hierarchy. 
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per processor, the incoming queues between the bus and the L2 cache need to be larger enough to
hold a request from each other processor (plus a response to its request). That takes care of the
case where all processors make a request of this cache while the processor has a request outstand-
ing. If they are made smaller than this to conserve real-estate (or if there are multiple outstanding
requests per processor), it is necessary to NACK bus requests when there is not room to enqueue
them. Also, one slot in the bus to L2 and in the L2 to L1 queues is reserved for the response to the
processor’s outstanding request, so that each processor can always drain its outstanding
responses. If NACKs are used, the request bus arbitration needs to include a mechanism to ensure
forward progress under heavy contention, such as a simple priority scheme. 

In addition to fetch deadlock, buffer deadlock can occur within the multilevel cache hierarchy as
well. For example, suppose there is a queue in each direction between the L1 and L2 cache, both
of which are writeback caches, and each queue can hold two entries. It is possible that the L1-
>L2 queue holds two outgoing read requests, which can be satisfied in the L2 cache but will gen-
erate replies to L1, and the L2->L1 queue holds two incoming read requests, which can be satis-
fied in the L1 cache. We now have a classical circular buffer dependence, and hence deadlock.
Note that this problem occurs only in hierarchies in which there is more than one level of write-
back cache, i.e. in which a cache higher than the one closest to the bus is writeback. Otherwise,
incoming requests do not generate replies from higher level caches, so there is no circularity and
no deadlock problem (recall that invalidations are acknowledged implicitly from the bus itself,
and do not need acknowledgments from the caches). 

One way to deal with this buffer deadlock problem in a multilevel writeback cache hierarchy is to
limit the number of outstanding requests from processors and then provide enough buffering for
incoming requests and responses at each level. However, this requires a lot of real estate and is
not scalable (each request may need two outgoing buffer entries, one for the request and one for
the writeback it might generate, and with a large number of outstanding bus transactions the
incoming buffers may need to have many entries as well) . An alternative way uses a general
deadlock avoidance technique for situations with limited buffering, which we will discuss in the
context of systems with physically distributed memory in the next chapter, where the problem is
more acute. The basic idea is to separate transactions (that flow through the hierarchy) into
requests and responses. A transaction can be classified as a response if it does not generate any
further transactions; a request may generate a response, but not transaction may generate another
request (although a request may be transferred to the next level of the hierarchy if it does not gen-
erate a reply at the original level). With this classification, we can avoid deadlock if we provide
separate queues for requests and responses in each direction, and ensure that responses are
always extracted from the buffers. After we have discussed this technique in the next chapter, we
shall apply to this particular situation with multilevel writeback caches in the exercises. 

There are other potential deadlock considerations that we may have to consider. For example,
with a limited number of outstanding transactions on the bus, it may be important for a response
from a processor’s cache to get to the bus before new outgoing requests from the processor are
allowed. Otherwise the existing requests may never be satisfied, and there will be no progress.
The outgoing queue or queues must be able to support responses bypassing requests when neces-
sary. 

The second major concern is maintaining sequential consistency. With multi-level caches, it is all
the more important that the bus not wait for an invalidation to reach all the way up to the first-
level cache and return a reply, but consider the write committed when it has been placed on the
bus and hence in the input queue to the lowest-level cache. The separation of commitment and
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completion is even greater in this case. However, the techniques discussed for single level caches
extend very naturally to this case: We simply apply them at each level of the cache hierarchy.
Thus, in an invalidation based protocol the first solution extends to ensuring at each level of the
hierarchy that replies are not reordered with respect to invalidations in the incoming queues to
that level (replies from a lower level cache to a higher-level cache are treated as replies too for
this purpose). The second solution extends to either not letting an outgoing memory operation
proceed past a level of the hierarchy before the incoming invalidations to that level are applied to
that cache, or flushing the incoming invalidations at a level if a reply has been applied to that
level since the last flush. 

6.5.9 Supporting Multiple Outstanding Misses from a Processor

Although we have examined split transaction buses, which have multiple transactions outstand-
ing on them at a time, so far we have assumed that a given processor can have only one memory
request outstanding at a time. This assumption is simplistic for modern processors, which permit
multiple outstanding requests to tolerate the latency of cache misses even on uniprocessor sys-
tems. While allowing multiple outstanding references from a processor improves performance, it
can complicate semantics since memory accesses from the same processor may complete in a
different order in the memory system than that in which they were issued. 

One example of multiple outstanding references is the use of a write buffer. Since we would like
to let the processor proceed to other computation and even memory operations after it issues a
write but before it obtains exclusive ownership of the block, we put the write in the write buffer.
Until the write is serialized, it should be visible only to the issuing processor and not to other pro-
cessors, since otherwise it may violate write serialization and coherence. One possibility is to
write it into the local cache but not make it available to other processors until exclusive owner-
ship is obtained (i.e. not let the cache respond to requests for it until then). The more common
approach is to keep it in the write buffer and put it in the cache (making it available to other pro-
cessors through the bus) only when exclusive ownership is obtained. 

Most processors use write buffers more aggressively, issuing a sequence of writes in rapid suc-
cession into the write buffer without stalling the processor. In a uniprocessor this approach is
very effective, as long as reads check the write buffer. The problem in the multiprocessor case is
that, in general, the processor cannot be allowed to proceed with (or at least complete) memory
operations past the write until the exclusive ownership transaction for the block has been placed
on the bus. However, there are special cases where the processor can issue a sequence of writes
without stalling. One example is if it can be determined that the writes are to blocks that are in
the local cache in modified state. Then, they can be buffered between the processor and the cache,
as long as the cache processes the writes before servicing a read or exclusive request from the bus
side. There is also an important special case in which a sequence of writes can be buffered
regardless of the cache state. That is where the writes are all to the same block and no other mem-
ory operations are interspersed between those writes. The writes may be coalesced while the con-
troller is obtaining the bus for the read exclusive transaction. When that transaction occurs, it
makes the entire sequence of writes visible at once. The behavior is the same as if the writes were
performed after the bus transaction, but before the next one. Note that there is no problem with
sequences of writebacks, since the protocol does not require them to be ordered.

More generally, to satisfy the sufficient conditions for sequential consistency, a processor having
the ability to proceed past outstanding write and even read operations raises the question of who
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should wait to “issue” an operation until the previous one in program order completes. Forcing
the processor itself to wait can eliminate any benefits of the sophisticated processor mechanisms
(such as write buffers and out-of-order execution). Instead, the buffers that hold the outstanding
operations— such as the write buffer and the reorder buffer in dynamically scheduled out-of-
order execution processors—can serve this purpose. The processor can issue the next operation
right after the previous one, and the buffers take charge of not making write operations visible to
the memory and interconnect systems (i.e. not issuing them to the externally visible memory sys-
tem) or not allowing read operations to complete out of program order with respect to outstand-
ing writes even though the processor may issue and execute them out of order. The mechanisms
needed in the buffers are often already provided to provide precise interrupts, as we will see in
later chapters. Of course, simpler processors that do not proceed past reads or writes make it eas-
ier to maintain sequential consistency. Further semantic implications of multiple outstanding ref-
erences for memory consistency models will be discussed in Chapter 9, when we examine
consistency models in detail. 

From a design perspective, exploiting multiple outstanding references most effectively requires
that the processor caches allow multiple cache misses to be outstanding at a time, so that the
latencies of these misses can be overlapped. This in turn requires that either the cache or some
auxiliary data structure keep track of the outstanding misses, which can be quite complex since
they may return out of order. Caches that allow multiple outstanding misses are called lockup-
free caches [Kro81,Lau94], as opposed to blocking caches that allow only one outstanding miss.
We shall discuss the design of lockup-free caches when we discuss latency tolerance in
Chapter 11. 

Finally, consider the interactions with split transaction busses and multi-level cache hierarchies.
Given a design that supports a split-transaction bus with multiple outstanding transactions and a
multi-level cache hierarchy, the extensions needed to support multiple outstanding operations per
processor are few and are mostly for performance. We simply need to provide deeper request
queues from the processor to the bus (the request queues pointing downwards in Figure 6-10), so
that the multiple outstanding requests can be buffered and not stall the processor or cache. It may
also be useful to have deeper response queues, and more write-back and other types of buffers,
since there is now more concurrency in the system. As long as deadlock is handled by separating
requests from replies, the exact length of any of these queues is not critical for correctness. The
reason for such few changes is that the lockup-free caches themselves perform the complex task
of merging requests and managing replies, so to the caches and the bus subsystem below it sim-
ply appears that there are multiple requests to distinct blocks coming from the processor. While
some potential deadlock scenarios might become exposed that would not have arisen with only
one outstanding request per processor—for example, we may now see the situation where the
number of requests outstanding from all processors is more than the bus can take, so we have to
ensure responses can bypass requests on the way out—the support discussed earlier for split-
transaction buses makes the rest of the system capable of handling multiple requests from a pro-
cessor without deadlock. 

6.6 Case Studies: SGI Challenge and Sun Enterprise SMPs

This section places the general design and implementation issues discussed above into a concrete
setting by describing two multiprocessor systems, the SGI Challenge and the Sun Enterprise
6000. 
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The SGI Challenge is designed to support up to 36 MIPS R4400 processors (peak 2.7 GFLOPS)
or up to 18 MIPS R8000 processors (peak 5.4 GFLOPS) in the Power Challenge model. Both
systems use the same system bus, the Powerpath-2 bus, which provides a peak bandwidth of 1.2
Gbytes/sec and the system supports up to 16 Gbytes of 8-way interleaved main memory. Finally,
the system supports up to 4 PowerChannel-2 I/O buses, each providing a peak bandwidth of 320
Mbytes/sec. Each I/O bus in turn can support multiple Ethernet connections, VME/SCSI buses,
graphics cards, and other peripherals. The total disk storage on the system can be several Ter-
abytes. The operating system that runs on the hardware is a variant of SVR4 UNIX called IRIX;
it is a symmetric multiprocessor kernel in that any of the operating systems’ tasks can be done on
any of the processors in the system. Figure 6-11 shows a high-level diagram of the SGI Chal-
lenge system.

The Sun Enterprise 6000 is designed to support up to 30 UltraSPARC processors (peak 9
GFLOPs). The GigaplaneTM system bus provides a peak bandwidth of 2.67 GB/s (83.5MHz
times 32 bytes), and the system can support up to 30 GB of up to 16-way interleaved memory.
The 16 slots in the machine can be populated with a mix of processing boards and I/O boards, as
long as there is a least one of each. Each processing board has two CPU modules and two (512
bit wide) memory banks of up to 1 GB each, so the memory capacity and bandwidth scales with
the number of processors. Each I/O card provides two independent 64-bit x 25 MHz SBUS I/O
busses, so the I/O bandwidth scales with the number of I/O cards up to more than 2 GB/s. The
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Figure  6-11  The SGI Challenge multiprocessor 

With four processors per board, the thirty-six processors consume nine bus slots. It can support up to 16 Gbytes of 8-
way interleaved main memory. The I/O boards provide a separate 320 Mbytes/sec I/O bus, to which other standard
buses and devices interface. The system bus has a separate 40-bit address path and a 256-bit data path, and supports a
peak bandwidth of 1.2 Gbytes/sec. The bus is split-transaction and up to eight requests can be outstanding on the bus
at any given time.
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total disk storage can be tens of terabytes. The operating system is Solaris UNIX. Figure 6-12
shows a block diagram of the Sun Enterprise system.

6.6.1 SGI Powerpath-2 System Bus

The system bus forms the core interconnect for all components in the system. As a result, its
design is affected by requirements of all other components, and design choices made for it, in
turn, affect back the design of other components. The design choices for buses include: multi-
plexed versus non-multiplexed address and data buses, wide (e.g., 256 or 128-bit) versus nar-
rower (64-bit) data bus, the clock rate of the bus (affected by signalling technology used, length
of bus, the number of slots on bus), split-transaction versus non-split-transaction design, the flow-
control strategy, and so on. The powerpath-2 bus is non-multiplexed with 256-bit wide data por-
tion and 40-bit wide address portion, it is clocked at 47.6 MHz, and it is split-transaction support-
ing 8 outstanding read requests. While the very wide data path implies that the cost of connecting
to the bus is higher (it requires multiple bit-sliced chips to interface to it), the benefit is that the
high bandwidth of 1.2 Gbytes/sec can be achieved at a reasonable clock rate. At the 50MHz clock
rate the bus supports sixteen slots, nine of which can be populated with 4-processor boards to
obtain a 36-processor configuration. The width of the bus also affects (and is affected by) the
cache block size chosen for the machine. The cache block size in the Challenge machine is 128
bytes, implying that the whole cache block can be transferred in only four bus clocks; a much
smaller block size would have resulted in less effective use of the bus pipeline or a more complex
design. The bus width affects many other design decisions. For example, the individual board is
fairly large in order to support such a large connector. The bus interface occupies roughly 20% of
the board, in a strip along the edge, making it natural to place four processors on each board.

Let us look at the Powerpath-2 bus design in a little more detail. The bus consists of a total of 329
signals: 256 data, 8 data parity, 40 address, 8 command, 2 address+command parity, 8 data-
resource ID, and 7 miscellaneous. The types and variations of transactions on the bus is small,
and all transactions take exactly 5 cycles. System wide, bus controller ASICs execute the follow-
ing 5-state machine synchronously: arbitration, resolution, address, decode, and acknowledge.
When no transactions are occurring, each bus controller drops into a 2-state idle machine. The 2-
state idle machine allows new requests to arbitrate immediately, rather than waiting for the arbi-
trate state to occur in the 5-state machine. Note that 2-states are required to prevent different

Figure  6-12  The Sun Enterprise 6000 multiprocessor 
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requestors from driving arbitration lines on successive cycles. Figure 6-13 shows the state
machine underlying the basic bus protocol. 

Since the bus is split transaction, the address and data buses must be arbitrated for separately. In
the arbitration cycle, the 48 address+command lines are used for arbitration. The lower 16 lines
are used for data bus arbitration and the middle 16 lines are used for address bus arbitration. For
transactions that require both address and data buses together, e.g., writebacks, corresponding
bits for both buses can be set high. The top 16 lines are used to make urgent or high-priority
requests. Urgent requests are used to avoid starvation, for example, if a processor times-out wait-
ing to get access to the bus. The availability of urgent-type requests allowed the designers consid-
erable flexibility in favoring service of some requests over others for performance reasons (e.g.,
reads are given preference over writes), while still being confident that no requestor will get
starved.

At the end of the arbitration cycle, all bus-interface ASICs capture the 48-bit state of the request-
ors. A distributed arbitration scheme is used, so every bus master sees all of the bus requests, and
in the resolution cycle, each one independently computes the same winner. While distributed
arbitration consumes more of ASIC’s gate resources, it saves the latency incurred by a centralized
arbitrator of communicating winners to everybody via bus grant lines. 

During the address cycle, the address-bus master drives the address and command buses with
corresponding information. Simultaneously, the data-bus master drives the data resource ID line
corresponding to the response. (The data resource ID corresponds to the global tag assigned to
this read request when it was originally issued on the bus. Also see Section 6.5 for details.) 

During the decode cycle, no signals are driven on the address bus. Internally, each bus-interface
slot decides how to respond to this transaction. For example, if the transaction is a writeback, and
the memory system currently has insufficient buffer resources to accept the data, in this cycle it
will decide that it must NACK (negative acknowledge or reject) this transaction on the next cycle,
so that the transaction can be retried at a later time. In addition all slots prepare to supply the
proper cache-coherence information.

Figure  6-13  Powerpath-2 bus state-transition diagram. 
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During the data acknowledge cycle, each bus interface slot responds to the recent data/address
bus transaction. The 48 address+command lines are used as follows. The top 16 lines indicate if
the device in the corresponding slot is rejecting the address-bus transaction due to insufficient
buffer space. Similarly, the middle 16 lines are used to possibly reject the data-bus transaction.
The lowest 16 lines indicate the cache-state of the block (present vs. not-present) being trans-
ferred on the data-bus. These lines help determine the state in which the data block will be loaded
in the requesting processor, e.g., valid-exclusive versus shared. Finally, in case one of the proces-
sors has not finished its snoop by this cycle, it indicates so by asserting the corresponding inhibit
line. (The data-resource ID lines during the data acknowledgment and arbitration cycles are
called inhibit lines.) It continues to assert this line until it has finished the snoop. If the snoop
indicates a clean cache block, the snooping node simply drops the inhibit line, and allows the
requesting node to accept memory’s response. If the snoop indicated a dirty block, the node re-
arbitrates for the data bus and supplies the latest copy of the data, and only then drops the inhibit
line.

For data-bus transactions, once a slot becomes the master, the 128 bytes of cache-block data is
transferred in four consecutive cycles over the 256-bit wide data path. This four-cycle sequence
begins with the data acknowledgment cycle and ends at the address cycle of the following trans-
action. Since the 256-bit wide data path is used only for four out of five cycles, the maximum
possible efficiency of these data lines is 80%. In some sense though, this is the best that could be
done; the signalling technology used in the Powerpath-2 bus requires one cycle turn-around time
between different masters driving the lines. Figure 6-13 shows the cycles during which various
bus lines are driven and their semantics.

Figure  6-14  Powerpath-2 bus timing diagram. 
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6.6.2 SGI Processor and Memory Subsystems

In the Challenge system, each board can contain 4 MIPS R4400 processors. Furthermore, to
reduce the cost of interfacing to the bus, many of the bus-interface chips are shared between the
processors. Figure 6-13 shows the high-level organization of the processor board.

The processor board uses three different types of chips to interface to the bus and to support
cache coherence. There is a single A-chip for all four processors that interfaces to the address
bus. It contains logic for distributed arbitration, the eight-entry request-table storing currently
outstanding transactions on the bus (see Section 6.5 for details), and other control logic for decid-
ing when transactions can be issued on the bus and how to respond to them. It passes on requests
observed on the bus to the CC-chip (one for each processor), which uses a duplicate set of tags to
determine the presence of that memory block in the local cache, and communicates the results
back to the A-chip. All requests from the processor also flow through the CC-chip to the A-chip,
which then presents them on the bus. To interface to the 256-bit wide data bus, four bit-sliced D-
chips are used. The D-chips are quite simple and are shared among the processors; they provide
limited buffering capability and simply pass data between the bus and the CC-chip associated
with each processor.

The Challenge main memory subsystem uses high-speed buffers to fan out addresses to a 576-bit
wide DRAM bus. The 576 bits consist of 512 bits of data and 64 bits of ECC, allowing for single
bit in-line correction and double bit error detection. Fast page-mode access allows an entire 128
byte cache block to be read in two memory cycles, while data buffers pipeline the response to the
256-bit wide data bus. Twelve clock cycles (~250ns) after the address appears on the bus, the
response data appears on the data bus. Given current technology, a single memory board can hold
2 Gbytes of memory and supports a 2-way interleaved memory system that can saturate the 1.2
Gbytes/sec system bus.

Figure  6-15  Organization and chip partitioning of the SGI Challenge processor board. 
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Given the raw latency of 250ns that the main-memory subsystem takes, it is instructive to see the
overall latency experienced by the processor. On the Challenge this number is close to 1µs or
1000ns. It takes approximately 300ns for the request to first appear on the bus; this includes time
taken for the processor to realize that it has a first-level cache miss, a second-level cache miss,
and then to filter through the CC-chip down to the A-chip. It takes approximately another 400ns
for the complete cache block to be delivered to the D-chips across the bus. These include the 3
bus cycles until the address stage of the request transaction, 12 cycles to access the main memory,
and another 5 cycles for the data transaction to deliver the data over the bus. Finally, it takes
another 300ns for the data to flow through the D-chips, through the CC-chip, through the 64-bit
wide interface onto the processor chip (16 cycles for the 128 byte cache block), loading the data
into the primary cache and restart of the processor pipeline.1

To maintain cache coherence, by default the SGI Challenge used the Illinois MESI protocol as
discussed earlier. It also supports update transactions. Interactions of the cache coherence proto-
col and the split-transaction bus interact are as described in Section 6.5.

6.6.3 SGI I/O Subsystem

To support the high computing power provided by multiple processors, in a real system, careful
attention needs to be devoted to providing matching I/O capability. To provide scalable I/O per-
formance, the SGI Challenge allows for multiple I/O cards to be placed on the system bus, each
card providing a local 320 Mbytes/sec proprietary I/O bus. Personality ASICs are provided to act
as an interface between the I/O bus and standards conforming (e.g., ethernet, VME, SCSI, HPPI)
and non-standards conforming (e.g., SGI Graphics) devices. Figure 6-13 shows a block-level dia-
gram of the SGI Challenge’s PowerChannel-2 I/O subsystem.

As shown in the figure, the proprietary HIO input/output bus is at the core of the I/O subsystem.
It is a 64-bit wide multiplexed address/data bus that runs off the same clock as the system bus. It
supports split read-transactions, with up to four outstanding transactions per device. In contrast to
the main system bus, it uses centralized arbitration as latency is much less of a concern. However,
arbitration is pipelined so that bus bandwidth is not wasted. Furthermore, since the HIO bus sup-
ports several different transaction lengths (it does not require every transaction to handle a full
cache block of data), at time of request transactions are required to indicate their length. The arbi-
ter uses this information to ensure more efficient utilization of the bus. The narrower HIO bus
allows the personality ASICs to be cheaper than if they were to directly interface to the very wide
system bus. Also, common functionality needed to interface to the system bus can be shared by
the multiple personality ASICs.

1.  Note that on both the outgoing and return paths, the memory request passes through an asynchronous
boundary. This adds a double synchronizer delay in both directions, about 30ns on average in each direction.
The benefit of decoupling is that the CPU can run at a different clock rate than the system bus, thus allowing
for migration to higher clock-rate CPUs in the future while keeping the same bus clock rate. The cost, of
course, is the extra latency. 

The newer generation of processor, the MIPS R10000, allows the processor to restart after only the needed
word has arrived, without having to wait for the complete cache block to arrive. This early restart option
reduces the miss latency.
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HIO interface chips can request DMA read/write to system memory using the full 40-bit system
address, make a request for address translation using the mapping resource in the system inter-
face (e.g., for 32-bit VME), request interrupting the processor, or respond to processor I/O (PIO)
reads. The system bus interface provides DMA read responses, results of address translation, and
passes on PIO reads to devices. 

To the rest of the system (processor boards and main-memory boards), the system bus interface
on the I/O board provides a clean interface; it essentially acts like another processor board. Thus,
when a DMA read makes it through the system-bus interface onto the system bus, it becomes a
Powerpath-2 read, just like one that a processor would issue. Similarly, when a full-cache-block
DMA write goes out, it becomes a special block write transaction on the bus that invalidates cop-
ies in all processors’ caches. Note that even if a processor had the block dirty in its local cache,
we do not want it to write it back, and hence the need for the special transaction. 

To support partial block DMA writes, special care is needed, because data must be merged coher-
ently into main memory. To support these partial DMA writes, the system-bus interface includes
a fully associative, four block cache, that snoops on the Powerpath-2 bus in the usual fashion.
The cache blocks can be in one of only two states: (i) invalid or (ii) modified exclusive. When a
partial DMA write is first issued, the block is brought into this cache in modified exclusive state,
invalidating its copy in all processors’ caches. Subsequent partial DMA writes need not go to the
Powerpath-2 bus if they hit in this cache, thus increasing the system bus efficiency. This modified
exclusive block goes to the invalid state and supplies its contents on the system bus: (i) on any
Powerpath-2 bus transaction accessing this block; (ii) when another partial DMA write causes
this cache block to be replaced; and (iii) on any HIO bus read transaction that accesses this block.
While DMA reads could have also used this four-block cache, the designers felt that partial DMA
reads were rare, and the gains from such an optimization would have been minimal.

The mapping RAM in the system-bus interface provides general-purpose address translation for
I/O devices. For example, it may be used to map small address spaces such as VME-24 or VME-
32 into the 40-bit physical address space of the Powerpath-2 bus. Two types of mapping are sup-

Figure  6-16  High-level organization of the SGI Challenge Powerchannel-2 I/O subsystem. 
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ported: one level and two level. One-level mappings simply return one of the 8K entries in the
mapping RAM, where by convention each entry maps 2 Mbytes of physical memory. In the two-
level scheme, the map entry points to the page tables in main memory. However, each 4 KByte
page has its own entry in the second-level table, so virtual pages can be arbitrarily mapped to
physical pages. Note that PIOs face a similar translation problem, when going down to the I/O
devices. Such translation is not done using the mapping RAM, but is directly handled by the per-
sonality ASIC interface chips.

The final issue that we explore for I/O is flow control. All requests proceeding from the I/O inter-
faces/devices to the Powerpath-2 system bus are implicitly flow controlled. For example, the HIO
interface will not issue a read on the Powerpath-2 bus unless it has buffer space reserved for the
response. Similarly, the HIO arbiter will not grant the bus to a requestor unless the system inter-
face has room to accept the transaction. In the other direction, from the processors to I/O devices,
however, PIOs can arrive unsolicited and they need to be explicitly flow controlled.

The flow control solution used in the Challenge system is to make the PIOs be solicited. After
reset, HIO interface chips (e.g., HIO-VME, HIO-HPPI) signal their available PIO buffer space to
the system-bus interface using special requests called IncPIO. The system-bus interface main-
tains this information in a separate counter for each HIO device. Every time a PIO is sent to a
particular device, the corresponding count is decremented. Every time that device retires a PIO, it
issues another IncPIO request to increment its counter. If the system bus interface receives a PIO
for a device that has no buffer space available, it rejects (NACKs) that request on the Powerpath-
2 bus and it must be retried later. 

6.6.4 SGI Challenge Memory System Performance

The access time for various levels of the SGI Challenge memory system can be determined using
the simple read microbenchmark from Chapter 3. Recall, the microbenchmark measures the
average access time in reading elements of an array of a given size with a certain stride. Figure 6-
17 shows the read access time for a range of sizes and strides. Each curve shows the average
access time for a given size as a function of the stride. Arrays smaller than 32 KB fit entirely in
the first level cache. Level two cache accesses have an access time of roughly 75 ns, and the
inflection point shows that the transfer size is 16 bytes. The second bump shows the additional
penalty of roughly 140 ns for a TLB miss, and the page size in 8 KB. With a 2 MB array accesses
miss in the L2 cache, and we see that the combination of the L2 controller, Powerpath bus proto-
col and DRAM access result in an access time of roughly 1150 ns. The minimum bus protocol of
13 cycles at 50 MHz accounts for 260 ns of this time. TLB misses add roughly 200 ns. The sim-
ple ping-pong microbenchmark, in which a pair of nodes each spin on a flag until it indicates
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their turn and then set the flag to signal the other shows a round-trip time of 6.2µs, a little less
than four memory accesses. 

6.6.5 Sun Gigaplane System Bus

The Sun Gigaplane is a non-multiplexed, split-phase (or packet switched) bus with 256-bit data
lines and 41-bit physical addresses, clocked at 83.5 MHz. It is a centerplane design, rather than a
backplane, so cards plug into both sides of it. The total length of the bus is 18”, so eight boards
can plug into each side with 2” of cooling space between boards and 1” spacing between connec-
tors. In sharp contrast to the SGI Challenge Powerpath-2 bus, the bus can support up to 112 out-
standing transactions, including up to 7 from each board, so it is designed for devices that can
sustain multiple outstanding transactions, such as lock-up free caches. The electrical and
mechanical design allows for live insertion (hot plug) of processing and I/O modules.

Looking at the bus in more detail, it consists of 388 signals: 256 data, 32 ECC, 43 address (with
parity), 7 id tag, 18 arbitration, and a number of configuration signals. The electrical design
allows for turn-around with no dead cycles. Emphasis is placed on minimizing the latency of
operations, and the protocol (illustrated in Figure 6-18) is quite different from that on the SGI
Challenge. A novel collision-based arbitration technique is used to avoid the cost of bus arbitra-
tion. When a requestor arbitrates for the address bus, if the address bus is not scheduled to be in
use from the previous cycle, it speculatively drives its request on the address bus. If there are no
other requestors in that cycle, it wins arbitration and has already passed the address, so it can con-
tinue with the remainder of the transaction. If there is an address collision, the requestor that wins
arbitration simply drives the address again in the next cycle, as it would with conventional arbi-
tration. The 7-bit tag associated with the request is presented in the following cycle. The snoop
state is associated with the address phase, not the data phase. Five cycles after the address, all

Figure  6-17  Read microbenchmark results for the SGI Challenge. 
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boards assert their snoop signals (shared, owned, mapped, and ignore). In the meantime, the
board responsible for the memory address (the home board) can request the data bus three cycles
after the address, before the snoop result. The DRAM access can be started speculatively, as well.
When home board wins arbitration, it must assert the tag two cycles later, informing all devices
of the approaching data transfer. Three cycles after driving the tag and two cycles before the data,
the home board drives a status signal, which will indicate that the data transfer is cancelled if
some cache owns the block (as detected in the snoop state). The owner places the data on the bus
by arbitrating for the data bus, driving the tag, and driving the data. Figure 6-18 shows a second
read transaction, which experiences a collision in arbitration, so the address is supplied in the
conventional slot, and cache ownership, so the home board cancels its data transfer.

Like the SGI Challenge, invalidations are ordered by the BusRdX transactions on the address bus
and handled in FIFO fashion by the cache subsystems, thus no acknowledgment of invalidation
completion is required. To maintain sequential consistency, is still necessary to gain arbitration
for the address bus before allowing the writing processor to proceed with memory operations
past the write1.

6.6.6 Sun Processor and Memory Subsystem

In the Sun Enterprise, each processing board has two processors, each with external L2 caches,
and two banks of memory connected through a cross-bar, as shown in Figure 6-19. Data lines
within the UltraSPARC module are buffered to drive an internal bus, called the UPA (universal
port architecture) with an internal bandwidth of 1.3 GB/s. A very wide path to memory is pro-

1.  The SPARC V9 specification weakens the consistency model in this respect to allow the processor to
employ write buffers, which we discuss in more depth in Chapter 6.

Figure  6-18  Sun Gigaplane Signal Timing for BusRd with fast address arbitration

Board 1 initiates a read transaction with fast arbitration, which is responded to by home board 2. Boards 4 and 5 collide during arbitra-
tion, board 4 wins, and initiates a read transaction. Home board 6 arbitrates for the data bus and then cancels its response. Eventually
the owning cache, board 7, responds with the data. Board 5 retry is not shown.
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vided so that a full 64 byte cache block can be read in a singe memory cycle, which is two bus
cycles in length. The address controller adapts the UPA protocol to the Gigaplane protocol, real-
izes the cache coherency protocol, provides buffering, and tracks the potentially large number of
outstanding transactions. It maintains a set of duplicate tags (state and address, but no data) for
the L2 cache. Although the UltraSPARC implements a 5-state MOESI protocol, the D-tags main-
tain an approximation to the state: owned, shared, invalid. It essentially combines states which
are handled identically at the Gigaplane level. In particular, it needs to know if the L2 cache has a
block and if that block is the only block in a cache. It does not need to know if that block is clean
or dirty. For example, on a BusRd the block will need to be flushed onto the bus if it is in the L2
cache as modified, owned (flushed since last modified), or exclusive (not shared when read and
not modified since), thus the D-tags represent only ‘owned’. This has the advantage that the
address controller need not be informed when the UltraSPARC elevates a block from exclusive to
modified. It will be informed of a transition from invalid, shared, or owned to modified, because
it needs to initiate bus transaction.

6.6.7 Sun I/O Subsystem

The Enterprise I/O board uses the same bus interface ASICS as the processing board. The inter-
nal bus is only half as wide and there is no memory path. The I/O boards only do cache block
transactions, just like the processing boards, in order to simplify the design of the main bus. The
SysI/O ASICs implement a single block cache on behalf of the I/O devices. Two independent 64-
bit 25 MHz SBus are supported. One of these supports two dedicated FiberChannel modules pro-
viding a redundant, high bandwidth interconnect to large disk storage arrays. The other provides
dedicated ethernet and fast wide SCSI connections. In addition, three SBUS interface cards can
be plugged into the two busses to support arbitrary peripherals, including a 622 Mb/s ATM inter-

Figure  6-19  Organization of the Sun Enterprise Processing and I/O Board

Processing board contains two UltraSPARC modules with L2 caches on an internal bus, and two wide memory banks interfaced to the
system bus through two ASICs. The Address Controller adapts between the two bus protocols and implements the cache coherency
protocol. The Data Controller is essentially a cross bar. The I/O board uses the same two ASICs to interface to two I/O controllers. The
SysIO asics essentially appear to the bus as a one block cache. On the other side, they support independent I/O busses and interfaces to
FiberChannel, ethernet, and SCSI.
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face. The I/O bandwidth, the connectivity to peripherals, and the cost of the I/O subsystem scales
with the number of I/O cards.

6.6.8 Sun Enterprise Memory System Performance

The access time for various level of the Sun Enterprise via the read microbenchmark is shown in
Figure 6-20. Arrays of 16 KB or less fit entirely in the first level cache. Level two cache accesses
have an access time of roughly 40 ns, and the inflection point shows that the transfer size is 16
bytes. With a 1 MB array accesses miss the L2 cache, and we see that the combination of the L2
controller, bus protocol and DRAM access result in an access time of roughly 300 ns. The mini-
mum bus protocol of 11 cycles at 83.5 MHz accounts for 130 ns of this time. TLB misses add
roughly 340 ns. The machine has a software TLB handler. The simple ping-pong microbench-
mark, in which a pair of nodes each spin on a flag until it indicates their turn and then set the flag
to signal the other shows a round-trip time of 1.7 µs, roughly five memory accesses.

6.6.9 Application Performance

Having understood the machines and their microbenchmark performance, let us examine the per-
formance obtained on our parallel applications. Absolute performance for commercial machines
is not presented in this book; instead, the focus is on performance improvements due to parallel-
ism. Let us first look at application speedups and then at scaling, using only the SGI Challenge
for illustration. 

Figure  6-20   Read Microbenchmark results for the Sun Enterprise. 
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Application Speedups

Figure 6-21 shows the speedups obtained on our six parallel programs, for two data set sizes
each. We can see that the speedups are quite good for most of the programs, with the exception of
the Radix sorting kernel. Examining the breakdown of execution time for the sorting kernel
shows that the vast majority of the time is spent stalled on data access. The shared bus simply
gets swamped with the data and coherence traffic due to the permutation phase of the sort, and
the resulting contention destroys performance. The contention also leads to severe load imbal-
ances in data access time and hence time spent waiting at global barriers. It is unfortunately not
alleviated much by increasing the problem size, since the communication to computation ratio in
the permutation phase is independent of problem size. The results shown are for a radix value of
256, which delivers the best performance over the range of processor counts for both problem
sizes. Barnes-Hut, Raytrace and Radiosity speed up very well even for the relatively small input
problems used. LU does too, and the bottleneck for the smaller problem at 16 processors is pri-
marily load imbalance as the factorization proceeds along the matrix. Finally, the bottleneck for
the small Ocean problem size is both the high communication to computation ratio and the
imbalance this generates since some partitions have fewer neighbors than others. Both problems
are alleviated by running larger data sets. 

Scaling

Let us now examine the impact of scaling for a few of the programs. Following the discussion of
Chapter 4, we look at the speedups under the different scaling models, as well as at how the work
done and the data set size used change. Figure 6-22 shows the results for the Barnes-Hut and
Ocean applications. “Naive” time-constrained (TC) or memory-constrained (MC) refers to scal-
ing on the number of particles or grid length (n) without changing the other application parame-
ters (accuracy or the number of time steps). It is clear that the work done under realistic MC
scaling grows much faster than linearly in the number of processors in both applications, so the
parallel execution time grows very quickly. The number of particles or the grid size that can be
simulated under TC scaling grows much more slowly than under MC scaling, and also much
more slowly than under naive TC where n is the only application parameter scaled. Scaling the

Figure  6-21  Speedups for the parallel applications on the SGI Challenge. 

The block size for the blocked LU factorization is 32-by-32. 
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other application parameters causes the work done and execution time to increase, leaving much
less room to grow n. Data set size is controlled primarily by n, which explains its scaling trends. 

The speedups under different scaling models are measured as described in Chapter 4. Consider
the Barnes-Hut galaxy simulation, where the speedups are quite good for this size of machine
under all scaling models. The differences can be explained by examining the major performance
factors. The communication to computation ratio in the force calculation phase depends prima-
rily on the number of particles. Another important factor that affects performance is the relative
amount of work done in the force calculation phase, which speeds up well, to the amount done in
the tree-building phase which does not. This tends to increase with greater accuracy in force
computation, i.e. smaller θ. However, smaller θ (and to a lesser extent greater n) increase the
working set size [SHG93], so the scaled problem that changes θ may have worse first-level cache
behavior than the baseline problem (with a smaller n and larger θ) on a uniprocessor. These fac-
tors can be used to explain why naive TC scaling yields better speedups than realistic TC scaling.
The working sets behave better, and the communication to computation ratio is more favorable
since n grows more quickly when θ and ∆t are not scaled. 

The speedups for Ocean are quite different under different models. Here too, the major control-
ling factors are the communication to computation ratio, the working set size, and the time spent
in different phases. However, all the effects are much more strongly dependent on the grid size
relative to number of processors. Under MC scaling, the communication to computation ratio
does not change with the number of processors used, so we might expect the best speedups.
However, as we scale two effects become visible. First, conflicts across grids in the cache
increase as a processor’s partitions of the grids become further apart in the address space. Sec-
ond, more time is spent in the higher levels of the multigrid hierarchy in the solver, which have
worse parallel performance. The latter effect turns out to be alleviated when accuracy and time-
step interval are refined as well, so realistic MC scales a little better than naive MC. Under naive
TC scaling, the growth in grid size is not fast enough to cause major conflict problems, but good
enough that communication to computation ratio diminishes significantly, so speedups are very
good. Realistic TC scaling has a slower growth of grid size and hence improvement in communi-
cation to computation ratio, and hence lower speedups. Clearly, many effects play an important
role in performance under scaling, and which scaling model is most appropriate for an applica-
tion affects the results of evaluating a machine. 

6.7 Extending Cache Coherence

The techniques for achieving cache coherence extend in many directions. This examines a few
important directions: scaling down with shared caches, scaling in functionality with virtually
indexed caches and translation lookaside buffers (TLBs), and scaling up with non-bus intercon-
nects.

6.7.1 Shared-Cache Designs

Grouping processors together to share a level of the memory hierarchy (e.g., the first or the sec-
ond-level cache) is a potentially attractive option for shared-memory multiprocessors, especially
as we consider designs with multiple processors on a chip. Compared with each processor having
its own memory at that level of the hierarchy, it has several potential benefits. The benefits—like
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Figure  6-22  Scaling results for Barnes-Hut (left) and Ocean (right) on the SGI Challenge. 

The graphs show the scaling of work done, data set size, and speedups under different scaling models. PC, TC, and MC refer to prob-
lem constrained, time constrained and memory constrained scaling, respectively. The top set of graphs shows that the work needed to
solve the problem grows very quickly under realistic MC scaling for both applications. The middle set of graphs shows that the data
set size that can be run grows much more quickly under MC or naive TC scaling than under realistic TC scaling. The impact of scaling
model on speedup is much larger for Ocean than for Barnes-Hut, primarily because the communication to computation ratio is much
more strongly dependent on problem size and number of processors in Ocean.
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the later drawbacks—are encountered when sharing at any level of the hierarchy, but are most
extreme when it is the first-level cache that is shared among processors. The benefits of sharing a
cache are: 

• It eliminates the need for cache-coherence at this level. In particular, if the first-level cache is
shared then there are no multiple copies of a cache block and hence no coherence problem
whatsoever. 

• It reduces the latency of communication that is satisfied within the group. The latency of
communication between processors is closely related to the level in the memory hierarchy
where they meet. When sharing the first-level cache, communication latency can be as low as
2-10 clock cycles. The corresponding latency when processors meet at the main-memory
level is usually many times larger (see the Challenge and Enterprise case studies). The
reduced latency enables finer-grained sharing of data between tasks running on the different
processors.

• Once one processor misses on a piece of data and brings it into the shared cache, other pro-
cessors in the group that need the data may find it already there and will not have to miss on it
at that level. This is called prefetching data across processors. With private caches each pro-
cessor would have to incur a miss separately. The reduced number of misses reduces the
bandwidth requirements at the next level of the memory and interconnect hierarchy. 

• It allows more effective use of long cache blocks. Spatial locality is exploited even when dif-
ferent words on a cache block are accessed by different processors in a group. Also, since
there is no cache coherence within a group at this level there is also no false sharing. For
example, consider a case where two processors P1 and P2 read and write every alternate word
of a large array, and think about the differences when they share a first-level cache and when
they have private first-level caches. 

• The working sets (code or data) of the processors in a group may overlap significantly, allow-
ing the size of shared cache needed to be smaller than the combined size of the private caches
if each had to hold its processor’s entire working set. 

• It increases the utilization of the cache hardware. The shared cache does not sit idle because
one processor is stalled, but rather services other references from other processors in the
group. 

• The grouping allows us to effectively use emerging packaging technologies, such as multi-
chip-modules, to achieve higher computational densities (computation power per unit area). 

The extreme form of cache sharing is the case in which all processors share a first level cache,
below which is a shared main memory subsystem. This completely eliminates the cache coher-
ence problem. Processors are connected to the shared cache by a switch. The switch could even
be a bus but is more likely a crossbar to allow cache accesses from different processors to pro-
ceed in parallel. Similarly, to support the high bandwidth imposed by multiple processors, both
the cache and the main memory system are interleaved.

An early example of a shared-cache architecture is the Alliant FX-8 machine, designed in the
early 1980s. An Alliant FX-8 contained up to 8 custom processors. Each processor was a pipe-
lined implementation of the 68020 instruction set, augmented with vector instructions, and had a
clock cycle of 170ns. The processors were connected using a crossbar to a 512Kbyte, 4-way
interleaved cache. The cache had 32byte blocks, and was writeback, direct-mapped, and lock-up
free allowing each processor to have two outstanding misses. The cache bandwidth was eight 64-
bit words per instruction cycle. The interleaved main memory subsystem had a peak bandwidth
of 192 Mbytes/sec. 
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A somewhat different early use of the shared-cache approach was exemplified by the Encore
Multimax, a contemporary of the FX-8. The Multimax was a snoopy cache-coherent multipro-
cessor, but each private cache supported two processors instead of one (with no need for coher-
ence within a pair). The motivation for Encore at the time was to lower the cost of snooping
hardware, and to increase the utilization of the cache given the very slow, multiple-CPI proces-
sors. 

Today, shared first-level caches are being investigated for single-chip multiprocessors, in which
four-to-eight multiprocessors share an on-chip first-level cache. These can be used in themselves
as multiprocessors, or as the building-blocks for larger systems that maintain coherence among
the single-chip shared-cache groups. As technology advances and the number of transistors on a
chip reaches several tens or hundreds of millions, this approach becomes increasingly attractive.
Workstations using such chips will be able to offer very high-performance for workloads requir-
ing either fine-grain or coarse-grain parallelism. The question is whether this is a more effective
approach or one that uses the hardware resources to build more complex processors. 

However, sharing caches, particularly at first level, has several disadvantages and challenges: 

• The shared cache has to satisfy the bandwidth requirements from multiple processors,
restricting the size of a group. The problem is particularly acute for shared first-level caches,
which are therefore limited to very small numbers of processors. Providing the bandwidth
needed is one of the biggest challenges of the single-chip multiprocessor approach. 

• The hit latency to a shared cache is usually higher than to a private cache at the same level,
due to the interconnect in between. This too is most acute for shared first-level caches, where
the imposition of a switch between the processor and the first-level cache means that either
the machine clock cycle is elongated or that additional delay-slots are added for load instruc-
tions in the processor pipeline. The slow down due to the former is obvious. While compilers
have some capability to schedule independent instructions in load delay slots, the success
depends on the application. Particularly for programs that don’t have a lot of instruction-level

P1 Pn

Figure  6-23  Generic architecture for a shared-cache multiprocessor. 

The interconnect is placed between the processors and the first-level cache. Both the cache and the memory system may be interleaved
to provide high bandwidth.

Switch
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parallelism, some slow down is inevitable. The increased hit latency is aggravated by conten-
tion at the shared cache, and correspondingly the miss latency is also increased by sharing. 

• For the above reasons, the design complexity for building an effective system is higher. 

• Although a shared cache need not be as large as the sum of the private caches it replaces, it is
still much larger and hence slower than an individual private cache. For first-level caches, this
too will either elongate the machine clock cycle or lead to multiple processor-cycle cache
access times. 

• The converse of overlapping working sets (or constructive interference) is the performance of
the shared cache being hurt due to cache conflicts across processor reference streams
(destructive interference). When a shared-cache multiprocessor is used to run workloads with
little data sharing, for example a parallel compilation or a database/transaction processing
workload, the interference in the cache between the data sets needed by the different proces-
sors can hurt performance substantially. In scientific computing where performance is para-
mount, many programs try to manage their use of the per-processor cache very carefully, so
that the many arrays they access do not interfere in the cache. All this effort by the program-
mer or compiler can easily be undone in a shared-cache system. 

• Finally, shared caches today do not meet the trend toward using commodity microprocessor
technology to build cost-effective parallel machines, particularly shared first-level caches. 

Since many microprocessors already provide snooping support for first-level caches, an attractive
approach may be to have private first-level caches and a shared second-level cache among groups
of processors. This will soften both the benefits and drawbacks of shared first-level caches, but
may be a good tradeoff overall. The shared cache will likely be large to reduce destructive inter-
ference. In practice, packaging considerations will also have a very large impact on decisions to
share caches.

6.7.2 Coherence for Virtually Indexed Caches

Recall from uniprocessor architecture the tradeoffs between physically and virtually indexed
caches. With physically indexed first-level caches, for cache indexing to proceed in parallel with
address translation requires that the cache be either very small or very highly associative, so the
bits that do not change under translation (log2(page_size) bits or a few more if page coloring is
used) are sufficient to index into it [HeP90]. As on-chip first-level caches become larger, virtually
indexed caches become more attractive. However, these have their own, familiar problems. First,
different processors may use the same virtual address to refer to unrelated data in different
address spaces. This can be handled by flushing the whole cache on a context switch or by asso-
ciating address space identifier (ASID) tags with cache blocks in addition to virtual address tags.
The more serious problem for cache coherence is synonyms: distinct virtual pages, from the
same or different processes, pointing to the same physical page for sharing purposes. With virtu-
ally addressed caches, the same physical memory block can be fetched into two distinct blocks at
different indices in the cache. As we know, this is a problem for uniprocessors, but the problem
extends to cache coherence in multiprocessors as well. If one processor writes the block using
one virtual address synonym and another reads it using a different synonym, then by simply put-
ting virtual addresses on the bus and snooping them the write to the shared physical page will not
become visible to the latter processor. Putting virtual addresses on the bus also has another draw-
back, requiring I/O devices and memory to do virtual to physical translation since they deal with
physical addresses. However, putting physical addresses on the bus seems to require reverse
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translation to look up the caches during a snoop, and this does not solve the synonym coherence
problem anyway.

There are two main software solutions to avoiding the synonym problem: forcing synonyms to be
the same in the bits used to index the cache if these are more than log2(page_size) (i.e. forcing
them to have the same page color), and forcing processes to use the same shared virtual address
when referring to the same page (as in the SPUR research project [HEL+86]). 

Sophisticated cache designs have also been proposed to solve the synonym coherence problem in
hardware [Goo87]. The idea is to use virtual addresses to look up the cache on processor
accesses, and to put physical addresses on the bus for other caches and devices to snoop. This
requires mechanisms to be provided for the following: (i) if a lookup with the virtual address
fails, then to look up the cache with the physical address (which is by now available) as well in
case it was brought in by a synonym access, (ii) to ensure that the same physical block is never in
the same cache under two different virtual addresses at the same time, and (iii) to convert a
snooped physical address to a effective virtual address to look up the snooping cache. One way to
accomplish these goals is for caches to maintain both virtual and physical tags (and states) for
their cached blocks, indexed by virtual and physical addresses respectively, and for the two tags
for a block to point to each other (i.e. to store the corresponding physical and virtual indices,
respectively, see Figure 6-24). The cache data array itself is indexed using the virtual index (or
the pointer from the physical tag entry, which is the same). Let’s see at a high level how this pro-
vides the above mechanisms. 

A processor looks up the cache with its virtual address, and at the same time the virtual to physi-
cal translation is done by the memory management unit in case it is needed. If the lookup with
the virtual address succeeds, all is well. If it fails, the translated physical address is used to look

Figure  6-24  Organization of a dual-tagged virtually-addressed cache. 

The v-tag memory on the left services the CPU and is indexed by virtual addresses. The p-tag memory on the right is used for bus
snooping, and is indexed by physical addresses. The contents of the memory block are stored based on the index of the v-tag. Corre-
sponding p-tag and v-tag entries point to each other for handling updates to cache.
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up the physical tags, and if this hits the block is found through the pointer in the physical tag.
This achieves the first goal. A virtual miss but physical hit detects the possibility of a synonym,
since the physical block may have been brought in via a different virtual address. In a direct-
mapped cache, it must have, and let us assume a direct-mapped cache for concreteness. The
pointer contained in the physical tags now points to a different block in the cache array (the syn-
onym virtual index) than does the virtual index of the current access. We need to make the current
virtual index point to this physical data, and reconcile the virtual and physical tags to remove the
synonym. The physical block, which is currently pointed to by the synonym virtual index, is cop-
ied over to replace the block pointed to by the current virtual index (which is written back if nec-
essary), so references to the current virtual index will hereafter hit right away. The former cache
block is rendered invalid or inaccessible, so the block is now accessible only through the current
virtual index (or through the physical address via the pointer in the physical tag), but not through
the synonym. A subsequent access to the synonym will miss on its virtual address lookup and
will have to go through this procedure. Thus, a given physical block is valid only in one (virtually
indexed) location in the cache at any given time, accomplishing the second goal. Note that if both
the virtual and physical address lookups fail (a true cache miss), we may need up to two write-
backs. The new block brought into the cache will be placed at the index determined from the vir-
tual (not physical) address, and the virtual and physical tags and states will be suitably updated to
point to each other. 

The address put on the bus, if necessary, is always a physical address, whether for a writeback, a
read miss, or a read-exclusive or upgrade. Snooping with physical addresses from the bus is easy.
Explicit reverse translation is not required, since the information needed is already there. The
physical tags are looked up to check for the presence of the block, and the data are found from
the pointer (corresponding virtual index) it contains. If action must be taken, the state in the vir-
tual tag pointed to by the physical tag entry is updated as well. Further details of how such a
cache system operates can be found in [Goo87]. This approach has also been extended to multi-
level caches, where it is even more attractive: the L1 cache is virtually-tagged to speed cache
access, while the L2 cache is physically tagged [WBL89]. 

6.7.3 Translation Lookaside Buffer Coherence

A processor’s translation lookaside buffer (TLB) is a cache on the page table entries (PTEs) used
for virtual to physical address translation. A PTE can come to reside in the TLBs of multiple pro-
cessors, due to actual sharing or process migration. PTEs may be modified—for example when
the page is swapped out or its protection is changed—leading to direct analog of the cache coher-
ence problem.

A variety of solutions have been used for TLB coherence. Software solutions, through the operat-
ing system, are popular, since TLB coherence operations are much less frequent than cache
coherence operations. The exact solutions used depend on whether PTEs are loaded into the TLB
directly by hardware or through software, and on several other of the many variables in how
TLBs and operating systems are implemented. Hardware solutions are also used by some sys-
tems, particularly when TLB operations are not visible to software. This section provides a brief
overview of four approaches to TLB coherence: virtually addressed caches, software TLB shoot-
down, address space identifiers (ASIDs), and hardware TLB coherence. Further details can be
found in [TBJ+99,Ros89,Tel90] and the papers referenced therein. 
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TLBs, and hence the TLB coherence problem, can be avoided by using virtually addressed
caches. Address translation is now needed only on cache misses, so particularly if the cache miss
rate is small we can use the page tables directly. Page table entries are brought into the regular
data cache when they are accessed, and are therefore kept coherent by the cache coherence mech-
anism. However, when a physical page is swapped out or its protection changed, this is not visi-
ble to the cache coherence hardware, so they must be flushed from the virtually addressed caches
of all processors by the operating system. Also, the coherence problem for virtually addressed
caches must be solved. This approach was explored in the SPUR research project [HEL+86,
WEG+86].

A second approach is called TLB shootdown. There are many variants that rely on different (but
small) amounts of hardware support, usually including support for interprocessor interrupts and
invalidation of TLB entries. The TLB coherence procedure is invoked on a processor, called the
initiator, when it makes changes to PTEs that may be cached by other TLBs. Since changes to
PTEs must be made by the operating system, it knows which PTEs are being changed and which
other processors might be caching them in their TLBs (conservatively, since entries may have
been replaced). The OS kernel locks the PTEs being changed (or the relevant page table sections,
depending on the granularity of locking), and sends interrupts to other processors that it thinks
have copies. The recipients disable interrupts, look at the list of page-table entries being modified
(which is in shared memory) and locally invalidate those entries from their TLB. The initiator
waits for them to finish, perhaps by polling shared memory locations, and then unlocks the page
table sections. A different, somewhat more complex shootdown algorithm is used in the Mach
operating system [BRG+89]. 

Some processor families, most notably the MIPS family from Silicon Graphics, used software-
loaded rather than hardware-loaded TLBs, which means that the OS is involved not only in PTE
modifications but also in loading a PTE into the TLB on a miss [Mip91]. In these cases, the
coherence problem for process-private pages due to process migration can be solved using a third
approach, that of ASIDs, which avoids interrupts and TLB shootdown. Every TLB entry has an
ASID field associated with it, used just like in virtually addressed caches to avoid flushing the
entire cache on a context switch. ASIDs here are like tags allocated dynamically by the OS, using
a free pool to which they are returned when TLB entries are replaced; they are not associated
with processes for their lifetime. One way to use the ASIDs, used in the Irix 5.2 operating system,
is as follows. The OS maintains an array for each process that tracks the ASID assigned to that
process on each of the processors in the system. When a process modifies a PTE, the ASID of
that process for all other processors is set to zero. This ensures that when the process is migrated
to another processor, it will find its ASID to be zero there so and the kernel will allocate it a new
one, thus preventing use of stale TLB entries. TLB coherence for pages truly shared by processes
is performed using TLB shootdown. 

Finally, some processor families provide hardware instructions to invalidate other processors’
TLBs. In the PowerPC family [WeS94] the “TLB invalidate entry” (tlbie) instruction broad-
casts the page address on the bus, so that the snooping hardware on other processors can automat-
ically invalidate the corresponding TLB entries without interrupting the processor. The algorithm
for handling changes to PTEs is simple: the operating system first makes changes to the page
table, and then issues a tlbie instruction for the changed PTEs. If the TLB is not software-
loaded (it is not in the PowerPC) then the OS does not know which other TLBs might be caching
the PTE so the invalidation must be broadcast to all processors. Broadcast is well-suited to a bus,
but undesirable for the more scalable systems with distributed networks that will be discussed in
subsequent chapters. 
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6.7.4 Cache coherence on Rings

Since the scale of bus-based cache coherent multiprocessors is fundamentally limited by the bus,
it is natural to ask how it could be extended to other less limited interconnects. One straightfor-
ward extension of a bus is a ring. Instead of a single set of wires onto which all modules are
attached, each module is attached to two neighboring modules. A ring is an interesting intercon-
nection network from the perspective of coherence, since it inherently supports broadcast-based
communication. A transaction from one node to another traverses link by link down the ring, and
since the average distance of the destination node is half the length of the ring, it is simple and
natural to let the acknowledgment simply propagate around the rest of the ring and return to the
sender. In fact, the natural way to structure the communication in hardware is to have the sender
place the transaction on the ring, and other nodes inspect (snoop) it as it goes by to see if it is rel-
evant to them. Given this broadcast and snooping infrastructure, we can provide snoopy cache
coherence on a ring even with physically distributed memory. The ring is a bit more complicated
than a bus, since multiple transactions may be in progress around the ring simultaneously, and the
modules see the transactions at different times and potentially in different order.

The potential advantage of rings over busses is that the short, point-to-point nature of the links
allows them to be driven at very high clock rates. For example, the IEEE Scalable Coherent Inter-
face (SCI) [Gus92] transport standard is based on 500 MHz 16-bit wide point-to-point links. The
linear, point-to-point nature also allows the links to be extensively pipelined, that is, new bits can
be pumped onto the wire by the source before the previous bits have reached the destination. This
latter feature allows the links to be made long without affecting their throughput. A disadvantage
of rings is that the communication latency is high, typically higher than that of buses, and grows
linearly with the number of processors in the ring (on average, p/2 hops need to be traversed
before getting to the destination on a unidirectional ring, and half that on a bidirectional ring).

Since rings are a broadcast media snooping cache coherence protocols can be implemented quite
naturally on them. An early ring-based snoopy cache-coherent machine was the KSR1 sold by
Kendall Square Research. [FBR93]. More recent commercial offerings use rings as the second
level interconnect to connect together multiprocessor nodes, such as the Sequent NUMA-Q and
Convex’s Exemplar family [Con93,TSS+96]. (Both of these systems use a “directory protocol”
rather than snooping on the ring interconnect, so we will defer discussion of them until ** Chap-
ter 9**, when these protocols are introduced. Also, in the Exemplar, the interconnect within a
node is not a bus or a ring, but a richly-connected, low-latency crossbar, as discussed below.) The
University of Toronto’s Hector system [VSL+91, FVS92] is a ring-based research prototype. 

 Figure 6-25 illustrates the organization of a ring-connected multiprocessor. Typically rings are
used with physically distributed memory, but the memory may still be logically shared. Each
node consists of a processor, its private cache, a portion of the global main memory, and a ring
interface. The interface to the ring consists of an input link from the ring, a set of latches orga-
nized as a FIFO, and an output link to the ring. At each ring clock cycle the contents of the
latches are shifted forward, so the whole ring acts as a circular pipeline. The main function of the
latches is to hold a passing transaction long enough so that the ring-interface can decide whether
to forward the message to the next node or not. A transaction may be taken out of the ring by
storing the contents of the latch in local buffer memory and writing an empty-slot indicator into
that latch instead. If a node wants to put something on the ring, it waits for a an opportunity to fill
a passing empty slot and fills it. Of course, it is desirable to minimize the number of latches in
each interface, to reduce the latency of transactions going around the ring.
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The mechanism that determines when a node can insert a transaction on the ring, called the ring
access control mechanism, is complicated by the fact that the data path of the ring is usually
much narrower than size of the transactions being transferred on it. As a result, transactions need
multiple consecutive slots on the ring. Furthermore, transactions (messages) on the ring can
themselves have different sizes. For example, request messages are short and contain only the
command and address, while data reply messages contain the contents of the complete memory
block and are longer. The final complicating factor is that arbitration for access to the ring must
be done in a distributed manner, since unlike in a bus there are no global wires. 

Three main options have been used for access control (i.e., arbitration): token-passing rings, reg-
ister-insertion rings, and slotted rings. In token-passing rings a special bit pattern, called a token,
is passed around the ring, and only the node currently possessing it is allowed to transmit on the
ring. Arbitration is easy, but the disadvantage is that only one node may initiate a transaction at a
time even though there may be empty slots on the ring passing by another nodes, resulting in
wasted bandwidth. Register-insertion rings were chosen for the IEEE SCI standard. Here, a
bypass FIFO between the input and output stages of the ring is used to buffer incoming transac-
tions (with backward flow-control to avoid overloading), while the local node is transmitting.
When the local node finishes, the contents of bypass FIFO are forwarded on the output link, and
the local node is not allowed to transmit until the bypass FIFO is empty. Multiple nodes may be
transmitting at a time, and parts of the ring will stall when they are overloaded. Finally, in slotted
rings, the ring is divided into transaction slots with labelled types (for different sized transactions
such as requests and data replies), and these slots keep circulating around the ring. A processor
ready to transmit a transaction waits until an empty slot of the required type comes by (indicated
by a bit in the slot header), and then it inserts its message. A “slot” here really means a sequence
of empty time slots, the length of the sequence depending on the type of message. In theory, the
slotted ring restricts the utilization of the ring bandwidth by hard-wiring the mixture of available
slots of different types, which may not match the actual traffic pattern for a given workload.
However, for a given coherence protocol the mix of message types is reasonably well known and
little bandwidth is wasted in practice [BaD93, BaD95].

While it may seem at first that broadcast and snooping wastes bandwidth on an interconnect such
as a ring, in reality it is not so. A broadcast takes only twice as the average point-to-point mes-
sage on a ring, since the latter between two randomly chosen nodes will traverse half the ring on

Figure  6-25  Organization of a single-ring multiprocessor.
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average. Also, broadcast is needed only for request messages (read-miss, write-miss, upgrade
requests) which are all short; data reply messages are put on the ring by the source of the data and
stop at the requesting node. 

Consider a read miss in the cache. If the home of the block is not local, the read request is placed
on the ring. If the home is local, we must determine if the block is dirty in some other node, in
which case the local memory should not respond and a request should be placed on the ring. A
simple solution is to place all misses on the ring, as on a bus-based design with physically distrib-
uted memory, such as the Sun Enterprise. Alternatively, a dirty bit, can be maintained for each
block in home memory. This bit is turned ON if a block is cached in dirty state in some node
other than the home. If the bit is on, the request goes on the ring. The read request now circles the
ring. It is snooped by all nodes, and either the home or the dirty node will respond (again, if the
home were not local the home node uses the dirty bit to decide whether or not it should respond
to the request). The request and response transactions are removed from the ring when they reach
the requestor. Write miss and write upgrade transactions also appear on the ring as requests, if the
local cache state warrants that an invalidation request be sent out. Other nodes snoop these
requests and invalidate their blocks if necessary. The return of the request to the requesting node
serves as an acknowledgment. When multiple nodes attempt to write to the same block concur-
rently, the winner is the one that reaches the current owner of the block (home node if block is
clean, else the dirty node) first; the other nodes are implicitly/explicitly sent negative acknowl-
edgments (NAKs), and they must retry. 

From an implementation perspective, a key difficulty with snoopy protocols on rings is the real-
time constraints imposed: The snooper on the ring-interface must examine and react to all pass-
ing messages without excessive delay or internal queuing. This can be difficult for register-inser-
tion rings, since many short request messages may be adjacent to each other in the ring. With
rings operating at high speeds, the requests can be too close together for the snooper to respond
to in a fixed time. The problem is simplified in slotted rings, where careful choice and placement
of short request messages and long data response messages (the data response messages are
point-to-point and do not need snooping) can ensure that request-type messages are not too close
together [BaD95]. For example, slots can be grouped together in frames, and each frame can be
organized to have request slots followed by response slots. Nonetheless, as with busses ultimately
bandwidth on rings is limited by snoop bandwidth rather than raw data transfer bandwidth. 

Coherence issues are handled as follows in snoopy ring protocols: (a) Enough information about
the state in other nodes to determine whether to place a transaction on the ring is obtained from
the location of the home, and from the dirty bit in memory if the block is locally allocated; (b)
other copies are found through broadcast; and (c) communication with them happens simulta-
neously with finding them, through the same broadcast and snooping mechanism. Consistency is
a bit trickier, since there is the possibility that processors at different points on the ring will see a
pair of transactions on the ring in different orders. Using invalidation protocols simplifies this
problem because writes only cause read-exclusive transactions to be placed on the ring and all
nodes but the home node will respond simply by invalidating their copy. The home node can
determine when conflicting transactions are on the ring and take special action, but this does
increase the number of transient states in the protocol substantially.
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6.7.5 Scaling Data Bandwidth and Snoop Bandwidth

There are several alternative ways to increase the bandwidth of SMP designs that preserve much
of the simplicity of bus-based approaches. We have seen that with split-transaction busses, the
arbitration, the address phase, and the data phase are pipelined, so each of them can go on simul-
taneously. Scaling data bandwidth is the easier part, the real challenge is scaling the snoop band-
width.

Let’s consider first scaling data bandwidth. Cache blocks are large compared to the address that
describes them. The most straightforward to increase the data bandwidth is simple to make the
data bus wider. We see this, for example, in the Sun Enterprise design which uses a 128-bit wide
data bus. With this approach, a 32-byte block is transferred in only two cycles. The down side of
this approach is cost; as the bus get wider it uses a larger connector, occupies more space on the
board, and draws more power. It certainly pushes the limit of this style of design, since it means
that a snoop operations, which needs to be observed by all the caches and acknowledged, must
complete in only two cycles. A more radical alternative is to replace the data bus with a cross-bar,
directly connecting each processor-memory module to every other one. It is only the address por-
tion of the transaction that needs to be broadcast to all the nodes in order to determine the coher-
ence operation and the data source, i.e., memory or cache. This approach is followed in the IBM
PowerPC based RS6000 G30 multiprocessor. A bus is used for addresses and snoop results, but a
cross-bar is used to move the actual data. The individual paths in the cross-bar need not be
extremely wide, since multiple transfers can occur simultaneously.

A brute force way to scale bandwidth in a bus based system is simply to use multiple busses. In
fact, this approach offers a fundamental contribution. In order to scale the snoop bandwidth
beyond one coherence result per address cycle, there must be multiple simultaneous snoop oper-
ations. Once there are multiple address busses, the data bus issues can be handled by multiple
data busses, cross-bars, or whatever. Coherence is easy. Different portions of the address space
use different busses, typically each bus will serve specific memory banks, so a given address
always uses the same bus. However, multiple address busses would seem to violate the critical
mechanism used to ensure memory consistency – serialized arbitration for the address bus.
Remember, however, that sequential consistency requires that there be a logical total order, not
that the address events be in strict chronological order. A static ordering is assigned logically
assigned to the sequence of busses. An address operation  logically preceeds  if it occurs
before  in time or if they happen on the same cycle but  takes place on a lower numbered bus.
This multiple bus approach is used in Sun SparcCenter 2000, which provided two split-phase (or
packet switched) XDB busses, each identical to that used in the SparcStation 1000, and scales to
30 processors. The Cray CS6400 used four such busses and scales to 64 processors. Each cache
controller snoops all of the busses and responds according to the cache coherence protocol. The
Sun Enterprise 10000 combines the use of multiple address busses and data cross bars to scale to
64 processors. Each board consists of four 250 MHz processors, four banks of memory (up to 1
GB each), and two independent SBUS I/O busses. Sixteeen of these boards are connected by a
16x16 cross bar with paths 144 bits wide, as well as four address busses associated with the four
banks on each board. Collectively this provide 12.6 GB/s of data bandwidth and a snoop rate of
250 MHz.

i j
j i
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6.8 Concluding Remarks

The design issues that we have explored in this chapter are fundamental, and will remain impor-
tant with progress in technology. This is not to say that the optimal design choices will not
change. For example, while shared-cache architectures are not currently very popular, it is possi-
ble that sharing caches at some level of the hierarchy may become quite attractive when multi-
chip-module packaging technology becomes cheap or when multiple processors appear on a sin-
gle chip, as long as destructive interference does not dominate in the workloads of interest. 

A shared bus interconnect clearly has bandwidth limitations as the number of processors or the
processor speed increases. Architects will surely continue to find innovative ways to squeeze
more data bandwidth and more snoop bandwidth out of these designs, and will continue to
exploit the simplicity of a broadcast-based approach. However, the general solution in building
scalable cache-coherent machines is to distribute memory physically among nodes and use a
scalable interconnect, together with coherence protocols that do not rely on snooping. This direc-
tion is the subject of the subsequent chapters. It is likely to find its way down to even the small
scale as processors become faster relative to bus and snoop bandwidth. It is difficult to predict
what the future holds for busses and the scale at which they will be used, although they are likely
to have an important role for some time to come. Regardless of that evolution, the issues dis-
cussed here in the context of busses—placement of the interconnect within the memory hierar-
chy, the cache coherence problem and the various coherence protocols at state transition level,
and the correctness and implementation issues that arise when dealing with many concurrent
transactions—are all largely independent of technology and are crucial to the design of all cache-
coherent shared-memory architectures regardless of the interconnect used. Morevover, these
designs provide the basic building block for larger scale design presented in the remainder of the
book.
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6.10 Exercises

6.1  shared cache versus private caches. Consider two machines M1 and M2. M1 is a four-proces-
sor shared-cache machine, while M2 is a four-processor bus-based snoopy cache machine.
M1 has a single shared 1 Mbyte two-way set-associative cache with 64-byte blocks, while
each processor in M2 has a 256 Kbyte direct-mapped cache with 64-byte blocks. M2 uses the
Illinois MESI coherence protocol. Consider the following piece of code: 

a. Assume that the array A starts at address 0x0, array C at 0x300000, and array B at 
0x308000. Assume that all caches are initially empty. Assume each processor executes the 
above code, and that myPID varies from 0-3 for the four processors. Compute misses for 
M1, separately for loop-1 and loop-2. Do the same for M2, stating any assumptions that 
you make.

b. Briefly comment on how your answer to part a. would change if the array C were not 
present. State any other assumptions that you make.

c. What can be learned about advantages and disadvantages of shared-cache architecture 
from this exercise?

d. Given your knowledge about the Barnes-Hut, Ocean, Raytrace, and Multiprog workloads 
from previous chapters and data in Section 5.5, comment on how each of the applications 
would do on a four-processor shared-cache machine with a 4 Mbyte cache versus a four 
processor snoopy-bus-based machine with1 Mbyte caches. It might be useful to verify 
your intuition using simulation. 

e. Compared to a shared first-level cache, what are the advantages and disadvantages of hav-
ing private first-level caches, but a shared second-level cache? Comment on how modern 
microprocessors, for example, MIPS R10000 and IBM/Motorola PowerPC 620, encour-
age or discourage this trend. What would be the impact of packaging technology on such 
designs?

6.2  Cache inclusion. 

a. Using terminology in Section 6.4, assume both L1 and L2 are 2-way, and n2 > n1, and 
b1=b2, and replacement policy is FIFO instead of LRU. Does inclusion hold? What if it is 
random, or based on a ring counter.

double A[1024,1024]; /* row-major; 8-byte elems */

double C[4096];

double B[1024,1024]; 

for (i=0; i<1024; i+=1) /* loop-1 */

for (j=myPID; j<1024; j+=numPEs)

{

 B[i,j] = (A[i+i,j] + A[i-1,j] +

A[i,j+1] + A[i,j-1]) / 4.0;

}

for (i=myPID; i<1024; i+=numPEs) /* loop-2 */

for (j=0; j<1024; j+=1)

{

 A[i,j] = (B[i+i,j] + B[i-1,j] +

B[i,j+1] + B[i,j-1]) / 4.0;

}



Snoop-based Multiprocessor Design

418 DRAFT: Parallel Computer Architecture 9/10/97

b. Give an example reference stream showing inclusion violation for the following situa-
tions:

(i) L1 cache is 32 bytes, 2-way set-associative, 8-byte cache blocks, and LRU replace-
ment. L2 cache is 128 bytes, 4-way set-associative, 8-byte cache blocks, and LRU 
replacement.

(ii) L1 cache is 32 bytes, 2-way set-associative, 8-byte cache blocks, and LRU replace-
ment. L2 cache is 128 bytes, 2-way set-associative, 16-byte cache blocks, and LRU 
replacement.

c. For the following systems, state whether or not the caches provide for inclusion: If not, 
state the problem or give an example that violates inclusion. 

(i) Level 1: 8KB Direct mapped primary instruction cache, 32 byte line size
8KB Direct mapped primary data cache, write through, 32 byte line size

Level 2: 4MB 4 way set associative unified secondary cache, 32 byte line size 

(ii) Level 1: 16KB Direct Mapped unified primary cache, write-through, 32 byte line size

Level 2:  4MB 4 way set associative unified secondary cache, 64 byte line size

d. The discussion of the inclusion property in Section 6.4 stated that in a common case 
inclusion is satisfied quite naturally. The case is when the L1 cache is direct-mapped (a1 = 
1), L2 can be direct-mapped or set associative (a2 >= 1) with any replacement policy (e.g., 
LRU, FIFO, random) as long as the new block brought in is put in both L1 and L2 caches, 
the block-size is the same (b1 = b2), and the number of sets in the L1 cache is equal to or 
smaller than in L2 cache (n1 =< n2). Show or argue why this is true.

6.3  Cache tag contention <> Assume that each processor has separate instruction and data caches,
and that there are no instruction misses. Further assume that, when active, the processor
issues a cache request every 3 clock cycles, the miss rate is 1%, miss latency is 30 cycles.
Assume that tag reads take one clock cycle, but modifications to the tag take two clock cycles.

a. Quantify the performance lost to tag contention if a single-level data cache with only one 
set of cache tags is used. Assume that the bus transactions requiring snoop occur every 5 
clock cycles, and that 10% of these invalidate a block in the cache. Further assume that 
snoops are given preference over processor accesses to tags. Do back-of-the-envelope cal-
culations first, and then check the accuracy of your answer by building a queuing model 
or writing a simple simulator.

b. What is the performance lost to tag contention if separate sets of tags for processor and 
snooping are used?

c. In general, would you decide to give priority in accessing tags to processor references or 
bus snoops? 

6.4  Protocol and Memory System Implementation: SGI Challenge. 

a. The designers of the SGI Challenge multiprocessor considered the following bus control-
ler optimization to make better use of interleaved memory and bus bandwidth. If the con-
troller finds that a request is already outstanding for a given memory bank (which can be 
determined from the request table), it does not issue that request until the previous one for 
that bank is satisfied. Discuss potential problems with this optimization and what features 
in the Challenge design allow this optimization.

b. The Challenge multiprocessor’s Powerpath-2 bus allows for eight outstanding transac-
tions. How do you think the designers arrived at that decision? In general, how would you 
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determine how many outstanding transactions should be allowed by a split-transaction 
bus. State all your assumptions clearly. 

c. Although the Challenge supports the MESI protocol states, it does not support the cache-
to-cache transfer feature of the original Illinois MESI protocol.

(i) Discuss the possible reasons for this choice.

(ii) Extend the Challenge implementation to support cache-to-cache transfers. Discuss 
extra signals needed on bus, if any, and keep in mind the issue of fairness.

d. Although the Challenge MESI protocol has four states, the tags stored with the cache con-
troller chip keep track of only three states (I, S, and E+M). Explain why this is still works 
correctly. Why do you think that they made this optimization?

e. The main memory on the Challenge speculatively initiates fetching the data for a read 
request, even before it is determined if it is dirty in some processor’s cache. Using data in 
Table 5-3 estimate the fraction of useless main memory accesses. Based on the data, are 
you in favor of the optimization? Are these data methodologically adequate? Explain.

f. The bus interfaces on the SGI Challenge support request merging. Thus, if multiple pro-
cessors are stalled waiting for the same memory block, then when the data appears on the 
bus, all of them can grab that data off the bus. This feature is particularly useful for imple-
menting spin-lock based synchronization primitives. For a test-test&set lock, show the 
minimum traffic on the bus with and without this optimization. Assume that there are four 
processors, each acquiring lock once and then doing an unlock, and that initially no pro-
cessor had the memory block containing the lock variable in its cache.

g. Discuss the cost, performance, implementation, and scalability tradeoffs between the mul-
tiple bus architecture of the SparcCenter versus the single fast-wide bus architecture of the 
SGI Challenge, as well as any implications for program semantics and deadlock.

6.5  Split Transaction Busses.

a. The SGI Challenge bus allows for eight outstanding transactions. How did the designers 
arrive at that decision? To answer that, suggest a general formula to indicate how many 
outstanding transactions should be supported given the parameters of the bus. Use the fol-
lowing parameters:

P Number of processors
M Number of memory banks
L Average memory latency (cycles)
B Cache block size (bytes)
W Data bus width (bytes)

Define any other parameters you think are essential. Keep your formula simple, clearly 
state any assumptions, and justify your decisions. 

a. To improve performance of the alternative design for supporting coherence on a split-
transaction bus (discussed at the end of Section 6.5), a designer lays down the following 
design objectives: (i) the snoop results are generated in order, (ii) the data responses, how-
ever, may be out of order, and (iii) there can be multiple pending requests to the same 
memory block. Discuss in detail the implementation issues for such an option, and how it 
compares to the base implementation discussed in Section 6.5.
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b. In the split-transaction solution we have discussed in Section 6.5, depending on the pro-
cessor-to-cache interface, it is possible that an invalidation request comes immediately 
after the data response, so that the block is invalidated before the processor has had a 
chance to actually access that cache block and satisfy its request. Why might this be a 
problem and how can you solve it?

c. When supporting lock-up-free caches, a designer suggests that we also add more entries 
to the request-table sitting on the bus-interface of the split-transaction bus. Is this a good 
idea and do you expect the benefits to be large?

d. <<The ways to preserve SC with multiple outstanding transactions and commit versus 
complete. Apply them to Example 6-3 on page 381 and convince yourself that they work. 
Under what conditions is one solution better than the other? Answer: For SC, preserving 
order may be better without the optimizations since need to check/flush frequently in sec-
ond case. Particularly with multi-level caches. 

6.6  Computing bandwidth needs using data provided. Assume a system bus similar to
Powerpath2, as discussed in Section 6.6. Assuming 200-MIPS/200-MFLOPS processors with
1 Mbyte caches and 64-byte cache blocks, for each of the applications in Table 5-1 compute
the bus bandwidth when using:

a. The Illinois MESI protocol.

b. The Dragon protocol.

c. The Illinois MESI protocol assuming 256-byte cache blocks.

For each of the above parts, compute the utilization of the address+command bus separately 
from the utilization of the data bus. State all assumptions clearly.

d. Do parts a, and b for a single SparcCenter XDBus, which has 64-bit wide multiplexed 
address and data signals. Assume that the bus runs at 100MHz, and that transmitting 
address information takes 2 cycles on the bus, and that 64bytes of data takes 9 cycles on 
the bus.

6.7  Multi-level Caches

a. One deadlock solution proposed for multi-level caches in Section 6.5.8 is to make all 
queues 9 deep. Can the queues be smaller? If so, why? Discuss, why it may be beneficial 
to have deeper queues than the size required by deadlock considerations.

b. [Section 6.4 presents coherence protocols assuming 2-level caches. What if there are three 
or more levels in the cache hierarchy. Extend the Illinois MESI protocol for the middle 
cache in a 3-level hierarchy. List any additional states or actions needed, and present the 
state-transition diagram. Discuss the implementation details, including the number and 
nature of intervening queues.

6.8  TLB Shootdown. Figure 6-26 shows the details of the TLB shootdown algorithm used in the
Mach operating system [BRG+89]. The basic data structures are as follows. For each proces-
sor, the following data structures are maintained: (i) an active flag indicating whether the pro-
cessor is actively using any page tables; (ii) a queue of TLB flush notices indicating the range
of virtual addresses whose mappings are to be changed; and (iii) a list indicating currently
active page tables, i.e., processes whole PTEs may be cached in the TLB. For every page
table, there is: (i) a spinlock that processor must hold while making changes to that page
table, and (ii) a set of processors on which this page table is currently active. While the basic
shootdown approach is simple, practical implementations require careful sequencing of steps
and locking of data structures.
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a. Why are page table entries modified before sending interrupts or invalidate messages to 
other processors in TLB coherence?

b. Why must the initiator of the shootdown in Figure 6-26 mask out inter-processor-inter-
rupts (IPIs) before acquiring the page table lock, and to clear its own active flag before 
acquiring the page table lock? Can you think of any deadlock conditions that exist in the 
figure, and if so how would you solve them? 

c. A problem with the Mach algorithm is that it makes all responders busy-wait while the 
initiator makes changes to the page table. The reason is that it was designed for use with 
microprocessors that autonomously wrote back the entire TLB entry into the correspond-
ing PTE whenever the usage/dirty bit was set. Thus, for example, if other processors were 
allowed to use the page table while the initiator was modifying it, an autonomous write-
back from those processors could overwrite the new changes. How would you design the 
TLB hardware and/or algorithm so that responders do not have to busy-wait? [One solu-
tion was used in the IBM RP3 system [Ros89].

Figure  6-26  The Mach TLB shootdown algorithm. 

The initiator is the processor making changes to the page-table, while the responders are all other processors that
may have entries from that page-table cached.

Initiator Responder-1 Responder-N

disable interrupts

active[self] = 0

lock page table

enqueue flush 
notice to each
responder

send IPI to responders

flush TLB entries

busy wait until
active[i]==0 for
all responders i

change page table

unlock page table

active[self] = 1

enable interrupts

continue

active[self] = 0

disable interrupts
disable interrupts

active[self] = 0

field interrupt

busy-wait until no
active page table
remains locked

dequeue all flush
notices and flush
TLB entries

busy-wait until no
active page table
remains locked

dequeue all flush
notices and flush
TLB entries

field interrupt

active[self] = 1 active[self] = 1
enable interrupts enable interrupts
continue continue
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d. For MACH shootdown we say it would be better to update the use and dirty information 
for pages in software. (Machines based on the MIPS processor architecture actually do all 
of this in software.) Lookup the operating system of a MIPS-based machine or suggest 
how you would write the TLB fault handlers so that the usage and dirty information was 
made available to the OS page replacement algorithms and for writeback of dirty pages.

e. Under what circumstances would it be better to flush the whole TLB versus selectively 
trying to invalidate TLB entries?
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CHAPTER 7

 

Scalable Multiprocessors

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1997 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

7.1 Introduction

 

In this chapter we begin our study of the design of machines that can be scaled in a practical man-
ner to hundreds or even thousands of processors. Scalability has profound implications at all lev-
els of the design. For starters, it must be physically possible and technically feasible to construct
a large configuration. Adding processors clearly increases the potential computational capacity of
the system, but to realize this potential, the memory bandwidth must scale with the number of
processors. A natural solution is to distribute the memory with the processors as in our generic
multiprocessor, so each processor has direct access to local memory. However, the communica-
tion network connecting these nodes must provide scalable bandwidth at reasonable latency. In
addition, the protocols used in transferring data within the system must scale, and so must the
techniques used for synchronization. With scalable protocols on a scalable network, a very large
number of transactions can take place in the system simultaneously and we cannot rely on global
information to establish ordering or to arbitrate for resources. Thus, to achieve scalable applica-
tion performance, scalability must be addressed as a “vertical problem” throughout each of the
layers of the system design.

Let’s consider a couple of familiar design points to make these scalability issues more concrete.
The small-scale shared memory machines described in the previous chapter can be viewed as one
extreme point. A shared bus typically has a maximum length of a foot or two, a fixed number of
slots, and a fixed maximum bandwidth, so it is fundamentally limited in scale. The interface to
the communication medium is an extension of the memory interface, with additional control lines
and controller states to effect the consistency protocol. A global order is established by arbitra-
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tion for the bus and a limited number of transactions can be outstanding at any time. Protection is
enforced on all communication operations through the standard virtual-to-physical address trans-
lation mechanism. There is total trust between processors in the system, which are viewed as
under the control of a single operating system that runs on all of the processors, with common
system data structures. The communication medium is contained within the physical structure of
the box and is thereby completely secure. Typically, if any processor fails the system is rebooted.
There is little or no software intervention between the programming model and the hardware
primitives. Thus, at each level of the system design decisions are grounded in scaling limitations
at layers below and assumptions of close coupling between the components. Scalable machines
are fundamentally less closely coupled than the bus-based shared-memory multiprocessors of the
previous chapter and we are forced to rethink how processors interact with other processors and
with memories.

At the opposite extreme we might consider conventional workstations on a local-area or even
wide-area network. Here there is no clear limit to physical scaling and very little trust between
processors in the system. The interface to the communication medium is typically a standard
peripheral interface at the hardware level, with the operating system interposed between the user-
level primitives and the network to enforce protection and control access. Each processing ele-
ment is controlled by its own operating system, which treats the others with suspicion. There is
no global order of operations and consensus is difficult to achieve. The communication medium
is external to the individual nodes and potentially insecure. Individual workstations can fail and
restart independently, except perhaps where one is providing services to another. There is typi-
cally a substantial layer of software between the hardware primitives and any user-level commu-
nication operations, regardless of programming model, so communication latency tends to be
quite high and communication bandwidth low. Since communication operations are handled in
software, there is no clear limit on the number of outstanding transactions or even the meaning of
the transactions. At each level of the system design it is assumed that communication with other
nodes is slow and inherently unreliable. Thus, even when multiple processors are working
together on a single problem, it is difficult to exploit the inherent coupling and trust within the
application to obtain greater performance from the system.

Between these extremes there is a spectrum of reasonable and interesting design alternatives, sev-
eral of which are illustrated by current commercial large-scale parallel computers and emerging
parallel computing clusters. Many of the 

 

massively parallel processing systems

 

 (MPPs)

 

 

 

employ
sophisticated packaging and a fast dedicated proprietary network, so that a very large number of
processors can be located in a confined space with a high-bandwidth and low-latency communi-
cation. Other scalable machines use essentially conventional computers as nodes, with more or
less standard interfaces to fast networks. In either case, there is a great deal of physical security
and the option of either a high degree of trust or of substantial autonomy.

The generic multiprocessor of Chapter 1 provides a useful framework for understanding scalable
designs: the machine is organized as essentially complete computational nodes, each with a
memory subsystem and one or more processors, connected by a scalable network. One of the
most critical design issues is the nature of the 

 

node-to-network interface

 

. There is a wide scope of
possibilities, differing in how tightly coupled the processor and memory subsystems are to the
network and in the processing power within the network interface itself. These issues affect the
degree of trust between the nodes and the performance characteristics of the communication
primitives, which in turn determine the efficiency with which various programming models can
be realized on the machine.
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Our goal in this chapter is to understand the design trade-offs across the spectrum of communica-
tion architectures for large scale machines. We want to understand, for example, how the decision
to pursue a more specialized or a more commodity approach impacts the capabilities of the node-
to-network interface, the ability to support various programming models efficiently, and the lim-
its to scale. We begin in Section 7.2 with a general discussion of scalability, examining the
requirements it places on system design in terms of bandwidth, latency, cost, and physical con-
struction. This discussion provides a nut-and-bolts introduction to a range of recent large scale
machines, but also allows us to develop an abstract view of the scalable network on the “other
side” of the node-to-network interface. We return to an in-depth study of the design of scalable
networks later in Chapter 7, after having fully developed the requirements on the network in this
and the following chapter.

We focus in Section 7.3 on the question of how programming models are realized in terms of the
communication primitives provided on large-scale parallel machines. The key concept is that of a

 

network transaction

 

, which is the analog for scalable networks of the bus transaction studied in
the previous chapter. Working with a fairly abstract concept of a network transaction, we show
how shared address space and message passing models are realized through 

 

protocols

 

 built out of
network transactions.

The remainder of the chapter examines a series of important design points with increasing levels
of direct hardware interpretation of the information in the network transaction. In a general sense,
the interpretation of the network transaction is akin to the interpretation of an instruction set.
Very modest interpretation suffices in principle, but more extensive interpretation is important for
performance in practice. Section 7.4 investigates the case where there is essentially no interpreta-
tion of the message transaction; it is viewed as a sequence of bits and transferred blindly into
memory via a physical DMA operation under operating system control. This is an important
design point, as it represents many early MPPs and most current local-area network (LAN) inter-
faces. 

Section 7.5 considers more aggressive designs where messages can be sent from user-level to
user-level without operating system intervention. At the very least, this requires that the network
transaction carry a user/system identifier, which is generated by the source communication assist
and interpreted by the destination. This small change gives rise to the concept of a user virtual
network, which, like virtual memory, must present a protection model and offer a framework for
sharing the underlying physical resources. A particularly critical issue is user-level message
reception, since message arrival is inherently asynchronous to the user thread for which it is des-
tined.

Section 7.6 focuses on designs that provide a global virtual address space. This requires substan-
tial interpretation at the destination, since it needs to perform the virtual-to-physical translation,
carry out the desired data transfer and provide notification. Typically, these designs use a dedi-
cated message processor, so extensive interpretation of the network transaction can be performed
without the specifics of the interpretation being bound at machine design-time. Section 7.7 con-
siders more specialized support for a global physical address space. In this case, the communica-
tion assist is closely integrated with the memory subsystem and, typically, it is a specialized
device supporting a limited set of network transactions. The support of a global physical address
space brings us full circle to designs that are close in spirit to the small-scale shared memory
machines studied in the previous chapter. However, automatic replication of shared data through
coherent caches in a scalable fashion is considerably more involved than in the bus-based setting,
and we devote all of Chapter 6 to that topic.



 

Scalable Multiprocessors

 

426 

 

DRAFT: Parallel Computer Architecture 9/10/97

 

7.2 Scalability

 

What does it mean for a design to “scale”. Almost all computers allow the capability of the sys-
tem to be increased in some form, for example by adding memory, I/O cards, disks, or upgraded
processor(s), but the increase typically has hard limits. A scalable system attempts to avoid inher-
ent design limits on the extent to which resources can be added to the system. In practice a sys-
tem can be quite scalable even if it is not possible to assemble an arbitrarily large configuration
because at any point in time, there are crude limits imposed by economics. If a “sufficiently
large” configuration can be built, the scalability question has really to do with the incremental
cost of increasing the capacity of the system and the resultant increase in performance delivered
on applications. In practice no design scales perfectly, so our goal is to understand how to design
systems that scale up to a large number of processors effectively. In particular, we look at four
aspects of scalability in a more or less top-down order. First, how does the bandwidth or through-
put of the system increase with additional processors? Ideally, throughput should be proportional
to the number of processors. Second, how does the latency or time per operation increase? Ide-
ally, this should be constant. Third, how does the cost of the system increase, and finally, how do
we actually package the systems and put them together?

It is easy to see that the bus-based multiprocessors of the previous chapter fail to scale well in all
four aspects, and the reasons are quite interrelated. In those designs, a number of processors and
memory modules were connected via a single set of wires, the bus. When one module is driving a
wire, no other module can drive it. Thus, the bandwidth of a bus does not increase as more pro-
cessors are added to it; at some point it will saturate. Even accepting this defect, we could con-
sider constructing machines with many processors on a bus, perhaps under the belief that the
bandwidth requirements per processor might decrease with added processor. Unfortunately, the
clock period of the bus is determined by the time to drive a value onto the wires and have it sam-
pled by every module on the bus, which increases with the number of modules on the bus and
with wire length. Thus, a bigger bus would have longer latency and 

 

less

 

 aggregate bandwidth. In
fact, the signal quality on the wire degrades with length and number of connectors, so for any bus
technology there is a hard limit on the number of slots into which modules can be plugged and
the maximum wire length. Accepting this limit, it would seem that the bus-based designs have
good cost scaling, since processors and memory can be added at the cost of the new modules.
Unfortunately, this simple analysis overlooks that even the minimum configuration is burdened
by a large fix cost for the infrastructure needed to support the maximum configuration; the bus,
the cabinet, the power supplies, and other components must be sized for the full configuration. At
the very least, a scalable design must overcome these limitations – the aggregate bandwidth must
increase with the number of processors, the time to perform an operation should not increase sub-
stantially with the size of the machine, and it must be practical and cost-effective to build a large
configuration. In addition, it is good if the design scales down well, also.

 

7.2.1 Bandwidth Scaling

 

Fundamentally, if a large number of processors are to exchange information simultaneously with
many other processors or memories, there must be a large number of

 

 independent

 

 wires connect-
ing them. Thus, scalable machines must be organized in the manner illustrated abstractly by
Figure 7-2; a large number of processor modules and memory modules connected together by
independent wires (or links) through a large number of 

 

switches

 

. We use the term switch in a very
general sense to mean a device connecting a limited number of inputs to a limited number of out-
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puts. Internally, such a switch may be realized by a bus, a cross-bar, or even an 

 

ad hoc

 

 collection
of multiplexors. We call the number of outputs (or inputs) the 

 

degree

 

 of the switch. With a bus,
the physical and electrical constraints discussed above determine its degree. Only a fraction of
the inputs can transfer information to the outputs at once. A cross-bar allows every input to be
connected to a distinct output, but the degree is constrained by the cost and complexity of the
internal array of cross-points. The cost of multiplexors increases rapidly with the number of ports
and latency increases as well. Thus, switches are limited in scale, but may be interconnected to
form large configurations, i.e., 

 

networks

 

. In addition to the physical interconnect between inputs
and outputs, there must also be some form of controller to determine which inputs are to be con-
nected to which outputs at each instant in time. In essence, a scalable network is like a roadway
system with wires for streets, switches for intersections, and a simple way of determining which
cars proceed at each intersection. If done right, a large number of vehicles may make progress to
their destinations simultaneously and can get there quickly. 

By our definition, a basic bus-based SMP contains a single switch connecting the processors and
the memories, and a simple hierarchy of bus-based switches connect these components to the
peripherals. (We also saw a couple of machines in Chapter 4 in which the memory “bus” is a
shallow hierarchy of switches.) The control is rather specialized in that the address associated
with a transaction at one of the inputs is broadcast to all of the outputs and the acknowledgment
determines which output is to participate. A

 

 network switch

 

 is a more general purpose device, in
which the information presented at the input is enough for the switch controller to determine the
proper output without consulting all the nodes. Pairs of modules are connected by 

 

routes

 

 through
network switches.

The most common structure for scalable machines is illustrated by our generic architecture of
Figure 7-2, in which one or more processors are packaged together with one or more memory
modules and a communication assist as an easily replicated unit, which we will call a 

 

node

 

. The
“intranode” switch is typically a high-performance bus. Alternatively, systems may be con-
structed in a “dance hall” configuration, in which processing nodes are separated from memory
nodes by the network, as in Figure 7-3. In either case, there is a vast variety of potential switch

Figure  7-1  Abstract view of a scalable machine. 

A large number of processor (P) and memory (M) modules connected together by independent wires (or
links) through a large number of switch modules (S), each with some limited number of degree. An indi-
vidual switch may be formed by a bus, a crossbar, multiplexors, or some other controlled connection
between inputs and outputs.

P M M P M M P M M P M M

S S S S

Typical Switches

Bus

Multiplexors

Crossbar
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designs, interconnection network topologies, and routing algorithms, which we will study in
Chapter 10. The key property of a scalable network is that it provide a large number of indepen-
dent communication paths between nodes such that the bandwidth increases as nodes are added.
Ideally, the latency in transmitting data from one node to another should not increase with the
number of nodes, and neither would the cost per node, but, as we discuss below, some increase in
latency and cost is unavoidable.

 

 

 

If the memory modules are on the opposite side of the interconnect, as in Figure 7-3, even when
there is no communication between processes the network bandwidth requirement scales linearly
with the number of processors. Even with adequate bandwidth scaling, the computational perfor-
mance may not scale perfectly because the access latency increases with the number of proces-
sors. By distributing the memories across the processors all processes can access local memory
with fixed latency and bandwidth, independent of the number of processors, thus the computa-
tional performance of the system can scale perfectly, at least in this simple case. The network
needs to meet the demands associated with actual communication and sharing of information.
How computational performance scales in the more interesting case where processes do commu-
nicate depends on how the network itself scales, how efficient is the communication architecture,
and how the program communicates.

 

 

 

To achieve scalable bandwidth we must abandon several key assumptions employed in bus-based
designs, namely that there are a limited number of concurrent transactions, and that these are glo-
bally ordered via central arbitration and globally visible. Instead, it must be possible to have a
very large number of concurrent transactions using different wires. They are initiated indepen-
dently and without global arbitration. The effects of a transaction, such as changes of state, are
directly visible only by the nodes involved in the transaction. (The effects may eventually
become visible to other nodes as they are propagated by additional transactions.) Although it is
possible to broadcast information to all the nodes, broadcast bandwidth, i.e., the rate at which

Figure  7-2  Generic distributed memory multiprocessor organization. 

A collection of essentially complete computers, including processor and memory, communicating through a gen-
eral purpose, high-performance, scalable interconnection network. Typically, each node contains a controller which
assists in initiating and receiving communication operations.
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broadcasts can be performed, does not increase with the number of nodes. Thus, in a large system
broadcasts can be used only infrequently.

 

7.2.2 Latency Scaling

 

We may extend our abstract model of scalable networks to capture the primary aspects of com-
munication latency. In general, the time to transfer  bytes between two nodes is given by

, 

 

(EQ 7.1)

 

where Overhead is the processing time in initiating or completing the transfer, Channel Time is

, where  is the bandwidth of the “thinnest channel”, and the routing delay is a function

 of the number of routing steps, or “hops,” in the transfer and possibly the number of
bytes transferred. 

The processing overhead may be fixed or it may increase with , if the processor must copy data
for the transfer. For most networks used in parallel machines, there is a fixed delay per router
hop, independent of the transfer size, because the message “cuts through” several switches.

 

1

 

 In
contrast, traditional data communications networks 

 

store-and-forward

 

 the data at each stage,
incurring a delay per hop proportional to the transfer size.

 

2

 

 The store-and-forward approach is

 

1.  The message may be viewed as a train, where the locomotive makes a choice at each switch in
the track and all the cars behind follow, even though some may still be crossing a previous switch
when the locomotive makes a new turn.

Figure  7-3  Dancehall multiprocessor organization. 

Processors access memory modules across a scalable interconnection network. Even if processes are totally inde-
pendent with no communication or sharing, the bandwidth requirement on the network increases linearly with the
number of processors.
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impractical in large-scale parallel machines. Since network switches have a fixed degree, the
average routing distance between nodes must increase as the number of nodes increases. Thus,
communication latency increases with scale. However, the increase may be small compared to
the overhead and transfer time, if the switches are fast and the interconnection topology is rea-
sonable. Consider the following example.

 

Example  7-1 

 

Many classic networks are constructed out of fixed sized switches in a
configuration, or 

 

topology

 

, such that for  nodes, the distance from any network
input to any network output is  (base 2) and the total number of switches is

, for some small constant . Assuming the overhead is 1

 

µ

 

s per message,
the link bandwidth is 64 MB/s, and the router delay is 200ns per hop. How much
does the time for a 128 byte transfer increase as the machine is scaled from 64 to
1,024 nodes?

 

Answer

 

At 64 nodes, six hops are required so

. This increases to 5

 

µ

 

s on a 1024

node configuration. Thus, the latency increases by less than 20% with a 16-fold
increase in machine size. Even with this small transfer size, a store-and-forward
delay would add 2 

 

µ

 

s (the time to buffer 128 bytes) to the routing delay per hop.

Thus, the latency would be 

at 64 nodes and  at 1024

nodes.

In practice there is an important connection between bandwidth and latency that is overlooked in
the preceding simplistic example. If two transfers involve the same node or utilize the same wires
within the network, one may delay the other due to 

 

contention

 

 for the shared resource. As more
of the available bandwidth is utilized, the probability of contention increases and the expected
latency increases. In addition, queues may build up within the network, further increasing the
expected latency. This basic saturation phenomenon occurs with any shared resource. One of the
goals in designing a good network is to ensure that these load-related delays are not too large on
the communication patterns that occur in practice. However, if a large number of processors
transfer data to the same destination node at once, there is no escaping contention. The problem
must be resolved at a higher level by balancing the communication load using the techniques
described in Chapter 2.

 

2.  The store-and-forward approach is like what the train does when it reaches the station. The entire train
must come to a stop at a station before it can resume travel, presumably after exchanging goods or passen-
gers. Thus, the time a given car spends in the station is linear in the length of the train.

n
nlog

αn nlog α

T64 128( ) 1.0µs
128 B

64 B/µs
-------------------- 6 0.200µs×+ + 4.2µs= =

Tsf
64 128( ) 1.0µs

128 B
64 B/µs
-------------------- 0.200µs+ 

  6×+ 14.2µs= =

Tsf
1024 128( ) 1.0µs

128 B
64 B/µs
-------------------- 0.200µs+ 

  10×+ 23µs= =
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7.2.3 Cost Scaling

 

For large machines, the scaling of the cost of the system is quite important. In general, we may
view this as a fixed cost for the system infrastructure plus an incremental cost of adding proces-
sors and memory to the system, . The fixed and
incremental costs are both important. For example, in bus-based machines the fixed cost typically
covers the cabinet, power supply, and bus supporting a full configuration. This puts small config-
urations at a disadvantage relative to the uniprocessor competition, but encourages expansion as
the incremental cost of adding processors is constant and often much less than the cost of a stand-
alone processor. (Interestingly, for most commercial bus-based machines the typical configura-
tion is about one half of the maximum configuration. This is sufficiently large to amortize the
fixed cost of the infrastructure, yet leaves “headroom” on the bus and allows for expansion. Ven-
dors that supply “large” SMPs, say twenty or more processors, usually offer a smaller model pro-
viding a low-end sweetspot.) We have highlighted the incremental cost of memory in our cost
equation because memory often accounts for a sizable fraction of the total system cost and a par-
allel machine need not necessarily have  times the memory of a uniprocessor.

Experience has shown that scalable machines must support a wide range of configurations, not
just large and extra-large sizes. Thus, the “pay up-front” model of bus-based machines is imprac-
tical for scalable machines. Instead, the infrastructure must be modular, so that as more proces-
sors are added, more power supplies and more cabinets are added, as well as more network. For
networks with good bandwidth scaling and good latency scaling, the cost of the network grows
more than linearly with the number of nodes, but in practice the growth need not be much more
linear.

 

Example  7-2 

 

In many networks the number of network switches scales as  for  nodes.
Assuming that at 64 nodes the cost of the system is equally balanced between
processors, memory, and network, what fraction of the cost of a 1,024 node system
is devoted to the network (assuming the same amount of memory per processor).

 

Answer

 

We may normalize the cost of the system to the per-processor cost of the 64-node
system. The large configuration will have 10/6 as many routers per processor as the
small system. Thus, assuming the cost of the network is proportional to the number
of routers, the normalized cost per processor of the 1024-node system is

. As the system is scaled

up by 16-fold, the share of cost in the network increases from 33% to 45%. (In
practice, there may be additional factors which cause network cost to increase
somewhat faster than the number of switches, such as increased wire length.)

Network designs differ in how the bandwidth increases with the number of ports, how the cost
increases, and how the delay through the network increases, but invariably, all three do increase.
There are many subtle trade-offs among these three factors, but for the most part the greater the
increase in bandwidth, the smaller the increase in latency, and the greater the increase in cost.
Good design involves trade-offs and compromises. Ultimately, these will be rooted in the appli-
cation requirements of the target workload.

Cost p m,( ) FixedCost IncrementalCost p m,( )+=

p

n nlog n

1processor 0.33 1memory 0.33
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6
------routers 0.33×+×+× 1.22=



 

Scalable Multiprocessors

 

432 

 

DRAFT: Parallel Computer Architecture 9/10/97

 

Finally, when looking at issues of cost it is natural to ask whether a large-scale parallel machine
can be cost effective, or is it only a means of achieving greater performance than is possible in
smaller or uniprocessor configurations. The standard definition of efficiency
( ) reflects the view that a parallel machine is effective only if all
its processors are effectively utilized all the time. This processor-centric view neglects to recog-
nize that much of the cost of the system is elsewhere, especially in the memory system. If we
define the cost scaling of a system, 

 

costup

 

, in a manner analogous to speedup,
( , then we can see that parallel computing is more cost-effective,
i.e., has a smaller cost/performance, whenever . Thus, in a real applica-
tion scenario we need to consider the entire cost of the system required to run the problem of
interest.

 

7.2.4 Physical scaling

 

While it is generally agreed that modular construction is essential for large scale machines, there
is little consensus on the specific requirements of physical scale, such as how compact the nodes
need to be, how long the wires can be, the clocking strategy, and so on. There are commercial
machines in which the individual nodes occupy scarcely more than the microprocessor footprint,
while in others a node is a large fraction of a board or a complete workstation chassis. In some
machines no wire is longer than a few inches, while in others the wires are several feet long. In
some machines the links are one bit wide, in others eight or sixteen. Generally speaking, links
tend to get slower with length and each specific link technology has an upper limit on length due
to power requirements, signal-to-noise ratio, etc. Technologies that support very long distances,
such as optical fiber, tend to have a much larger fixed cost per link for the transceivers and con-
nectors. Thus, there are scaling advantages to a dense packing of nodes in physical space. On the
other hand, a looser packing tends to reduce the engineering effort by allowing greater use of
commodity components, which also reduces the time lag from availability of new microprocessor
and memory technology to its availability in a large parallel machine. Thus, loose packing can
have better technology scaling. The complex set of trade-offs between physical packaging strate-
gies has given rise to a broad spectrum of designs, so it is best to look at some concrete examples.
These examples also help make the other aspects of scaling more concrete.

 

Chip-level integration

 

A modest number of designs have integrated the communications architecture directly into the
processor chip. The nCUBE/2 is a good representative of this densely packed node approach,
even though the machine itself is rather old. The highly integrated node approach is also used in
the MIT J-machine[Dal93] and number of other research machines and embedded systems. The
design style may gain wider popularity as chip density continues to increase. In the nCUBE, each
node had the processor, memory controller, network interface and a network router integrated in
a single chip. The node chip connected directly to DRAM chips and fourteen bidirectional net-
work links on a small card occupying a few square inches, shown in actual size in Figure 7-3. The
network links form bit-serial channels connecting directly to other nodes

 

1

 

 and one bidirectional
channel to the I/O system. Each of the twenty-eight wires has a dedicated DMA device on the

 

1.  The nCUBE nodes were connected in a 

 

in a hypercube configuration. A hypercube or n-cube is a
graph generalizing the cube shown in Figure 7-12, where each node connects directly to  other nodes
in a n node configuration. Thus, 13 links could support a design up to 8096 nodes.

Efficiency p( ) Speedup p( ) p⁄=

Costup p( ) cost p( ) cost 1( )⁄=
Speedup p( ) Costup p( )>
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node chip. The nodes were socketed 64 to a board and the boards plug into a passive wiring back-
plane, forming a direct node-to-node wire between each processor chip and  other proces-
sors. The I/O links, one per processor, were brought outside the main rack to I/O nodes
containing a node-chip (connecting to eight processors) and an I/O device. The maximum config-
uration was 8096 processors, and machines with 2048-nodes built in 1991. The system ran on a
single 40 MHz clock in all configurations. Since some of the wires reached across the full width
of the machine, dense packing was critical to limiting the maximum length. 

The nCUBE/2 should be understood as a design at a point in time. The node-chip contained
roughly 500,000 transistor, which was large for its time. The processor was something of a
“reduced VAX” running at 20 MHz with 64-bit integer operation and 64-bit IEEE Floating Point,
with a peak of 7.5 MIPS and 2.4 MFLOPS double precision. The communication support essen-
tially occupied the silicon area that would have been devoted to cache in a uniprocessor design of
the same generation; the instruction cache was only 128 bytes and the data cache held eight 64-
bit operands. Network links were one bit wide and the DMA channels operated at 2.22 MB/s
each. 

In terms of latency scaling, the nCUBE/2 is a little more complicated than our cut-through
model. A message may be an arbitrary number of 32-bit words to an arbitrary destination, with
the first word being the physical address of the destination node. The message is routed to the
destination as a sequence of 36 bit chunks, 32 data plus 4 bits of parity, with a routing delay of 44
cycles (2,200 ns) per hop and a transfer time of 36 cycles per word. The maximum number of
hops with  nodes is  and the average distance is half that amount. In contrast, the J-

nlog

Figure  7-4  nCUBE/2 Machine Organization

The design is based on a compact module comprising a single-chip node , containing the processor, memory inter-
face, network switch, and network interface, directly connected to DRAM chips and to other nodes.
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machine organized the nodes in a three dimensional grid (actually a 3D torus) so each node is
connected to six neighbors with very short wires. Individual links were relatively wide, eight bits.

The maximum number of hops in this organization is roughly  and the average is half this

many.

Board-level integration

The most common hardware design strategy for large scale machines obtains a moderately dense
packing by using standard microprocessor components and integrating them at the board level.
Representatives of this approach include the CalTech “hypercube” machines[Sei85], the Intel
iPSC and iPSC/2, which essentially placed the core of an early personal computer on each node.
The Thinking Machines CM-5 replicated the core of a Sun SparcStation 1 workstation, the CM-
500 replicated the Sparcstation 10, and the Cray T3D and T3E essentially replicate the core of a
DEC Alpha workstation. Most recent machines place a few processors on a board, and in some
cases each board is bus-based multiprocessor. For example, the Intel ASCI RED machine is more
than four thousand Pentium Pro two-way multiprocessors.

The Thinking Machine CM-5 is a good representative of this approach, circa 1993. The basic
hardware organization of the CM-5 is shown in Figure 7-12. The node comprised essentially the
components of contemporary workstation, in this case a 33 MHz Sparc microprocessor, its exter-
nal floating-point unit, and cache controller connected to an MBUS-based memory system.1 The
network interface was an additional ASIC on the Sparc MBUS. Each node connected to two data
networks, a control network, and a diagnostic network. The network is structured as a 4-ary tree
with the processing nodes at the leaves. A board contains four nodes and a network switch that
connects these nodes together at the first level of network. In order to provide scalable band-
width, the CM-5 uses a kind of multi-rooted tree, called a Fat-Tree (discussed in Chapter 7),
which has the same number of network switches at each level. Each board contains one of the
four network switches forming the second level of the network for sixteen nodes. Higher levels of
the network tree reside on additional network boards, which are cabled together. Several boards
fit in a rack, but for configurations on the scale of a thousand nodes several racks are cabled
together using large wiring bundles. In addition, racks of routers are used to complete the inter-
connection network. The links in the network are 4 bits wide, clocked at 40 MHz, delivering a
peak bandwidth of about 12 MB/s. The routing delay is 10 cycles per hop, with at most

hops.

The CM-5 network provided a kind of scalable backplane, supporting multiple independent user
partitions, as well as a collection of I/O devices. Although memory is distributed over the proces-
sors, a dancehall approach is adopted for I/O. A collection of dedicated I/O nodes are accessed
uniformly across the network from the processing nodes. Other machines employing similar
board-level integration, such as the Intel Paragon and Cray T3D, T3E, connect the boards in a
grid-like fashion to keep the wires short and use wider, faster links[Dal90]. I/O nodes are typi-
cally on the faces of the grid, or occupy internal “planes” of the cube.

1.  The CM-5 used custom memory controllers which contain a dedicated, memory mapped vec-
tor accelerator. This aspect of the design grew out of the CM-2 SIMD heritage of the machine,
and is incidental to the physical machine scaling.

3
2
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System-level integration

Some recent large-scale machines employ much less dense packaging in order to reduce the engi-
neering time to utilize new microprocessor and operating system technology. The IBM Scalable
Parallel systems (SP-1 and SP-2) is a good representative; it puts several almost complete RS/
6000 workstations into a rack. Since a complete, standard system is used for the node, the com-
munication assist and network interface are part of a card that plugs into the system. For the IBM
SPs this is a Microchannel adapter card connecting to a switch in the base of the rack. The indi-
vidual network links operate at 40 MB/s. Eight to sixteen nodes fill a rack, so large configurations
are built by cabling together a number of racks, including additional router racks. With a com-

Figure  7-5  CM-5 machine organization

Each node is a repackaged SparcStation chipset (processor, FPU, MMU, Cache, Memory controller and DRAM)
with a network interface chip on the MBus. The networks (data, control, and diagnostic) form a “scalable back-
plane” connecting computational partitions with I/O nodes.
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plete system at every node, there is the option of distributed disks and other I/O devices over the
entire machine. In the SP systems, the disks on compute nodes are typically used only for swap
space and temporary storage. Most of the I/O devices are concentrated on dedicated I/O nodes.
This style of design allows for a degree of heterogeneity among the nodes, since all that is
required is that the network interface card can be inserted. For example, the SP systems support
several models of workstations as nodes, including SMP nodes.

The high-speed networking technology developed for large-scale parallel machines has migrated
down into a number of widely used local area networks (LANs). For example, ATM (asynchro-
nous transfer mode) is a scalable, switch-based network supporting 155 Mb/s and 622 Mb/s
links. FDDI switches connecting many 100 Mb/s rings are available, along with switch based
fiberchannels and HPPI. Many vendors support switch-based 100 Mb/s Ethernet and switch-
based gigabit Ethernet is emerging. In addition, a number of higher bandwidth, lower latency
system area networks (SAN), which operate over shorter physical distances, have been commer-
cialized, including Myrinet, SCI, and SeverNet. These networks are very similar to traditional
large-scale multiprocessor networks, and allow conventional computer systems to be integrated
into a “cluster” with a scalable, low latency interconnect. In many cases, the individual machines
are small scale multiprocessors. Because of the nodes are complete, independent systems, this
approach is widely used to provide high availability services, such as data bases, where if one
node fails its job “fails-over” to the others.

7.2.5 Scaling in a Generic Parallel Architecture

The engineering challenges of large-scale parallel machines are well understood today, with sev-
eral companies routinely producing systems of several hundred to a thousand high-performance
microprocessors. The tension between tighter physical integration and engineering time to incor-
porate new microprocessor technology into large-scale machines gives rise to a wide spectrum of
packaging solutions, all of which have the conceptual organization of our generic parallel archi-
tecture in Figure 7-2. Scalable interconnection network design is an important and interesting
sub-area of parallel architecture which has advanced dramatically over recent years, as we will
see in Chapter 10. Several “good” networks have been produced commercially, which offer high
per link bandwidth and reasonably low latency that increases slowly with the size of the system.
Furthermore, these networks provide scalable aggregate bandwidth, allowing a very large num-
ber of transfers to occur simultaneously. They are also robust, in that the hardware error rates are
very low, in some cases as low as modern busses. Each of these designs have some natural scal-
ing limit as a result of bandwidth, latency, and cost factors, but from an engineering viewpoint it
is practical today to build machines on a scale that is limited primarily by financial concerns.

In practice, the target maximum scale is quite important in assessing design trade-offs. It deter-
mines the level of design and engineering effort warranted by each aspect of the system. For
example, the engineering required to achieve the high packaging density and degree of modular-
ity needed to construct very large systems may not be cost-effective at the moderate scale where
less sophisticated solutions suffice. A practical design seeks a balance between computational
performance, communication performance, and cost at the time when the machine is produced.
For example, better communication performance or better physical density might be achieved by
integrating the network more closely with the processor. However, this may increase cost or com-
promise performance, either by increasing the latency to memory or increasing design time and
thus might not be the most effective choice. With processor performance improving rapidly over
time, a more rudimentary design starting later on the technology curve might be produced at the
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same time with higher computational performance, but perhaps less communication perfor-
mance. As with all aspects of design, it is a question of balance.

What the entire spectrum of large-scale parallel machines have in common is that there can be a
very large number of transfers on-going simultaneously, there is essentially no instantaneous glo-
bal information or global arbitration, and the bulk of the communication time is attributable to
the node-to-network interface. These are the issues that dominate our thinking from an architec-
tural viewpoint. It is not enough that the hardware capability scales, the entire system solution
must scale, including the protocols used to realize programming models and the capabilities pro-
vided by the operating system, such as process scheduling, storage management, and I/O. Serial-
ization due to contention for locks and shared resources within applications or even the operating
system may limit the useful scaling of the system, even if the hardware scales well in isolation.
Given that we have met the engineering requirements to physically scale the system to the size of
interest in a cost-effective manner, we must also ensure that the communication and synchroniza-
tion operations required to support the target programming models scale and have a sufficiently
small fixed cost to be effective.

7.3 Realizing Programming Models

In this section we examine what is required to implement programming models on large distrib-
uted memory machines. Historically, these machine have been most strongly associated with
message passing programming models, but shared address space programming models have
become increasingly important and well represented. Chapter 1 introduced the concept of a com-
munication abstraction, which defined the set of communication primitives provided to the user.
These could be realized directly in the hardware, via system software, or through some combina-
tion of the two, as illustrated by Figure 7-6. This perspective focuses our attention on the exten-
sions of the computer architecture of the node which support communication. In our study of
small scale shared memory machines, we examined a class of designs where the communication
abstraction is supported directly in hardware as an extension of the memory interface. Data is
shared and communicated by accesses to shared variables, which translate into load, store, or
atomic update instructions on virtual addresses that are mapped to the same physical memory
address. To obtain reasonable latency and bandwidth on accesses to shared locations, it was
essential that shared locations could be replicated into caches local to the processors. The cache
controllers were extended to snoop and respond to bus transactions, as well as processor requests,
and the bus was extended to support detection of sharing. The load and store operations in the
coherent shared memory abstraction were constructed as a sequence of primitive bus transactions
according to a specific protocol defined by a collection of state machines.

In large scale parallel machines, the programming model is realized in a similar manner, except
the primitive events are transactions across the network, i.e., network transactions rather than bus
transactions. A network transaction is a one-way transfer of information from an output buffer at
the source to an input buffer at the destination causing some kind of action to occur at the desti-
nation, the occurrence of which is not directly visible at the source. This is illustrated in Figure 7-
7. The action may be quite simple, e.g., depositing the data into an accessible location or making
transition in a finite-state machine, or it can be more general, e.g., execution of a message handler
routine. The effects of a network transaction are observable only through additional transactions.
Traditionally, the communication abstraction supported directly by the hardware was usually hid-
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den below the vendors message passing library, but increasingly the lower level abstraction is
accessible to user applications.

The differences between bus and network transactions have far reaching ramifications. The
potential design space is much larger than what we saw in Chapter 5, where the bus provided
serialization and broadcast, and the primitive events were small variations on conventional bus
transactions. In large scale machines there is tremendous variation in the primitive network trans-
action itself, as well as how these transactions are driven and interpreted at the end points. They
may be presented to the processor as I/O operations and driven entirely by software, or they may
be integrated into the memory system and driven by a dedicated hardware controller. A very wide
spectrum of large-scale machines have been designed and implemented, emphasizing a range of
programming models, employing a range of primitives at the hardware/software boundary, and
providing widely differing degrees of direct hardware support and system software intervention.

To make sense of this great diversity, we proceed step-by-step. In this section, we first define a
network transaction more precisely and contrast it more carefully with a bus transaction. We then
sketch what is involved in realizing shared memory and message passing abstractions out of this
primitive, without getting encumbered by the myriad of ways that a network transaction itself
might be realized. In later sections we work systematically through the space of design options
for realizing network transactions and the programming models built upon them.

7.3.1 Primitive Network Transactions

To understand what is involved in a network transaction, let us first reexamine what is involved in
a basic bus transaction in some detail, since similar issues arise. Before starting a bus transaction,
a protection check has been performed as part of the virtual-to-physical address translation. The
format of information in a bus transaction is determined by the physical wires of the bus, e.g., the
data lines, address lines, and command lines. The information to be transferred onto the bus is
held in special output registers, e.g., an address, command, and data registers, until it can be
driven onto the bus. A bus transaction begins with arbitration for the medium. Most busses
employ a global arbitration scheme where a processor requesting a transaction asserts a bus-

Figure  7-6  Layers of Parallel Archtecture 
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request line and waits for the corresponding bus-grant. The destination of the transaction is
implicit in the address. Each module on the bus is configured to respond to a set of physical
addresses. All modules examine the address and one responds to the transaction. (If none
responds the bus controller detects the time-out and aborts the transaction.) Each module
includes a set of input registers, capable of buffering any request to which it might respond. Each
bus transaction involves a request followed by a response. In the case of a read, the response is
the data and an associated completion signal; for a write it is just the completion acknowledg-
ment. In either case, both the source and destination are informed of the completion of the trans-
action. In many busses, each transaction is guaranteed to complete according to a well-defined
schedule. The primary variation is the length of time that it takes for the destination to turn
around the response. In split-transaction busses, the response phase of the transaction may
require rearbitration and may be performed in a different order than the requests.

Care is required to avoid deadlock with split-transactions (and coherence protocols involving
multiple bus transactions per operation) because a module on the bus may be both requesting and
servicing transactions. The module must continue servicing bus requests and sink replies, while it
is attempting to present its own request. One wants to ensure that for any transaction that might
be placed on the bus, sufficient input buffering exists to accept the transaction at the destination.
This can be addressed in a conservative fashion by providing enough resources for the worst
case, or optimistically with the addition of a negative acknowledgment signal (NAK). In either
case, the solution is relatively straight-forward because there are few concurrent communication
operations that can be in progress on a bus, and the source and destination are directly coupled
by a wire. 

The discussion of busses raises the issues present in a network transaction as well. These are:

• protection

• format

• output buffering

• media arbitration

Figure  7-7  Network Transaction Primitive

A one-way transfer for information from a source output buffer to an input buffer of a designated destina-
tion, causing some action to take place at the destination.
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• destination name and routing

• input buffering

• action

• transaction ordering

• completion detection

• transaction ordering

• deadlock avoidance

• delivery guarantee

The fundamental difference is that the source and destination of the transaction are uncoupled,
i.e., there may be no direct wires between them, and there is no global arbitration for the
resources in the system. There is no global information available to all at the same instant, and
there may be a huge number of transactions in progress simultaneously. These basic differences
give each of the issues listed above a very different character than in a bus. Let us consider each
in turn.

Protection: As the number of components becomes larger, the coupling between components
looser, and the individual components more complex, it may be worthwhile to limit the how
much each component trusts the others to operate correctly. Whereas in a bus-based system all
protection checks are performed by the processor before placing a transaction on the bus, in a
scalable system, individual components will often perform checks on the network transaction, so
that an errant program or faulty hardware component cannot corrupt other components of the
system.

Format: Most network links are narrow, so the information associated with a transaction is trans-
ferred as a serial stream. Typical links are a few (1 to 16) bits wide.The format of the transaction
is dictated by how the information is serialized onto the link, unlike in a bus where it is a parallel
transfer whose format is determined by the physical wires. Thus, there is a great deal of flexibil-
ity in this aspect of design. One can think of the information in a network transaction as an enve-
lope with more information inside. The envelope includes information germane to the physical
network to get the packet from its source to its destination port. This is very much like the com-
mand and address portion of a bus transaction, which tells all parties involved what to do with the
transaction. Some networks are designed to deliver only fixed sized packets, others can deliver
variable size packets. Very often the envelop contains additional envelops within it. The commu-
nication assist may wrap up the user information in an envelop germane to the remote communi-
cation assist, and put this within the physical network envelop.

Output buffering: The source must provide storage to hold information that is to be serialized
onto the link, either in registers, FIFOs, or memory. If the transaction is of fixed format, this may
be as simple as the output buffer for a bus. Since network transactions are one-way and can
potentially be pipelined, it may be desirable to provide a queue of such output registers. If the
packet format is variable upto some moderate size, a similar approach may be adopted where
each entry in the output buffer is of variable size. If a packet can be quite long, then typically the
output controller contains a buffer of descriptors, pointing to the data in memory. It then stages
portions of the packet from memory into small output buffers and onto the link, often through
DMA transfer.
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Media arbitration: There is no global arbitration for access to the network and many network
transactions can be initiated simultaneously. (In bus-like networks, such as ethernet or rings there
is distributed arbitration for the single or small number of transactions that can occur simulta-
neously.) Initiation of the network transaction places an implicit claim on resources in the com-
munication path from the source to the destination, as well as resources at the destination. These
resources are potentially shared with other transactions. Local arbitration is performed at the
source to determine whether or not to initiate the transaction. However, this usually does not
imply that all necessary resources are reserved to the destination; the resources are allocated
incrementally as the message moves forward.

Destination name and routing: The source must be able to specify enough information to cause
the transaction to be routed to the appropriate destination. This is in contrast to the bus, where the
source simply places the address on the wire and the destination chooses whether it should accept
the request. There are many variations in how routing is specified and performed, but basically
the source performs a translation from some logical name for the destination to some form of
physical address.

Input buffering: At the destination the information in the network transaction must be transferred
from the physical link into some storage element. As with the output buffer, this may be simple
registers, a queue, or it may be delivered directly into memory. The key difference is that transac-
tions may arrive from many sources; in contrast, the source has complete control over how many
transactions it initiates. The input buffer is in some sense a shared resource used by many remote
processors; how this is managed and what happens when it fills up is a critical issue that we will
examine later.

Action: The action taken at the destination may be very simple, say a memory access, or it may
be complex. In either case it may involve initiating a response.

Completion detection: The source has indication that the transaction has been delivered into the
network, but usually no indication that it has arrived at its destination. This completion must be
inferred from a response, an acknowledgment, or some additional transaction.

Transaction ordering: Whereas a bus provides strong ordering properties among transactions, in
a network the ordering is quite weak. Even on a split-transaction bus with multiple outstanding
transactions, we could rely on the serial arbitration for the address bus to provide a global order.
Some networks will ensure that a sequence of transactions from a given source to a single desti-
nation will be seen in order at the destination, others will not even provide this very limited assur-
ance. In either case, no node can perceive the global order. In realizing programming models on
large-scale machines, ordering constraints must be imposed through network transactions.

Deadlock avoidance: Most modern networks are deadlock free as long as the modules on the net-
work continue to accept transactions. Within the network this may require restrictions on permis-
sible routes or other special precautions, as we discuss in Chapter 10. Still we need to be careful
that our use of network transactions to realize programming models does not introduce deadlock.
In particular, while we are waiting, unable to source a transaction, we usually will need to con-
tinue accepting in-coming transactions. This situation is very much like that with split-transac-
tion busses, except that the number of simultaneous transactions is much larger and there is no
global arbitration or immediate feedback.
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Delivery Guarantees: A fundamental decision in the design of a scalable network is the behavior
when the destination buffer is full. This is clearly an issue on an end-to-end basis, since it is non-
trivial for the source to know whether the destination input buffer is available when it is attempt-
ing to initiate a transaction. It is also an issue on a link-by-link basis within the network itself.
There are two basic options: discard information if the buffer is full or defer transmission until
space is available. The first requires that there be a way to detect the situation and retry, the sec-
ond requires a flow-control mechanism and can cause the transactions to back-up. We will exam-
ine both options in this chapter.

In summary, a network transaction is a one-way transfer for information from a source output
buffer to an input buffer of a designated destination, causing some action to take place at the des-
tination. Let’s consider what is involved in realizing the communication abstractions found in
common programming models in terms of this primitive.

7.3.2 Shared Address Space

Realizing the shared address space communication abstraction fundamentally requires a two-way
request response protocol, as illustrated abstractly in Figure 7-8. A global address is decomposed
into a module number and a local address. For a read operation, a request is sent to the designated
module requesting a load of the desired address and specifying enough information to allow the
result to be returned to the requestor through a response network transaction. A write is similar,
except that the data is conveyed with the address and command to the designated module and the
response is merely an acknowledgment to the requestor that the write has been performed. The
response informs the source that the request has been received or serviced, depending on whether
it is generated before or after the remote action. The response is essential to enforce proper order-
ing of transactions.

A read request typically has a simple fixed format, describing the address to read and the return
information. The write acknowledgment is also simple. If only fixed sized transfers are sup-
ported, e.g., a word or a cache block, then the read response and write request are also of simple
fixed format. This is easily extended to support partial word transfers, say by including byte
enables, whereas arbitrarily length transfers require a more general format. For fixed-format
transfers, the output buffering is typically as with a bus. The address, data, and command are
staged in an output register and serialized onto the link. 

The destination name is generally determined as result of the address translation process which
converts a global address to a module name, or possibly a route to the module, and an address
local to that module. Succeeding with the translation usually implies authorization to access the
designated destination module, however, the source must still gain access to the physical network
and the input buffer at the remote end. Since a large number of nodes may issue requests to the
same destination and there is no global arbitration or direct coupling between the source and des-
tination, the combined storage requirement of the requests may exceed the input buffering at the
node. The rate at which the requests can be processed is merely that of a single node, so the
requests may back up through the network, perhaps even to the sources. Alternatively, the
requests might be dropped in this situation, requiring some mechanism for retrying. Since the
network may not be able to accept a request when the node attempts to issue it, each node must
be able to accept replies and requests, even while unable to inject its own request, so that the
packets in the network can move forward. This is the more general form of the fetch deadlock
issue observed in the previous chapter. This input buffer problem and the fetch deadlock problem
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arise with many different communication abstractions, so they will addressed in more detail after
looking at the corresponding protocols for message passing abstractions.

When supporting a shared address space abstraction, we need to ask whether it is coherent and
what memory consistency model it supports. In this chapter we consider designs that do not rep-
licate data automatically through caches; all of the next chapter is devoted to that topic. Thus,
each remote read and write go to the node hosting the address and access the location. Thus,
coherence is met by the natural serialization involved in going through the network and accessing
memory. One important subtlety is that the accesses from remote nodes need to be coherent with
access from the local node. Thus, if shared data is cached locally, processing the remote reference
needs to be cache coherent within the node.

Achieving sequential consistency in scalable machines is more challenging than in bus-based
designs because the interconnect does not serialize memory accesses to locations on different
nodes. Furthermore, since the latencies of network transactions tend to be large, we are tempted
to try to hide this cost whenever possible. In particular, it is very tempting to issue multiple write
transactions without waiting for the completion acknowledgments to come back in between. To
see how this can undermine the consistency model, consider our familiar flag-based code frag-
ment executing on a multiprocessor with physically distributed memory but no caches. The vari-
ables A and flag are allocated in two different processing nodes, as shown in Figure 7-9(a).
Because of delays in the network, processor P2 may see the stores to A and flag in the reverse
of the order they are generated. Ensuring point-to-point ordering among packets between each

Figure  7-8  Shared Address Space Communication Abstraction

The figure illustrates the anatomy of a read operation in large scale machine in terms of primitive network transac-
tions. (1) The source processor initiates the memory access on global address V. The global address is translated
into a node number or route a local address on that node: <P, A>. (3) A check is performed to determine if the
address is local to the issuing processor. (4) If not, a read request transaction is performed to deliver the request to
the designated processor, which (5) accesses the specified address, and (6) returns the value in a reply transaction to
the original node, which (7) completes the memory access.
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pair of nodes does not remedy the situation, because multiple pairs of nodes may be involved. A
situation with a possible reordering due to the use of different paths within the network is illus-
trated in Figure 7-9(b). Overcoming this problem is one of the reasons why writes need to be
acknowledged. A correct implementation of this construct will wait for the write of A to be com-
pleted before issuing the write of flag. By using the completion transactions for the write, and
the read response, it is straight-forward to meet the sufficient conditions for sequential consis-
tency. The deeper design question is how to meet these conditions while minimizing the amount
of waiting by determining that the write has been committed and appears to all processors as if it
had performed. 

7.3.3 Message Passing

A send/receive pair in the message passing model is conceptually a one-way transfer from a
source area specified by the source user process to a destination address specified by the destina-
tion user process. In addition, it embodies a pairwise synchronization event between the two pro-
cesses. In Chapter 2, we noted the important semantic variations on the basic message passing
abstractions, such as synchronous and asynchronous message send. User level message passing
models are implemented in terms of primitive network transactions, and the different synchroni-
zation semantics have quite different implementations, i.e., different network transaction proto-
cols. In most early large scale machines, these protocols were buried within the vendor kernel
and library software. In more modern machines the primitive transactions are exposed to allow a
wider set of programming models to be supported.

Memory

P1 P3 P2

Memory Memory

A=1;
flag=1;

while (flag==0);
print A;

A:0 flag:0->1 

Interconnection Network

1: A=1

2: flag=1

3: load Adelay

P1

P3P2

(b)(a)
congested

pa
th

Figure  7-9  Possible reordering of memory references for shared flags 

The network is assumed to preserve point-to-point order. The processors have no cache as shown in part (a). The variable A is
assumed to be allocated out of P2’s memory, while variable flag is assumed to be allocated from P3’s memory. It is assumed
that the processors do not stall on a store instruction, as is true for most uniprocessors. It is easy to see that if there is network
congestion along the links from P1 to P2, P3 can get the updated value of flag from P1 and then read the stale value of A (A=0)
from P2. This situation can easily occur, as indicated in part (b) where messages are always routed first in X-dimension and
then in Y-dimension of a 2D mesh.
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This chapter uses the concepts and terminology associated with MPI. Recall that MPI distin-
guishes the notion of when a call to a send or receive function returns from when message opera-
tion completes. A synchronous send completes once the matching receive has executed, the
source data buffer can be reused, and the data is ensured of arriving in the destination receive
buffer. A buffered send completes as soon as the source data buffer can be reused, independent of
whether the matching receive has been issued; the data may have been transmitted or it may be
buffered somewhere in the system.1 Buffered send completion is asynchronous with respect to
the receiver process. A receive completes when the message data is present in the receive destina-
tion buffer. A blocking function, send or receive, returns only after the message operation com-
pletes. A non-blocking function returns immediately, regardless of message completion, and
additional calls to a probe function are used to detect completion. The protocols are concerned
only with message operation and completion, regardless of whether the functions are blocking.

To understand the mapping from user message passing operations to machine network transac-
tion primitives, let us consider first synchronous messages. The only way for the processor host-
ing the source process to know whether the matching receive has executed is for that information
to be conveyed by an explicit transaction. Thus, the synchronous message operation can be real-
ized with a three phase protocol of network transactions, as shown in Figure 7-10. This protocol
is for a sender-initiated transfer. The send operation causes a “ready-to-send” to be transmitted to
the destination, carrying the source process and tag information. The sender then waits until a
corresponding “ready-to-receive” has arrived. The remote action is to check a local table to deter-
mine if a matching receive has been performed. If not, the ready-to-send information is recorded
in the table to await the matching receive. If a matching receive is found, a “ready-to-receive”
response transaction is generated. The receive operation checks the same table. If a matching
send is not recorded there, the receive is recorded, including the destination data address. If a
matching send is present, the receive generates a “ready-to-receive” transaction. When a “ready-
to-receive” arrives at the sender, it can initiate the data transfer. Assuming the network is reliable,
the send operation can complete once all the data has been transmitted. The receive will complete
once it all arrives. Note that with this protocol both the source and destination nodes know the
local addresses for the source and destination buffers at the time the actual data transfer occurs.
The ‘ready’ transactions are small, fixed format packets, whereas the data is a variable length
transfer.

In many message passing systems the matching rule associated with a synchronous message is
quite restrictive and the receive specifies the sending process explicitly. This allows for an alter-
native “receiver initiated” protocol in which the match table is maintained at the sender and only
two network transactions are required (receive ready and data transfer).

1.  The standard MPI mode is a combination of buffered and synchronous that gives the implementation
substantial freedom and the programmer few guarantees. The implementation is free to choose to buffer that
data, but cannot be assumed to do so. Thus, when the send completes the send buffer can be reused, but it
cannot be assumed that the receiver has reached the point of the receive call. Nor can it be assumed that send
buffering will break the deadlock associated with two nodes sending to each other and then posting the
receive. Non-blocking sends can be used to avoid the deadlock, even with synchronous sends.

The read-mode send is a stronger variant of synchronous mode, where it is an error if the received has not
executed. Since the only to obtain knowledge of the state of the non-local processes is through exchange of
messages, an explicit message event would need to be used to indicate readiness. The race condition
between posting the ready receive and transmitting the synchronization message is very similar to the flags
example in the shared address space case.
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The buffered send is naively implemented with an optimistic single-phase protocol, as suggested
in Figure 7-11. The send operation transfers the source data in a single large transaction with an
envelop containing the information used in matching, e.g., source process and tag, as well as
length information. The destination strips off the envelop and examines its internal table to deter-
mine if a matching receive has been posted. If so, it can deliver the data at the specified receive
address. If no matching receive has been posted, the destination allocates storage for the entire
message and receives it into the temporary buffer. When the matching receive is posted later, the
message is copied to the desired destination area and the buffer is freed. 

This simple protocol presents a family of problems. First, the proper destination of the message
data cannot be determined until after examining the process and tag information and consulting
the match table. These are fairly expensive operations, typically performed in software. Mean-
while the message data is streaming in from the network at high rate. One approach is to always
receive the data into a temporary input buffer and then copy it to its proper destination. Of course,
this introduces a store-and-forward delay and, possibly, consumes a fair amount of processing
resources.

The second problem with this optimistic approach is analogous to the input buffer problem dis-
cussed for a shared address space abstraction since there is no ready-to-receive handshaking
before the data is transferred. In fact, the problem is amplified in several respects. First, the trans-
fers are larger, so the total volume of storage needed at the destination is potentially quite large.

Figure  7-10  Synchronous Message Passing Protocol

The figure illustrates the three-way handshake involved in realizing a synchronous send/receive pair in terms of
primitive network transactions.
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Second, the amount of buffer storage depends on the program behavior; it is not just a result of
the rate mismatch between multiple senders and one receiver, much less a timing mismatch
where the data happens to arrive just before the receiver was ready. Several processes may choose
to send many messages each to a single process, which happens not to receive them until much
later. Conceptually, the asynchronous message passing model assumes an unbounded amount of
storage outside the usual program data structures where data is stored until the receives for them
are posted and performed. Furthermore, the blocking asynchronous send must be allowed to
complete to avoid deadlock in simple communication patterns, such as a pairwise exchange. The
program needs to continue executing past the send to reach a point where a receive is posted. Our
optimistic protocol does not distinguish transient receive-side buffering from the prolonged accu-
mulation of data in the message passing layer. 

More robust message passing systems use a three phase protocol for long transfers. The send
issues a ready-to-send with the envelop, but keeps the data buffered at the sender until the desti-
nation can accept it. The destination issues a ready-to-receive either when it has sufficient buffer
space or a matching receive has been executed so the transfer can take place to the correct desti-
nation area. Note that in this case the source and destination addresses are known at both sides of
the transfer before the actual data transfer takes place. For short messages, where the handshake
would dominate the actual data transfer cost, a simple credit scheme can be used. Each process
sets aside a certain amount of space for processes that might send short messages to it. When a
short message is sent, the sender deducts its destination “credit” locally, until it receives notifica-
tion that the short message has been received. In this way, a short message can usually be
launched without waiting a round-trip delay for the handshake. The completion acknowledgment
is used later to determine when additional short messages can be sent without the handshake.

As with the shared address space, there is a design issue concerning whether the source and des-
tination addresses are physical or virtual. The virtual-to-physical mapping at each end can be per-

Figure  7-11  Asynchronous (optimistic) Message Passing Protocol

The figure illustrates a naive single-phase optimisitic protocol for asynchronous message passing where the source
simply delivers that data to the destination, without concern for whether the destination has storage to hold it.
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formed as part of the send and receive calls, allowing the communication assist to exchange
physical addresses, which can be used for the DMA transfers. Of course, the pages must stay res-
ident during the transfer for the data to stream into memory. However, the residency is limited in
time, from just before the handshake until the transfer completes. Also, very long transfers can be
segmented at the source so that few resident pages are involved. Alternatively, temporary buffers
can be kept resident and the processor relied upon to copy the data from and to the source and
destination areas. The resolution of this issue depends heavily on the capability of the communi-
cation assist, as discussed below.

In summary, the send/receive message passing abstraction is logically a one-way transfer, where
the source and destination addresses are specified independently by the two participating pro-
cesses and an arbitrary amount of data can be sent before any is received. The realization of this
class of abstractions in terms of primitive network transactions typically requires a three-phase
protocol to manage the buffer space on the ends, although an optimistic single-phase protocol can
be employed safely to a limited degree.

Figure  7-12  Asynchronous Conservative Message Passing Protocol

The figure illustrates a one-plus-two phase conservative protocol for asynchronous message passing. The data is
held at the source until the matching receive is executed, making the destination address known before the data is
delivered.
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7.3.4 Common challenges

The inherent challenge in realizing programming models in large scale systems is that each pro-
cessor has only limited knowledge of the state of the system, a very large number of network
transactions can be in progress simultaneously, and the source and destination of the transaction
are decoupled. Each node must infer the relevant state of the system from its own point-to-point
events. In this context, it is possible, even likely, for a collection of sources to seriously overload
a destination before any of them observe the problem. Moreover, because the latencies involved
are inherently large, we are tempted to use optimistic protocols and large transfers. Both of these
increase the potential over-commitment of the destination. Furthermore, the protocols used to
realize programming models often require multiple network transactions for an operation. All of
these issues must be considered to ensure that forward progress is made in the absence of global
arbitration. The issues are very similar to those encountered in bus-based designs, but the solu-
tions cannot rely on the constraints of the bus, namely a small number of processors, a limited
number of outstanding transactions, and total global ordering.

Input buffer overflow

Consider the problem of contention for the input buffer on a remote node. To keep the discussion
simple, assume for the moment fixed-format transfers on a completely reliable network. The
management of the input buffer is simple: a queue will suffice. Each incoming transaction is
placed in the next free slot in the queue. However, it is possible for a large number of processors
to make a request to the same module at once. If this module has a fixed input buffer capacity, on
a large system it may become overcommitted. This situation is similar to the contention for the
limited buffering within the network and it can be handled in a similar fashion. One solution is to
make the input buffer large and reserve a portion of it for each source. The source must constrain
its own demand when it has exhausted its allotment at the destination. The question then arises,
how does the source determine that space is again available for it? There must be some flow con-
trol information transmitted back from the destination to the sender. This is a design issue that
can be resolved in a number of ways: each transaction can be acknowledged, or the acknowledg-
ment can be coupled with the protocol at a higher level. For example, the reply indicates comple-
tion of processing the request. 

An alternative approach, common in reliable networks, is for the destination to simply refuse to
accept incoming transactions when its input buffer is full. Of course, the data has no place to go,
so it remains stuck in the network for a period of time. The network switch feeding the full buffer
will be in a situation where it cannot deliver packets as fast as they are arriving. Given that it also
has finite buffering, it will eventually refuse to accept packets on its inputs. This phenomena is
called back-pressure. If the overload on the destination is sustained long enough, the backlog will
build in a tree all the way back to the sources. At this point, the sources feel the back pressure
from the overloaded destination and are forced to slow down such that the sum of the rates from
all the sources sending to the destination are no more than what the destination can receive. One
might worry that the system will fail to function in such situations. Generally, networks are built
so that they are deadlock free, which means that messages will make forward progress as long as
messages are removed from the network at the destinations[DaSe87]. (We will see in Chapter 7
that it takes care in the network design to ensure deadlock freedom. The situations that need to be
avoided are similar to traffic gridlock, where all the cars in an intersection are preventing the oth-
ers from moving out of the way.) So, there will be forward progress. The problem is that with the
network so backed up, messages not headed for the overloaded destination will get stuck in traf-
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fic also. Thus, the latency of all communication increases dramatically with the onset of this
backlog.

Even if there is a large backlog, the messages will eventually move forward. Networks typically
have only finite buffering per switch, so eventually the backlog will reach back to the sources and
the network will refuse to accept any incoming messages. Thus, the destinations exert back-pres-
sure through the network, which eventually reaches all the way to the sources. This situation may
cause additional transactions to queue up within the network in front of the full buffers, thereby
increasing the communication latency. This situation establishes an interesting “contract”
between the nodes and the network. From the source point of view, if the network accepts a trans-
action it is guaranteed that the transaction will eventually be delivered to the destination. How-
ever, a transaction may not be accepted for an arbitrarily large period of time and during that time
the source must continue to accept incoming transactions.

Alternatively, the network may be constructed so that the destination can inform the source of the
state of its input buffer. This is typically done by reserving a special acknowledgment path in the
reverse direction. When the destination accepts a transaction it explicitly ACKs the source; if it
discards the transaction it can deliver a negative acknowledgment, informing the source to try
again later. Local area networks, such as Ethernet, FDDI, and ATM, take more austere measures
and simply drop the transaction whenever there is not space to buffer it. The source relies on
time-outs to decide that it may have been dropped and tries again.

Fetch deadlock

The input buffer problem takes on an extra twist in the context of the request/response protocols
that are intrinsic to a shared address space and present in message passing implementations. In a
reliable network, when a processor attempts to initiate a request transaction the network may
refuse to accept it, as a result of contention for the destination and/or contention within the net-
work. In order to keep the network deadlock free, the source is required to continue accepting
transactions, even while it cannot initiate its own. However, the incoming transaction may be a
request, which will generate a response. The response cannot be initiated because the network is
full.

A common solution to this fetch deadlock problem is to provide two logically independent com-
munication networks for requests and responses. This may be realized as two physical networks,
or separate virtual channels within a single network and separate output and input buffering.
While stalled on attempting to send a request it is necessary to continue accepting responses.
However, responses can be completed without initiating further transactions. Thus, response
transactions will eventually make progress. This implies that incoming requests can eventually be
serviced, which implies that stalled requests will eventually make progress.

An alternative solution is to ensure that input buffer space is always available at the destination
when a transaction is initiated by limiting the number of outstanding transactions. In a request/
response protocol it is straight-forward to limit the number of outstanding requests any processor
has outstanding; a counter is maintained and each response decrements the counter allowing a
new request to be issued. Standard, blocking reads and writes are realized by simply waiting for
the response before completing the current request. Nonetheless, with P processors and a limit of
k outstanding requests per processor, it is possible for all kp requests to be directed to the same
module. There needs to be space for the kp outstanding requests that might be headed for a single
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destination plus space for responses to the requests issued by the destination node. Clearly, the
available input buffering ultimately limits the scalability of the system. The request transaction is
guaranteed to make progress because the network can always sink transactions into available
input buffer space at the destination. The fetch deadlock problem arises when a node attempts to
generate a request and its outstanding credit is exhausted. It must service incoming transactions
in order to receive its own responses, which enable generation of additional requests. Incoming
requests can be serviced because it is guaranteed that the requestor reserved input buffer space
for the response. Thus, forward progress is ensured even if the node merely queues and ignores
input transactions while attempting to deliver a response.

Finally, we could adopt the approach we followed for split-transaction busses and NAK the trans-
action if the input buffer is full. Of course, the NAK may be arbitrarily delayed. Here we assume
that the network reliably delivers transactions and NAKs, but the destination node may elect to
drop them in order to free up input buffer space. Responses never need to be NAKed, because
they will be sinked at the destination node, which is the source of the corresponding request and
can be assumed to have set aside input buffering for the response. While stalled attempting to ini-
tiate a request we need to accept and sink responses and accept and NAK requests. We can
assume that input buffer space is available at the destination of the NAK, because it simply uses
the space reserved for the intended response. As long as each node provides some input buffer
space for requests, we can ensure that eventual some request succeeds and the system does not
livelock. Additional precautions are required to minimize the probability of starvation.

7.3.5 Communication architecture design space

In the remainder of this chapter we examine the spectrum of important design points for large-
scale distributed memory machines. Recall, our generic large-scale architecture consists of a
fairly standard node architecture augmented with hardware communication assist, as suggested
by Figure 7-13. The key design issue is the extent to which the information in a network transac-
tion is interpreted directly by the communication assist, without involvement of the node proces-
sor. In order to interpret the incoming information, its format must be specified, just as the format
of an instruction set must be defined before one can construct an interpreter for it, i.e., a proces-
sor. The formatting of the transaction must be performed in part by the source assist, along with
address translation, destination routing, and media arbitration. Thus, the processing performed by
the source communication assist in generating the network transaction and that at the destination
together realize the semantics of the lowest level hardware communication primitives presented
to the node architecture. Any additional processing required to realize the desired programming
model is performed by the node processor(s), either at user or system level.

Establishing a position on the nature of the processing performed in the two communication
assists involved in a network transactions has far reaching implications for the remainder of the
design, including how input buffering is performed, how protection is enforced, how many times
data is copied within the node, how addresses are translated and so on. The minimal interpreta-
tion of the incoming transaction is not to interpret it at all. It is viewed as a raw physical bit
stream and is simply deposited in memory or registers. More specific interpretation provides
user-level messages, a global virtual address space, or even a global physical address space. In
the following sections we examine each of these in turn, and present important machines that
embody the respective design points as case studies.
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7.4 Physical DMA

This section considers designs where no interpretation is placed on the information within a net-
work transaction. This approach is representative of most early message passing machines,
including the nCUBE10, nCUBE/2, the Intel iPSC, iPSC/2, iPSC860, and the Delta, and the
Ametek and IBM SP-1. Also, most LAN interfaces follow this approach. The hardware can be
very simple and the user communication abstraction can be very general, but typical processing
costs are large.

Node to Network Interface

The hardware essentially consists of support for physical DMA (direct memory access), as sug-
gested by Figure 7-14. A DMA device or channel typically has associated with it address and
length registers, status (e.g., transmit ready, receive ready), and interrupt enables. Either the
device is memory mapped or privileged instructions are provided to access the registers.
Addresses are physical1, so the network transaction is transferred from a contiguous region of
memory. To inject the message into the network, requires a trap to the kernel. Typically, the data
will be copied into a kernel area so that the envelope, including the route and other information
can be constructed. Portions of the envelope, such as the error detection bits, may be generated
by the communication assist. The kernel selects the appropriate out-going channel, sets the chan-
nel address to the physical address of the message and sets the count. The DMA engine will push
the message into the network. When transmission completes the output channel ready flag is set

1.  One exception to this is the SBus used in Sun workstations and servers, which provide virtual DMA,
allowing I/O devices to operate on virtual, rather than physical addresses.

Figure  7-13  Processing of a Network Transaction in the Generic Large-Scale Architecture

A network transaction is a one-way transfer of information from an output buffer at the source to an input buffer at the
destination causing some kind of action to occur at the destination, the occurrence of which is not directly visible at
the source. The source communication assist formats the transaction and causes it to be routed through the network.
The destination communication assist must interpret the transaction and cause the appropriate actions to take place.
The nature of this interpretation is a critical design aspect of scalable multiprocessors.
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and an interrupt is generated, unless it is masked. The message will work its way through the net-
work to the destination, at which point the DMA at the input channel of the destination node
must be started to allow the message to continue moving through the network and into the node.
(If there is delay in starting the input channel or if the message collides in the network with
another using the same link, typically the message just sits in the network.) Generally, the input
channel address register is loaded in advance with the base address where the data is to be depos-
ited. The DMA will transfer words from the network into memory as they arrive. The end-of-
message causes the input ready status bit to be set and an interrupt, unless masked. In order to
avoid deadlock, the input channels must be activated to receive messages and drain the network,
even if there are output messages that need to be sent on busy output channels.

Sending typically requires a trap to the operating system. Privileged software can then provide
the source address translation, translate the logical destination node to a physical route, arbitrate
for the physical media, and access the physical device. The key property of this approach is that
the destination processor initiates a DMA transfer from the network into a region of memory and
the next incoming network transaction is blindly deposited in the specified region of memory.
The system sets up the in-bound DMA on the destination side. When it opens up an input chan-
nel, it cannot determine whether the next message will be a user message or a system message. It
will be received blindly into the predefined physical region. Message arrival will typically cause
an interrupt, so privileged software can inspect the message and either process it or deliver it to
the appropriate user process. System software on the node processor interprets the network trans-
action and (hopefully) provides a clean abstraction to the user. 

One potential way to reduce the communication overhead is to allow the user level access to the
DMA device. If the DMA device is memory mapped, as most are, this is a matter of setting up
the user virtual address space to include the necessary region of the I/O space. However, with this
approach the protection domain and the level of resource sharing is quite crude. The current user
gets the whole machine. If the user misuses the network, there may be no way for the operating
system to intervene, other than rebooting the machine. This approach has certainly been

Figure  7-14  Hardware support in the communication assist for blind, physical DMA

The minimal interpretation is blind, physical DMA, which allows the destination communication assist merely to
deposit the transaction data into storage, whereupon it will be interpreted by the processor. Since the type of transac-
tion is not determined in advance, kernel buffer storage is used and processing the transaction will usually involve a
context switch and one or more copies.
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employed in experimental setting, but is not very robust and tends to make the parallel machine
into a very expensive personal computer.

Implementing Communication Abstractions

Since the hardware assist in these machines is relatively primitive, the key question becomes how
to deliver the newly received network transaction to the user process in a robust, protected fash-
ion. This is where the linkage between programming model and communication primitives
occurs. The most common approach is to support the message passing abstraction directly in the
kernel. An interrupt is taken on arrival of a network transaction. The process identifier and tag in
the network transaction is parsed and a protocol action is taken along the lines specified by
Figure 7-10 or Figure 7-12. For example, if a matching receive has been posted the data can be
copied directly into the user memory space. If not, the kernel provides buffering or allocates stor-
age in the destination user process to buffer the message until a matching receive is performed.
Alternatively, the user process can preallocate communication buffer space and inform the kernel
where it wants to receive messages. Some message passing layers allow the receiver to operate
directly out of the buffer, rather than receiving the data into its address space.

It is also possible for the kernel software to provide the user-level abstraction of a global virtual
address space. In which case, read and write requests are issued either directly through a system
call or by trapping on a load or store to a logically remote page. The kernel on the source issues
the request and handles the response. The kernel on the destination extracts the user process,
command, and destination virtual address from the network transaction and performs the read or
write operation, along the lines of Figure 7-8, issuing a response. Of course, the overhead associ-
ated with such an implementation of the shared address abstraction is quite large, especially for
word at a time operation. Greater efficiency can be gained through bulk data transfers, which
make the approach competitive with message passing. There have been many software shared
memory systems built along these lines, mostly on clusters of workstations, but the thrust of
these efforts is on automatic replication to reduce the amount of communication. They are
described in the next chapter.

Other linkages between the kernel and user are possible. For example the kernel could provide
the abstraction of a user-level input queue can simply append the message to the appropriate
queue, following some well defined policy on queue overflow.

7.4.1 A Case Study: nCUBE/2

A representative example of the physical DMA style of machine is the nCUBE/2. The network
interface is organized as illustrated by Figure 7-15, where each of the DMA output channels
drives an output port of link and each input DMA channel is associated with an input port. This
machine is an example of a direct network, in which data is forwarded from its source to its des-
tination through intermediate nodes. The router forwards network transactions from input ports
to output ports. The network interface inspects the envelop of messages arriving on each input
port and determines whether the message is destined for the local node. If so, the input DMA is
activated to drain the message into memory. Otherwise, the router forwards the message to the
proper output port.1 Link-by-link flow control ensures that delivery is reliable. User programs are
assigned to contiguous subcubes and the routing is such that the links within the subcube are only
used within that subcube, so with space-shared use of the machine, user programs cannot inter-
fere with one another. A peculiarity of the nCUBE/2 is that no count register is associated with
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the input channels, so the kernels on the source and destination nodes must ensure that incoming
messages never over-run the input buffers in memory. 

To assist in interpreting network transactions and delivering the user data into the desired region
of memory without copies, it is possible to send a series of message segments as a single, contig-
uous transfer. At the destination the input DMA will stop at each logical segment. Thus, the des-
tination can take the interrupt and inspect the first segment in order to determine where to direct
the remainder, for example by performing the lookup in the receive table. However, this facility is
costly, since a start-DMA and interrupt (or busy-wait) is required for each segment.

The best strategy at the kernel level is to keep an input buffer associated with every incoming
channel, while output buffers are being injected into the output ports [vEi*92]. Typically each
message will contain a header, allowing the kernel to dispatch on the message type and take
appropriate action to handle it, such as performing the tag match and copying the message into
the user data area. The most efficient and most carefully document communication abstraction on
this platform is user-level active messages, which essentially provides the basic network transac-
tion at user level [vEik*92]. It requires that the first word of the user message contain the address
of the user routine that will handle the message. The message arrival causes an interrupt, so the

1.  This routing step is the primary point where the interconnection network topology, an n-cube, is bound
into the design of the node. As we will discuss in Chapter 10, the output port is given by the position of the
first bit that differs in the local node address and the message destination address.

Figure  7-15  Network interface organization of the nCUBE/2

Multiple DMA channels drive network transactions directly from memory into the network or from the network into
memory. The inbound channels deposit data into memory at a location determined by the processor, independent of
the contents. To avoid copying, the machine allows multiple message segments to be transferred as a single unit
through the network. A more typical approach is for the processor to provide the communication assist with a queue of
inbound DMA descriptors, each containing the address and length of a memory buffer. When a network transactions
arrive, a descriptor is popped from the queue and the data is deposited in the associated memory buffer.
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kernel performs a return-from-interrupt to the message handler, with the interrupted user address
on the stack. With this approach, a message can be delivered into the network in 13 µs (16
instructions, including 18 memory references, costing 160 cycles) and extracted from the net-
work in 15 µs (18 instructions, including 26 memory references, costing 300 cycles). Comparing
this with the 150 µs start-up of the vendor “vertex” message passing library reflects the gap
between the hardware primitives and the user-level operations in the message passing program-
ming model. The vertex message passing layer uses an optimistic one-way protocol, but match-
ing and buffer management is required.

Typical LAN Interfaces

The simple DMA controllers of the nCUBE/2 are typical of parallel machines and qualitatively
different from what is typically found in DMA controllers for peripheral devices and local area
networks. Notice that each DMA channel is capable of a single, contiguous transfer. A short
instruction sequence sets the channel address and channel limit for the next input or output oper-
ation. Traditional DMA controllers provide the ability to chain together a large number of trans-
fers. To initiate an output DMA, a DMA descriptor is chained onto the output DMA queue. The
peripheral controller polls this queue, issuing DMA operations and informing the processor as
they complete.

Most LAN controllers, including Ethernet LANCE, Motorola DMAC, Sun ATM adapters and
many others, provide a queue of transmit descriptors and a queue of receive descriptors. (There is
also a free list of each kind of descriptor. Typically, the queue and its free list are combined into a
single ring.) The kernel builds the output message in memory and sets up a transmit descriptor
with its address and length, as well as some control information. In some controllers a single
message can be described by a sequence of descriptors, so the controller can gather the envelope
and the data from memory. Typically, the controller has a single port into the network, so it
pushes the message onto the wire. For Ethernets and rings, each of the controllers inspect the
message as it comes by, so a destination address is specified on the transaction, rather than a
route. 

The inbound side is more interesting. Each receive descriptor has a destination buffer address.
When a message arrives, a buffer descriptor is popped off the queue and a DMA transfer is initi-
ated to load the message data into memory. If no receive descriptor is available, the message is
dropped and higher level protocols must retry (just as if the message was garbled in transit). Most
devices have configurable interrupt logic, so an interrupt can be generated on every arrival, after
so many bytes, or after a message has waited for too long. The operating system driver manages
these input and output queues. The number of instructions required to set up even a small transfer
is quite large with such devices, partly because of the formatting of the descriptors and the hand-
shaking with the controller.

7.5 User-level Access

The most basic level of hardware interpretation of the incoming network transaction distin-
guishes user messages from system messages and delivers user messages to the user program
without operating system intervention. Each network transaction carries a user/system flag which
is examined by the communication assist as the message arrives. In addition, it should be possible
to inject a user message into the network at user level; the communication assist automatically
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inserts the user flag as it generates the transaction. In effect, this design point provides a user-
level network port, which can be written and read without system intervention.

Node to Network Interface

A typical organization for a parallel machine supporting user-level network access is shown in
Figure 7-16. A region of the address space is mapped to the network input and output ports, as
well as the status register, as indicated in Figure 7-17. The processor can generate a network
transaction by writing the destination node number and the data into the output port. The commu-
nication assist performs protection check, translates the logical destination node number into a
physical address or route, and arbitrates for the medium. It also inserts the message type and any
error checking information. Upon arrival, a system message will cause an interrupt so the system
can extract it from the network, whereas a user message can sit in the input queue until the user
process reads it from the network, popping the queue. If the network backs up, attempts to write
messages into the network will fail and the user process will need to continue to extract messages
from the network to make forward progress. Since current microprocessors do not support user-
level interrupts, an interrupting user message is treated by the NI as a system message and the
system rapidly transfers control to a user-level handler.

One implication of this design point is that the communication primitives allow a portion of the
process state to be in the network, having left the source but not arrived at the destination. Thus,
if the collection of user processes forming a parallel program is time-sliced out, the collection of
in-flight messages for the program need to be swapped as well. They will be reinserted into the
network or the destination input queues when the program is resumed.

Figure  7-16  Hardware support in the communication assist for user-level network ports.

The network transaction is distinguished as either system or user. The communication assist provides network input
and output fifos accessible to the user or system. It marks user messages as they are sent and checks the transaction
type as they are received. User messages may be retained in the user input fifo until extracted by the user applica-
tion. System transactions cause an interrupt, so that they may be handled in a priviledged manner by the system. In
the absence of user-level interupt support, interrupting user tranactions are treated as special system transactions.
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7.5.1 Case Study: Thinking Machines CM-5

The first commercial machine to seriously support a user-level network was the Thinking
Machines Corp. CM-5, introduced in late 1991. The communication assist is contained in a net-
work interface chip (NI) attached at the memory bus as if it were an additional memory control-
ler, as illustrated in Figure 7-12. The NI provides an input and output FIFO for each of two data
networks and a “control network”, which is specialized for global operations, such as barrier,
broadcast, reduce and scan. The functionality of the communication assist is made available to
the processor by mapping the network input and output ports, as well as the status registers, into
the address space, as shown in Figure 7-17. The kernel can access all of the FIFOs and registers,
whereas a user process can only access the user FIFO and status. In either case, communication
operations are initiated and completed by reading and writing the communication assist registers
using conventional loads and stores. In addition, the communication assist can raise an interrupt.
In the CM5, each network transaction contains a small tag and the communication assist main-
tains a small table to indicate which tags should raise an interrupt. All system tags raise an inter-
rupt.

In the CM-5, it is possible to write a five word message into the network in 1.5 µs (50 cycles) and
read one out in 1.6 µs. In addition, the latency across an unloaded network varies from 3 µs for
neighboring nodes to 5 µs across a thousand node machine. An interrupt vectored to user level
costs roughly 10 µs. The user-level handler may process several messages, if they arrive in rapid
succession. The time to transfer a message into or out of the network interface is dominated by
the time spent on the memory bus, since these operations are performed as uncached writes and
reads. If the message data starts out in registers, it can be written to the network interface as a
sequence of buffered stores. However, this must be followed by a load to check if the message
was accepted, at which point the write latency is experienced as the write buffer is retired to the
NI.

If the message data originates in memory and is to be deposited in memory, rather than registers,
it is interesting to evaluate whether DMA should be used to transfer data to and from the NI. The
critical resource is the memory bus. When using conventional memory operations to access the

Figure  7-17  Typical User-level Architecture with network ports

In addition to the storage presented by the instruction set architecture and memory space, a region of the user’s vir-
tual address space provides access to the network output port, input port, and status register. Network transactions
are initiated and received by writing and reading the ports, plus checking the status register.
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user-level network port, each word of message data is first loaded into a register and then stored
into the NI or memory. If the data is uncachable, each data word in the network transaction
involves four bus transactions. If the memory data is cachable, the transfers between the proces-
sor and memory are performed as cache block transfers or are avoided if the data is in cache.
However, the NI stores and loads remain. With DMA transfers, the data is moved only once
across the memory bus on each end of the network transaction, using burst mode transfers. How-
ever, the DMA descriptor must still be written to the NI. The performance advantages of DMA
can be lost altogether if the message data cannot be in cachable regions of memory, so the DMA
transfer performed by the NI must be coherent with respect to the processor cache. Thus, it is
critical that the node memory architecture support coherent caching. On the receiving side, the
DMA must be initiated by the NI based on information in the network transaction and state inter-
nal to the NI; otherwise we are again faced with the problems associated with blind physical
DMA. This leads us to place additional interpretation on the network transaction, in order to have
the communication assist extract address fields. We consider this approach further in Section 7.6
below.

The two data networks in the CM-5 provide a simple solution to the fetch deadlock problem; one
network can be used for requests and one for responses[Lei*92]. When blocking on a request, the
node continues to accept incoming replies and requests, which may generate out-going replies.
When blocked on sending a reply, only incoming replies are accepted from the network. Eventu-
ally the reply will succeed, allowing the request to proceed. Alternatively, buffering can be pro-
vided at each node, with some additional end-to-end flow control to ensure that the buffers do not
overflow. Should a user program be interrupted when it is part way through popping a message
from the input queue, the system will extract the remainder of the message and pushes it back
into the front of the input queue before resuming the program.

7.5.2 User Level Handlers

Several experimental architectures have investigated a tighter integration of the user-level net-
work port with the processor, including the Manchester Dataflow Machine[Gur*85], Sigma-
1[Shi*84], iWARP[Bor90], Monsoon[PaCu90], EM-4[Sak*91], and J-Machine[Dal93]. The key
difference is that the network input and output ports are processor registers, as suggested by
Figure 7-18, rather than special regions of memory. This substantially changes the engineering of
the node, since the communication assist is essentially a processor function unit. The latency of
each of the operations is reduced substantially, since data is moved in and out of the network with
register-to-register instructions. The bandwidth demands on the memory bus are reduced and the
design of the communication support is divorced from the design of the memory system. How-
ever, the processor is involved in every network transaction. Large data transfers consume pro-
cessor cycles and are likely to pollute the processor cache.

Interestingly, the experimental machines have arrived at a similar design point from vastly differ-
ent approaches. The iWARP machine[Bor*90], developed jointly by CMU and Intel, binds two
registers in the main register file to the head of the network input and output ports. The processor
may access the message on a word-by-word basis as it streams in from the network. Alterna-
tively, a message can be spooled into memory by a DMA controller. The processor specifies
which message it desires to access via the port registers by specifying the message tag, much as
in a traditional receive call. Other messages are spooled into memory by the DMA controller
using an input buffer queue to specify the destination address. The extra hardware mechanism to
direct one in-coming and one out-going message through the register file was motivated by sys-
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tolic algorithms where a stream of data is pumped through processors in a highly regular pipe-
line, doing a small amount of computation as the stream flows through. By interpreting the tag, or
virtual channel in iWARP terms, in the network interface, the memory-based message flows are
not hindered by the register-based message flow. By contrast, in a CM-5 style of design all mes-
sages are interleaved through a single input buffer.

The *T machine[NPA93], proposed by MIT and Motorola, offered a more general-purpose archi-
tecture for user-level message handling. It extended the Motorola 88110 RISC microprocessor to
include a network function unit containing a set of registers much like the floating-point unit. A
multiword outgoing message is composed in a set of output registers and a special instruction
causes the network function unit to send it out. There are several of these output register sets
forming a queue and the send advances the queue, exposing the next available set to the user.
Function unit status bits indicate whether an output set is available; these can be used directly in
branch instructions. There are also several input message register sets, so when a message arrives
it is loaded into an input register set and a status bit is set or an interrupt is generated. Additional
hardware support was provided to allow the processor to dispatch rapidly to the address specified
by the first word of the message.

The *T design drew heavily on previous efforts supporting message driven execution and data-
flow architectures, especially the J-Machine, Monsoon and EM-4. These earlier designs
employed rather unusual processor architectures, so the communication assist is not clearly artic-
ulated. The J-machine provides two execution contexts, each with a program counter and small
register set. The “system” execution context has priority over the “user” context. The instruction
set includes a segmented memory model, with one segment being a special on-chip message
input queue. There is also a message output port for each context. The first word of the network
transaction is specified as being the address of the handler for the message. Whenever the user
context is idle and a message is present in the input queue, the head of the message is automati-
cally loaded into the program counter and an address register is set up to reference the rest of the
message. The handler must extract the message from the input buffer before suspending or com-
peting. Arrival of a system level message preempts the user context and initiates a system han-
dler.

Figure  7-18  Hardware support in the communication assist for user-level handlers.

The basic level of support required for user-level handlers is that the communication assist can determine that the
network transaction is destined for a user processes and make it directly available to that process. This either means
that each process has a logical set of FIFOs or a single set FIFOs is timeshared among user processes.
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In Monsoon, a network transaction is of fixed format and specified to contain a handler address,
data frame address, and a 64-bit data value. The processor supports a large queue of such small
messages. The basic instruction scheduling mechanism and the message handling mechanism are
deeply integrated. In each instruction fetch cycle, a message is popped from the queue and the
instruction specified by the first word of the message is executed. Instructions are in a 1+x
address format and specify an offset relative to the frame address where a second operand is
located. Each frame location contains presence bits, so if the location is empty the data word of
the message is stored in the specified location (like a store accumulator instruction). If the loca-
tion is not empty, its value is fetched, an operation is performed on the two operands, and one or
more messages carrying the result are generated, either for the local queue or a queue across the
network. In earlier, more traditional dataflow machines, the network transaction carried an
instruction address and a tag, which is used in an associative match to locate the second operand,
rather simple frame relative addressing. Later hybrid machines [NiAr89,GrHo90,Cul*91,Sak91]
execute a sequence of instructions for each message dequeue-and-match operation.

7.6 Dedicated Message Processing

A third important design style for large-scale distributed-memory machines seeks to allow
sophisticated processing of the network transaction using dedicated hardware resources without
binding the interpretation in the hardware design. The interpretation is performed by software on
a dedicated communications processor (or message processor) which operates directly on the
network interface. With this capability, it is natural to consider off-loading the protocol process-
ing associated with the message passing abstraction to the communications processor. It can per-
form the buffering, matching, copying and acknowledgment operations. It is also reasonable to
support a global address space where the communication processor performs the remote read
operation on behalf of the requesting node. The communications processors can cooperate to pro-
vide a general capability to move data from one region of the global address space to another.
The communication processor can provide synchronization operations and even combinations of
data movement and synchronization, such as write data and set a flag or enqueue data. Below we
look at the basic organizational properties of machines of this class to understand the key design
issues. We will look in detail at two machines as case studies, the Intel Paragon and the Meiko
CS-2.

A generic organization for this style of design is shown in Figure 7-19, where the compute pro-
cessor (P) and communication processor (mP) are symmetric and both reside on the memory bus.
This essentially starts with a bus-based SMP of Chapter 4 as the node and extends it with a prim-
itive network interface similar to that described in the previous two sections. One of the proces-
sors in the SMP node is specialized in software to function as a dedicated message processor. An
alternative organization is to have the communication processor embedded into the network
interface, as shown in Figure 7-20. These two organizations have different latency, bandwidth,
and cost trade-offs, which we examine a little later. Conceptually, they are very similar. The com-
munication processor typically executes at system privilege level, relieving the machine designer
from addressing the issues associated with a user-level network interface discussed above. The
two processors communicate via shared memory, which typically takes the form of a command
queue and response area, so the change in privilege level comes essentially for free as part of the
hand-off. Since the design assumes there is a system-level processor responsible for managing
network transactions, these designs generally allow word-by-word access to the NI FIFOs, as
well as DMA, so the communication processor can inspect portions of the message and decide
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what actions to take. The communication processor can poll the network and the command
queues to move the communication process along.

The message processor provides the computation processor with a very clean abstraction of the
network interface. All the details of the physical network operation are hidden, such as the hard-
ware input/output buffers, the status registers, and the representation of routes. A message can be
sent by simply writing it, or a pointer to it, into shared memory. Control information is
exchanged between the processors using familiar shared-memory synchronization primitives,
such as flags and locks. Incoming messages can be delivered directly into memory by the mes-

Figure  7-19   Machine organization for dedicated message processing with a symmetric processor

Each node has a processor, symetric with the main processor on a shared memory bus, that is dedicated to initiating
and handling network transactions. Being dedicated, it can always run in system mode, so transferring data through
memory implicitly crosses the protection boundary. The message processor can provide any additional protection
checks of the contents of the transactions.
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Figure  7-20  Machine organization for dedicated message processing with an embedded processor

The communication assist consists of a dedicated, programmable message processor embedded in the network
interface. It has a direct path to the network that does not utilize the memory bus shared by the main processor.
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sage processor, along with notification to the compute processor via shared variables. With a
well-designed user-level abstraction, the data can be deposited directly into the user address
space. A simple low-level abstraction provides each user process in a parallel program with a log-
ical input queue and output queue. In this case the flow of information in a network transaction is
as shown in Figure 7-21. 

These benefits are not without costs. Since communication between the compute processor and
message processor is via shared memory within the node, communication performance is
strongly influenced by the efficiency of the cache coherency protocol. A review of Chapter 4
reveals that these protocols are primarily designed to avoid unnecessary communication when
two processors are operating on mostly distinct portions of a shared data structure. The shared
communication queues are a very different situation. The producer writes an entry and sets a flag.
The consumer must see the flag update, read the data, and clear the flag. Eventually, the producer
will see the cleared flag and rewrite the entry. All the data must be moved from the producer to
the consumer with minimal latency. We will see below that inefficiencies in traditional coherency
protocols make this latency significant. For example, before the producer can write a new entry,
the copy of the old one in the consumer’s cache must be invalidated. One might imagine that an
update protocol, or even uncached writes might avoid this situation, but then a bus transaction
will occur for every word, rather than every cache block.

A second problem is that the function performed by the message processor is “concurrency inten-
sive”. It handles requests from the compute processor, messages arriving from the network and
messages going out and into the network all at once. By folding all these events into a single
sequential dispatch loop, they can only be handled one at a time. This can seriously impair the
bandwidth capability of the hardware.

Finally, the ability of the message processor to deliver messages directly into memory does not
completely eliminate the possibility of fetch deadlock at the user level, although it can ensure that

Figure  7-21  Flow of a Network Transaction with a symmetric message processor

Each network transaction flows through memory, or at least across the memory bus in a cache-to-cache transfer
between the main processor and memory processor. It crosses the memory bus again between the message proces-
sor and network interface.
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the physical resources are not stalled when an application deadlocks. A user application may
need to provide some additional level of flow control.

7.6.1 Case Study: Intel Paragon

To make these general issues concrete, in this section we examine how they arise in an important
machine of this ilk, the Intel Paragon, first shipped in 1992. Each node is a shared memory multi-
processor with two or more 50MHz i860XP processors, a Network Interface Chip (NIC) and 16
or 32 MB of memory, connected by a 64-bit, 400 MB/sec, cache-coherent memory bus, as shown
in Figure 7-22. In addition, two DMA engines (one for sending and the other for receiving) are
provided to burst data between memory and the network. DMA transfers operate within the
cache coherency protocol and are throttled by the network interface before buffers are over or
under-run. One of the processors is designated as a message processor to handle network transac-
tions and message passing protocols while the other is used as a compute processor for general
computing. ‘I/O nodes’ are formed by adding I/O daughter cards for SCSI, Ethernet, and HiPPI
connections.

The i860XP processor is a 50MHz RISC processor that supports dual-instruction issue (one inte-
ger and one floating-point), dual-operation instructions (e.g. floating-point multiply-and-add) and
graphics operations. It is rated at 42 MIPS for integer operations and has a peak performance of
75 MFLOPS for double-precision operations. The paging unit of the i860XP implements pro-
tected, paged, virtual memory using two four-way set-associative translation look-aside buffers
(TLB). One TLB supports 4KB pages using two-level page tables and has 64 entries; the other
supports 4MB pages using one-level page tables and has 16 entries. Each i860XP has a 16KB
instruction cache and a 16KB data cache, which are 4-way set-associative with 32-byte cache
blocks [i860]. The i860XP uses write-back caching normally, but it can also be configured to use
write-through and write-once polices under software or hardware control. The write buffers can

Figure  7-22  Intel Paragon machine organization

Each node of the machine includes a dedicated message processor, identical to the compute processor on a cache
coherent memory bus, which has a simple, system-level interface to a fast, reliable network, and two cache-coher-
ent DMA engines that repects the flow control of the NIC
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hold two successive stores to prevent stalling on write misses. The cache controllers of the
i860XP implement a variant of the MESI (Modified, Exclusive, Shared, Invalid) cache consis-
tency protocol discussed in Chapter 4. The external bus interface also supports a 3-stage address
pipeline (i.e. 3 outstanding bus cycles) and burst mode with transfer length of 2 or 4 at 400 MB/
sec. 

The Network Interface Chip (NIC) connects the 64-bit synchronous memory bus to 16-bit asyn-
chronous (self-timed) network links. A 2KB transmit FIFO (tx) and a 2KB receive FIFO (rx) are
used to provide rate matching between the node and a full-duplex 175 MB/sec network link. The
head of the rx FIFO and the tail of the tx FIFO are accessible to the node as a memory mapped
NIC I/O register. In addition, a status register contains flags that are set when the FIFO is full,
empty, almost full, or almost empty and when an end-of-packet marker is present. The NIC can
optionally generate an interrupt when each flag is set. Reads and writes to the NIC FIFOs are
uncached and must be done one double-word (64 bits) at a time. The first word of a message must
contain the route (X-Y displacements in a 2D mesh), but the hardware does not impose any other
restriction on the message format. In particular, it does not distinguish between system and user
messages. In addition, the NIC also performs parity and CRC checks to maintain end-to-end data
integrity.

Two DMA engines, one for sending and the other for receiving, can transfer a contiguous block
of data between main memory and the Network Interface Chip (NIC) at 400MB/sec. The mem-
ory region is specified as a physical address, aligned on a 32-byte boundary, with a length
between 64 bytes and 16KB (one DRAM page) in multiples of 32 bytes (a cache block). During
DMA transfer, the DMA engine snoops on the processor caches to ensure consistency. Hardware
flow control prevents the DMA from overflowing or underflowing the NIC FIFO’s. If the output
buffer is full, the send DMA will pause and free the bus. Similarly, the receive DMA pauses
when the input buffer is empty. The bus arbitrator gives priority to the DMA engine over the pro-
cessors. A DMA transfer is started by storing an address-length pair to a memory mapped DMA
register using the stio instruction. Upon completion, the DMA engine sets a flag in a status reg-
ister and optionally generates an interrupt.

With this hardware configuration a small message of just less than two cache blocks (seven
words) can be transferred from registers in one compute processor to registers in another com-
pute processor waiting on the transfer in just over 10 µs (500 cycles). This time breaks down
almost equally between the three processor-to-processor transfers: compute processor to message
processor across the bus, message processor to message processor across the network, and mes-
sage processor to compute processor across the bus on the remote node. It may seem surprising
that transfers between two processors on a cache-coherent memory bus would have the same
latency as transfers between two message processors through the network, especially since the
transfers between the processor and the network interface involves a transfer across the same bus.

Let’s look at this situation in a little more detail. An i860 processor can write a cache block from
registers using two quad-word store instructions. Suppose that part of the block is used as a full/
empty flag. In the typical case, the last operation on the block was a store by the consumer to
clear the flag; with the Paragon MESI protocol this writes through to memory, invalidates the
producer block, and leaves the consumer in the exclusive state. The producer’s load on the flag
which finds the flag clear misses in the producer cache, reads the block from memory, and down-
grades the consumer block to shared state. The first store writes through and invalidates the con-
sumer block, but it leaves the producer block in shared state since sharing was detected when the
write was performed. The second store also writes-through, but since there is no sharer it leaves
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the producer in the exclusive state. The consumer eventually reads the flag, misses, and brings in
the entire line. Thus, four bus transactions are required for a single cache block transfer. (By hav-
ing an additional flag that allows the producer to check that several blocks are empty, this can be
reduced to three bus transactions. This is left as an exercise.) Data is written to the network inter-
face as a sequence of uncached double-word stores. These are all pipelined through the write-
buffer, although they do involve multiple bus transfers. Before writing the data, the message pro-
cessor needs to check that there is room in the output buffer to hold it. Rather than pay the cost of
an uncached read, it checks a bit in the processor status word corresponding to a masked ‘output
buffer empty’ interrupt. On the receiving end, the communication processor reads a similar ‘input
non-empty’ status bit and then reads the message data as a series of uncached loads. The actual
NI to NI transfer takes only about 250ns plus 40ns per hop in an unloaded network.

For a bulk memory-to-memory transfer, there is additional work for the communication proces-
sor to start the send-DMA from the user source region. This requires about 2 µs (100 cycles). The
DMA transfer bursts at 400 MB/s into the network output buffer of 2048 bytes. When the output
buffer is full, the DMA engine backs off until a number of cache blocks are drained into the net-
work. On the receiving end, the communication processor detects the presence of an incoming
message, reads the first few words containing the destination memory address, and starts the
receive-DMA to drain the remainder of the message into memory. For a large transfer, the send
DMA engine will be still moving data out of memory, the receive DMA engine will be moving
data into memory, and a portion of the transfer will occupy the buffers and network links in
between. At this point, the message moves forward at the 175 MB/s of the network links. The
send and receive DMA engines periodically kick in and move data to or from network buffers at
400 MB/s bursts.

A review of the requirements on the communication processor shows that it is responding to a
large number of independent events on which it must take action. These include the current user
program writing a message into the shared queue, the kernel on the compute processor writing a
message into a similar “system queue”, the network delivering a message into the NI input buffer,
the NI output buffer going empty as a result of the network accepting a message, the send DMA
engine completing, and the receive DMA engine completing. The bandwidth of the communica-
tion processor is determined by the time it takes to detect and dispatch on these various events.
While handling any one of the events all the others are effectively locked out. Additional hard-
ware, such as the DMA engines, is introduced to minimize the work in handling any particular
event and allow data to flow from the source storage area (registers or memory) to the destination
storage area in a fully pipelined fashion. However, the communication rate (messages per sec-
ond) is still limited by the sequential dispatch loop in the communication processor. Also, the
software on the computation processor which keeps data flowing, avoids deadlock, and avoids
starving the network is rather tricky. Logically it involves a number of independent cooperating
threads, but these are folded into a single sequential dispatch loop which keeps track of the state
of each of the partial operations. This concurrency problem is addressed by our next case study.

The basic architecture of the Paragon is employed in the ASCI Red machine, which is the first
machine to sustain a teraFLOPS (one trillion floating-point operations per second). When fully
configured, this machine will contain 4500 nodes with dual 200 MHz Pentium Pro processors
and 64 MB of memory. It uses an upgraded version of the Paragon network with 400 MB/s links,
still in a grid topology. The machine will be spread over 85 cabinets, occupying about 1600 sq. ft
and drawing 800 KW of power. Forty of the nodes will provide I/O access to large RAID storage
systems, an additional 32 nodes will provide operating system services to a lightweight kernel
operating on the individual nodes, and 16 nodes will provide “hot” spares.
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Many cluster designs employ SMP nodes as the basic building block, with a scalable high perfor-
mance LAN or SAN. This approach admits the option of dedicating a processor to message pro-
cessing or of having that responsibility taken on by processors as demanded by message traffic.
One key difference is that networks such as that used in the Paragon will back up and stop all
communication progress, including system messages, unless the inbound transactions are ser-
viced by the nodes. Thus, dedicating a processor to message handling provides a more robust
design. (In special cases, such as attempting to set the record on the Linpack benchmark, even the
Paragon and ASCI red are run with both processors doing user computation.) Clusters usually
rely on other mechanisms to keep communication flowing, such as dedicating processing within
the network interface card, as we discuss below.

7.6.2 Case Study: Meiko CS-2

The Meiko CS-2 provides a representative concrete design with an asymmetric message proces-
sor, that is closely integrated with the network interface and has a dedicated path to the network.
The node architecture is essentially that of a SparcStation 10, with two standard superscalar
Sparc modules on the MBUS, each with L1 cache on-chip and L2 cache on the module. Ethernet,
SBUS, and SCSI connections are also accessible over the MBUS through a bus adapter to pro-
vide I/O. (A high performance variant of the node architecture includes two Fujistsu µVP vector
units sharing a three ported memory system. The third port is the MBUS, which hosts the two
compute processors and the communications module, as in the basic node.) The communications
module functions as either another processor module or a memory module on the MBUS,
depending on its operation. The network links provide 50 MB/s bandwidth in each direction. This
machine takes a unique position on how the network transaction is interpreted and on how con-
currency is supported in communication processing.

A network transaction on the Meiko CS-2 is a code-sequence transferred across the network and
executed directly by the remote communications processor. The network is circuit switched, so a
channel is established and held open for the duration of the network transaction execution. The
channel closes with an ACK if the channel was established and the transaction executed to com-
pletion successfully. A NAK is returned if connection is not established, there is a CRC error, the
remote execution times out, or a conditional operation fails. The control flow for network trans-
actions is straight-line code with conditional abort, but no branching. A typical cause of time-out
is a page-fault at the remote end. The sorts of operations that can be included in a network trans-
actions include: read, write, or read-modify-write of remote memory, setting events, simple tests,
DMA transfers, and simple reply transactions. Thus, the format of the information in a network
transaction is fairly extensive. It consists of a context identifier, a start symbol, a sequence of
operations in a concrete format, and an end symbol. A transaction is between 40 and 320 bytes
long. We will return to the operations supported by network transactions in more detail after
looking at the machine organization.

Based on our discussion above, it makes sense to consider decomposing the communication pro-
cessor into several, independent processors, as indicated by Figure 7-23. A command processor
(Pcmd) waits for communication commands to be issued on behalf of the user or system and car-
ries them out. Since it resides as a device on the memory bus, it can respond directly to reads and
writes of addresses for which it is responsible, rather than polling a shared memory location as
would a conventional processor. It carries out its work by pushing route information and data into
the output processor (Pout) or by moving data from memory to the output processor. (Since the
output processor acts on the bus as a memory device, each store to its internal buffers can trigger
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it to take action.) It may require assistance of a device responsible for virtual-to-physical (V->P)
address translation. It also provides whatever protection checks are required for user-to-user
communication. The output processor monitors status of the network output FIFO and delivers
network transactions into the network. An input processor (Pin) waits for arrival of a network
transaction and executes it. This may involve delivering data into memory, posting a command to
an event processor (Pevent) to signal completion of the transaction or posting a reply operation to
a reply processor (Preply)which operates very much like the output processor.

The Meiko CS-2 provides essentially these independent functions, although they operate as time-
multiplexed threads on a single microprogrammed processor, called the elan [HoMc93]. This
makes the communication between the logical processors very simple and provides a clean con-
ceptual structure, but it does not actually keep all the information flows progressing smoothly.
The function organization of Elan is depicted in Figure 7-24. A command is issued by the com-
pute processor to the command processor via an exchange instruction, which swaps the value of a
register and a memory location. The memory location is mapped to the head of the command
processor input queue. The value returned to the processor indicates whether the enqueue com-
mand was successful or whether the queue was already full. The value given to the command
processor contains a command type and a virtual address. The command processor basically sup-
ports three commands: start DMA, in which case the address points to a DMA descriptor, set
event, in which case the address refers to a simple event data structure, or start thread, in which
case the address specifies the first instruction in the thread. The DMA processor reads data from
memory and generates a sequence of network transactions to cause data to be stored into the
remote node. The command processor also performs event operations, which involve updating a
small event data structure and possibly raising an interrupt for the main processor in order to
wake a sleeping thread. The start-thread command is conveyed to a simple RISC thread processor
which executes an arbitrary code sequence to construct and issue network transactions. Network
transactions are interpreted by the input processor, which may cause threads to execute, DMA to
start, replies to be issued, or events to be set. The reply is simply a set-event operation with an
optional write of three words of data.

Figure  7-23  Meiko CS-2 Conceptual Structure with multiple specialized communication processors
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To make the machine operation more concrete, let us consider a few simple operations. Suppose
a user process wants to write data into the address space of another process of the same parallel
program. Protection is provided by a capability for a communication context which both pro-
cesses share. The source compute processor builds a DMA descriptor and issues a start DMA
command. Its DMA processor reads the descriptor and transfers the data as a sequence of block,
each involves loading up to 32 bytes from memory and forming a write_block network transac-
tion. The input processor on the remote node will receive and execute a series of write_block
transactions, each containing a user virtual memory address and the data to be written at that
address. Reading a block of data from a remote address space is somewhat more involved. A
thread is started on the local communication processor which issues a start-DMA transaction.
The input processor on the remote node passes the start-DMA and its descriptor to the DMA pro-
cessor on the remote node, which reads data from memory and returns it as a sequence of
write_block transactions. To detect completion, these can be augmented with set-event opera-
tions. 

In order to support direct user-to-user transfers, the communication processor on the Meiko CS-2
contains its own page table. The operating system on the main processor keeps this consistent
with the normal page tables. If the communication processor experiences a page fault, an inter-
rupt is generated at the processor so that the operating system there can fault in the page and
update the page tables.

Figure  7-24  Meiko CS-2 machine organization
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The major shortcoming with this design is that the thread processor is quite slow and is non-pre-
emptively scheduled. This makes it very difficult to off-load any but the most trivial processing to
the thread processor. Also, the set of operations provided by network transactions are not power-
ful enough to construct an effective remote enqueue operation with a single network transaction.

7.7 Shared Physical Address Space

In this section we examine a fourth major design style for the communication architecture of
scalable multiprocessors – a shared physical address space. This builds directly upon the modest
scale shared memory machines and provides the same communication primitives: loads, stores,
and atomic operations on shared memory locations. Many machines have been developed to
extend this approach to large scale systems, including CM*, C.mmp, NYU Ultracomputer, BBN
Butterfly, IBM RP3, Denelcor HEP-1, BBN TC2000, and the Cray T3D. Most of the early
designs employed a dancehall organization, with the interconnect between the memory and the
processors, whereas most of the later designs distributed memory organization. The communica-
tion assist translates bus transactions into network transactions. The network transactions are
very specific, since they describe only a predefined set of memory operations, and are interpreted
directly by communication assist at the remote node.

A generic machine organization for a large scale distributed shared physical address machine is
shown in Figure 7-25. The communication assist is best viewed as forming a pseudo-memory

Figure  7-25  Shared physical address space machine organization
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module and a pseudo-processor, integrated into the processor-memory connection. Consider, for
example, a load instruction executed by the processor on one node. The on-chip memory man-
agement unit translates the virtual address into a global physical address, which is presented to
the memory system. If this physical address is local to the issuing node, the memory simply
responds with the contents of the desired location. If not, the communication assist must act like
a memory module, while it access the remote location. The pseudo-memory controller accepts
the read transaction on the memory bus, extracts the node number from the global physical
address and issues a network transaction to the remote node to access the desired location. Note
that at this point the load instruction is stalled between the address phase and data phase of the
memory operation. The remote communication assist receives the network transaction, reads the
desired location and issues a response transaction to the original node. The remote communica-
tion assist appears as a pseudo-processor to the memory system on its node when it issues the
proxy read to the memory system. An important point to note is that when the pseudo-processor
attempts to access memory on behalf of a remote node, the main processor there may be stalled
in the middle of its own remote load instruction. A simple memory bus with a single outstanding
operation is inadequate for the task. Either there must be two independent paths into memory or
the bus must support split-phase operation with unordered completion. Eventually the response
transaction will arrive at the originating pseudo-memory controller. It will complete the memory
read operation just as if it were a (slow) memory module.

A key issue, which we will examine deeply in the next chapter, is the cachability of the shared
memory locations. In most modern microprocessors, the cachability of an address is determined
by a field in the page table entry for the containing page, which are extracted from the TLB when
the location is accessed. In this discussion it is important to distinguish two orthogonal concepts.
An address may be either private to a process or shared among processes, and it may be either
physically local to a processor or physically remote. Clearly, addresses that are private to a pro-
cess and physically local to the processor on which that process executes should be cached. This
requires no special hardware support. Private data that is physically remote can also be cached,
although this requires that the communication assists support cache block transactions, rather
than just single words. There is no processor change required to cache remote blocks, since
remote memory accesses appear identical to local memory accesses, only slower. If physically
local and logically shared data is cached locally, then accesses on behalf of remote nodes per-
formed by the pseudo-processor must be cache coherent. If local, shared data is cached only in
write-through mode, this only requires that the pseudo-processor can invalidate cached data
when it performs writes to memory on behalf of remote nodes. To cache shared data as write-
back, the pseudo processor needs to be able to cause data to be flushed out of the cache. The most
natural solution is to integrate the pseudo-processor on a cache coherent memory bus, but the bus
must also be split-phase with some number of outstanding transactions reserved for the pseudo-
processor. The final option is to cache shared, remote data. The hardware support for accessing,
transferring, and placing a remote block in the local cache is completely covered by the above
options. The new issue is keeping the possibly many copies of the block in various caches coher-
ent. We must also deal with the consistency model for such a distributed shared memory with
replication. These issues require substantially design consideration, and we devote all of Chapter
7 to addressing them. It is clearly attractive from a performance viewpoint to cache shared
remote data that is mostly accessed locally
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7.7.1 Case study: Cray T3D

The Cray T3D(R) provides a concrete example of an aggressive shared global physical address
design using a modern microprocessor. The design follows the basic outline of Figure 7-13, with
pseudo-memory controller and pseudo-processor providing remote memory access via a scalable
network supporting independent delivery of request and response transactions. There are seven
specific network transaction formats, which are interpreted directly in hardware. However, the
design extends the basic shared physical address approach in several significant ways. The T3D
system is intended to scale to 2048 nodes, each with a 150 MHz dual-issue DEC Alpha 21064
microprocessor and up to 64 MB of memory, as illustrated in Figure 7-26. The DEC Alpha archi-
tecture is intended to be used as a building block for parallel architectures [Alp92] and several
aspects of the 21064 strongly influenced the T3D design. We first describe salient aspects of the
microprocessor itself and the local memory system. Then we discuss the assists constructed
around the basic processor to provide a shared physical address space, latency tolerance, block
transfer, synchronization, and fast message passing. The Cray designers sometimes refer to this
as the “shell” of support circuitry around a conventional microprocessor that embodies the paral-
lel processing capability. 

The Alpha 21064 has 8KB on-chip instruction and data caches, as well as support for an external
L2 cache. In the T3D design, the L2 cache is eliminated in order to reduce the time to access
main memory. The processor stalls for the duration of a cache miss, so reducing the miss latency

Figure  7-26  Cray T3D machine organization
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directly increases the delivered bandwidth. The Cray design is biased toward access patterns typ-
ical of vector codes, which scan through large regions of memory. The measured access time of a
load that misses to memory is 155 ns (23 cycles) on the T3D compared to 300 ns (45 cycles) on a
DEC Alpha workstation at the same clock rate with a 512 KB L2 cache[Arp*95]. (The Cray T3D
access time increases to 255 ns if the access is off-page within the DRAM.) These measurements
are very useful in calibrating the performance of the global memory accesses, discussed below.

The Alpha 21064 provides a 43-bit virtual address space in accordance with the Alpha architec-
ture, however, the physical address space is only 32 bits in size. Since the virtual-to-physical
translation occurs on-chip, only the physical address is presented to the memory system and
communication assist. A fully populated system of 2048 nodes with 64 MB each would require
37 bits of global physical address space. To enlarge the physical address space of each node, the
T3D provides an external register set, called the DTB Annex, which uses 5 bits of the physical
address to select a register containing a 21-bit node number; this is concatenated with a 27-bit
local physical address to form a full global physical address.1 The Annex registers also contain an
additional field specifying the type of access, e.g., cached or uncached. Annex register 0 always
refers to the local node. The Alpha load-lock and store-conditional instructions are used in the
T3D to read and write the Annex registers. Updating an Annex register takes 23 cycles, just like
an off-chip memory access, and can be followed immediately by a load or store instruction that
uses the Annex register.

A read or write of a location in the global address space is accomplished by a short sequence of
instructions. First, processor number part of the global virtual address is extracted and stored into
an Annex register. A temporary virtual address is constructed so that the upper bits specify this
Annex register and the lower bits the address on that node. Then a load or store instruction is
issued on the temporary virtual address. The load operation takes 610 ns (91 cycles), not includ-
ing the Annex setup and address manipulation. (This number increases by 100 ns (15 cycles) if
the remote DRAM access is off-page. Also, if a cache block is brought over it increases to 785-
885 ns.) Remember the virtual-to-physical translation occurs in the processor issuing the load.
The page tables are set up so that the Annex register number is simply carried through from the
virtual address to the physical address. So that the resulting physical address will make sense on
the remote node, the physical placement of all processes in a parallel program is identical. (Pag-
ing is not supported). In addition, care is exercised to ensure that all processes in a parallel pro-
gram have extended their heap to the same length.

The Alpha 21064 provides only non-blocking stores. Execution is allowed to proceed after a
store instruction without waiting for the store to complete. Writes are buffered by write buffer,
which is four deep and in each entry up to 32 bytes of write data can be merged. Several store
instructions can be outstanding. A ‘memory barrier’ instruction is provided to ensure that writes
have completed before further execution commences. The Alpha non-blocking store allows
remote stores to be overlapped, so high bandwidth can be achieved in writes to remote memory
locations. Remote writes of up to a full cache block can issue from the write buffer every 250 ns,
providing up to 120 MB/s of transfer bandwidth from the local cache to remote memory. A single

1.  This situation is not altogether unusual. The C.mmp employed a similar trick to overcome the limited
addressing capability of the LSI-11 building block. The problems that arose from this led to a famous quote
attributed variously to Gordon Bell or Bill Wulf that the only flaw in an architecture that is hard to overcome
is too small an address space.
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blocking remote-write involves a sequence to issue the store, push the store out of the write
buffer with a memory barrier operation, and then a wait on a completion flag provided by the net-
work interface. This requires 900 ns, plus the Annex setup and address arithmetic.

The Alpha provides a special “prefetch” instruction, intended to encourage the memory system to
move important data closer to the processor. This is used in the T3D to hide the remote read
latency. An off-chip prefetch queue of 16 words is provided. A prefetch causes a word to be read
from memory and deposited into the queue. Reading from the queue pops the word at its head.
The prefetch issue instruction is treated like a store and takes only a few cycles. The pop opera-
tion takes the 23 cycles typical of an off chip access. If eight words are prefetched and then
popped, the network latency is completely hidden and the effective latency of each is less than
300 ns.

The T3D also provides a bulk transfer engine, which can move blocks or regular strided data
between the local node and a remote node in either direction. Reading from a remote node, the
block transfer bandwidth peaks at 140 MB/s and writing to a remote node it peaks at 90 MB/s.
However, use of the block transfer engine requires a kernel trap to provide the virtual to physical
translation. Thus, the prefetch queue provides better performance for transfers up to 64 KB of
data and non-blocking stores are faster for any length. The primary advantage of the bulk transfer
engine is the ability to overlap communication and computation. This capability is limited to
some extent, since the processor and the bulk transfer engine compete for the same memory
bandwidth.

The T3D communication assist also provides special support for synchronization. First, there is a
dedicated network to support global-OR and global-AND operations, especially for barriers. This
allows processors to raise a flag indicating that they have reached the barrier, continue executing,
and then wait for all to enter before leaving. Each node also has a set of external synchronization
registers to support atomic-swap and fetch&inc. There is also a user-level message queue, which
will cause a message either to be enqueued or a thread invoked on a remote node. Unfortunately,
either of these involve a remote kernel trap, so the two operations take 25 µs and 70 µs, respec-
tively. In comparison, building a queue in memory using the fetch&inc operation allows a four
word message to be enqueued in 3µs and dequeued in 1.5µs.

7.7.2 Cray T3E

The Cray T3E [Sco96] follow-on to the Cray T3D provides an illuminating snapshot of the trade-
offs in large scale system design. The two driving forces in the design were the need to provide a
more powerful, more contemporary processor in the node and to simplify the “shell.” The Cray
T3D has many complicated mechanisms for supporting similar functions, each with unique
advantages and disadvantages. The T3E uses the 300 MHz, quad-issue Alpha 21164 processor
with a sizable (96 KB) second-level on-chip cache. Since the L2 cache is on chip, eliminating it
is not an option as on the T3D. However, the T3E forgoes the board-level tertiary cache typically
found in Alpha 21164 based workstations. The various remote access mechanisms are unified
into a single external register concept. In addition, remote memory access are performed using
virtual addresses that are translated to physical addresses by the remote communication assist.

A user process has access to a set of 512 E-registers of 64 bits each. The processor can read and
write contents of the E-registers using conventional load and store instructions to a special region
of the memory space. Operations are also provided to get data from global memory into an E-reg-
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ister, to put data from an E-register to global memory, and to perform atomic read-modify-writes
between E-registers and global memory. To load remote data into an E-register involves three
steps. First, the processor portion of the global virtual address is constructed in an E-address reg-
ister. Second, the get command issued via a store to a special region of memory. The field of the
address used in the command store specifies the put operation and another field specifies the des-
tination data E-register. The command-store data specifies an offset to be used relative to the
address E-register. The command store has the side-effect of causing the remote read to be per-
formed and the destination E-register to be loaded with the data. Finally, the data is read into the
processor via a load to the data E-register. The process for a remote put is similar, except that the
store data is placed in the data E-register, which is specified in the put command-store. This
approach of causing load and stores to data registers as a side-effect of operations on address reg-
isters goes all the way back to the CDC-6600[Tho64], although it seems to have been largely for-
gotten in the meanwhile.

The utility of the prefetch queue is provided by E-registers by associating a full/empty bit with
each E-register. A series of gets can be issued, and each one sets the associated destination E-reg-
ister to empty. When the gets complete, the register is set to full. If the processor attempts to load
from an empty E-register, the memory operation is stalled until the get completes. The utility of
the block transfer engine is provided by allowing vectors of four or eight words to be transferred
through E-registers in a single operation. This has the added advantages of providing a means of
efficient gather operations. 

The improvements in the T3E greatly simplify code generation for the machine and offer several
performance advantages, however, these are not at all uniform. The computational performance
is significantly higher on the T3D due to the faster processor and larger on-chip cache. However,
the remote read latency more than twice that of the T3D, increasing from 600 ns to roughly 1500
ns. The increase is due to the level 2 cache miss penalty and the remote address translation. The
remote write latency is essentially the same. The prefetch cost is improved by roughly a factor of
two, obtaining a rate of one word read every 130 ns. Each of the memory modules can service a
read every 67 ns. Non-blocking writes have essentially the same performance on the two
machines. The block transfer capability of the T3E is far superior to the T3D. A bandwidth of
greater than 300 MB/s is obtained without the large startup cost of the block transfer engine. The
bulk write bandwidth is greater than 300 MB/s, three times the T3D.

7.7.3 Summary

There is a wide variation in the degree of hardware interpretation of network transactions in mod-
ern large scale parallel machines. These variations result in a wide range in the overhead experi-
enced by the compute processor in performing communication operations, as well as in the
latency added to that of the actual network by the communication assist. By restricting the set of
transactions, specializing the communication assist to the task of interpreting these transactions,
and tightly integrating the communication assist with the memory system of the node, the over-
head and latency can be reduced substantially. The hardware specialization also can provide the
concurrency need within the assist to handle several simultaneous streams of events with high
bandwidth.
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7.8 Clusters and Networks of Workstations

Along with the use of commodity microprocessors, memory devices, and even workstation oper-
ating systems in modern large-scale parallel machines, scalable communication networks similar
to those used in parallel machines have become available for use in a limited local area network
setting. This naturally raises the question as to what extent are networks of workstations (NOWs)
and parallel machines are converging. Before entertaining this question a little background is in
order.

Traditionally, collections of complete computers with a dedicated interconnect, often called clus-
ters, have been used to serve multiprogramming workloads and to provide improved availabil-
ity[Kro*86,Pfi95]. In multiprogramming clusters, a single front-end machine usually acts as an
intermediary between a collection of compute servers and a large number of users at terminals or
remote machines. The front-end tracks the load on the cluster nodes and schedules tasks onto the
most lightly loaded nodes. Typically, all the machines in the cluster are setup to function identi-
cally; they have the same instruction set, the same operating systems, and the same file system
access. In older systems, such as the Vax VMS cluster[Kro*86], this was achieved by connecting
each of the machines to a common set of disks. More recently, this single system image is usually
achieved by mounting common file systems over the network. By sharing a pool of functionally
equivalent machines, better utilization can be achieved on a large number of independent jobs.

Availability clusters seek to minimize downtime of large critical systems, such as important on-
line databases and transaction processing systems. Structurally they have much in common with
multiprogramming clusters. A very common scenario is to use a pair of SMPs running identical
copies of a database system with a shared set of disks. Should the primary system fail due to a
hardware or software problem, operation rapidly “fails over” to the secondary system. The actual
interconnect that provides the shared disk capability can be dual access to the disks or some kind
of dedicated network.

A third major influence on clusters has been the rise of popular public domain software, such as
Condor[Lit*88] and PVM[Gei93], that allow users to farm jobs over a collection of machines or
to run a parallel program on a number of machines connected by an arbitrary local-area or even
wide-area network. Although the communication performance capability is quite small, typical
latencies are a millisecond or more for even small transfers and the aggregate bandwidth is often
less than one MB/s, these tools provide an inexpensive vehicle for a class of problems with a very
high ratio of computation to communication.

The technology breakthrough that presents the potential of clusters taking on an important role in
large scale parallel computing is a scalable, low-latency interconnect, similar in quality to that
available in parallel machines, but deployed like a local-area network. Several potential candi-
dates networks have evolved from three basic directions. Local area networks have traditionally
been either a shared bus (e.g. Ethernet) or a ring (e.g., Token Ring and FDDI) with fixed aggre-
gate bandwidth, or a dedicated point-to-point connection (e.g., HPPI). In order to provide scal-
able bandwidth to support a large number of fast machines, there has been a strong push toward
switch based local area network (e.g., HPPI switches, FDDI switches[LuPo97], and Fiberchan-
nels. Probably the most significant development is the widespread adoption of the ATM (asyn-
chronous transfer mode) standard, developed by the Telecommunications industry, as a switched
LAN. Several companies offer ATM switches (routers in the terminology of Section 7.2) with up
to sixteen ports at 155 Mb/s (19.4 MB/s) link bandwidth. These can be cascaded to form a larger
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network. Under ATM, a variable length message is transferred on a pre-assigned route, called
“virtual circuit”, as a sequence of 53 byte cells (48 bytes of data and 5 bytes of routing informa-
tion). We will look at these networking technologies in more detail in Chapter 8. In terms of the
model developed in Section 7.2, current ATM switches typically have a routing delay of about 10
µs in an unloaded network, although some are much higher. A second major standardization
effort is represented by SCI (scalable coherent interconnect), which includes a physical layer
standard and a particular distributed cache coherency strategy. 

There has also been a strong trend to evolve the proprietary networks used within MPP systems
into a form that can be used to connect a large number of independent workstations or PCs over a
sizable area. Examples of this include Tnet[Hor95] (now System Net) from Tandem Corp. and
Myrinet[Bod*95]. The Myrinet switch provides eight ports at 160 MB/s each which can be cas-
caded in regular and irregular topologies to form a large network. It transfers variable length
packets with a routing delay of about 350 ns per hop. Link level flow control is used to avoid
dropping packets in the presence of contention.

As with more tightly integrated parallel machines, the hardware primitives in emerging NOWs
and Clusters remains an open issue and subject to much debate. Conventional TCP/IP communi-
cation abstractions over these advanced networks exhibit large overheads (a millisecond or
more)[Kee*95], in many cases larger than that of common ethernet. A very fast processor is
required to move even 20 MB/s using TCP/IP. However, the bandwidth does scale with the num-
ber of processors, at least if there is little contention. Several more efficient communication
abstractions have been proposed, including Active Messages[And*95,vEi*92,vEi*95] and
Reflective Memory[Gil96, GiKa97]. Active Messages provide user-level network transactions, as
discussed above. Reflective Memory allows writes to special regions of memory to appear as
writes into regions on remote processors; there is no ability to read remote data, however. Sup-
porting a true shared physical address space in the presence of potential unreliability, i.e., node
failures and network failures, remains an open question. An intermediate strategy is to view the
logical network connecting a collection of communicating processes as a fully connected group
of queues. Each processes has a communication endpoint consisting of a send queue, a receive
queue, and a certain amount of state information, such as whether notifications should be deliv-
ered on message arrival. Each process can deliver a message to any of the receive queues by
depositing it in its send queue with an appropriate destination identifier. At the time of writing,
this approach is being standardized by an industry consortium, lead by Intel, Microsoft, and
Compaq, as the Virtual Interface Architecture, based on several research efforts, including Berke-
ley NOW, Cornell UNET, Illinois FM, and Priceton SHRIMP projects.

The hardware support for the communication assists and the interpretation of the network trans-
actions within clusters and NOWs spans almost the entire range of design points discussed in
Section 7.3.5. However, since the network plugs into existing machines, rather than being inte-
grated into the system at the board or chip level, typically it must interface at an I/O bus rather
than at the memory bus or closer to the processor. In this area too there is considerable innova-
tion. Several relatively fast I/O busses have been developed which maintain cache coherency. The
most notable development being PCI. Experimental efforts have integrated the network through
the graphics bus[Mar*93].

An important technological force further driving the advancement of clusters is the availability of
relatively inexpensive SMP building blocks. For example, clustering a few tens of Pentium Pro
“quad pack” commodity servers yields a fairly large scale parallel machine with very little effort.
At the high-end, most of the very large machine are being constructed as a highly optimized clus-
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ter of the vendor’s largest commercially available SMP node. For example, in the 1997-8 window
of machines purchased by the Department of Energy as part of the Accelerated Strategic Com-
puting Initiative, the Intel machine is built as 4536 dual-processor Pentium Pros. The IBM
machine is to be 512 4-way PowerPC 604s, upgraded to 8-way PowerPC 630s. The SGI/Cray
machine is initially sixteen 32-way Orgins interconnected with many HPPI 6400 links, eventu-
ally to be integrated into larger cache coherent units, as described in the next chapter.

7.8.1 Case Study: Myrinet SBus Lanai

A representative example of an emerging NOW is illustrated by Figure 7-27. A collection of
ULTRASparc workstations are integrated using a Myrinet scalable network via an intelligent net-
work interface card (NIC). Let us start with the basic hardware operation and work upwards. The
network illustrates what is becoming to be known as a system area network (SAN), as opposed to
a tightly packaged parallel machine network or widely dispersed local area network (LAN). The
links are parallel copper twisted pairs (18 bits wide) and can be a few tens of feet long, depending
on link speed and cable type. The communication assist follows the dedicated message processor
approach similar to the Meiko CS2 and IBM SP2. The NIC contains a small embedded “Lanai”
processor to control message flow between the host and the network. A key difference in the
Myricom design is that the NIC contains a sizable amount of SRAM storage. All message data is
staged through NIC memory between the host and the network. This memory is also used for
Lanai instruction and data storage. There are three DMA engines on the NIC, one for network
input, one network output, and one for transfers between the host and the NIC memory. The host
processor can read and write NIC memory using conventional loads and stores to properly
regions of the address space, i.e., through programmed I/O. The NIC processor uses DMA oper-
ations to access host memory. The kernel establishes regions of host memory that are accessible
to the NIC. For short transfers it is most efficient for the host to move the data directly into and
out of the NIC, whereas for long transfers it is better for the host to write addresses into the NIC
memory and for the NIC to pick up these addresses and use them to set up DMA transfers. The
Lanai processor can read and write the network FIFOs or it can drive them by DMA operations
from or to NIC memory. 

The “firmware” program executing within the Lanai primarily manages the flow of data by
orchestrating DMA transfers in response to commands written to it by the host and packet arriv-
als from the network. Typically, a command is written into NIC memory, where is it picked up by
the NIC processor. The NIC transfers data, as required, from the host and pushes it into the net-
work. The Myricom network uses source based routing, so the header of the packet includes a
simple routing directive for each network switch along the path to the destination. The destina-
tion NIC receives the packet into NIC memory. It can then inspect the information in the transac-
tion and process it as desired to support the communication abstraction.

The NIC is implemented as four basic components, a bus interface FPGA, a link interface,
SRAM, and the Lanai chip, which contains the processor, DMA engines and link FIFOs. The link
interface converts from on-board CMOS signals to long-line differential signalling over twisted
pairs. A critical aspect of the design is the bandwidth to the NIC memory. The three DMA
engines and the processor share an internal bus, implemented within the Lanai chip. The network
DMA engines can demand 320 MB/s, while the host DMA can demand short bursts of 100 MB/s
on an SBus or long bursts of 133 MB/s on a PCI bus. The design goal for the firmware to keep all
three DMA engines active simultaneously, however, this is a little tricky because once it starts the
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DMA engines its available bandwidth and hence its execution rate are reduce considerably by
competition of the SRAM.

Typically, the NIC memory is logically divided into a collection of functionally distinct regions,
including instruction storage, internal data structures, message queues, and data transfer buffers.
Each page of the NIC memory space is independently mapped by the host virtual memory sys-
tem. Thus, only the kernel can access the NIC processor code and data space. The remaining
communication space can be partitioned into several, disjoint communication regions. By con-
trolling the mapping of these communication regions, several user processes can have communi-
cation endpoints that are resident on the NIC, each containing message queues and associated
data transfer area. In addition, a collection of host memory frames can be mapped into the IO
space accessible from the NIC. Thus, several user processes can have the ability to write mes-
sages into the NIC and read messages directly from the NIC, or to write message descriptors con-
taining pointers to data that is to be DMA transferred through the card. These communication
end points can be managed much like conventional virtual memory, so writing into an endpoint

Figure  7-27  NOW organization using Myrinet and dedicated message processing with an embedded processor

Although the nodes of a cluster are complete conventional computers, a sophisticated communication assist can be
provided within the interface to a scalable, low latency network. Typically, the network interface is attached to a
conventional I/O bus, but increasingly vendors are providing means of tighter integration with the node architec-
ture. In many cases, the communication assist provides dedicated processing of network transactions.
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causes it to be made resident on the NIC. The NIC firmware is responsible for multiplexing mes-
sages from the collection of resident endpoints onto the actual network wire. It detects when a
message has been written into a send queue and forms a packet by translating the users destina-
tion address into a route through the network to the destination node and an indentifier of the end-
point on that node. In addition, it places a source identifier in the header, which can be checked at
the destination. The NIC firmware inspects the header for each incoming packet. If it is destined
for a resident endpoint, then it can be deposited directly in the associated receive buffer and,
optionally, for a bulk data transfer if the destination region is mapped the data can be DMA trans-
ferred into host memory. If these conditions are not met, or if the message is corrupted or the pro-
tection check violated, the packet can be NACKed to the source. The driver that manages the
mapping of endpoints and data buffer spaces is notified to cause the situation to be remedied
before the message is successfully retried.

7.8.2 Case Study: PCI Memory Channel

A second important representative cluster communication assist design is the Memory Chan-
nel[Gil96] developed by Digital Equipment Corporation, based on the Encore Reflective memory
and research efforts in the virtual memory mapped communication[Blu*94,Dub*96]. This
approach seeks to provide a limited form of a shared physical address space without needing to
fully integrate the pseudo memory device and pseudo processor into the memory system of the
node. It also preserves some of the autonomy and independent failure characteristics of clusters.
As with other clusters, the communication assist is contained in a network interface card that is
inserted into a conventional node on an extension bus, in this case the PCI (peripheral connection
interface) I/O bus.

The basic idea behind reflective memory is to establish a connection between a region of the
address space of one process, a ‘transmit region’, and a ‘receive region’ in another, as indicated
by Figure 7-28. Data written to a transmit region by the source is “reflected” into the receive
region of the destination. Usually, a collection of processes will have a fully connected set of
transmit-receive region pairs. The transmit regions on a node are allocated from a portion of the
physical address space that is mapped to the NIC. The receive regions are locked-down in mem-
ory, via special kernel calls, and the NIC is configured so that it can DMA transfer data into them.
In addition, the source and destination processes must establish a connection between the source
transmit region and the destination receive region. Typically, this is done by associating a key
with the connection and binding each region to the key. The regions are an integral number of
pages.

The DEC memory channel is a PCI-based NIC, typically placed in a Alpha based SMP, described
by Figure 7-29[Gil96]. In addition to the usual transmit and receive FIFOs, it contains a page
control table (PCT), a receive DMA engine, and transmit and receive controllers. A block of data
is written to the transmit region with a sequence of stores. The Alpha write buffer will attempt to
merge updates to a cache block, so the send controller will typically see a cache-block write
operation. The upper portion of the address given to the controller is the frame number, which is
used to index into the PCT to obtain a descriptor for the associated receive region, i.e., the desti-
nation node (or route to the node), the receive frame number, and associated control bits. This
information, along with source information, is placed into the header of the packet that is deliv-
ered to the destination node through the network. The receive controller extracts the receive
frame number and uses it to index into the PCT. After checking the packet integrity and verifying
the source, the data is DMA transferred into memory. The receive regions can be cachable host
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memory, since the transfers across the memory bus are cache coherent. If required, an interrupt is
raised upon write completion.

As with a shared physical address space, this approach allows data to be transferred between
nodes by simply storing the data from the source and loading it at the destination. However, the
use of the address space is much more restrictive, since data that is to be transferred to a particu-
lar node must be placed in a specific send page and receive page. This is quite different from the
scenario where any process can write to any shared address and any process can read that
address. Typically, shared data structures are not placed in the communication regions. Instead
the regions are used as dedicated message buffers. Data is read from a logically shared data struc-
ture and transmitted to a process that requires it through a, logical, memory channel. Thus, the
communication abstraction is really one of memory-based message passing. There is no mecha-
nism to read a remote location; a process can only read the data that has been written to it. To bet-

Figure  7-28  Typical Reflective Memory address space organization

Send regions of the processess on a node are mapped to regions in the physical address space associated with the
NIC. Receive regions are pinned in memory and mappings within the NIC are established so that it can DMA the
associated data to host memory. Here, nodei has two communicating processes, one of which has established reflec-
tive memory connections with processes on two other node. Writes to a send region generate memory transactions
against the NIC. It accepts the write data, builds a packet with a header indentifying the receive page and offset, and
routes the packet to the destination node. The NIC,upon accepting a packet from the network inspects the header
and DMA transfers the data into the corresponding receive page. Optionally, packet arrival may generate an inter-
rupt. In general, the user process scans receive regions for relavant updates. To support message passing, the receive
pages contain message queues.
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ter support the “write by one, read by any” aspect of shared memory, the DEC memory channel
allows transmit regions to multicast to a group of receive regions, including a loop-back region
on the source node. To ease construction of distributed data structures, in particular a distributed
lock manager, the FIFO order is preserved across operations from a transmit region. Since reflec-
tive memory builds upon, rather than extends the node memory system, the write to a transmit
region finishes as soon as the NIC accepts the data. To determine that the write has actually
occurred, the host checks a status register in the NIC. The raw MEMORY CHANNEL interface
obtains an one-way communication latency of 2.9 µs and a transfer bandwidth of 64 MB/s
between two 300 MHz DEC AlphaServers.[Law*96] The one way latency for a small MPI mes-
sage is about 7 µs and a maximum bandwidth of 61 MB/s is achieved on long messages. Using
the TruCluster MEMORY CHANNEL software[Car*96], acquiring and releasing and uncon-
tended spinlock takes approximately 130 µs and 120 µs, respectively.

The Princeton SHRIMP designs[Blu*94,Dub*96] extend the reflective memory model to better
support message passing. They allow the receive offset to be determined by a register at the des-

Figure  7-29  DEC Memory Channel Hardware Organization

A MEMORY CHANNEL cluster consists of a collection of AlphaServer SMPs with PCI MEMORY CHANNEL
adapters. The adapter contains a page control table which maps local transmit regions to remote receive regions and
local receive regions to locked down physical page frames. The transmit controller (tx ctr) accepts PCI write trans-
actions, constructs a packet header using the store address and PCT entry contents, and deposits a packet containing
the write data into the transmit FIFO. The receive controller (rx ctrl) checks the CRC and parses the header of an
incoming packet before initiating a DMA transfer of the packet data into host memory. Optionally, an interrupt may
be generated. In the initial offering, the memory channel interconnect is a shared 100 MB/s bus, but this is intended
to be replaced by a switch. Each of the nodes is typically a sizable SMP AlphaServer.
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tination, so successive packets will be queued into the receive region. In addition, a collection of
writes can be performed to a transmit region and then a segment of the region transmitted to the
receive region.

7.9 Comparison of Communication Performance

Now that we have seen the design spectrum of modern scalable distributed memory machines,
we can solidify our understanding of the impact of these design trade-offs in terms of the com-
munication performance that is delivered to applications. In this section we examine communica-
tion performance through microbenchmarks at three levels. The first set of microbenchmarks use
a non-standard communication abstraction that closely approximates the basic network transac-
tion on a user-to-user basis. The second use the standard MPI message passing abstraction and
the third a shared address space. In making this comparison, we can see the effects of the differ-
ent organizations and of the protocols used to realize the communication abstractions.

7.9.1 Network Transaction Performance

Many factors interact to determine the end-to-end latency of the individual network transaction,
as well as the abstraction built on top of it. When we measure the time per communication opera-
tion we observe the cumulative effect of these interactions. In general, the measured time will be
larger than what one would obtain by adding up the time through each of the individual hardware
components. As architects, we may want to know how each of the components impacts perfor-
mance, however, what matters to programs is the cumulative effect, including the subtle interac-
tions which inevitably slow things down. Thus, in this section we take an empirical approach to
determining the communication performance of several of our case study machines. We use as a
basis for the study a simple user-level communication abstraction, called Active Messages, which
closely approximates the basic network transaction. We want to measure not only the total mes-
sage time, but the portion of this time that is overhead in our data transfer equation (Equation 1.5)
and the portion that is due to occupancy and delay.

Active Messages constitute request and response transactions in a form which is essentially a
restricted remote procedure call. A request consists of the destination processor address, an
indentifier for the message handler on that processor, and a small number of data words in the
source processor registers which are passed as arguments to the handler. An optimized instruction
sequence issues the message into the network via the communication assist. On the destination
processor an optimized instruction sequence extracts the message from the network and invokes
the handler on the message data to perform a simple action and issue a response, which identifies
a response handler on the original source processor. To avoid fetch deadlock without arbitrary
buffering, a node services response handlers whenever attempting to issue an Active Message. If
the network is backed up and the message cannot be issued, the node will continue to drain
incoming responses. While issuing a request, it must also service incoming requests. Notification
of incoming messages may be provided through interrupts, through signalling a thread, through
explicitly servicing the network with a null message event, or through polling.

The microbenchmark that uses Active Messages is a simple echo test, where the remote proces-
sor is continually servicing the network and issuing replies. This eliminates the timing variations
that would be observed if the processor was busy doing other work when the request arrived.
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Also, since our focus is on the node-to-network interface, we pick processors that are adjacent in
the physical network. All measurements are performed by the source processor, since many of
these machines do not have a global synchronous clock and the “time skew” between processors
can easily exceed the scale of an individual message time. To obtain the end-to-end message
time, the round-trip time for a request-response is divided by two. However, this one-way mes-
sage time has three distinct portions, as illustrated by Figure 7-30. When a processor injects a
message, it is occupied for a number of cycles as it interfaces with the communication assist. We
call this the send overhead, as it is time spent that cannot be used for useful computation. Simi-
larly, the destination processor spends a number of cycles extracting or otherwise dealing with
the message, called the receive overhead. The portion of the total message cost that is not cov-
ered by overhead is the communication latency. In terms of the communication cost expression
developed in Chapter xx3, it includes the portions of the transit latency, bandwidth and assist
occupancy components that are not overlapped with send or receive overhead. It can potentially
be masked by other useful work or by processing additional messages, as we will discuss in
detail in Chapter 8. From the processor’s viewpoint, it cannot distinguish time spent in the com-
munication assists from that spent in the actual links and switches of the interconnect. In fact, the
communication assist may begin pushing the message into the network while the source proces-
sor is still checking status, but this work will be masked by the overhead. In our microbench-
mark, we seek to determine the length of the three portions.

The left hand graph in Figure 7-31 shows a comparison of one-way Active Message time for the
Thinking Machines CM5 (Section 7.5.1) Intel Paragon (Section 7.6.1) the Meiko CS-2
(Section 7.6.2) and a cluster of workstations (Section 7.8.1). The bars show the total one-way
latency of a small (five word) message divided up into three segments indicating the processing
overhead on the sending side (Os) the processing overhead on the receiving side (Or), and the

Figure  7-30  Breakdown of message time into source-overhead, network time, and destination overhead

A graphical depiction of the machine operation associated with our basic data transfer model for communication
operations. The source processor spends cycles injecting the message to the communication assist, during which
time it can perform no other useful work, and similarly the destination experiences overhead in extracting the
message. To actually transfer the information involves the communication assists and network interfaces, as well as
the links and switches of the network. As seen from the processor, these subcomponents are indistinquishable. It
experiences the portion of the transfer time that is not covered by its own overhead as latency, that can be over-
lapped with other useful work. The processor also experiences the maximum message rate, which we represent in
terms of the minimum average time between messages, or gap.
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remaining communication latency (L). The bars on the right (g) shows the time per message for a
pipelined sequence of request-response operations. For example, on the Paragon an individual
message has an end-to-end latency of about 10 µs, but a burst of messages can go at about 7.5 µs

per message, or a rate of  thousand messages per second. Let us examine each of

these components in more detail.

The send overhead is nearly uniform over the four designs, however, the factors determining this
component are different on each system. On the CM-5, this time is dominated by uncached
writes of the data plus the uncached read of the NI status to determine if the message was
accepted. The status also indicates whether an incoming message has arrived, which is conve-
nient, since the node must receive messages even while it is unable to send. Unfortunately, two
status reads are required for the two networks. (A later model of the machine, the CM-500, pro-
vided more effective status information and substantially reduced the overhead.) On the Paragon,
the send overhead is determined by the time to write the message into the memory buffer shared
by the compute processor and message processor. The compute processor is able to write the
message and set the ‘message present’ flag in the buffer entry with two quad word stores, unique
to the i860, so it is surprising that the overhead is so high. The reason has to do with the ineffi-
ciency of the bus-based cache coherence protocol within the node for such a producer-consumer
situation. The compute processor has to pull the cache blocks away from the message processor
before refilling them. In the Meiko CS-2, the message is built in cached memory and then a
pointer to the message (and command) is enqueued in the NI a single swap instruction. This
instruction is provided in the Sparc instruction set to support synchronization operations. In this
context, it provides a way of passing information to the NI and getting status back indicating
whether the operation was successful. Unfortunately, the exchange operation is considerably
slower than the basic uncached memory operations. In the NOW system, the send overhead is
due to a sequence of uncached double word stores and an uncached load across the I/O bus to NI
memory. Surprisingly, these have the same effective cost as the more tightly integrated designs. 

An important point revealed by this comparison is that the cost of uncached operations, misses,
and synchronization instructions, generally considered to be infrequent events and therefore a
low priority for architectural optimization, are critical to communication performance. The time
spent in the cache controllers before they allow the transaction to delivered to the next level of the
storage hierarchy dominates even the bus protocol. The comparison of the receive overheads
shows that cache-to-cache transfer from the network processor to the compute processor is more
costly than uncached reads from the NI on the memory bus of the CM-5 and CS-2. However, the
NOW system is subject to the greater cost of uncached reads over the I/O bus.

The latency component of the network transaction time is the portion of the one-way transfer that
is not covered by either send or receive overhead. Several facets of the machine contribute to this
component, including the processing time on the communication assist or in the network inter-
face, the time to channel the message onto a link, and the delay through the network. Different
facets are dominant in our study machines. The CM-5 links operate at 20 MB/s (4 bits wide at 40
MHz). Thus, the occupancy of a single wire to transfer a message with 40 bytes of data (the pay-
load) plus an envelope containing route information, CRC, and message type is nearly 2.5 µs.
With the fat-tree network, there are many links (typically N/4) crossing the top of the network, so
the aggregate network bandwidth is seldom a bottleneck. Each router adds a delay of roughly 200
ns, and there are at most  hops. The network interface occupancy is essentially the same
as the wire occupancy, as it is a very simple device that spools the packet onto or off the wire. 

1
7.5µs
-------------- 133=

2 N4log
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In the Paragon, the latency is dominated by processing in the message processor at the source and
destination. With 175 MB/s links, the occupancy of a link is only about a 300 ns. The routing
delay per hop is also quite small, however, in a large machine the total delay may be substantially
larger than the link occupancy, as the number of hops can be . Also, the network bisection
can potentially become a bottleneck, since only  links cross the middle of the machine. How-
ever, the dominant factor is the assist (message processor) occupancy in writing the message
across the memory bus into the NI at the source and reading the message from the destination.
These steps account for 4 µs of the latency. Eliminating the message processors in the communi-
cation path on the Paragon decreases the latency substantially. Surprisingly, it does not increase
the overhead much; writing and reading the message to and from the NI have essentially the same
cost as the cache to cache transfers. However, since the NI does not provide sufficient interpreta-
tion to enforce protection and to ensure that messages move forward through the network ade-
quately, avoiding the message processors is not a viable option in practice.

The Meiko has a very large latency component. The network accounts for a small fraction of this,
as it provides 40 MB/s links and a fat-tree topology with ample aggregate bandwidth. The mes-
sage processor is closely coupled with the network, on a single chip. The latency is almost
entirely due to accessing system memory from the message processor. Recall, the compute pro-
cessor provides the message processor with a pointer to the message. The message processor per-
forms DMA operations to pull the message out of memory. At the destination it writes it into a
shared queue. An unusual property of this machine is that a circuit through the network is held
open through the network transaction and an acknowledgment is provided to the source. This
mechanism is used to convey to the source message processor whether it successfully obtained a

Figure  7-31  Performance comparison at the Network Transaction Level via Active Messages
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lock on the destination incoming message queue. Thus, even though the latency component is
large, it is difficult to hide it through pipelining communication operations, since source and des-
tination message processors are occupied for the entire duration.

The latency in the NOW system is distributed fairly evenly over the facets of the communication
system. The link occupancy is small with 160 MB/s links and the routing delay is modest, with
350 ns per hop in roughly a fat tree topology. The data is deposited into the NI by the host and
accessed directly from the NI. Time is spent on both ends of the transaction to manipulate mes-
sage queues and to perform DMA operations between NI memory and the network. Thus, the
two NIs and the network each contribute about a third of the 4 µs latency. 

The Cray T3D provides hardware support for user level messaging in the form of a per processor
message queue. The capability in the DEC Alpha to extend the instruction set with privileged
subroutines, called PAL code, is used. A four-word message is composed in registers and a PAL
call issued to send the message. It is placed in a user level message queue at the destination pro-
cessor, the destination processor is interrupted, and control is returned either the user application
thread, which can poll the queue, or to a specific message handler thread. The send overhead to
inject the message is only 0.8 µs, however, the interrupt has an overhead of 25 µs and the switch
to the message handler has a cost of 33 µs[Arp*95]. The message queue, without interrupts or
thread switch, can be inserted into using the fetch&increment registers provided for atomic oper-
ations. The fetch&increment to advance the queue pointer and writing the message takes 1.5 µs,
whereas dispatching on the message and reading the data, via uncached reads, takes 2.9 µs.

The Paragon, Meiko, and NOW machines employ a complete operating system on each node.
The systems cooperate using messages to provide a single system image and to run parallel pro-
grams on collections of nodes. The message processor is instrumental in multiplexing communi-
cation from many user processes onto a shared network and demultiplexing incoming network
transactions to the correct destination processes. It also provides flow control and error detection.
The MPP systems rely on the physical integrity of a single box to provide highly reliable opera-
tion. When a user process fails, the other processes in its parallel program are aborted. When a
node crashes, its partition of the machine is rebooted. The more loosely integrated NOW must
contend with individual node failures that are a result of hardware errors, software errors, or
physical disconnection. As in the MPPs, the operating systems cooperate to control the processes
that form a parallel program. When a node fails, the system reconfigures to continue without it.

7.9.2 Shared Address Space Operations

It is also useful to compare the communication architectures of the case study machines for
shared address space operations: read and write. These operations can easily be built on top of the
user level message abstraction, but this does not exploit the opportunity to optimize for these
simple, frequently occurring operations. Also, on machines where the assist does not provide
enough interpretation the remote processor is involved whenever its memory is accessed. In
machines with a dedicated message processor, it can potentially service memory requests on
behalf of remote nodes, without involving the compute processor. On machines supporting a
shared physical address, this memory request service is provided directly in hardware.

Figure 7-32 shows performance of a read of a remote location for the case study
machines[Kri*96]. The bars on the left show the total read time, broken down into the overhead
associated with issuing the read and the latency of the remaining communication and remote pro-
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cessing. The bars on the right show the minimum time between reads in the steady state. For the
CM-5, there is no opportunity for optimization, since the remote processor must handle the net-
work transaction. In the Paragon, the remote message processor performs the read request and
replies. The remote processing time is significant, because the message processor must read the
message from the NI, service it, and write a response to the NI. Moreover, the message processor
must perform a protection check and the virtual to physical translation. On the Paragon with
OSF1/AD, the message processor runs in kernel mode and operates on physical addresses; thus,
it performs the page table lookup for the requested address, which may not be for the currently
running process, in software. The Meiko CS-2 provides read and write network transactions,
where the source-to-destination circuit in the network is held open until the read response or
write acknowledgment is returned. The remote processing is dedicated and uses a hardware page
table to perform the virtual-to-physical transaction on the remote node. Thus, the read latency is
considerably less than a pair of messages, but still substantial. If the remote message processor
performs the read operation, the latency increases by an additional 8 µs. The NOW system
achieves a small performance advantage by avoiding use of the remote processor. As in the Para-
gon, the message processor must perform the protection check and address translation, which are
quite slow in the embedded message processor. In addition, accessing remote memory from the
network interface involves a DMA operation and is costly. The major advantage of dedicated pro-
cessing of remote memory operations in all of these systems is that the performance of the oper-
ation does not depend on the remote compute processor servicing incoming requests from the
network.

Figure  7-32  Performance Comparison on Shared Address Read

For the five study platforms the bars are the right show the total time to perform a remote read operation and isolate
the portion of that time that involves the processor issuing and completing the read. The remainder can be over-
lapped with useful work, as is discussed in depth in Chapter 11. The bars on the right show the minimum time
between successive reads, which is the reciprocal of the maximum rate.
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The T3D shows an order of magnitude improvement available through dedicated hardware sup-
port for a shared address space. Given that the reads and writes are implemented through add-on
hardware, there is a cost of 400 ns to issue the operation. The transmission of the request, remote
service, and transmission of the reply take an additional 450 ns. For a sequence of reads, perfor-
mance can be improved further by utilizing the hardware prefetch queue. Issuing the prefetch
instruction and the pop from the queue takes about 200 ns. The latency is amortized over a
sequence of such prefetches, and is almost completely hidden if 8 or more are issued.

7.9.3 Message Passing Operations

Let us also take a look at measured message passing performance of several large scale
machines. As discussed earlier, the most common performance model for message passing oper-
ations is a linear model for the overall time to send  bytes given by 

. (EQ 7.2)

The start-up cost, , is logically the time to send zero bytes and  is the asymptotic bandwidth.

The delivered data bandwidth is simply . Equivalently, the transfer time can be

characterized by two parameters,  and , which are the asymptotic bandwidth and the trans-

fer size at which half of this bandwidth is obtained, i.e., the half-power point. 

The start-up cost reflects the time to carry out the protocol, as well as whatever buffer manage-
ment and matching required to set up the data transfer. The asymptotic bandwidth reflects the rate
at which data can be pumped through the system from end to end.

While this model is easy to understand and useful as a programming guide, it presents a couple of
methodological difficulties for architectural evaluation. As with network transactions, the total
message time is difficult to measure, unless a global clock is available, since the send is per-
formed on one processor and the receive on another. This problem is commonly avoided by mea-
suring the time for an echo test – one processor sends the data and then waits to receive it back.
However, this approach only yields a reliable measurement if the receive is posted before the
message arrives, for otherwise it is measuring the time for the remote node to get around to issu-
ing the receive. If the receive is preposted, then the test does not measure the full time of the
receive and it does not reflect the costs of buffering data, since the match succeeds. Finally, the
measured times are not linear in the message size, so fitting a line to the data yields a parameter
that has little to do with the actual startup cost. Usually there is a flat region for small values of ,
so the start-up cost obtained through the fit will be smaller than the time for a zero byte message,
perhaps even negative. These methodological concerns are not a problem for older machines,
which had very large start-up costs and simple, software based message passing implementa-
tions.

Table 7-1 shows the start-up cost and asymptotic bandwidth reported for commercial message
passing libraries on several important large parallel machines over a period of time[Don96].
(Also shown in the table are two small-scale SMPs, discussed in the previous chapter.) While the
start-up cost has dropped by an order of magnitude in less than a decade, this improvement essen-
tially tracks improvements in cycle time, as indicated by the middle column of the table. As illus-
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trated by the right hand columns, improvements in start up cast have failed to keep pace with
improvements in either floating-point performance or in bandwidth. Notice that the start-up costs
are on an entirely different scale from the hardware latency of the communication network,
which is typically a few microseconds to a fraction of a microsecond. It is dominated by process-
ing overhead on each message transaction, the protocol and the processing required to provide
the synchronization semantics of the message passing abstraction. 

Figure 7-33 shows the measured one way communication time, on the echo test, for several
machines as a function of message size. In this log-log plot, the difference in start-up costs is
apparent, as is the non-linearity for small messages. The bandwidth is given by the slope of the
lines. This is more clearly seen from plotting the equivalent  in Figure 7-34. A caveat must
be made in interpreting the bandwidth data for message passing as well, since the pairwise band-
width only reflects the data rate on a point-to-point basis. We know, for example, that for the bus-
based machines this is not likely to be sustained if many pairs of nodes are communicating. We
will see in Chapter 7 that some network can sustain much higher aggregate bandwidths than oth-
ers. In particular, the Paragon data is optimistic for many communication patterns involving mul-
tiple pairs of nodes, whereas the other large scale systems can sustain the pairwise bandwidth for
most patterns.

7.9.4 Application Level Performance

The end-to-end effects of all aspects of the computer system come together to determine the per-
formance obtained at the application level. This level of analysis is most useful to the end user,
and is usually the basis for procurement decisions. It is also the ultimate basis for evaluating
architectural trade-offs, but this requires mapping cumulative performance effects down to root

a. Using Fujitsu vector units

Table 7-1  Message passing start-up costs and asymptotic bandwidths

Year (µs)
max BW
(MB/s)

Cycles 
per 

MFLOPS
per proc

fp ops 
per  

iPSC/2 88 700 2.7 5600 1 700 1400

nCUBE/2 90 160 2 3000 2 300 300

iPSC/860 91 160 2 6400 40 6400 320

CM5 92 95 8 3135 20 1900 760

SP-1 93 50 25 2500 100 5000 1250

Meiko CS2 93 83 43 7470 24 (97)a 1992 
(8148)

3560

Paragon 94 30 175 1500 50 1500 7240

SP-2 94 35 40 3960 200 7000 2400

Cray T3D 
(PVM)

94 21 27 3150 94 1974 1502

NOW 96 16 38 2672 180 2880 4200

SGI Power 
Challenge

95 10 64 900 308 3080 800

Sun E5000 96 11 160 1760 180 1980 2100

T0
T0 T0

n1
2
---

BW n( )
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causes in the machine and in the program. Typically, this involves profiling the application to iso-
late the portions where most time is spent and extracting the usage characteristics of the applica-
tion to determine its requirements. This section briefly compares performance on our study
machines for two the NAS parallel benchmarks in the NPB2 suite[NPB].

The LU benchmark solves a finite difference discretization of the 3-D compressible Navier-
Stokes equations used for modeling fluid dynamics through a block-lower-triangular block-
upper-triangular approximate factorization of the difference scheme. The LU factored form is
cast as a relaxation, and is solved by Symmetric Successive Over Relaxation (SSOR). The LU
benchmark is based on the NAS reference implementation from 1991 using the Intel message
passing library, NX[Bar*93]. It requires a power-of-two number of processors. A 2-D partition-
ing of the 3-D data grid onto processors is obtained by halving the grid repeatedly in the first two
dimensions, alternating between x and y, until all processors are assigned, resulting in vertical
pencil-like grid partitions. Each pencil can be thought of as a stack of horizontal tiles. The order-
ing of point based operations constituting the SSOR procedure proceeds on diagonals which pro-
gressively sweep from one corner on a given z plane to the opposite corner of the same z plane,
thereupon proceeding to the next z plane. This constitutes a diagonal pipelining method and is
called a ``wavefront’’ method by its authors [Bar*93]. The software pipeline spends relatively lit-

Figure  7-33  Time for Message Passing Operation vs. Message Size

Message passing implementations exhibit nearly an order of magnitude spread in start-up cost and the cost is con-
stant for a range of small message sizes, introducing a substantial nonlinearity in the time per message. The time is
nearly linear for a range of large messages, where the slope of the curve gives the bandwidth.
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tle time filling and emptying and is perfectly load-balanced. Communication of partition bound-
ary data occurs after completion of computation on all diagonals that contact an adjacent
partition. It results in a relatively large number of small communications of 5 words each. Still,
the total communication volume is small compared to computation expense, making this parallel
LU scheme relatively efficient. Cache block reuse in the relaxation sections is high. 

Figure 7-35 shows the speedups obtained on sparse LU with the Class A input (200 iterations on
a 64x64x64 grid) for the IBM SP-2 (wide nodes), Cray T3D, and UltraSparc cluster (NOW). The
speedup is normalized to the performance on four processors, shown in the right-hand portion of
the figure, because this is the smallest number of nodes for which the problem can be run on the
T3D. We see that Scalability is generally good to beyond a hundred processors, but both the T3D
and NOW scale considerably better than the SP2. This is consistent with the ratio of the proces-
sor performance to the performance of small message transfers. 

The BT algorithm solves three sets of uncoupled systems of equations, first in the x, then in the y,
and finally in the z direction. These systems are block tridiagonal with 5x5 blocks and are solved
using a multi-partition scheme[Bru88]. The multi-partition approach provides good load balance
and uses coarse grained communication. Each processor is responsible for several disjoint sub-
blocks of points (``cells'') of the grid. The cells are arranged such that for each direction of the

Figure  7-34  Bandwidth vs. Message Size

Scalable machines generally provide a few tens of MB/s per node on large message transfers, although the Paragon
design shows that this can be pushed into the hundreds of MB/s. The bandwidth is limited primarily by the ability of
the DMA support to move data through the memory system, including the internal busses. Small scale shared mem-
ory designs exhibit a point-to-point bandwidth dictated by out-of-cache memory copies when few simultaneous
transfers are on-going.
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line solve phase the cells belonging to a certain processor will be evenly distributed along the
direction of solution. This allows each processor to perform useful work throughout a line solve,
instead of being forced to wait for the partial solution to a line from another processor before
beginning work. Additionally, the information from a cell is not sent to the next processor until
all sections of linear equation systems handled in this cell have been solved. Therefore the granu-
larity of communications is kept large and fewer messages are sent. The BT codes require a

Figure  7-35  Application Performance on Sparse LU NAS Parallel Benchmark

Scalability of the IBM SP2, Cray T3D, and a UltraSparc cluster, on the sparse LU benchmark is shown normalized
to the performacne obtained on four processors. The base performance of the three systems is shown on the right.
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Figure  7-36  Application Performance on BT NAS Parallel Benchmark (in F77 and MPI)

Scalability of the IBM SP2, Cray T3D, and a UltraSparc cluster, on the BT benchmark is shown normalized to the
performacne obtained on 25 processors. The base performance of the three systems is shown on the right.
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square number of processors. These codes have been written so that if a given parallel platform
only permits a power-of-two number of processors to be assigned to a job, then unneeded proces-
sors are deemed inactive and are ignored during computation, but are counted when determining
Mflop/s rates. 

Figure 7-36 shows the scalability of the IBM SP2, Cray T3D, and the UltraSparc NOW on the
Class A problem of the BT benchmark. Here the speedup is normalized to the performance on 25
processors, shown in the right-hand portion of the figure, because that is the smallest T3D config-
uration for which performance data is available. The scalability of all three platforms is good,
with the SP-2 still lagging somewhat, but having much higher per node performance.

To understand why the scalability is less than perfect we need to look more closely at the charac-
teristics of the application, in particular at the communication characteristics. To focus our atten-
tion on the dominant portion of the application we will study one iteration of the main outermost
loop. Typically, the application performs a few hundred of these iterations, after an initialization
phase. Rather than employ the simulation methodology of the previous chapters to examine com-
munication characteristics, we collect this information by running the program using an instru-
mented version of the MPI message passing library. One useful characterization is the histogram
of messages by size. For each message that is sent, a counter associated with its size bin is incre-
mented. The result, summed over all processors, is shown in the top portion of Table 7-2 for a
fixed problem size and processors scaled from four to 64. For each configuration, the non-zero
bins are indicated along with the number of messages of that size and an estimate of the total
amount of data transferred in those messages. We see that this application essentially sends three
sizes of messages, but these sizes and frequencies vary strongly with the number of processors.
Both of these properties are typical of message passing programs. Well-tuned programs tend to
be highly structured and use communication sparingly. In addition, since the problem size is held
fixed, as the number of processors increases the portion of the problem that each processor is
responsible for decreases. Since the data transfer size is determined by how the program is coded,
rather than by machine parameters, it can change dramatically with configuration. Whereas on
small configurations the program sends a few very large messages, on a large configuration it
sends many, relatively small messages. The total volume of communication increases by almost a

Table 7-2  Communication characteristics for one iteration of BT on class A problem over a range of processor count

4 processors 16 processors 36 processors 64 processors

bins 
(KB) msgs KB

bins
(KB) msgs KB

bins
(KB) msgs KB

bins
(KB) msgs KB

43.5+ 12 513 11.5+ 144 1,652 4.5+ 540 2,505 3+ 1,344 4,266

81.5+ 24 1,916 61+ 96 5,472 29+ 540 15,425 19+ 1,344 25,266

261+ 12 3,062 69+ 144 9,738 45+ 216 9,545 35.5+ 384 13,406

Total 
KB

5,490 17,133 27,475 42,938

Time 
per iter

5.43 s 1.46 s 0.67 s 0.38

ave

MB/s
1.0 11.5 40.0 110.3

ave

MB/s/P
0.25 0.72 1.11 1.72
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factor of eight when the number of processors increases by 16. This increase is certainly one fac-
tor affecting the speedup curve. In addition, the machine with higher start-up cost is affected
more strongly by the decrease in message size. 

It is important to observe that with a fixed problem size scaling rule, the workload on each pro-
cessor changes with scale. Here we see it for communication, but it also changes cache behavior
and other factors. The bottom portion of Table 7-2 gives an indication of the average communica-
tion requirement for this application. Taking the total communication volume and dividing by the
time per iteration1 on the Ultrasparc cluster we get the average delivered message data band-
width. Indeed the communication rate scales substantially, increasing by a factor of more than
one hundred over an increase in machine size of 16. Dividing further by the number of proces-
sors, we see that the average per processor bandwidth is significant, but not extremely large. It is
in the same general ballpark as the rates we observed for shared address space applications on
simulations of SMPs in Section 5.5. However, we must be extremely careful about making
design decisions based on average communication requirements because communication tends to
be very bursty. Often substantial periods of computation are punctuated by intense communica-
tion. For the BT application we can get an idea of the temporal communication behavior by tak-
ing snapshots of the message histogram at regular intervals. The result is shown in Figure 7-37
for several iterations on one of the 64 processors executing the program. For each sample inter-
val, the bar shows the size of the largest message sent in that interval. The this application the
communication profile is similar on all processors because it follows a bulk synchronous style
with all processors alternating between local computation and phases of communication. The
three sizes of messages are clearly visible, repeating in a regular pattern with the two smaller
sizes more common than the larger one. Overall there is substantially more white space than
dark, so the average communication bandwidth is more of an indication of the ratio of communi-
cation to computation than it is the rate of communication during a communication phase. 

7.10 Synchronization

Scalability is a primary concern in the combination of software and hardware that implements
synchronization operations in large scale distributed memory machines. With a message passing
programming model, mutual exclusion is a given since each process has exclusive access to its
local address space. Point-to-point events are implicit in every message operation. The more
interesting case is orchestrating global or group synchronization from point-to-point messages.
An important issue here is balance: It is important that the communication pattern used to
achieve the synchronization be balanced among nodes, in which case high message rates and effi-
cient synchronization can be realized. In the extreme, we should avoid having all processes com-
municate with or wait for one process at a given time. Machine designers and implementors of
message passing layers attempt to maximize the message rate in such circumstances, but only the
program can relieve the load imbalance. Other issues for global synchronization are similar to
those for a shared address space, discussed below. 

1.  The execution time is the only data in the table that is a property of the specific platform. All of the other
communication characteristics are a property of the program and are the same when measured on any plat-
form.
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In a shared address space, the issues for mutual exclusion and point-to-point events are essen-
tially the same as those discussed in the previous chapter. As in small-scale shared memory
machines, the trend in scalable machines is to build user-level synchronization operations (like
locks and barriers) in software on top of basic atomic exchange primitives. Two major differ-
ences, however, may affect the choice of algorithms. First, the interconnection network is not
centralized but has many parallel paths. On one hand, this means that disjoint sets of processors
can coordinate with one another in parallel on entirely disjoint paths; on the other hand, it can
complicate the implementation of synchronization primitives. Second, physically distributed
memory may make it important to allocate synchronization variables appropriately among mem-
ories. The importance of this depends on whether the machine caches nonlocal shared data or
not, and is clearly greater for machines that don’t, such as the ones described in this chapter. This
section covers new algorithms for locks and barriers appropriate for machines with physically
distributed memory and interconnect, starting from the algorithms discussed for centralized-
memory machines in Chapter 5 (Section 5.6). Once we have studied scalable cache-coherent sys-
tems in the next chapter, we will compare the performance implications of the different algo-
rithms for those machines with what we saw for machines with centralized memory in Chapter 5,
and also examine the new issues raised for implementing atomic primitives. Let us begin with
algorithms for locks. 

Figure  7-37  Message Profile over time for BT-A on 64 processors

The prgram is executed with an instrumented MPI library that samples the communication histogram at regular
intervals. The graph shows the largest message sent from one particular processor during each sample interval. It is
clear that communication is regular and bursty.
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7.10.1 Algorithms for Locks

In Section 5.6, we discussed the basic test&set lock, the test&set lock with back-off, the test-and-
test&set lock, the ticket lock, and the array-based lock. Each successively went a step further in
reducing bus traffic and fairness, but often at a cost in overhead. For example, the ticket lock
allowed only one process to issue a test&set when a lock was released, but all processors were
notified of the release through an invalidation and a subsequent read miss to determine who
should issue the test&set. The array-based lock fixed this problem by having each process wait
on a different location, and the releasing process notify only one process of the release by writing
the corresponding location. 

However, the array-based lock has two potential problems for scalable machines with physically
distributed memory. First, each lock requires space proportional to the number of processors.
Second, and more important for machines that do not cache remote data, there is no way to know
ahead of time which location a process will spin on, since this is determined at runtime through a
fetch&increment operation. This makes it impossible to allocate the synchronization variables in
such a way that the variable a process spins on is always in its local memory (in fact, all of the
locks in Chapter 5 have this problem). On a distributed-memory machine without coherent
caches, such as the Cray T3D and T3E, this is a big problem since processes will spin on remote
locations, causing inordinate amounts of traffic and contention. Fortunately, there is a software
lock algorithm that both reduces the space requirements and also ensures all spinning will be on
locally allocated variables. We describe this algorithm next. 

Software Queuing Lock

This lock is a software implementation of a lock originally proposed for all-hardware implemen-
tation by the Wisconsin Multicube project [Goo89]. The idea is to have a distributed linked list or
a queue of waiters on the lock. The head node in the list represents the process that holds the
lock. Every other node is a process that is waiting on the lock, and is allocated in that process’s
local memory. A node points to the process (node) that tried to acquire the lock just after it. There
is also a tail pointer which points to the last node in the queue, i.e. the last node to have tried to
acquire the lock. Let us look pictorially at how the queue changes as processes acquire and
release the lock, and then examine the code for the acquire and release methods. 

Assume that the lock in Figure 7-38 is initially free. When process A tries to acquire the lock, it
gets it and the queue looks as shown in Figure 7-38(a). In step (b), process B tries to acquire the
lock, so it is put on the queue and the tail pointer now points to it. Process C is treated similarly
when it tries to acquire the lock in step (c). B and C are now spinning on local flags associated
with their queue nodes while A holds the lock. In step (d), process A releases the lock. It then
“wakes up” the next process, B, in the queue by writing the flag associated with B’s node, and
leaves the queue. B now holds the lock, and is at the head of the queue. The tail pointer does not
change. In step (e), B releases the lock similarly, passing it on to C. There are no other waiting
processes, so C is at both the head and tail of the queue. If C releases the lock before another pro-
cess tries to acquire it, then the lock pointer will be NULL and the lock will be free again. In this
way, processes are granted the lock in FIFO order with regard to the order in which they tried to
acquire it. The latter order will be defined next. 

The code for the acquire and release methods is shown in Figure 7-39. In terms of primitives
needed, the key is to ensure that changes to the tail pointer are atomic. In the acquire method, the
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acquiring process wants to change the lock pointer to point to its node. It does this using an
atomic fetch&store operation, which takes two operands: It returns the current value of the first
operand (here the current tail pointer), and then sets it to the value of the second operand, return-
ing only when it succeeds. The order in which in which the atomic fetch&store operations of dif-
ferent processes succeed defines the order in which they acquire the lock. 

In the release method, we want to atomically check if the process doing the release is the last one
in the queue, and if so set the lock pointer to NULL. We can do this using an atomic com-
pare&swap operation, which takes three operands: It compares the first two (here the tail pointer
and the node pointer of the releasing process), and if they are equal it sets the first (the tail
pointer) to the third operand (here NULL) and returns TRUE; if they are not equal it does nothing
and returns FALSE. The setting of the lock pointer to NULL must be atomic with the compari-
son, since otherwise another process could slip in between and add itself to the queue, in which
case setting the lock pointer to NULL would be the wrong thing to do. Recall from Chapter 5 that
a compare&swap difficult to implement as a single machine instruction, since it requires three
operands in a memory instruction (the functionality can, however, be implemented using load-
locked and store-conditional instructions). It is possible to implement this queuing lock without a
compare&swap—using only a fetch&store—but the implementation is a lot more complicated (it
allows the queue to be broken and then repairs it) and it loses the FIFO property of lock granting
[MiSc96].

It should be clear that the software queueing lock needs only as much space per lock as the num-
ber of processes waiting on or participating in the lock, not space proportional to the number of
processes in the program. It is the lock of choice for machines that support a shared address space
with distributed memory but without coherent caching[Ala97].
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Figure  7-38  States of the queue for a lock as processes try to acquire and as processes release. 
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7.10.2 Algorithms for Barriers

In both message passing and shared address space models, global events like barriers are a key
concern. A question of considerable debate is whether special hardware support is needed for
global operations, or whether sophisticated software algorithms upon point-to-point operations
are sufficient. The CM-5 represented one end of the spectrum, with a special “control” network

struct node {

struct node *next;

int locked;

} *mynode, *prev_node;

shared struct node *Lock;

lock (Lock, mynode) {

mynode->next = NULL; /* make me last on queue */

prev_node = fetch&store(Lock, mynode);

/*Lock currently points to the previous tail of the queue; atomically set prev_node to 

 the Lock pointer and set Lock to point to my node so I am last in the queue */

if (prev_node != NULL) {/* if by the time I get on the queue I am not the only one, 

i.e. some other process on queue still holds the lock */

mynode->locked = TRUE; /* Lock is locked by other process*/

prev_node->next = mynode; /* connect me to queue */

while (mynode->locked) {}; /* busy-wait till I am granted the lock */

}

}

unlock (Lock, mynode) {

if (mynode->next == NULL) { /* no one to release, it seems*/

if compare&swap(Lock,mynode,NULL) /* really no one to release, i.e.*/

return; /* i.e. Lock points to me, then set Lock to NULL and return */

while (mynode->next == NULL);/* if I get here, someone just got on

the queue and made my c&s fail, so I should wait till they set my next pointer to

point to them before I grant them the lock */

}

mynode->next->locked = FALSE; /*someone to release; release them */

}

Figure  7-39  Algorithms for software queueing lock.
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providing barriers, reductions, broadcasts and other global operations over a subtree of the
machine. Cray T3D provided hardware support for barriers, but the T3E does not. Since it is easy
to construct barriers that spin only on local variables, most scalable machines provide no special
support for barriers at all but build them in software libraries using atomic exchange primitives or
LL/SC. Implementing these primitives becomes more interesting when has to interact with
coherent caching as well, so we will postpone the discussion of implementation till the next
chapter. 

In the centralized barrier used on bus-based machines, all processors used the same lock to incre-
ment the same counter when they signalled their arrival, and all waited on the same flag variable
until they were released. On a large machine, the need for all processors to access the same lock
and read and write the same variables can lead to a lot of traffic and contention. Again, this is par-
ticularly true of machines that are not cache-coherent, where the variable quickly becomes a hot-
spot as several processors spin on it without caching it. 

It is possible to implement the arrival and departure in a more distributed way, in which not all
processes have to access the same variable or lock. The coordination of arrival or release can be
performed in phases or rounds, with subsets of processes coordinating with one another in each
round, such that after a few rounds all processes are synchronized. The coordination of different
subsets can proceed in parallel with no serialization needed across them. In a bus-based machine,
distributing the necessary coordination actions wouldn’t matter much since the bus serializes all
actions that require communication anyway; however, it can be very important in machines with
distributed memory and interconnect where different subsets can coordinate in different parts of
the network. Let us examine a few such distributed barrier algorithms. 

Software Combining Trees

A simple distributed way to coordinate the arrival or release is through a tree structure (see

Figure 7-40), just as we suggested for avoiding hot-spots in Chapter 3. An arrival tree is a tree
that processors use to signal their arrival at a barrier. It replaces the single lock and counter of the
centralized barrier by a tree of counters. The tree may be of any chosen degree or branching fac-
tor, say k. In the simplest case, each leaf of the tree is a process that participate in the barrier.
When a process arrives at the barrier, it signals its arrival by performing a fetch&increment on
the counter associated with its parent. It then checks the value returned by the fetch&increment to
see if it was the last of its siblings to arrive. If not, it’s work for the arrival is done and it simply
waits for the release. If so, it considers itself chosen to represent its siblings at the next level of

Flat Tree Structured

Figure  7-40  Replacing a flat arrival structure for a barrier by an arrival tree (here of degree 2). 

contention little contention
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the tree, and so does a fetch&increment on the counter at that level. In this way, each tree node
sends only a single representative process up to the next higher level in the tree when all the pro-
cesses represented by that node’s children have arrived. For a tree of degree k, it takes  lev-
els and hence that many steps to complete the arrival notification of p processes. If subtrees of
processes are placed in different parts of the network, and if the counter variables at the tree
nodes are distributed appropriately across memories, fetch&increment operations on nodes that
do not have an ancestor-descendent relationship need not be serialized at all. 

A similar tree structure can be used for the release as well, so all processors don’t busy-wait on
the same flag. That is, the last process to arrive at the barrier sets the release flag associated with
the root of the tree, on which only k-1 processes are busy-waiting. Each of the k processes then
sets a release flag at the next level of the tree on which k-1 other processes are waiting, and so on
down the tree until all processes are released. The critical path length of the barrier in terms of
number of dependent or serialized operations (e.g. network transactions) is thus O(logk p), as
opposed to O(p) for the centralized barrier or O(p) for any barrier on a centralized bus. The code
for a simple combining tree barrier tree is shown in Figure 7-41. 

While this tree barrier distributes traffic in the interconnect, for machines that do not cache
remote shared data it has the same problem as the simple lock: the variables that processors spin
on are not necessarily allocated in their local memory. Multiple processors spin on the same vari-
able, and which processors reach the higher levels of the tree and spin on the variables there
depends on the order in which processors reach the barrier and perform their fetch&increment
instructions, which is impossible to predict. This leads to a lot of network traffic while spinning. 

Tree Barriers with Local Spinning

There are two ways to ensure that a processor spins on a local variable. One is to predetermine
which processor moves up from a node to its parent in the tree based on process identifier and the
number of processes participating in the barrier. In this case, a binary tree makes local spinning
easy, since the flag to spin on can be allocated in the local memory of the spinning processor
rather than the one that goes up to the parent level. In fact, in this case it is possible to perform the
barrier without any atomic operations like fetch&increment, but with only simple reads and
writes as follows. For arrival, one process arriving at each node simply spins on an arrival flag
associated with that node. The other process associated with that node simply writes the flag
when it arrives. The process whose role was to spin now simply spins on the release flag associ-
ated with that node, while the other process now proceeds up to the parent node. Such a static
binary tree barrier has been called a “tournament barrier” in the literature, since one process can
be thought of as dropping out of the tournament at each step in the arrival tree. As an exercise,
think about how you might modify this scheme to handle the case where the number of partici-
pating processes is not a power of two, and to use a non-binary tree. 

The other way to ensure local spinning is to use p-node trees to implement a barrier among p pro-
cesses, where each tree node (leaf or internal) is assigned to a unique process. The arrival and
wakeup trees can be the same, or they can be maintained as different trees with different branch-
ing factors. Each internal node (process) in the tree maintains an array of arrival flags, with one
entry per child, allocated in that node’s local memory. When a process arrives at the barrier, if its
tree node is not a leaf then it first checks its arrival flag array and waits till all its children have
signalled their arrival by setting the corresponding array entries. Then, it sets its entry in its par-
ent’s (remote) arrival flag array and busy-waits on the release flag associated with its tree node in

pklog
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the wakeup tree. When the root process arrives and when all its arrival flag array entries are set,
this means that all processes have arrived. The root then sets the (remote) release flags of all its
children in the wakeup tree; these processes break out of their busy-wait loop and set the release
flags of their children, and so on until all processes are released. The code for this barrier is
shown in Figure 7-42, assuming an arrival tree of branching factor 4 and a wakeup tree of branch-
ing factor 2. In general, choosing branching factors in tree-based barriers is largely a trade-off
between contention and critical path length counted in network transactions. Either of these types
of barriers may work well for scalable machines without coherent caching. 

Parallel Prefix

In many parallel applications a point of global synchronization is associated with combining
information that has been computed by many processors and distributing a result based on the

struct tree_node {

int count = 0; /* counter initialized to 0 */

int local_sense; /* release flag implementing sense reversal */

struct tree_node *parent;

}

struct tree_node tree[P]; /* each element (node) allocated in a different memory */

private int sense = 1;

private struct tree_node *myleaf;/* pointer to this process’s leaf in the tree */

barrier () {

barrier_helper(myleaf);

sense = !(sense); /* reverse sense for next barrier call */

}

barrier_helper(struct tree_node *mynode) {

if (fetch&increment (mynode->count) == k-1){/* last to reach node */

if (mynode->parent != NULL) 

barrier_helper(mynode->parent); /*go up to parent node */

mynode->count = 0; /*set up for next time */

mynode->local_sense = !(mynode->local_sense);/* release */

endif

while (sense != mynode->local_sense) {};/* busy-wait */

}

Figure  7-41  A software combining barrier algorithm, with sense-reversal.
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combination. Parallel prefix operations are an important, widely applicable generalization of
reductions and broadcasts[Ble93]. Given some associative, binary operator  we want to com-
pute  for . A canonical example is a running sum, but several
other operators are useful. The carry-look-ahead operator from adder design is actually a special
case of a parallel prefix circuit. The surprising fact about parallel prefix operations is that they
can be performed as quickly as a reduction followed by a broadcast, with a simple pass up a
binary tree and back down. Figure 7-43 shows the upward sweep, in which each node applies the
operator to the pair of values it receives from its children and passes the result to its parent, just as
with a binary reduction. (The value that is transmitted is indicated by the range of indices next to
each arc; this is the subsequence over which the operator is applied to get that value.) In addition,
each node holds onto the value it received from its least significant child (rightmost in the figure).
Figure 7-44 shows the downward sweep. Each node waits until it receives a value from its parent.
It passes this value along unchanged to its rightmost child. It combines this value with the value
the was held over from the upward pass and passes the result to its left child. The nodes along the
right edge of the tree are special, because they do not need to receive anything from their parent.

struct tree_node {

struct tree_node *parent;

int parent_sense = 0;

int wkup_child_flags[2]; /* flags for children in wakeup tree */

int child_ready[4]; /* flags for children in arrival tree */

int child_exists[4];

}

/* nodes are numbered from 0 to P-1 level-by-level starting from the root. 

struct tree_node tree[P]; /* each element (node) allocated in a different memory */

private int sense = 1, myid;

private me = tree[myid];

barrier() {

while (me.child_ready is not all TRUE) {};/* busy-wait */

set me.child_ready to me.child_exists; /* re-initialize for next barrier call */

if (myid !=0) { /*set parent’s child_ready flag, and wait for release */

tree[ ].child_ready[(myid-1) mod 4] = true; 

while (me.parent_sense != sense) {};

}

me.child_pointers[0] = me.child_pointers[1] = sense;

sense = !sense;

}

myid 1–
4

---------------------

Figure  7-42  A combining tree barrier that spins on local variables only. 
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This parallel prefix tree can be implemented either in hardware or in software. The basic algo-
rithm is important to understand. 

Figure  7-43  Upward sweep of the Parallel Prefix operation

Each node receive two elements from its children, combines them and passes thge result to its parent, and holds the
element from the least significant (right) child
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Figure  7-44  Downward sweep of the Parallel Prefix operation

When a node receives an element from above, it passes the data down to its right child, combines it with its stored
element, and passes the result to its left child. Nodes along the rightmost branch need nothing from above.
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All-to-all Personalized Communication

All-to-all personalized communication is when each process has a distinct set of data to transmit
to every other process. The canonical example of this is a transpose operation, say, where each
process owns a set of rows of a matrix and needs to transmit a sequence of elements in each row
to every other processor. Another important example is remapping a data structure between
blocked cyclic layouts. Many other permutations of this form are widely used in practice. Quite a
bit of work has been done in implementing all-to-all personalized communication operations effi-
ciently, i.e., with no contention internal to the network, on specific network topologies. If the net-
work is highly scalable then the internal communication flows within the network become
secondary, but regardless of the quality of the network contention at the endpoints of the network,
i.e., the processors or memories is critical. A simple, widely used scheme is to schedule the
sequence of communication events so that  rounds of disjoint pairwise exchanges are per-
formed. In round , process  transmits the data it has for process  obtained as the
exclusive-OR of the binary number for  and the binary representation of . Since, exclusive-OR
is commutative, , and the round is, indeed, an exchange.

7.11 Concluding Remarks

We have seen in this chapter that most modern large scale machines constructed from general
purpose nodes with a complete local memory hierarchy augmented by a communication assist
interfacing to a scalable network. However, there is a wide range of design options for the com-
munication assist. The design is influenced very strongly by where the communication assist
interfaces to the node architecture: at the processor, at the cache controller, at the memory bus, or
at the I/O bus. It is also strongly influenced by the target communication architecture and pro-
gramming model. Programming models are implemented on large scale machines in terms of
protocols constructed out of primitive network transactions. The challenges in implemented such
a protocol are that a large number of transactions can be outstanding simultaneously and there is
no global arbitration. Essentially any programming model can be implemented on any of the
available primitives at the hardware/software boundary, and many of the correctness and scalabil-
ity issues are the same, however the performance characteristics of the available hardware primi-
tives are quite different. The performance ultimately influences how the machine is viewed by
programmers. 

Modern large scale parallel machine designs are rooted heavily in the technological revolution of
the mid 80s – the single chip microprocessor - which was coined the “killer micro” as the MPP
machines began to take over the high performance market from traditional vector supercomput-
ers. However, these machines pioneered a technological revolution of their own - the single chip
scalable network switch. Like the microprocessor, this technology has grown beyond its original
intended use and a wide class of scalable system area networks are emerging, including switched
gigabit (perhaps multi-gigabit) ethernets. As a result, large scale parallel machine design has split
somewhat into two branches. Machines oriented largely around message passing concepts and
explicit get/put access to remote memory are being overtaken by clusters, because of their
extreme low cost, ease of engineering, and ability to track technology. The other branch is
machines that deeply integrated the network into the memory system to provide cache coherent
access to a global physical address space with automatic replication. In other words, machine that
look to the programmer like those of the previous chapter, but are built like the machines in this

P
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chapter. Of course, the challenge is advancing the cache coherence mechanisms in a manner that
provides scalable bandwidth and low latency. This is the subject of the next chapter.
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7.13 Exercices

7.1  A radix-2 FFT over  complex numbers is implemented as a sequence of  completely
parallel steps, requiring  floating point operations while reading and writing each ele-
ment of data  times. Calculate the communication to computation ratio on a dancehall
design, where all processors access memory though the network, as in Figure 7-3. What com-
munication bandwidth would the network need to sustain for the machine to deliver

MFLOPS on processors?

7.2  If the data in Exercise 7.1 is spread over the memories in a NUMA design using either a cycle
or block distribution, the  of the steps will access data in the local memory, assuming
both  and  are powers of two, and in the remaining  steps half of the reads and half of
the writes will be local. (The choice of hayout determines which steps are local and which are
remote, but the ratio stays the same.) Calculate the communication to computation ratio on a
distributed memory design, where each processor has a local memory, as in Figure 7-2. What
communication bandwidth would the network need to sustain for the machine to deliver

MFLOPS on processors? How does this compare with Exercise 7.1?

7.3  If the programmer pays attention to the layout, the FFT can be implemented so that a single,
global transpose operation is required where  data elements are trasmitted across the
network. All of the  steps are performed on local memory. Calculate the communication
to computation ratio on a distributed memory design. What communication bandwidth would
the network need to sustain for the machine to deliver MFLOPS on processors? How
does this compare with Exercise 7.2?

7.4  Reconsider Example 7-1 where the number of hops for a n-node configuration is . How
does the average transfer time increase with the number of nodes? What about . 

7.5  Formalize the cost scaling for the designs in Exercise 7.4.

7.6  Consider a machine as described in Example 7-1, where the number of links occupied by
each transfer is . In the absence of contention for individual links, how many transfers
can occur simultaneously?

7.7  Reconsider Example 7-1 where the network is a simple ring. The average distance between
two nodes on ring of n nodes is n/2. How does the average transfer time increase with the
number of nodes? Assuming each link can be occupied by at most one transfer at a time, how
many such transfers can take place simultaneously.

7.8  For a machine as described in Example 7-1, suppose that a broadcast from a node to all the
other nodes use  links. How would you expect the number of simultaneous broadcasts to
scale with the numebr of nodes?

7.9  Suppose a 16-way SMP lists at $10,000 plus $2,000 per node, where each node contains a
fast processor and 128 MB of memory. How much does the cost increase when doubling the
capcity of the system from 4 to 8 processors? From 8 to 16 processors?

7.10  Prove the statement from Section 7.2.3 that parallel computing is more cost-effective when-
ever .

7.11  Assume a bus transaction with  bytes of payload occupies the bus for  cycles, up to

a limit of 64 bytes. Draw graph comparing the bus utilization for programmed I/O and DMA
for sending various sized messages, where the message data is in memory, not in registers.
For DMA include the extra work to inform the communication assist of the DMA address and
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length. Consider both the case where the data is in cache and where it is not. What assump-
tions do you need to make about reading the status registers?

7.12  The Intel Paragon has an output buffer of size 2KB which can be filled from memory at a
rate of 400 MB/s and drained into the network at a rate of 175MB/s. The buffer is drained into
the network while it is being filled, but if the buffer gets full the DMA device will stall. In
designing your message layer you decide to fragment long messages into DMA bursts that
are as long as possible without stalling behind the output buffer. Clearly these can be at least
2KB is size, but in fact they can be longer. Calculate the apparent size of the output buffer
driving a burst into an empty network given these rates of flow.

7.13  Based on a rough estimate from Figure 7-33, which of the machines will have a negative 
if a linear model is fit to the communication time data?

7.14  Use the message frequency data presented in Table 7-2 to estimate the time each processor
would spend in communication on an iteration of BT for the machines described in Table 7-1.

7.15  Table 7-3 describes the communication characteristics of sparse LU. 

• How does the message size characteristics differ from that of BT? What does this say about
the application?

• How does the message frequency differ?

• Estimate the time each processor would spend in communication on an iteration of LU for the
machines described in Table 7-1.

Table 7-3  Communication characteristics for one iteration of LU on class A problem over a range of processor count

4 processors 16 processors 32 processors 64 processors

bins 
(KB) msgs KB

bins
(KB) msgs KB

bins
(KB) msgs KB

bins
(KB) msgs KB

1+ 496 605 0.5-1 2,976 2,180 0-0.5 2,976 727 0-0.5 13,888 3,391

163.5+ 8 1,279 81.5+ 48 3,382 0.5-1 3,472 2,543 81.5 224 8,914

40.5+ 48 1,910

81.5+ 56 4,471

Total 
KB

Time 
per iter

2.4s 0.58 0.34 0.19

ave

MB/s
0.77 10.1 27.7 63.2

ave

MB/s/P
0.19 0.63 0.86 0.99

T0



Scalable Multiprocessors

512 DRAFT: Parallel Computer Architecture 9/10/97



 

Introduction

 

9/3/97 DRAFT: Parallel Computer Architecture

 

513

 

CHAPTER 8

 

Directory-based Cache Coherence

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

8.1 Introduction

 

A very important part of the evolution of parallel architecture puts together the concepts of the
previous two chapters. The idea is to provide scalable machines supporting a shared physical
address space, but with automatic replication of data in local caches. In Chapter 7 we studied
how to build scalable machines by distributing the memory among the nodes. Nodes were con-
nected together using a scalable network, a sophisticated communication assist formed the node-
to-network interface as shown in Figure 8-1, and communication was performed through point-
to-point network transactions. At the final point in our design spectrum, the communication assist
provided a shared physical address space. On a cache miss, it was transparent to the cache and
the processor whether the miss was serviced from the local physical memory or some remote
memory; the latter just takes longer. The natural tendency of the cache in this design is to repli-
cate the data accessed by the processor, regardless of whether the data are shared or from where
they come. However, this again raises the issue of coherence. To avoid the coherence problem
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and simplify memory consistency, the designs of Chapter 7 disabled the hardware caching of log-
ically shared but physically remote data. This implied that the programmer had to be particularly
careful about data distribution across physical memories, and replication and coherence were left
to software. The question we turn to in this chapter is how to provide a shared address space pro-
gramming model with transparent, coherent replication of shared data in the processor caches
and an intuitive memory consistency model, just as in the small scale shared memory machines
of Chapter 5 but without the benefit of a globally snoopable broadcast medium. Not only must
the hardware latency and bandwidth scale well, as in the machines of the previous chapter, but so
must the protocols used for coherence as well, at least up to the scales of practical interest. This

chapter will focus on full hardware support for this programming model, so in terms of the layers
of abstraction it is supported directly at the hardware-software interface. Other programming
models can be implemented in software on the systems discussed in this chapter (see Figure 8-2). 

The most popular approach to scalable cache coherence is based on the concept of a 

 

directory

 

.
Since the state of a block in the caches can no longer be determined implicitly, by placing a
request on a shared bus and having it be snooped, the idea is to maintain this state explicitly in a
place (a directory) where requests can go and look it up. Consider a simple example. Imagine that
each block of main memory has associated with it, at the main memory, a record of the caches
containing a copy of the block and the state therein. This record is called the directory entry for
that block (see Figure 8-3). As in bus-based systems, there may be many caches with a clean,
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Figure  8-1  A generic scalable multiprocessor.
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readable block, but if the block is writable, possibly dirty, in one cache then only that cache may
have a valid copy. When a node incurs a cache miss, it first communicates with the directory
entry for the block using network transactions. Since the directory entry is collocated with the
main memory for the block, its location can be determined from the address of the block. From
the directory, the node determines where the valid copies (if any) are and what further actions to
take. It then communicates with the copies as necessary using additional network transactions.
The resulting changes to the state of cached blocks are also communicated to the directory entry
for the block through network transactions, so the directory stays up to date.

On a read miss, the directory indicates from which node the data may be obtained, as shown in
Figure 8-4(a). On a write miss, the directory identifies the copies of the block, and invalidation or
update network transactions may be sent to these copies (Figure 8-4(b)). (Recall that a write to a
block in shared state is also considered a write miss). Since invalidations or updates are sent to
multiple copies through potentially disjoint paths in the network, determining the completion of a
write now requires that all copies reply to invalidations with explicit acknowledgment transac-
tions; we cannot assume completion when the read-exclusive or update request obtains access to
the interconnect as we did on a shared bus. Requests, replies, invalidations, updates and acknowl-
edgments across nodes are all network transactions like those of the previous chapter; only, here
the end-point processing at the destination of the transaction (invalidating blocks, retrieving and
replying with data) is typically done by the communication assist rather than the main processor.
Since directory schemes rely on point to point network transactions, they can be used with any
interconnection network. Important questions for directories include the actual form in which the
directory information is stored, and how correct, efficient protocols may be designed around
these representations. 

A different approach than directories is to extend the broadcast and snooping mechanism, using a
hierarchy of broadcast media like buses or rings. This is conceptually attractive because it builds
larger systems hierarchically out of existing small-scale mechanisms. However, it does not apply
to general networks such as meshes and cubes, and we will see that it has problems with latency
and bandwidth, so it has not become very popular. One approach that is popular is a two-level
protocol. Each node of the machine is itself a multiprocessor, and the caches within the node are
kept coherent by one coherence protocol called the 

 

inner

 

 protocol. Coherence across nodes is
maintained by another, potentially different protocol called the 

 

outer

 

 protocol. To the outer proto-

P1

Cache

Memory

Scalable Interconnection Network

Comm.
Assist

P1

Cache

Comm
Assist

Figure  8-3  A scalable multiprocessor with directories. 
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col each multiprocessor node looks like a single cache, and coherence within the node is the
responsibility of the inner protocol. Usually, an adapter or a shared tertiary cache is used to repre-
sent a node to the outer protocol. The most common organization is for the outer protocol to be a
directory protocol and the inner one to be a snoopy protocol [LoC96, LLJ+93, ClA96,
WGH+97]. However, other combinations such as snoopy-snoopy [FBR93], directory-directory
[Con93], and even snoopy-directory may be used. 

Putting together smaller-scale machines to build larger machines in a two-level hierarchy is an
attractive engineering option: It amortizes fixed per-node costs, may take advantage of packaging
hierarchies, and may satisfy much of the interprocessor communication within a node and have
only a small amount require more costly communication across nodes. The major focus of this
chapter will be on directory protocols across nodes, regardless of whether the node is a unipro-
cessor or a multiprocessor or what coherence method it uses. However, the interactions among
two-level protocols will be discussed. As we examine the organizational structure of the direc-
tory, the protocols involved in supporting coherence and consistency, and the requirements
placed on the communication assist, we will find another rich and interesting design space. 

The next section provides a framework for understanding different approaches for providing
coherent replication in a shared address space, including snooping, directories and hierarchical
snooping. Section 8.3 introduces a simple directory representation and a protocol corresponding
to it, and then provides an overview of the alternatives for organizing directory information and
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Figure  8-4  Basic operation of a simple directory.

Two example operations are shown. On the left is a read miss to a block that is currently held in dirty state by a node that is not the
requestor or the node that holds the directory information. A read miss to a block that is clean in main memory (i.e. at the directory
node) is simpler,: the main memory simply replies to the requestor and the miss is satisfied in a single request-reply pair. of transac-
tions. On the right is a write miss to a block that is currently in shared state in two other nodes’ caches (the two sharers). The big rect-
angles are the are nodes, and the arcs (with boxed labels) are network transactions. The numbers 1, 2 etc. next to a transaction show
the serialization of transactions. Different letters next to the same number indicate that the transactions can be overlapped.
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protocols. This is followed by a quantitative assessment of some issues and architectural
tradeoffs for directory protocols in Section 8.4. 

The chapter then covers the issues and techniques involved in actually designing correct, efficient
protocols. Section 8.5 discusses the major new challenges for scalable, directory-based systems
introduced by multiple copies of data without a serializing interconnect. The next two sections
delve deeply into the two most popular types of directory-based protocols, discussing various
design alternatives and using two commercial architectures as case studies: the Origin2000 from
Silicon Graphics, Inc. and the NUMA-Q from Sequent Computer Corporation. Synchronization
for directory-based multiprocessors is discussed in Section 8.9, and the implications for parallel
software in Section 8.10. Section 8.11 covers some advanced topics, including the approaches of
hierarchically extending the snooping and directory approaches for scalable coherence. 

 

8.2 Scalable Cache Coherence

 

Before we discuss specific protocols, this section briefly lays out the major organizational alter-
natives for providing coherent replication in the extended memory hierarchy, and introduces the
basic mechanisms that any approach to coherence must provide, whether it be based on snoop-
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Each node visible at the outer level is itself a multiprocessor. B1 is a first-level bus, and B2 is second-level bus. The label snooping-
directory, for example, means that a snooping protocol is used to maintain coherence within a multiprocessor node, and a directory
protocol is used to maintain coherence across nodes. 
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ing, hierarchical snooping or directories. Different approaches and protocols discussed in the rest
of the chapter will refer to the mechanisms described here. 

On a machine with physically distributed memory, nonlocal data may be replicated either only in
the processors caches or in the local main memory as well. This chapter assumes that data are
replicated only in the caches, and that they are kept coherent in hardware at the granularity of
cache blocks just as in bus-based machines. Since main memory is physically distributed and has
nonuniform access costs to a processor, architectures of this type are often called cache-coherent,
nonuniform memory access architectures or CC-NUMA. Alternatives for replicating in main
memory will be discussed in the next chapter, which will discuss other hardware-software
tradeoffs in scalable shared address space systems as well. 

Any approach to coherence, including snoopy coherence, must provide certain critical mecha-
nisms. First, a block can be in each cache in one of a number of states, potentially in different
states in different caches. The protocol must provide these 

 

cache states

 

, the 

 

state transition dia-
gram

 

 according to which the blocks in different caches independently change states, and the set
of 

 

actions

 

 associated with the state transition diagram. Directory-based protocols also have a

 

directory state

 

 for each block, which is the state of the block at the directory. The protocol may
be invalidation-based, update-based, or hybrid, and the stable cache states themselves are very
often the same (MESI, MSI) regardless of whether the system is based on snooping or directo-
ries. The tradeoffs in the choices of states are very similar to those discussed in Chapter 5, and
will not be revisited in this chapter. Conceptually, the cache state of a memory block is a vector
containing its state in every cache in the system (even when it is not present in a cache, it may be
thought of as being present but in the invalid state, as discussed in Chapter 5). The same state
transition diagram governs the copies in different caches, though the current state of the block at
any given time may be different in different caches. The state changes for a block in different
caches are coordinated through transactions on the interconnect, whether bus transactions or
more general network transactions. 

Given a protocol at cache state transition level, a coherent system must provide mechanisms for
managing the protocol. First, a mechanism is needed to determine when (on which operations) to
invoke the protocol. This is done in the same way on most systems: through an 

 

access fault

 

(cache miss) detection mechanism. The protocol is invoked if the processor makes an access that
its cache cannot satisfy by itself; for example, an access to a block that is not in the cache, or a
write access to a block that is present but in shared state. However, even when they use the same
set of cache states, transitions and access fault mechanisms, approaches to cache coherence differ
substantially in the mechanisms they provide for the following three important functions that
may need to be performed when an access fault occurs: 

(a) Finding out enough information about the state of the location (cache block) in other
caches to determine what action to take, 

(b) Locating those other copies, if needed, for example to invalidate them, and 

(c) Communicating with the other copies, e.g. obtaining data from or invalidating/updating
them.

In snooping protocols, all of the above functions were performed by the broadcast and snooping
mechanism. The processor puts a “search” request on the bus, containing the address of the
block, and other cache controllers snoop and respond. A broadcast method can be used in distrib-
uted machines as well; the assist at the node incurring the miss can broadcast messages to all oth-
ers nodes, and their assists can examine the incoming request and respond as appropriate.
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However, broadcast does not scale, since it generates a large amount of traffic (

 

p

 

 network transac-
tions on every miss on a 

 

p

 

-node machine). Scalable approaches include hierarchical snooping
and directory-based approaches. 

In a hierarchical snooping approach, the interconnection network is not a single broadcast bus (or
ring) but a tree of buses. The processors are in the bus-based snoopy multiprocessors at the leaves
of the tree. Parent buses are connected to children by interfaces that snoop the buses on both sides
and propagate relevant transactions upward or downward in the hierarchy. Main memory may be
centralized at the root or distributed among the leaves. In this case, all of the above functions are
performed by the hierarchical extension of the broadcast and snooping mechanism: A processor
puts a “search” request on its bus as before, and it is propagated up and down the hierarchy as
necessary based on snoop results. Hierarchical snoopy systems are discussed further in
Section 8.11.2. 

In the simple directory approach described above, information about the state of blocks in other
caches is found by looking up the directory through network transactions. The location of the
copies is also found from the directory, and the copies are communicated with using point to
point network transactions in an arbitrary interconnection network, without resorting to broad-
cast. Important questions for directory protocols are how the directory information is actually
organized, and how protocols might be structured around these organizations using network
transactions. The directory organization influences exactly how the protocol addresses the three
issues above. An overview of directory organizations and protocols is provided in the next sec-
tion. 

 

8.3 Overview of Directory-Based Approaches

 

This section begins by describing a simple directory scheme and how it might operate using
cache states, directory states, and network transactions. It then discusses the issues in scaling
directories to large numbers of nodes, provides a classification of scalable directory organiza-
tions, and discusses the basics of protocols associated with these organizations. 

The following definitions will be useful throughout our discussion of directory protocols. For a
given cache or memory block:

The 

 

home

 

 node is the node in whose main memory the block is allocated.

The 

 

dirty

 

 node is the node that has a copy of the block in its cache in modified (dirty) state. 
Note that the home node and the dirty node for a block may be the same. 

The 

 

exclusive

 

 node is the node that has a copy of the block in its cache in an exclusive state, 
either dirty or exclusive-clean as the case may be (recall from Chapter 5 that clean-exclusive 
means this is the only valid cached copy and that the block in main memory is up to date). 
Thus, the dirty node is also the exclusive node. 

The 

 

local

 

 node, or 

 

requesting

 

 node, is the node containing the processor that issues a request 
for the block. 

The 

 

owner

 

 node is the node that currently holds the valid copy of a block and must supply the 
data when needed; this is either the home node, when the block is not in dirty state in a cache, 
or the dirty node. 
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Blocks whose home is local to the issuing processor are called 

 

locally allocated

 

 (or some-
times simply 

 

local

 

) blocks, while all others are called 

 

remotely allocated

 

 (or 

 

remote

 

). 

Let us begin with the basic operation of directory-based protocols using a very simple directory
organization.

 

8.3.1 Operation of a Simple Directory Scheme

 

As discussed earlier, a natural way to organize a directory is to maintain the directory informa-
tion for a block together with the block in main memory, i.e. at the home node for the block. A
simple organization for the directory information for a block is as a bit vector. The bit vector con-
tains 

 

p presence bits

 

 and one or more state bits for a 

 

p

 

-node machine (see Figure 8-6). Each pres-

ence bit represents a particular node (uniprocessor or multiprocessor), and specifies whether or
not that node has a cached copy of the block. Let us assume for simplicity that there is only one
state bit, called the 

 

dirty

 

 bit, which indicates if the block is dirty in one of the node caches. Of
course, if the dirty bit is 

 

ON

 

, then only one node (the dirty node) should be caching that block and
only that node’s presence bit should be 

 

ON

 

. With this structure, a read miss can easily determine
from looking up the directory which node, if any, has a dirty copy of the block or if the block is
valid in main memory, and a write miss can determine which nodes are the sharers that must be
invalidated. 

In addition to this directory state, state is also associated with blocks in the caches themselves, as
discussed in Section 8.2, just as it was in snoopy protocols. In fact, the directory information for
a block is simply main memory’s view of the state of that block in different caches. The directory
does not necessarily need to know the exact state (e.g. MESI) in each cache, but only enough
information to determine what actions to take. The number of states at the directory is therefore
typically smaller than the number of cache states. In fact, since the directory and the caches com-
municate through a distributed interconnect, there will be periods of time when a directory’s
knowledge of a cache state is incorrect since the cache state has been modified but notice of the
modification has not reached the directory. During this time the directory may send a message to
the cache based on its old (no longer valid) knowledge. The race conditions caused by this distri-
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Figure  8-6  Directory information for a distributed-memory multiprocessor. 
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bution of state makes directory protocols interesting, and we will see how they are handled using
transient states or other means in Sections 8.5 through 8.7. 

To see how a read miss and write miss might interact with this bit vector directory organization,
consider a protocol with three stable cache states (MSI) for simplicity, a single level of cache per
processor, and a single processor per node. On a read or a write miss at node 

 

i

 

 (including an
upgrade from shared state), the communication assist or controller at the local node 

 

i

 

 looks up the
address of the memory block to determine if the home is local or remote. If it is remote, a net-
work transaction is generated to the home node for the block. There, the directory entry for the
block is looked up, and the controller at the home may treat the miss as follows, using network
transactions similar to those that were shown in Figure 8-4:

 

•

 

If the dirty bit is 

 

OFF

 

, then the controller obtains the block from main memory, supplies it to
the requestor in a reply network transaction, and turns the 

 

i

 

th

 

 presence bit, 

 

presence[i]

 

, 

 

ON

 

. 

 

•

 

If the dirty bit is 

 

ON

 

, then the controller replies to the requestor with the identity of the node
whose presence bit is 

 

ON

 

, i.e. the owner or dirty node. The requestor then sends a request net-
work transaction to that owner node. At the owner, the cache changes its state to shared, and
supplies the block to both the requesting node, which stores the block in its cache in shared
state, as well as to main memory at the home node. At memory, the dirty bit is turned 

 

OFF

 

,
and 

 

presence[i]

 

 is turned 

 

ON

 

.

A write miss by processor 

 

i

 

 goes to memory and is handled as follows:

 

•

 

If the dirty bit is 

 

OFF

 

, then main memory has a clean copy of the data. Invalidation request
transactions are sent to all nodes 

 

j

 

 for which 

 

presence[j]

 

 is 

 

ON

 

. The directory controller waits
for invalidation acknowledgment transactions from these processors—indicating that the
write has completed with respect to them—and then supplies the block to node 

 

i

 

 where it is
placed in the cache in dirty state. The directory entry is cleared, leaving only 

 

presence[i]

 

 and
the dirty bit 

 

ON

 

. If the request is an upgrade instead of a read-exclusive, an acknowledgment
is returned to the requestor instead of the data itself. 

 

•

 

If the dirty bit is 

 

ON

 

, then the block is first recalled from the dirty node (whose presence bit is

 

ON)

 

, using network transactions. That cache changes its state to invalid, and then the block is
supplied to the requesting processor which places the block in its cache in dirty state. The
directory entry is cleared, leaving only 

 

presence[i]

 

 and the dirty bit 

 

ON

 

.

On a writeback of a dirty block by node 

 

i

 

, the dirty data being replaced are written back to main
memory, and the directory is updated to turn 

 

OFF

 

 the dirty bit and 

 

presence[i]

 

. As in bus-based
machines, writebacks cause interesting race conditions which will be discussed later in the con-
text of real protocols. Finally, if a block in shared state is replaced from a cache, a message may
be sent to the directory to turn off the corresponding presence bit so an invalidation is not sent to
this node the next time the block is written. This message is called a 

 

replacement hint

 

; whether it
is sent or not does not affect the correctness of the protocol or the execution. 

A directory scheme similar to this one was introduced as early as 1978 [CeF78] for use in sys-
tems with a few processors and a centralized main memory. It was used in the S-1 multiprocessor
project at Lawrence Livermore National Laboratories [WiC80]. However, directory schemes in
one form or another were in use even before this. The earliest scheme was used in IBM main-
frames, which had a few processors connected to a centralized memory through a high-band-
width switch rather than a bus. With no broadcast medium to snoop on, a duplicate copy of the
cache tags for each processor was maintained at the main memory, and it served as the directory.
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Requests coming to the memory looked up all the tags to determine the states of the block in the
different caches [Tan76, Tuc86].

The value of directories is that they keep track of which nodes have copies of a block, eliminating
the need for broadcast. This is clearly very valuable on read misses, since a request for a block
will either be satisfied at the main memory or the directory will tell it exactly where to go to
retrieve the exclusive copy. On write misses, the value of directories over the simpler broadcast
approach is greatest if the number of sharers of the block (to which invalidations or updates must
be sent) is usually small and does not scale up quickly with the number of processing nodes. We
might already expect this to be true from our understanding of parallel applications. For example,
in a near-neighbor grid computation usually two and at most four processes should share a block
at a partition boundary, regardless of the grid size or the number of processors. Even when a loca-
tion is actively read and written by all processes in the application, the number of sharers to be
invalidated at a write depends upon the temporal interleaving of reads and writes by processors.
A common example is 

 

migratory

 

 data, which are read and written by one processor, then read
and written by another processor, and so on (for example, a global sum into which processes
accumulate their values). Although all processors read and write the location, on a write only one
other processor—the previous writer—has a valid copy since all others were invalidated at the
previous write. 

Empirical measurements of program behavior show that the number of valid copies on most
writes to shared data is indeed very small the vast majority of the time, that this number does not
grow quickly with the number of processes in the application, and that the frequency of writes to
widely shared data is very low. Such data for our parallel applications will be presented and ana-
lyzed in light of application characteristics in Section 8.4.1. As we will see, these facts also help
us understand how to organize directories cost-effectively. Finally, even if all processors running
the application have to be invalidated on most writes, directories are still valuable for writes if the
application does not run on all nodes of the multiprocessor. 

 

8.3.2 Scaling

 

The main goal of using directory protocols is to allow cache coherence to scale beyond the num-
ber of processors that may be sustained by a bus. Scalability issues for directory protocols
include both performance and the storage overhead of directory information. Given a system with
distributed memory and interconnect, the major scaling issues for performance are how the
latency and bandwidth demands presented to the system by the protocol scale with the number of
processors used. The bandwidth demands are governed by the number of network transactions
generated per miss (times the frequency of misses), and latency by the number of these transac-
tions that are in the critical path of the miss. These performance issues are affected both by the
directory organization itself and by how well the flow of network transactions is optimized in the
protocol itself (given a directory organization), as we shall see. Storage, however, is affected only
by how the directory information is organized. For the simple bit vector organization, the number
of presence bits needed scales linearly with both the number of processing nodes (

 

p

 

 bits per
memory block) and the amount of main memory (one bit vector per memory block), leading to a
potentially large storage overhead for the directory. With a 64-byte block size and 64 processors,
the directory storage overhead is 64 bits divided by 64 bytes or 12.5 percent, which is not so bad.
With 256 processors and the same block size, the overhead is 50 percent, and with 1024 proces-
sors it is 200 percent! The directory overhead does not scale well, but it may be acceptable if the
number of nodes visible to the directory at the target machine scale is not very large. 
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Fortunately, there are many other ways to organize directory information that improve the scal-
ability of directory storage. The different organizations naturally lead to different high-level pro-
tocols with different ways of addressing the protocol issues (a) through (c) and different
performance characteristics. The rest of this section lays out the space of directory organizations
and briefly describes how individual read and write misses might be handled in straightforward
request-reply protocols that use them. As before, the discussion will pretend that there are no
other cache misses in progress at the time, hence no race conditions, so the directory and the
caches are always encountered as being in stable states. Deeper protocol issues—such as perfor-
mance optimizations in structuring protocols, handling race conditions caused by the interactions
of multiple concurrent memory operations, and dealing with correctness issues such as ordering,
deadlock, livelock and starvation—will be discussed later when we plunge into the depths of
directory protocols in Sections 8.5 through 8.7. 

8.3.3 Alternatives for Organizing Directories

At the highest level, directory schemes are differentiated by the mechanisms they provide for the
three functions of coherence protocols discussed in Section 8.2. Since communication with
cached copies is always done through network transactions, the real differentiation is in the first
two functions: finding the source of the directory information upon a miss, and determining the
locations of the relevant copies. 

There are two major classes of alternatives for finding the source of the directory information for
a block:

• Flat directory schemes, and

• Hierarchical directory schemes. 

The simple directory scheme described above is a flat scheme. Flat schemes are so named
because the source of the directory information for a block is in a fixed place, usually at the home
that is determined from the address of the block, and on a miss a request network transaction is
sent directly to the home node to look up the directory in a single direct network transaction. In
hierarchical schemes, memory is again distributed with the processors, but the directory informa-
tion for each block is logically organized as a hierarchical data structure (a tree). The processing
nodes, each with its portion of memory, are at the leaves of the tree. The internal nodes of the tree
are simply hierarchically maintained directory information for the block: A node keeps track of
whether each of its children has a copy of a block. Upon a miss, the directory information for the
block is found by traversing up the hierarchy level by level through network transactions until a
directory node is reached that indicates its subtree has the block in the appropriate state. Thus, a
processor that misses simply sends a “search” message up to its parent, and so on, rather than
directly to the home node for the block with a single network transaction. The directory tree for a
block is logical, not necessarily physical, and can be embedded in any general interconnection
network. In fact, in practice every processing node in the system is not only a leaf node for the
blocks it contains but also stores directory information as an internal tree node for other blocks. 

In the hierarchical case, the information about locations of copies is also maintained through the
hierarchy itself; copies are found and communicated with by traversing up and down the hierar-
chy guided by directory information. In flat schemes, how the information is stored varies a lot.
At the highest level, flat schemes can be divided into two classes: 
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• memory-based schemes, in which all the directory information about all cached copies is
stored at the home node of the block. The basic bit vector scheme described above is mem-
ory-based. The locations of all copies are discovered at the home, and they can be communi-
cated with directly through point-to-point messages. 

• cache-based schemes, in which the information about cached copies is not all contained at
the home but is distributed among the copies themselves. The home simply contains a pointer
copy of the block. Each cached copy then contains a pointer to (or the identity of) the node
that has the next cached copy of the block, in a distributed linked list organization. The loca-
tions of copies are therefore determined by traversing this list via network transactions. 

Figure 8-7 summarizes the taxonomy. Hierarchical directories have some potential advantages.
For example, a read miss to a block whose home is far away in the interconnection network
topology might be satisfied closer to the issuing processor if another copy is found nearby in the
topology as the request traverses up and down the hierarchy, instead of having to go all the way to
the home. Also, requests from different nodes can potentially be combined at a common ancestor
in the hierarchy, and only one request sent on from there. These advantages depend on how well
the logical hierarchy matches the underlying physical network topology. However, instead of
only a few point-to-point network transactions needed to satisfy a miss in many flat schemes, the
number of network transactions needed to traverse up and down the hierarchy can be much
larger, and each transaction along the way needs to look up the directory information at its desti-
nation node. As a result, the latency and bandwidth requirements of hierarchical directory
schemes tend to be much larger, and these organizations are not popular on modern systems.
Hierarchical directories will not be discussed much in this chapter, but will be described briefly
together with hierarchical snooping approaches in Section 8.11.2. The rest of this section will
examine flat directory schemes, both memory-based and cache-based, looking at directory orga-
nizations, storage overhead, the structure of protocols, and the impact on performance character-
istics. 

Figure  8-7  Alternatives for storing directory information.
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Flat, Memory-Based Directory Schemes

The bit vector organization above, called a full bit vector organization, is the most straightfor-
ward way to store directory information in a flat, memory based scheme The style of protocol
that results has already been discussed. Consider its basic performance characteristics on writes.
Since it preserves information about sharers precisely and at the home, the number of network
transactions per invalidating write grows only with the number of sharers. Since the identity of all
sharers is available at the home, invalidations sent to them can be overlapped or even sent in par-
allel; the number of fully serialized network transactions in the critical path is thus not propor-
tional to the number of sharers, reducing latency. The main disadvantage, as discussed earlier, is
storage overhead. 

There are two ways to reduce the overhead of full bit vector schemes. The first is to increase the
cache block size. The second is to put multiple processors, rather than just one, in a node that is
visible to the directory protocol; that is, to use a two-level protocol. The Stanford DASH machine
uses a full bit vector scheme, and its nodes are 4-processor bus-based multiprocessors. These two
methods actually make full-bit-vector directories quite attractive for even fairly large machines.
For example, for a 256-processor machine using 4-processor nodes and 128-byte cache blocks,
the directory memory overhead is only 6.25%. As small-scale SMPs become increasingly attrac-
tive building blocks, this storage problem may not be severe. 

However, these methods reduce the overhead by only a small constant factor each. The total stor-
age overhead is still proportional to P*M, where P is the number of processing nodes and M is
the number of total memory blocks in the machine (M=P*m, where m is the number of blocks
per local memory), and would become intolerable in very large machines. Directory storage
overhead can be reduced further by addressing each of the orthogonal factors in the P*M expres-
sion. We can reduce the width of each directory entry by not letting it grow proportionally to P.
Or we can reduce the total number of directory entries, or directory height, by not having an entry
per memory block.

Directory width is reduced by using limited pointer directories, which are motivated by the ear-
lier observation that most of the time only a few caches have a copy of a block when the block is
written. Limited pointer schemes therefore do not store yes or no information for all nodes, but
rather simply maintain a fixed number of pointers, say i, each pointing to a node that currently
caches a copy of the block [ASH+88]. Each pointer takes  bits of storage for P nodes, but
the number of pointers used is small. For example, for a machine with 1024 nodes, each pointer
needs 10 bits, so even having 100 pointers uses less storage than a full bit-vector scheme. In prac-
tice, five or less pointers seem to suffice. Of course, these schemes need some kind of backup or
overflow strategy for the situation when more than i copies are cached, since they can keep track
of only i copies precisely. One strategy may be to resort to broadcasting invalidations to all nodes
when there are more than i copies. Many other strategies have been developed to avoid broadcast
even in these cases. Different limited pointer schemes differ primarily in their overflow strategies
and in the number of pointers they use.

Directory height can be reduced by organizing the directory as a cache, taking advantage of the
fact that since the total amount of cache in the machine is much smaller than the total amount of
memory, only a very small fraction of the memory blocks will actually be replicated in caches at
a given time, so most of the directory entries will be unused anyway [GWM90, OKN90]. The

Plog
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Advanced Topics section of this chapter (Section 8.11) will discuss the techniques to reduce
directory width and height in more detail.

Regardless of these optimizations, the basic approach to finding copies and communicating with
them (protocol issues (b) and (c)) is the same for the different flat, memory-based schemes. The
identities of the sharers are maintained at the home, and at least when there is no overflow the
copies are communicated with by sending point to point transactions to each. 

Flat, Cache-Based Directory Schemes

In flat, cache-based schemes there is still a home main memory for the block; however, the direc-
tory entry at the home does not contain the identities of all sharers, but only a pointer to the first
sharer in the list plus a few state bits. This pointer is called the head pointer for the block. The
remaining nodes caching that block are joined together in a distributed, doubly linked list, using
additional pointers that are associated with each cache line in a node (see Figure 8-8). That is, a
cache that contains a copy of the block also contains pointers to the next and previous caches that
have a copy, called the forward and backward pointers, respectively. 

On a read miss, the requesting node sends a network transaction to the home memory to find out
the identity of the head node of the linked list, if any, for that block. If the head pointer is null (no
current sharers) the home replies with the data. If the head pointer is not null, then the requestor
must be added to the list of sharers. The home replies to the requestor with the head pointer. The
requestor then sends a message to the head node, asking to be inserted at the head of the list and
hence become the new head node. The net effect is that the head pointer at the home now points
to the requestor, the forward pointer of the requestor’s own cache entry points to the old head
node (which is now the second node in the linked list), and the backward pointer of the old head
node point to the requestor. The data for the block is provided by the home if it has the latest
copy, or by the head node which always has the latest copy (is the owner) otherwise. 

On a write miss, the writer again obtains the identity of the head node, if any, from the home. It
then inserts itself into the list as the head node as before (if the writer was already in the list as a
sharer and is now performing an upgrade, it is deleted from its current position in the list and
inserted as the new head). Following this, the rest of the distributed linked list is traversed node-
to-node via network transactions to find and invalidate successive copies of the block. If a block
that is written is shared by three nodes A, B and C, the home only knows about A so the writer
sends an invalidation message to it; the identity of the next sharer B can only be known once A is
reached, and so on. Acknowledgments for these invalidations are sent to either the writer. Once
again, if the data for the block is needed it is provided by either the home or the head node as
appropriate. The number of messages per invalidating write—the bandwidth demand—is propor-
tional to the number of sharers as in the memory-based schemes, but now so is the number of
messages in the critical path, i.e. the latency. Each of these serialized messages also invokes the
communication assist, increasing latency further. In fact, even a read miss to a clean block
involves the controllers of multiple nodes to insert the node in the linked list. 

Writebacks or other replacements from the cache also require that the node delete itself from the
sharing list, which means communicating with the nodes before and after it in the list. This is
necessary because the new block that replaces the old one will need the forward and backward
pointer slots of the cache entry for its own sharing list. An example cache-based protocol will be
described in more depth in Section 8.7. 
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To counter the latency disadvantage, cache-based schemes have some important advantages over
memory-based schemes. First, the directory overhead is not so large to begin with. Every block in
main memory has only a single head pointer. The number of forward and backward pointers is
proportional to the number of cache blocks in the machine, which is much smaller than the num-
ber of memory blocks. The second advantage is that a linked list records the order in which
accesses were made to memory for the block, thus making it easier to provide fairness and avoid
live-lock in a protocol (most memory-based schemes do not keep track of request order in their
sharing vectors or lists, as we will see). Third, the work to be done by controllers in sending
invalidations is not centralized at the home but rather distributed among sharers, thus perhaps
spreading out controller occupancy and reducing the corresponding bandwidth demands placed
at the home. 

Manipulating insertion in and deletion from distributed linked lists can lead to complex protocol
implementations. For example, deleting a node from a sharing list requires careful coordination
and mutual exclusion with processors ahead and behind it in the linked list, since those proces-
sors may also be trying to replacing the same block concurrently. These complexity issues have
been greatly alleviated by the formalization and publication of a standard for a cache-based
directory organization and protocol: the IEEE 1596-1992 Scalable Coherence Interface standard
(SCI) [Gus92]. The standard includes a full specification and C code for the protocol. Several
commercial machines have started using this protocol (e.g. Sequent NUMA-Q [LoC96], Convex
Exemplar [Con93,TSS+96], and Data General [ClA96]), and variants that use alternative list rep-
resentations (singly-linked lists instead of the doubly-linked lists in SCI) have also been explored
[ThD90]. We shall examine the SCI protocol itself in more detail in Section 8.7, and defer
detailed discussion of advantages and disadvantages until then.
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Figure  8-8  The doubly linked list distributed directory representation in the IEEE Scalable Coherent Interface (SCI) standard. 
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Summary of Directory Organization Alternatives

To summarize, there are clearly many different ways to organize how directories store the cache
state of memory blocks. Simple bit vector representations work well for machines that have a
moderate number of nodes visible to the directory protocol. For larger machines, there are many
alternatives available to reduce the memory overhead. The organization chosen does, however,
affect the complexity of the coherence protocol and the performance of the directory scheme
against various sharing patterns. Hierarchical directories have not been popular on real machines,
while machines with flat memory-based and cache-based (linked list) directories have been built
and used for some years now. 

This section has described the basic organizational alternatives for directory protocols and how
the protocols work a high level. The next section quantitatively assesses the appropriateness of
directory-based protocols for scalable multiprocessors, as well as some important protocol and
architectural tradeoffs at this basic level. After this, the chapter will dive deeply into examining
how memory-based and cache-based directory protocols might actually be realized, and how
they might address the various performance and correctness issues that arise. 

8.4 Assessing Directory Protocols and Tradeoffs

Like in Chapter 5, this section uses a simulator of a directory-based protocol to examine some
relevant characteristics of applications that can inform architectural tradeoffs, but that cannot be
measured on these real machines. As mentioned earlier, issues such as three-state versus four-
state or invalidate versus update protocols that were discussed in Chapter 5 will not be revisited
here. (For update protocols, an additional disadvantage in scalable machines is that useless
updates incur a separate network transaction for each destination, rather than a single bus transac-
tion that is snooped by all caches. Also, we will see later in the chapter that besides the perfor-
mance tradeoffs, update-based protocols make it much more difficult to preserve the desired
memory consistency model in directory-based systems.) In particular, this section quantifies the
distribution of invalidation patterns in directory protocols that we referred to earlier, examines
how the distribution of traffic between local and remote changes as the number of processors is
increased for a fixed problem size, and revisits the impact of cache block size on traffic which is
now divided into local, remote and overhead. In all cases, the experiments assume a memory-
based flat directory protocol with MESI cache states, much like that of the Origin2000. 

8.4.1 Data Sharing Patterns for Directory Schemes

It was claimed earlier that the number of invalidations that need to be sent out on a write is usu-
ally small, which makes directories particularly valuable. This section quantifies that claim for
our parallel application case studies, develops a framework for categorizing data structures in
terms of sharing patterns and understanding how they scale, and explains the behavior of the
application case studies in light of this framework. 

Sharing Patterns for Application Case Studies

In an invalidation-based protocol, two aspects of an application’s data sharing patterns are impor-
tant to understand in the context of directory schemes: (i) the frequency with which processors
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issue writes that may require invalidating other copies (i.e. writes to data that are not dirty in the
writer’s cache, or invalidating writes), called the invalidation frequency, and (ii) the distribution
of the number of invalidations (sharers) needed upon these writes, called the invalidation size
distribution. Directory schemes are particularly advantageous if the invalidation size distribution
has small measures of average, and as long as the frequency is significant enough that using
broadcast all the time would indeed be a performance problem. Figure 8-9 shows the invalidation

size distributions for our parallel application case studies running on 64-node systems for the
default problem sizes presented in Chapter 4. Infinite per-processor caches are used in these sim-
ulations, to capture inherent sharing patterns. With finite caches, replacement hints sent to the
directory may turn off presence bits and reduce the number of invalidations sent on writes in
some cases (though not the traffic since the replacement hint has to be sent). 

It is clear that the measures of average of the invalidation size distribution are small, indicating
that directories are likely to be very useful in containing traffic and that it is not necessary for the
directory to maintain a presence bit per processor in a flat memory-based scheme. The non-zero
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Figure  8-9  Invalidation patterns with default data sets and 64 processors. 

The x-axis shows the invalidation size (number of active sharers) upon an invalidating write, and the y-axis shows the frequency of
invalidating writes for each x-axis value. The invalidation size distribution was measured by simulating a full bit vector directory rep-
resentation and recording for every invalidating write how many presence bits (other than the writer’s) are set when the write occurs.
Frequency is measured as invalidating writes with that many invalidations per 1000 instructions issued by the processor. The data are
averaged over all the 64 processors used.
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frequencies at very large processor counts are usually due to synchronization variables, where
many processors spin on a variable and one processor writes it invalidating them all. We are inter-
ested in not just the results for a given problem size and number of processors, but also in how
they scale. The communication to computation ratios discussed in Chapter 4 give us a good idea
about how the frequency of invalidating writes should scale. For the size distributions, we can
appeal to our understanding of the applications, which can also help explain the basic results
observed in Figure 8-9 as we will see shortly. 

A Framework for Sharing Patterns

More generally, we can group sharing patterns for data structures into commonly encountered
categories, and use this categorization to reason about the resulting invalidation patterns and how
they might scale. Data access patterns can be categorized in many ways: predictable versus
unpredictable, regular versus irregular, coarse-grained versus fine-grained (or contiguous versus
non-contiguous in the address space), near-neighbor versus long-range, etc. For the current pur-
pose, the relevant categories are read-only, producer-consumer, migratory, and irregular read-
write. 

Read-only Read-only data structures are never written once they have been initialized. There 
are no invalidating writes, so these data are a non-issue for directories. Examples include pro-
gram code and the scene data in the Raytrace application. 

Producer-consumer A processor produces (writes) a data item, then one or more processors 
consume (read) it, then a processor produces it again, and so on. Flag-based synchronization 
is an example, as is the near-neighbor sharing in an iterative grid computation. The producer 
may be the same process every time, or it may change; for example in a branch-and-bound 
algorithm the bound may be written by different processes as they find improved bounds. The 
invalidation size is determined by how many consumers there have been each time the pro-
ducer writes the value. We can have situations with one consumer, all processes being con-
sumers, or a few processes being consumers. These situations may have different frequencies 
and scaling properties, although for most applications studied so far either the size does not 
scale quickly with the number of processors or the frequency has been found to be low.1

Migratory Migratory data bounce around or migrate from one processor to another, being 
written (and usually read) by each processor to which they bounce. An example is a global 
sum, into which different processes add their partial sums. Each time a processor writes the 
variable only the previous writer has a copy (since it invalidated the previous “owner” when it 
did its write), so only a single invalidation is generated upon a write regardless of the number 
of processors used. 

Irregular Read-Write This corresponds to irregular or unpredictable read and write access 
patterns to data by different processes. A simple example is a distributed task queue system. 

1.  Examples of the first situation are the non-corner border elements in a near-neighbor regular grid parti-
tion and the key permutations in Radix. They lead to an invalidation size of one, which does not increase
with the number of processors or the problem size. Examples all processes being consumers are a global
energy variable that is read by all processes during a time-step of a physical simulation and then written by
one at the end, or a synchronization variable on which all processes spin. While the invalidation size here is
large, equal to the number of processors, such writes fortunately tend to happen very infrequently in real
applications. Finally, examples of a few processes being consumers are the corner elements of a grid parti-
tion, or the flags used for tree-based synchronization. This leads to an invalidation size of a few, which may
or may not scale with the number of processors (it doesn’t in these two examples).
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Processes will probe (read) the head pointer of a task queue when they are looking for work 
to steal, and this head pointer will be written when a task is added at the head. These and 
other irregular patterns usually tend to lead to wide-ranging invalidation size distribution, but 
in most observed applications the frequency concentration tends to be very much toward the 
small end of the spectrum (see the Radiosity example in Figure 8-9). 

A similar categorization can be found in [GuW92]. 

Applying the Framework to the Application Case Studies 

Let us now look briefly at each of the applications in Figure 8-9 to interpret the results in light of
the sharing patterns as classified above, and to understand how the size distributions might scale.

In the LU factorization program, when a block is written it has previously been read only by the
same processor that is doing the writing (the process to which it is assigned). This means that no
other processor should have a cached copy, and zero invalidations should be sent. Once it is writ-
ten, it is read by several other processes and no longer written further. The reason that we see one
invalidation being sent in the figure is that the matrix is initialized by a single process, so particu-
larly with infinite caches that process has a copy of the entire matrix in its cache and will be
invalidated the first time another processor does a write to a block. An insignificant number of
invalidating writes invalidates all processes, which is due to some global variables and not the
main matrix data structure. As for scalability, increasing the problem size or the number of pro-
cessors does not change the invalidation size distribution much, except for the global variables.
Of course, they do change the frequencies. 

In the Radix sorting kernel, invalidations are sent in two producer-consumer situations. In the
permutation phase, the word or block written has been read since the last write only by the pro-
cess to which that key is assigned, so at most a single invalidation is sent out. The same key posi-
tion may be written by different processes in different outer loop iterations of the sort; however,
in each iteration there is only one reader of a key so even this infrequent case generates only two
invalidations (one to the reader and one to the previous writer). The other situation is the histo-
gram accumulation, which is done in a tree-structured fashion and usually leads to a small num-
ber of invalidations at a time. These invalidations to multiple sharers are clearly very infrequent.
Here too, increasing the problem size does not change the invalidation size in either phase, while
increasing the number of processors increases the sizes but only in some infrequent parts of the
histogram accumulation phase. The dominant pattern by far remains zero or one invalidations. 

The nearest- neighbor, producer-consumer communication pattern on a regular grid in Ocean
leads to most of the invalidations being to zero or one processes (at the borders of a partition). At
partition corners, more frequently encountered in the multigrid equation solver, two or three shar-
ers may need to be invalidated. This does not grow with problem size or number of processors. At
the highest levels of the multigrid hierarchy, the border elements of a few processors’ partitions
might fall on the same cache block, causing four or five sharers to be invalidated. There are also
some global accumulator variables, which display a migratory sharing pattern (one invalidation),
and a couple of very infrequently used one-producer, all-consumer global variables. 

The dominant, scene data in Raytrace are read-only. The major read-write data are the image and
the task queues. Each word in the image is written only once by one processor per frame. This
leads to either zero invalidations if the same processor writes a given image pixel in consecutive
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frames (as is usually the case), or one invalidation if different processors do, as might be the case
when tasks are stolen. The task queues themselves lead to the irregular read-write access patterns
discussed earlier, with a wide-ranging distribution that is dominated in frequency by the low end
(hence the very small non-zeros all along the x-axis in this case). Here too there are some infre-
quently written one-producer, all-consumer global variables.

In the Barnes-Hut application, the important data are the particle and cell positions, the pointers
used to link up the tree, and some global variables used as energy values. The position data are of
producer-consumer type. A given particle’s position is usually read by one or a few processors
during the force-calculation (tree-traversal) phase. The positions (centers of mass) of the cells are
read by many processes, the number increasing toward the root which is read by all. These data
thus cause a fairly wide range of invalidation sizes when they are written by their assigned pro-
cessor after force-calculation.The root and upper-level cells responsible for invalidations being
sent to all processors, but their frequency is quite small. The tree pointers are quite similar in
their behavior. The first write to a pointer in the tree-building phase invalidates the caches of the
processors that read it in the previous force-calculation phase; subsequent writes invalidate those
processors that read that pointer during tree-building, which irregularly but mostly to a small
number of processors. As the number of processors is increased, the invalidation size distribution
tends to shift to the right as more processors tend to read a given item, but quite slowly, and the
dominant invalidations are still to a small number of processors. The reverse effect (also slow) is
observed when the number of particles is increased. 

Finally, the Radiosity application has very irregular access patterns to many different types of
data, including data that describe the scene (patches and elements) and the task queues. The
resulting invalidation patterns, shown in Figure 8-9, show a wide distribution, but with the great-
est frequency by far concentrated toward zero to two invalidations. Many of the accesses to the
scene data also behave in a migratory way, and there are a few migratory counters and a couple of
global variables that are one-producer, all-consumer.

The empirical data and categorization framework indicate that in most cases the invalidation size
distribution is dominated by small numbers of invalidations. The common use of parallel
machines as multiprogrammed compute servers for sequential or small-way parallel applications
further limits the number of sharers. Sharing patterns that cause large numbers of invalidations
are empirically found to be very infrequent at runtime. One exception is highly contented syn-
chronization variables, which are usually handled specially by software or hardware as we shall
see. In addition to confirming the value of directories, this also suggests ways to reduce directory
storage, as we shall see next. 

8.4.2 Local versus Remote Traffic

For a given number of processors and machine organization, the fraction of traffic that is local or
remote depends on the problem size. However, it is instructive to examine how the traffic and its
distribution changes with number of processors even when the problem size is held fixed (i.e.
under PC scaling). Figure 8-10 shows the results for the default problem sizes, breaking down the
remote traffic into various categories such as sharing (true or false), capacity, cold-start, write-
back and overhead. Overhead includes the fixed header per cache block sent across the network,
including the traffic associated with protocol transactions like invalidations and acknowledg-
ments that do not carry any data. This component of traffic is different than on a bus-based
machine: each individual point-to-point invalidation consumes traffic, and acknowledgments
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place traffic on the interconnect too. Here also, traffic is shown in bytes per FLOP or bytes per
instruction for different applications. We can see that both local traffic and capacity-related
remote traffic tend to decrease when the number of processors increases, due to both decrease in
per-processor working sets and decrease in cold misses that are satisfied locally instead of
remotely. However, sharing-related traffic increases as expected. In applications with small work-
ing sets, like Barnes-Hut, LU, and Radiosity, the fraction of capacity-related traffic is very small,
at least beyond a couple of processors. In irregular applications like Barnes-Hut and Raytrace,
most of the capacity-related traffic is remote, all the more so as the number of processors
increases, since data cannot be distributed at page grain for it to be satisfied locally. However, in
cases like Ocean, the capacity-related traffic is substantial even with the large cache, and is
almost entirely local when pages are placed properly. With round-robin placement of shared
pages, we would have seen most of the local capacity misses turn to remote ones. 

When we use smaller caches to capture the realistic scenario of working sets not fitting in the
cache in Ocean and Raytrace, we see that capacity traffic becomes much larger. In Ocean, most
of this is still local, and the trend for remote traffic looks similar. Poor distribution of pages
would have swamped the network with traffic, but with proper distribution network (remote) traf-
fic is quite low. However, in Raytrace the capacity-related traffic is mostly remote, and the fact
that it dominates changes the slope of the curve of total remote traffic: remote traffic still
increases with the number of processors, but much more slowly since the working set size and
hence capacity miss rate does not depend that much on the number of processors. 

When a miss is satisfied remotely, whether it is satisfied at the home or needs another message to
obtain it from a dirty node depends both on whether it is a sharing miss or a capacity/conflict/
cold miss, as well as on the size of the cache. In a small cache, dirty data may be replaced and
written back, so a sharing miss by another processor may be satisfied at the home rather than at
the (previously) dirty node. For applications that allow data to be placed in the memory of the
node to which they are assigned, it is often the case that only that node writes the data, so even if
the data are found dirty they are found so at the home itself. The extent to which this is true
depends on both the application and whether the data are indeed distributed properly. 
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Figure  8-10  Traffic versus number of processors. 

The overhead per block transferred across the network is 8 bytes. No overhead is considered for local accesses. The graphs on the left
assume 1MB per-processor caches, and the ones on the right 64KB. The caches have a 64 byte block size and are 4-way set associa-
tive. 
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8.4.3 Cache Block Size Effects

The effects of block size on cache miss rates and bus traffic were assessed in Chapter 5, at least
up to 16 processors. For miss rates, the trends beyond 16 processors extend quite naturally,
except for threshold effects in the interaction of problem size, number of processors and block
size as discussed in Chapter 4. This section examines the impact of block size on the components
of local and remote traffic. 

Figure 8-11 shows how traffic scales with block size for 32-processor executions of the applica-
tions with 1MB caches. Consider Barnes-Hut. The overall traffic increases slowly until about a
64 byte block size, and more rapidly thereafter primarily due to false sharing. However, the mag-
nitude is small. Since the overhead per block moved through the network is fixed (as is the cost of
invalidations and acknowledgments), the overhead component tends to shrink with increasing
block size to the extent that there is spatial locality (i.e. larger blocks reduce the number of blocks
transferred). LU has perfect spatial locality, so the data traffic remains fixed as block size
increases. Overhead is reduced, so overall traffic in fact shrinks with increasing block size. In
Raytrace, the remote capacity traffic has poor spatial locality, so it grows quickly with block size.
In these programs, the true sharing traffic has poor spatial locality too, as is the case in Ocean at
column-oriented partition borders (spatial locality even on remote data is good at row-oriented
borders). Finally, the graph for Radix clearly shows the impact on remote traffic for false sharing
when it occurs past the threshold block size (here about 128 or 256 bytes). 

8.5 Design Challenges for Directory Protocols

Actually designing a correct, efficient directory protocol involves issues that are more complex
and subtle than the simple organizational choices we have discussed so far, just as actually
designing a bus-based protocol was more complex than choosing the number of states and draw-
ing the state transition diagram for stable states. We had to deal with the non-atomicity of state
transitions, split transaction busses, serialization and ordering issues, deadlock, livelock and star-
vation. Having understood the basics of directories, we are now ready to dive deeply into these
issues for them as well. This section discusses the major new protocol-level design challenges
that arise in implementing directory protocols correctly and with high performance, and identi-
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Figure  8-11  Traffic versus cache block size. 

The overhead per block transferred over the network is 8 bytes. No overhead is considered for local access. The graph on the left
shows the data for 1MB per processor caches, and that on the right for 64KB caches. All caches are 4-way set associative.
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fies general techniques for addressing these challenges. The next two sections will discuss case
studies of memory-based and cache-based protocols in detail, describing the exact states and
directory structures they use, and will examine the choices they make among the various tech-
niques for addressing design challenges. They will also examine how some of the necessary func-
tionality is implemented in hardware, and illustrate how the actual choices made are influenced
by performance, correctness, simplicity, cost, and also limitations of the underlying processing
node used. 

As with the systems discussed in the previous two chapters, the design challenges for scalable
coherence protocols are to provide high performance while preserving correctness, and to contain
the complexity that results. Let us look at performance and correctness in turn, focusing on issues
that were not already addressed for bus-based or non-caching systems. Since performance opti-
mizations tend to increase concurrency and complicate correctness, let us examine them first. 

8.5.1 Performance 

The network transactions on which cache coherence protocols are built differ from those used in
explicit message passing in two ways. First, they are automatically generated by the system, in
particular by the communication assists or controllers in accordance with the protocol. Second,
they are individually small, each carrying either a request, an acknowledgment, or a cache block
of data plus some control bits. However, the basic performance model for network transactions
developed in earlier chapters applies here as well. A typical network transaction incurs some
overhead on the processor at its source (traversing the cache hierarchy on the way out and back
in), some work or occupancy on the communication assists at its end-points (typically looking up
state, generating requests, or intervening in the cache) and some delay in the network due to tran-
sit latency, network bandwidth and contention. Typically, the processor itself is not involved at
the home, the dirty node, or the sharers, but only at the requestor. A protocol does not have much
leverage on the basic costs of a single network transaction—transit latency, network bandwidth,
assist occupancy, and processor overhead—but it can determine the number and structure of the
network transactions needed to realize memory operations like reads and writes under different
circumstances. In general, there are three classes of techniques for improving performance: (i)
protocol optimizations, (ii) high-level machine organization, and (iii) hardware specialization to
reduce latency and occupancy and increase bandwidth. The first two assume a fixed set of cost
parameters for the communication architecture, and are discussed in this section. The impact of
varying these basic parameters will be examined in Section 8.8, after we understand the protocols
in more detail. 

Protocol Optimizations

At the protocol level, the two major performance goals are: (i) to reduce the number of network
transactions generated per memory operation m, which reduces the bandwidth demands placed
on the network and the communication assists; and (ii) to reduce the number of actions, espe-
cially network transactions, that are on the critical path of the processor, thus reducing uncon-
tended latency. The latter can be done by overlapping the transactions needed for a memory
operation as much as possible. To some extent, protocols can also help reduce the end point assist
occupancy per transaction—especially when the assists are programmable—which reduces both
uncontended latency as well as end-point contention. The traffic, latency and occupancy charac-
teristics should not scale up quickly with the number of processing nodes used, and should per-
form gracefully under pathological conditions like hot-spots. 
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As we have seen, the manner in which directory information is stored determines some basic
order statistics on the number of network transactions in the critical path of a memory operation.
For example, a memory-based protocol can issue invalidations in an overlapped manner from the
home, while in a cache-based protocol the distributed list must be walked by network transac-
tions to learn the identities of the sharers. However, even within a class of protocols there are
many ways to improve performance. 

Consider read operations in a memory-based protocol. The strict request-reply option described
earlier is shown in Figure 8-12(a). The home replies to the requestor with a message containing

the identity of the owner node. The requestor then sends a request to the owner, which replies to
it with the data (the owner also sends a “revision” message to the home, which updates memory
with the data and sets the directory state to be shared). 

There are four network transactions in the critical path for the read operation, and five transac-
tions in all. One way to reduce these numbers is intervention forwarding. In this case, the home
does not reply to the requestor but simply forwards the request as an intervention transaction to
the owner, asking it to retrieve the block from its cache. An intervention is just like a request, but
is issued in reaction to a request and is directed at a cache rather than a memory (it is similar to an
invalidation, but also seeks data from the cache). The owner then replies to the home with the
data or an acknowledgment (if the block is clean-exclusive rather than modified)—at which time
the home updates its directory state and replies to the requestor with the data (Figure 8-12(b)).
Intervention forwarding reduces the total number of transactions needed to four, but all four are
still in the critical path. A more aggressive method is reply forwarding (Figure 8-12(c)). Here too,
the home forwards the intervention message to the owner node, but the intervention contains the
identity of the requestor and the owner replies directly to the requestor itself. The owner also
sends a revision message to the home so the memory and directory can be updated. This keeps
the number of transactions at four, but reduces the number in the critical path to three (request-
→intervention→reply-to-requestor) and constitutes a three-message miss. Notice that with either

L H R
1: req

2:reply

3:intervention

4a:revise

4b:response

L H R

1: req 2:intervention

3:response4:reply

L H R

1: req 2:intervention

3b:response

3a:revise

Figure  8-12  Reducing latency in a flat, memory-based protocol through forwarding. 

The case shown is of a read request to a block in exclusive state. L represents the local or requesting node, H is the home for the
block, and R is the remote owner node that has the exclusive copy of the block.

(a) Strict request-reply (a) Intervention forwarding

(c) Reply forwarding
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of intervention forwarding or reply forwarding the protocol is no longer strictly request-reply (a
request to the home generates a request to the owner node, which generates a reply). This can
complicate deadlock avoidance, as we shall see later. 

Besides being only intermediate in its latency and traffic characteristics, intervention forwarding
has the disadvantage that outstanding intervention requests are kept track of at the home rather
than at the requestor, since responses to the interventions are sent to the home. Since requests that
cause interventions may come from any of the processors, the home node must keep track of up
to k*P interventions at a time, where k is the number of outstanding requests allowed per proces-
sor. A requestor, on the other hand, would only have to keep track of at most k outstanding inter-
ventions. Since reply forwarding also has better performance characteristics, most systems prefer
to use it. Similar forwarding techniques can be used to reduce latency in cache-based schemes at
the cost of strict request-reply simplicity, as shown in Figure 8-13. 

In addition to forwarding, other protocol techniques to reduce latency include overlapping trans-
actions and activities by performing them speculatively. For example, when a request arrives at
the home, the controller can read the data from memory in parallel with the directory lookup, in
the hope that in most cases the block will indeed be clean at the home. If the directory lookup
indicates that the block is dirty in some cache then the memory access is wasted and must be
ignored. Finally, protocols may also automatically detect and adjust themselves at runtime to

interact better with common sharing patterns to which the standard invalidation-based protocol is
not ideally suited (see Exercise 8.4). 

S3

5:inval

6:ack

H S1 S2

1: inval

2:ack

3:inval

4:ack

H S1 S2

1: inval 2a:inval

3b:ack
2b:ack

H S1 S2

2:inval

4:ack

(c)

S3

3a:inval

4b:ack

S3

3:inval1:inval

(b)(a)

Figure  8-13  Reducing latency in a flat, cache-based protocol. 

The scenario is of invalidations being sent from the home H to the sharers Si on a write operation. In the strict request-reply case (a),
every node includes in its acknowledgment (reply) the identity of the next sharer on the list, and the home then sends that sharer an
invalidation. The total number of transactions in the invalidation sequence is 2s, where s is the number of sharers, and all are in the crit-
ical path. In (b), each invalidated node forwards the invalidation to the next sharer and in parallel sends an acknowledgment to the
home. The total number of transactions is still 2s, but only s+1 are in the critical path. In (c), only the last sharer on the list sends a sin-
gle acknowledgment telling the home that the sequence is done. The total number of transactions is s+1. (b) and (c) are not strict
request-reply. 
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High-level Machine Organization

Machine organization can interact with the protocol to help improve performance as well. For
example, the use of large tertiary caches can reduce the number of protocol transactions due to
artifactual communication. For a fixed total number of processors, using multiprocessor rather
than uniprocessor nodes may be useful as discussed in the introduction to this chapter: The direc-
tory protocol operates only across nodes, and a different coherence protocol, for example a
snoopy protocol or another directory protocol, may be used to keep caches coherent within a
node. Such an organization with multiprocessor—especially bus-based—nodes in a two-level
hierarchy is very common, and has interesting advantages as well as disadvantages. 

The potential advantages are in both cost and performance. On the cost side, certain fixed per-
node costs may be amortized among the processors within a node, and it is possible to use exist-
ing SMPs which may themselves be commodity parts. On the performance side, advantages may
arise from sharing characteristics that can reduce the number of accesses that must involve the
directory protocol and generate network transactions across nodes. If one processor brings a
block of data into its cache, another processor in the same node may be able to satisfy its miss to
that block (for the same or a different word) more quickly through the local protocol, using
cache-to-cache sharing, especially if the block is allocated remotely. Requests may also be com-
bined: If one processor has a request outstanding to the directory protocol for a block, another
processor’s request within the same SMP can be combined with and obtain the data from the first
processor’s response, reducing latency, network traffic and potential hot-spot contention. These
advantages are similar to those of full hierarchical approaches mentioned earlier. Within an SMP,
processors may even share a cache at some level of the hierarchy, in which case the tradeoffs dis-
cussed in Chapter 6 apply. Finally, cost and performance characteristics may be improved by
using a hierarchy of packaging technologies appropriately. 

Of course, the extent to which the two-level sharing hierarchy can be exploited depends on the
sharing patterns of applications, how well processes are mapped to processors in the hierarchy,
and the cost difference between communicating within a node and across nodes. For example,
applications that have wide but physically localized read-only sharing in a phase of computation,
like the Barnes-Hut galaxy simulation, can benefit significantly from cache-to-cache sharing if
the miss rates are high to begin with. Applications that exhibit nearest-neighbor sharing (like
Ocean) can also have most of their accesses satisfied within a multiprocessor node. However,
while some processes may have their all accesses satisfied within their node, others will have
accesses along at least one border satisfied remotely, so there will be load imbalances and the
benefits of the hierarchy will be diminished. In all-to-all communication patterns, the savings in
inherent communication are more modest. Instead of communicating with p-1 remote processors
in a p-processor system, a processor now communicates with k-1 local processors and p-k remote
ones (where k is the number of processors within a node), a savings of at most (p-k)/(p-1).
Finally, with several processes sharing a main memory unit, it may also be easier to distribute
data appropriately among processors at page granularity. Some of these tradeoffs and application
characteristics are explored quantitatively in [Web93, ENS+95]. Of our two case-study machines,
the NUMA-Q uses four-processor, bus-based, cache-coherent SMPs as the nodes. The SGI Ori-
gin takes an interesting position: two processors share a bus and memory (and a board) to amor-
tize cost, but they are not kept coherent by a snoopy protocol on the bus; rather, a single directory
protocol keeps all caches in the machines coherent. 
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Compared to using uniprocessor nodes, the major potential disadvantage of using multiprocessor
nodes is bandwidth. When processors share a bus, an assist or a network interface, they amortize
its cost but compete for its bandwidth. If their bandwidth demands are not reduced much by
locality, the resulting contention can hurt performance. The solution is to increase the throughput
of these resources as well as processors are added to the node, but this increases compromises the
cost advantages. Sharing a bus within a node has some particular disadvantages. First, if the bus
has to accommodate several processors it becomes longer and is not likely to be contained in a
single board or other packaging unit. Both these effects slow the bus down, increasing the latency
to both local and remote data. Second, if the bus supports snoopy coherence within the node, a
request that must be satisfied remotely typically has to wait for local snoop results to be reported
before it is sent out to the network, causing unnecessary delays. Third, with a snoopy bus at the
remote node too, many references that do go remote will require snoops and data transfers on the
local bus as well as the remote bus, increasing latency and reducing bandwidth. Nonetheless, sev-
eral directory-based systems use snoopy-coherent multiprocessors as their individual nodes
[LLJ+93, LoC96, ClA96, WGH+97]. 

8.5.2 Correctness 

Correctness considerations can be divided into three classes. First, the protocol must ensure that
the relevant blocks are invalidated/updated and retrieved as needed, and that the necessary state
transitions occur. We can assume this happens in all cases, and not discuss it much further. Sec-
ond, the serialization and ordering relationships defined by coherence and the consistency model
must be preserved. Third, the protocol and implementation must be free from deadlock, livelock,
and ideally starvation too. Several aspects of scalable protocols and systems complicate the latter
two sets of issues beyond what we have seen for bus-based cache-coherent machines or scalable
non-coherent machines. There are two basic problems. First, we now have multiple cached cop-
ies of a block but no single agent that sees all relevant transactions and can serialize them. Sec-
ond, with many processors there may be a large number of requests directed toward a single
node, accentuating the input buffer problem discussed in the previous chapter. These problems
are aggravated by the high latencies in the system, which push us to exploit the protocol optimi-
zations discussed above; these allow more transactions to be in progress simultaneously, further
complicating correctness. This subsection describes the new issues that arise in each case (write
serialization, sequential consistency, deadlock, livelock and starvation) and lists the major types
of solutions that are commonly employed. Some specific solutions used in the case study proto-
cols will be discussed in more detail in subsequent sections. 

Serialization to a Location for Coherence

Recall the write serialization clause of coherence. Not only must a given processor be able to
construct a serial order out of all the operations to a given location—at least out of all write oper-
ations and its own read operations—but all processors must see the writes to a given location as
having happened in the same order. 

One mechanism we need for serialization is an entity that sees the necessary memory operations
to a given location from different processors (the operations that are not contained entirely within
a processing node) and determines their serialization. In a bus-based system, operations from dif-
ferent processors are serialized by the order in which their requests appear on the bus (in fact all
accesses, to any location, are serialized this way). In a distributed system that does not cache
shared data, the consistent serializer for a location is the main memory that is the home of a loca-
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tion. For example, the order in which writes become visible is the order in which they reach the
memory, and which write’s value a read sees is determined by when that read reaches the mem-
ory. In a distributed system with coherent caching, the home memory is again a likely candidate
for the entity that determines serialization, at least in a flat directory scheme, since all relevant
operations first come to the home. If the home could satisfy all requests itself, then it could sim-
ply process them one by one in FIFO order of arrival and determine serialization. However, with
multiple copies visibility of an operation to the home does not imply visibility to all processors,
and it is easy to construct scenarios where processors may see operations to a location appear to
be serialized in different orders than that in which the requests reached the home, and in different
orders from each other.

As a simple example of serialization problems, consider a network that does not preserve point-
to-point order of transactions between end-points. If two write requests for shared data arrive at
the home in one order, in an update-based protocol (for example) the updates they generate may
arrive at the copies in different orders. As another example, suppose a block is in modified state
in a dirty node and two nodes issues read-exclusive requests for it in an invalidation protocol. In a
strict request-reply protocol, the home will provide the requestors with the identity of the dirty
node, and they will send requests to it. However, with different requestors, even in a network that
preserves point-to-point order there is no guarantee that the requests will reach the dirty node in
the same order as they reached the home. Which entity provides the globally consistent serializa-
tion in this case, and how is this orchestrated with multiple operations for this block simulta-
neously in flight and potentially needing service from different nodes? 

Several types of solutions can be used to ensure serialization to a location. Most of them use
additional directory states called busy states (sometimes called pending states as well). A block
being in busy state at the directory indicates that a previous request that came to the home for that
block is still in progress and has not been completed. When a request comes to the home and
finds the directory state to be busy, serialization may be provided by one of the following mecha-
nisms. 

Buffer at the home. The request may be buffered at the home as a pending request until the 
previous request that is in progress for the block has completed, regardless of whether the 
previous request was forwarded to a dirty node or a strict request-reply protocol was used (the 
home should of course process requests for other blocks in the meantime). This ensures that 
requests will be serviced in FIFO order of arrival at the home, but it reduces concurrency. The 
buffering must be done regardless of whether a strict request-reply protocol is used or the pre-
vious request was forwarded to a dirty node, and this method requires that the home be noti-
fied when a write has completed. More importantly, it raises the danger of the input buffer at 
the home overflowing, since it buffers pending requests for all blocks for which it is the 
home. One strategy in this case is to let the input buffer overflow into main memory, thus pro-
viding effectively infinite buffering as long as there is enough main memory, and thus avoid 
potential deadlock problems. This scheme is used in the MIT Alewife prototype [ABC+95]. 

Buffer at requestors. Pending requests may be buffered not at the home but at the requestors 
themselves, by constructing a distributed linked list of pending requests. This is clearly a nat-
ural extension of a cache-based approach which already has the support for distributed linked 
lists, and is used in the SCI protocol [Gus92,IEE93]. Now the number of pending requests 
that a node may need to keep track off is small and determined only by it. 

NACK and retry. An incoming request may be NACKed by the home (i.e. negative acknowl-
edgment sent to the requestor) rather than buffered when the directory state indicates that a 
previous request for the block is still in progress. The request will be retried later, and will be 
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serialized in the order in which it is actually accepted by the directory (attempts that are 
NACKed do not enter in the serialization order). This is the approach used in the Origin2000 
[LaL97]. 

Forward to the dirty node: If a request is still outstanding at the home because it has been for-
warded to a dirty node, subsequent requests for that block are not buffered or NACKed. Rather, 
they are forwarded to the dirty node as well, which determines their serialization. The order of 
serialization is thus determined by the home node when the block is clean at the home, and by the 
order in which requests reach the dirty node when the block is dirty. If the block leaves the dirty 
state before a forwarded request reaches it (for example due to a writeback or a previous for-
warded request), the request may be NACKed by the dirty node and retried. It will be serialized at 
the home or a dirty node when the retry is successful. This approach was used in the Stanford 
DASH protocol [LLG+90,LLJ+93].

Unfortunately, with multiple copies in a distributed network simply identifying a serializing
entity is not enough. The problem is that the home or serializing agent may know when its
involvement with a request is done, but this does not mean that the request has completed with
respect to other nodes. Some remaining transactions for the next request may reach other nodes
and complete with respect to them before some transactions for the previous request. We will see
concrete examples and solutions in our case study protocols. Essentially, we will learn that in
addition to a global serializing entity for a block individual nodes (e.g. requestors) should also
preserve a local serialization with respect to each block; for example, they should not apply an
incoming transaction to a block while they still have a transaction outstanding for that block. 

Sequential Consistency: Serialization across Locations 

Recall the two most interesting components of preserving the sufficient conditions for satisfying
sequential consistency: detecting write completion (needed to preserve program order), and
ensuring write atomicity. In bus-based machine, we saw that the restricted nature of the intercon-
nect allows the requestor to detect write completion early: the write can be acknowledged to the
processor as soon as it obtains access to the bus, without needing to wait for it to actually invali-
date or update other processors (Chapter 6). By providing a path through which all transactions
pass and ensuring FIFO ordering among writes beyond that, the bus also makes write atomicity
quite natural to ensure. In a machine that has a general distributed network but does not cache
shared data, detecting the completion of a write requires an explicit acknowledgment from the
memory that holds the location (Chapter 7). In fact, the acknowledgment can be generated early,
once we know the write has reached that node and been inserted in a FIFO queue to memory; at
this point, it is clear that all subsequent reads will no longer see the old value and we can assume
the write has completed. Write atomicity falls out naturally: a write is visible only when it
updates main memory, and at that point it is visible to all processors. 

Write Completion. As mentioned in the introduction to this chapter, with multiple copies in a
distributed network it is difficult to assume write completion before the invalidations or updates
have actually reached all the nodes. A write cannot be acknowledged by the home once it has
reached there and assume to have effectively completed. The reason is that a subsequent write Y
in program order may be issued by the processor after receiving such an acknowledgment for a
previous write X, but Y may become visible to another processor before X thus violating SC.
This may happen because the transactions corresponding to Y took a different path through the
network or if the network does not provide point-to-point order. Completion can only be assumed
once explicit acknowledgments are received from all copies. Of course, a node with a copy can
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generate the acknowledgment as soon as it receives the invalidation—before it is actually applied
to the caches—as long as it guarantees the appropriate ordering within its cache hierarchy (just as
in Chapter 6). To satisfy the sufficient conditions for SC, a processor waits after issuing a write
until all acknowledgments for that write have been received, and only then proceeds past the
write to a subsequent memory operation. 

Write atomicity. Write atomicity is similarly difficult when there are multiple copies with no
shared path to them. To see this, Figure 8-14 shows how an example from Chapter 5 (Figure 5-
11) that relies on write atomicity can be violated. The constraints of sequential consistency have

to be satisfied by orchestrating network transactions appropriately. A common solution for write
atomicity in an invalidation-based scheme is for the current owner of a block (the main-memory
module or the processor holding the dirty copy in its cache) to provide the appearance of atomic-
ity, by not allowing access to the new value by any process until all invalidation acknowledg-
ments for the write have returned. Thus, no processor can see the new value until it is visible to
all processors. Maintaining the appearance of atomicity is much more difficult for update-based
protocols, since the data are sent to the readers and hence accessible immediately. Ensuring that
readers do not read the value until it is visible to all of them requires a two-phase interaction. In
the first-phase the copies of that memory block are updated in all processors’ caches, but those
processors are prohibited from accessing the new value. In the second phase, after the first phase
is known to have completed through acknowledgments as above, those processors are sent mes-
sages that allow them to use the new value. This makes update protocols even less attractive for
scalable directory-based machines than for bus-based machines.

Interconnection Network

Figure  8-14  Violation of write atomicity in a scalable system with caches. 

Assume that the network preserves point-to-point order, and every cache starts out with copies of A and B initialized to 0. Under SC,
we expect P3 to print 1 as the value of A. However, P2 sees the new value of A, and jumps out of its while loop to write B even before
it knows whether the previous write of A by P1 has become visible to P3. This write of B becomes visible to P3 before the write of A
by P1, because the latter was delayed in a congested part of the network that the other transactions did not have to go through at all.
Thus, P3 reads the new value of B but the old value of A.
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Deadlock

In Chapter 7 we discussed an important source of potential deadlock in request-reply protocols
such as those of a shared address space: the filling up of a finite input buffer. Three solutions were
proposed for deadlock:

Provide enough buffer space, either by buffering requests at the requestors using distributed 
linked lists, or by providing enough input buffer space (in hardware or main memory) for the 
maximum number of possible incoming transactions. Among cache-coherent machines, this 
approach is used in the MIT Alewife and the Hal S1. 

Use NACKs. 

Provide separate request and reply networks, whether physical or virtual (see Chapter 10), 
to prevent backups in the potentially poorly behaved request network from blocking the 
progress of well-behaved reply transactions.

Two separate networks would suffice in a protocol that is strictly request-reply; i.e. in which all
transactions can be separated into requests and replies such that a request transaction generates
only a reply (or nothing), and a reply generates no further transactions. However, we have seen
that in the interest of performance many practical coherence protocols use forwarding and are not
always strictly request-reply, breaking the deadlock-avoidance assumption. In general, we need
as many networks (physical or virtual) as the longest chain of different transaction types needed
to complete a given operation. However, using multiple networks is expensive and many of them
will be under-utilized. In addition to the approaches that provide enough buffering, two different
approaches can be taken to dealing with deadlock in protocols that are not strict request-reply.
Both rely on detecting situations when deadlock appears possible, and resorting to a different
mechanism to avoid deadlock in these cases. That mechanism may be NACKs, or reverting to a
strict request-reply protocol. 

The potential deadlock situations may be detected in many ways. In the Stanford DASH
machine, a node conservatively assumes that deadlock may be about to happen when both its
input request and output request buffers fill up beyond a threshold, and the request at the head of
the input request queue is one that may need to generate further requests like interventions or
invalidations (and is hence capable of causing deadlock). At this point, the node takes such
requests off the input queue one by one and sends NACK messages back for them to the request-
ors. It does this until the request at the head is no longer one that can generate further requests, or
until it finds that the output request queue is no longer full. The NACK’ed requestors will retry
their requests later. An alternative detection strategy is when the output request buffer is full and
has not had a transaction removed from it for T cycles.

In the other approach, potential deadlock situations are detected in much the same way. However,
instead of sending a NACK to the requestor, the node sends it a reply asking it to send the inter-
vention or invalidation requests directly itself; i.e. it dynamically backs off to a strict request-
reply protocol, compromising performance temporarily but not allowing deadlock cycles. The
advantage of this approach is that NACKing is a statistical rather than robust solution to such
problems, since requests may have to be retried several times in bad situations. This can lead to
increased network traffic and increased latency to the time the operation completes. Dynamic
back-off also has advantages related to livelock, as we shall see next, and is used in the
Origin2000 protocol. 
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Livelock 

Livelock and starvation are taken care of naturally in protocols that provide enough FIFO buffer-
ing of requests, whether centralized or through distributed linked lists. In other cases, the classic
livelock problem of multiple processors trying to write a block at the same time is taken care of
by letting the first request to get to the home go through but NACKing all the others. 

NACKs are useful mechanisms for resolving race conditions without livelock. However, when
used to ease input buffering problems and avoid deadlock, as in the DASH solution above, they
succeed in avoiding deadlock but have the potential to cause livelock. For example, when the
node that detects a possible deadlock situation NACKs some requests, it is possible that all those
requests are retried immediately. With extreme pathology, the same situation could repeat itself
continually and livelock could result. (The actual DASH implementation steps around this prob-
lem by using a large enough request input buffer, since both the number of nodes and the number
of possible outstanding requests per node are small. However, this is not a robust solution for
larger, more aggressive machines that cannot provide enough buffer space.) The alternative solu-
tion to deadlock, of switching to a strict request-reply protocol in potential deadlock situations,
does not have this problem. It guarantees forward progress and also removes the request-request
dependence at the home once and for all.

Starvation

The actual occurrence of starvation is usually very unlikely in well-designed protocols; however,
it is not ruled out as a possibility. The fairest solution to starvation is to buffer all requests in
FIFO order; however, this can have performance disadvantages, and for protocols that do not do
this avoiding starvation can be difficult to guarantee. Solutions that use NACKs and retries are
often more susceptible to starvation. Starvation is most likely when many processors repeatedly
compete for a resource. Some may keep succeeding, while one or more may be very unlucky in
their timing and may always get NACKed. 

A protocol could decide to do nothing about starvation, and rely on the variability of delays in the
system to not allow such an indefinitely repeating pathological situation to occur. The DASH
machine uses this solution, and times out with a bus error if the situation persists beyond a thresh-
old time. Or a random delay can be inserted between retries to further reduce the small probabil-
ity of starvation. Finally, requests may be assigned priorities based on the number of times they
have been NACK’ed, a technique that is used in the Origin2000 protocol. 

Having understood the basic directory organizations and high-level protocols, as well as the key
performance and correctness issues in a general context, we are now ready to dive into actual
case studies of memory-based and cache-based protocols. We will see what protocol states and
activities look like in actual realizations, how directory protocols interact with and are influenced
by the underlying processing nodes, what real scalable cache-coherent machines look like, and
how actual protocols trade off performance with the complexity of maintaining correctness and
of debugging or validating the protocol. 
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8.6 Memory-based Directory Protocols: The SGI Origin System

We discuss flat, memory-based directory protocols first, using the SGI Origin multiprocessor
series as a case study. At least for moderate scale systems, this machine uses essentially a full bit
vector directory representation. A similar directory representation but slightly different protocol
was also used in the Stanford DASH multiprocessor [LLG+90], a research prototype which was
the first distributed memory machine to incorporate directory-based coherence. We shall follow a
similar discussion template for both this and the next case study (the SCI protocol as used in the
Sequent NUMA-Q). We begin with the basic coherence protocol, including the directory struc-
ture, the directory and cache states, how operations such as reads, writes and writebacks are han-
dled, and the performance enhancements used. Then, we briefly discuss the position taken on the
major correctness issues, followed by some prominent protocol extensions for extra functionality.
Having discussed the protocol, we describe the rest of the machine as a multiprocessor and how
the coherence machinery fits into it. This includes the processing node, the interconnection net-
work, the input/output, and any interesting interactions between the directory protocol and the
underlying node. We end with some important implementation issues—illustrating how it all
works and the important data and control pathways—the basic performance characteristics
(latency, occupancy, bandwidth) of the protocol, and the resulting application performance for
our sample applications. 

8.6.1 Cache Coherence Protocol

The Origin system is composed of a number of processing nodes connected by a switch-based
interconnection network (see Figure 8-15). Every processing node contains two processors, each
with first- and second-level caches, a fraction of the total main memory on the machine, an I/O
interface, and a single-chip communication assist or coherence controller called the Hub which
implements the coherence protocol. The Hub is integrated into the memory system. It sees all
cache misses issued by the processors in that node, whether they are to be satisfied locally or
remotely, receives transactions coming in from the network (in fact, the Hub implements the net-
work interface as well), and is capable of retrieving data from the local processor caches. 

In terms of the performance issues discussed in Section 8.5.1, at the protocol level the
Origin2000 uses reply forwarding as well as speculative memory operations in parallel with
directory lookup at the home. At the machine organization level, the decision in Origin to have
two processors per node is driven mostly by cost: Several other components on a node (the Hub,
the system bus, etc.) are shared between the processors, thus amortizing their cost while hope-
fully still providing substantial bandwidth per processor. The Origin designers believed that the
latency disadvantages of a snoopy bus discussed earlier outweighed its advantages (see
Section 8.5.1), and chose not to maintain snoopy coherence between the two processors within a
node. Rather, the bus is simply a shared physical link that is multiplexed between the two proces-
sors in a node. This sacrifices the potential advantage of cache to cache sharing within the node,
but helps reduce latency. With a Hub shared between two processors, combining of requests to
the network (not the protocol) could nonetheless have been supported, but is not due to the addi-
tional implementation cost. When discussing the protocol in this section, let us assume for sim-
plicity that each node contains only one processor, its cache hierarchy, a Hub, and main memory.
We will see the impact of using two processors per node on the directory structure and protocol
later. 
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Other than the use of reply forwarding, the most interesting aspects of the Origin protocol are its
use of busy states and NACKs to resolve race conditions and provide serialization to a location,
and the way in which it handles race conditions caused by writebacks. However, to illustrate how
a complete protocol works in light of these races, as well as the performance enhancement tech-
niques used in different cases, we will describe how it deals with simple read and write requests
as well. 

Directory Structure and Protocol States

The directory information for a memory block is maintained at the home node for that block.
How the directory structure deals with the fact that each node is two processors and how the
directory organization changes with machine size are interesting aspects of the machine, and we
shall discuss these after the protocol itself. For now, we can assume a full bit vector approach like
in the simple protocol of Section 8.3. 

In the caches, the protocol uses the states of the MESI protocol, with the same meanings as used
in Chapter 5. At the directory, a block may be recorded as being in one of seven states. Three of
these are basic states: (i) Unowned, or no copies in the system, (ii) Shared, i.e. zero or more read-
only copies, their whereabouts indicated by the presence vector, and (iii) Exclusive, or one read-
write copy in the system, indicated by the presence vector. An exclusive directory state means the
block might be in either dirty or clean-exclusive state in the cache (i.e. the M or E states of the
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MESI protocol). Three other states are busy states. As discussed earlier, these imply that the
home has received a previous request for that block, but was not able to complete that operation
itself (e.g. the block may have been dirty in a cache in another node); transactions to complete the
request are still in progress in the system, so the directory at the home is not yet ready to handle a
new request for that block. The three busy states correspond to three different types of requests
that might still be thus in progress: a read, a read-exclusive or write, and an uncached read (dis-
cussed later). The seventh state is a poison state, which is used to implement a lazy TLB shoot-
down method for migrating pages among memories (Section 8.6.4). Given these states, let us see
how the coherence protocol handles read requests, write requests and writeback requests from a
node. The protocol does not rely on any order preservation among transactions in the network,
not even point-to-point order among transactions between the same nodes. 

Handling Read Requests

Suppose a processor issues a read that misses in its cache hierarchy. The address of the miss is
examined by the local Hub to determine the home node, and a read request transaction is sent to
the home node to look up the directory entry. If the home is local, it is looked up by the local Hub
itself. At the home, the data for the block is accessed speculatively in parallel with looking up the
directory entry. The directory entry lookup, which completes a cycle earlier than the speculative
data access, may indicate that the memory block is in one of several different states—shared,
unowned, busy, or exclusive—and different actions are taken in each case. 

Shared or unowned: This means that main memory at the home has the latest copy of the data 
(so the speculative access was successful). If the state is shared, the bit corresponding to the 
requestor is set in the directory presence vector; if it is unowned, the directory state is set to 
exclusive. The home then simply sends the data for the block back to the requestor in a reply 
transaction. These cases satisfy a strict request-reply protocol. Of course, if the home node is 
the same as the requesting node, then no network transactions or messages are generated and 
it is a locally satisfied miss. 

Busy: This means that the home should not handle the request at this time since a previous 
request has been forwarded from the home and is still in progress. The requestor is sent a neg-
ative acknowledge (NACK) message, asking it to try again later. A NACK is categorized as a 
reply, but like an acknowledgment it does not carry data. 

Exclusive: This is the most interesting case. If the home is not the owner of the block, the 
valid data for the block must be obtained from the owner and must find their way to the 
requestor as well as to the home (since the state will change to shared). The Origin protocol 
uses reply forwarding to improve performance over a strict request-reply approach: The 
request is forwarded to the owner, which replies directly to the requestor, sending a revision 
message to the home. If the home itself is the owner, then the home can simply reply to the 
requestor, change the directory state to shared, and set the requestor’s bit in the presence vec-
tor. In fact, this case is handled just as if the owner were not the home, except that the “mes-
sages” between home and owner do not translate to network transactions. 

Let us look in a little more detail at what really happens when a read request arrives at the home
and finds the state exclusive. (This and several other cases are also shown pictorially in Figure 8-
16.) As already mentioned, the main memory block is accessed speculatively in parallel with the
directory. When the directory state is discovered to be exclusive, it is set to busy-exclusive state.
This is a general principle used in the coherence protocol to prevent race conditions and provide
serialization of requests at the home. The state is set to busy whenever a request is received that
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cannot be satisfied by the main memory at the home. This ensures that subsequent requests for
that block that arrive at the home will be NACK’ed until they can be guaranteed to see the consis-
tent final state, rather than having to be buffered at the home. For example, in the current situation
we cannot set the directory state to shared yet since memory does not yet have an up to date copy,
and we do not want to leave it as exclusive since then a subsequent request might chase the same
exclusive copy of the block as the current request, requiring that serialization be determined by
the exclusive node rather than by the home (see earlier discussion of serialization options). 

Having set the directory entry to busy state, the presence vector is changed to set the requestor’s
bit and unset the current owner’s. Why this is done at this time will become clear when we exam-
ine writeback requests. Now we see an interesting aspect of the protocol: Even though the direc-
tory state is exclusive, the home optimistically assumes that the block will be in clean-exclusive
rather than dirty state in the owner’s cache (so the block in main memory is valid), and sends the
speculatively accessed memory block as a speculative reply to the requestor. At the same time,
the home forwards the intervention request to the owner. The owner checks the state in its cache,
and performs one of the following actions: 

• If the block is dirty, it sends a response with the data directly to the requestor and also a revi-
sion message containing the data to the home. At the requestor, the response overwrites the
speculative transfer that was sent by the home. The revision message with data sent to the
home is called a sharing writeback, since it writes the data back from the owning cache to
main memory and tells it to set the block to shared state. 

• If the block is clean-exclusive, the response to the requestor and the revision message to the
home do not contain data since both already have the latest copy (the requestor has it via the
speculative reply). The response to the requestor is simply a completion acknowledgment,
and the revision message is called a downgrade since it simply asks the home to downgrade
the state of the block to shared. 

In either case, when the home receives the revision message it changes the state from busy to
shared. 

You may have noticed that the use of speculative replies does not have any significant perfor-
mance advantage in this case, since the requestor has to wait to know the real state at the exclu-
sive node anyway before it can use the data. In fact, a simpler alternative to this scheme would be
to simply assume that the block is dirty at the owner, not send a speculative reply, and always
have the owner send back a response with the data regardless of whether it has the block in dirty
or clean-exclusive state. Why then does Origin use speculative replies in this case? There are two
reasons, which illustrate both how a protocol is influenced by the use of existing processors and
their quirks as well as how different protocol optimizations influence each other. First, the
R10000 processor it uses happens to not return data when it receives in intervention to a clean-
exclusive (rather than dirty) block. Second, speculative replies enable a different optimization
used in the Origin protocol, which is to allow a processor to simply drop a clean-exclusive block
when it is replaced from the cache, rather than write it back to main memory, since main memory
will in any case send a speculative reply when needed (see Section 8.6.4). 

Handling Write Requests

As we saw in Chapter 5, write “misses” that invoke the protocol may generate either read-exclu-
sive requests, which request both data and ownership, or upgrade requests which request only
ownership since the requestor’s data is valid. In either case, the request goes to the home, where
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the directory state is looked up to determine what actions to take. If the state at the directory is
anything but unowned (or busy) the copies in other caches must be invalidated, and to preserve
the ordering model invalidations must be explicitly acknowledged. 

As in the read case, a strict request-reply protocol, intervention forwarding, or reply forwarding
can be used (see Exercise 8.2), and Origin chooses reply forwarding to reduce latency: The home
updates the directory state and sends the invalidations directly; it also includes the identity of the
requestor in the invalidations so they are acknowledged directly back to the requestor itself. The
actual handling of the read exclusive and upgrade requests depends on the state of the directory
entry when the request arrives; i.e. whether it is unowned, shared, exclusive or busy. 

Figure  8-16  Pictorial depiction of protocol actions in response to requests in the Origin multiprocessor. 

The case or cases under consideration in each case are shown below the diagram, in terms of the type of request and the state of the
directory entry when the request arrives at the home. The messages or types of transactions are listed next to each arc. Since the same
diagram represents different request type and directory state combinations, different message types are listed on each arc, separated by
slashes. 
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the other request that made the directory
busy, see text)
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Unowned: If the request is an upgrade, the state being unowned means that the block has been 
replaced from the requestor’s cache, and the directory notified, since it sent the upgrade 
request (this is possible since the Origin protocol does not assume point-to-point network 
order). An upgrade is no longer the appropriate request, so it is NACKed. The write operation 
will be retried, presumably as a read-exclusive. If the request is a read-exclusive, the directory 
state is changed to dirty and the requestor’s presence bit is set. The home replies with the data 
from memory. 

Shared: The block must be invalidated in the caches that have copies, if any. The Hub at the 
home first makes a list of sharers that are to be sent invalidations, using the presence vector. It 
then sets the directory state to exclusive and sets the presence bit for the requestor. This 
ensures that subsequent requests for the block will be forwarded to the requestor. If the 
request was a read-exclusive, the home next sends a reply to the requestor (called an “exclu-
sive reply with invalidations pending”) which also contains the number of sharers from whom 
to expect invalidation acknowledgments. If the request was an upgrade, the home sends an 
“upgrade acknowledgment with invalidations pending” to the requestor, which is similar but 
does not carry the data for the block. In either case, the home next sends invalidation requests 
to all the sharers, which in turn send acknowledgments to the requestor (not the home). The 
requestor waits for all acknowledgments to come in before it “closes” or completes the oper-
ation. Now, if a new request for the block comes to the home, it will see the directory state as 
exclusive, and will be forwarded as an intervention to the current requestor. This current 
requestor will not handle the intervention immediately, but will buffer it until it has received 
all acknowledgments for its own request and closed the operation. 

Exclusive: If the request is an upgrade, then an exclusive directory state means another write 
has beaten this request to the home and changed the value of the block in the meantime. An 
upgrade is no longer the appropriate request, and is NACK’ed. For read-exclusive requests, 
the following actions are taken. As with reads, the home sets the directory to a busy state, sets 
the presence bit of the requestor, and sends a speculative reply to it. An invalidation request is 
sent to the owner, containing the identity of the requestor (if the home is the owner, this is just 
an intervention in the local cache and not a network transaction). If the owner has the block in 
dirty state, it sends a “transfer of ownership” revision message to the home (no data) and a 
response with the data to the requestor. This response overrides the speculative reply that the 
requestor receives from the home. If the owner has the block in clean-exclusive state, it relies 
on the speculative reply from the home and simply sends an acknowledgment to the requestor 
and a “transfer of ownership” revision to the home. 

Busy: the request is NACK’ed as in the read case, and must try again. 

Handling Writeback Requests and Replacements

When a node replaces a block that is dirty in its cache, it generates a writeback request. This
request carries data, and is replied to with an acknowledgment by the home. The directory cannot
be in unowned or shared state when a writeback request arrives, because the writeback requestor
has a dirty copy (a read request cannot change the directory state to shared in between the gener-
ation of the writeback and its arrival at the home to see a shared or unowned state, since such a
request would have been forwarded to the very node that is requesting the writeback and the
directory state would have been set to busy). Let us see what happens when the writeback request
reaches the home for the two possible directory states: exclusive and busy. 

Exclusive: The directory state transitions from exclusive to unowned (since the only cached 
copy has been replaced from its cache), and an acknowledgment is returned. 
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Busy: This is an interesting race condition. The directory state can only be busy because an 
intervention for the block (due to a request from another node Y, say) has been forwarded to 
the very node X that is doing the writeback. The intervention and writeback have crossed 
each other. Now we are in a funny situation. The other operation from Y is already in progress 
and cannot be undone. We cannot let the writeback be dropped, or we would lose the only 
valid copy of the block. Nor can we NACK the writeback and retry it after the operation from 
Y completes, since then Y’s cache will have a valid copy while a different dirty copy is being 
written back to memory from X’s cache! The protocol solves this problem by essentially 
combining the two operations. The writeback that finds the directory state busy changes the 
state to either shared (if the state was busy-shared, i.e. the request from Y was for a read copy) 
or exclusive (if it was busy-exclusive). The data returned in the writeback is then forwarded 
by the home to the requestor Y. This serves as the response to Y, instead of the response it 
would have received directly from X if there were no writeback. When X receives an inter-
vention for the block, it simply ignores it (see Exercise 8.5). The directory also sends a write-
back-acknowledgment to X. Node Y’s operation is complete when it receives the response, 
and the writeback is complete when X receives the writeback-acknowledgment. We will see 
an exception to this treatment in a more complex case when we discuss the serialization of 
operations. In general, writebacks introduce many subtle situations into coherence protocols.

If the block being replaced from a cache is in shared state, we mentioned in Section 8.3 that the
node may or may not choose to send a replacement hint message back to the home, asking the
home to clear its presence bit in the directory. Replacement hints avoid the next invalidation to
that block, but they incur assist occupancy and do not reduce traffic. In fact, if the block is not
written again by a different node then the replacement hint is a waste. The Origin protocol
chooses not to use replacement hints. 

In all, the number of transaction types for coherent memory operations in the Origin protocol is 9
requests, 6 invalidations and interventions, and 39 replies. For non-coherent operations such as
uncached memory operations, I/O operations and special synchronization support, the number of
transactions is 19 requests and 14 replies (no invalidations or interventions). 

8.6.2 Dealing with Correctness Issues

So far we have seen what happens at different nodes upon read and write misses, and how some
race conditions—for example between requests and writebacks—are resolved. Let us now take a
different cut through the Origin protocol, examining how it addresses the correctness issues dis-
cussed in Section 8.5.2 and what features the machine provides to deal with errors that occur. 

Serialization to a Location for Coherence

The entity designated to serialize cache misses from different processors is the home. Serializa-
tion is provided not by buffering requests at the home until previous ones have completed or by
forwarding them to the owner node even when the directory is in a busy state, but by NACKing
requests from the home when the state is busy and causing them to be retried. Serialization is
determined by the order in which the home accepts the requests—i.e. satisfies them itself or for-
wards them—not the order in which they first arrive at the home. 

The earlier general discussion of serialization suggested that more was needed for coherence on a
given location than simply a global serializing entity, since the serializing entity does not have
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full knowledge of when transactions related to a given operation are completed at all the nodes
involved. Having understood a protocol in some depth, we are now ready examine some concrete
examples of this second problem [Len92] and see how it might be addressed. 

Example  8-1 Consider the following simple piece of code. The write of A may happen either

before the first read of A or after it, but should be serializable with respect to it. The
second read of A should in any case return the value written by P2. However, it is
quite possible for the effect of the write to get lost if we are not careful. Show how
this might happen in a protocol like the Origin’s, and discuss possible solutions. 

Answer Figure 8-17 shows how the problem can occur, with the text in the figure explaining

the transactions, the sequence of events, and the problem. There are two possible
solutions. An unattractive one is to have read replies themselves be acknowledged
explicitly, and let the home go on to the next request only after it receives this
acknowledgment. This causes the same buffering and deadlock problems as before,

P1 P2

rd A (i) wr A 

BARRIER BARRIER

rd A (ii)

2

4

5

Home

P1 P2

1. P1 issues read request to home node for A

2. P2 issues read-excl. request to home (for the write of A). Home 
(serializer) won’t process it until it is done with read

3. Home receives 1, and in response sends reply to P1 (and sets 
directory presence bit). Home now thinks read is complete 
(there are no acknowledgments for a read reply). Unfortunately, 
the reply does not get to P1 right away. 

4. In response to 2, home sends invalidate to P1; it reaches P1 before 
transaction 3 (there is no point-to-point order assumed in Ori-
gin, and in any case the invalidate is a request and 3 is a reply).

5. P1 receives and applies invalidate, sends ack to home.

6. Home sends data reply to P2 corresponding to request 2.

Finally, the read reply (3) reaches P1, and overwrites the invalidated 
block. 

When P1 reads A after the barrier, it reads this old value rather than 
seeing an invalid block and fetching the new value. The effect 
of the write by P2 is lost as far as P1 is concerned. 

3

6
1

Figure  8-17  Example showing how a write can be lost even though home thinks it is doing things in order. 

Transactions associated with the first read operation are shown with dotted lines, and those associated with the write operation are
shown in solid lines. Three solid bars going through a transaction indicates that it is delayed in the network. 
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further violates the request-reply nature of the protocol, and leads to long delays.
The more likely solution is to ensure that a node that has a request outstanding for a
block, such as P1, does not allow access by another request, such as the
invalidation, to that block in its cache until its outstanding request completes. P1
may buffer the invalidation request, and apply it only after the read reply is received
and completed. Or P1 can apply the invalidation even before the reply is received,
and then consider the read reply invalid (a NACK) when it returns and retry it.
Origin uses the former solution, while the latter is used in DASH. The buffering
needed in Origin is only for replies to requests that this processor generates, so it is
small and does not cause deadlock problems. 

Example  8-2 Not only the requestor, but also the home may have to disallow new operations to
be actually applied to a block before previous ones have completed as far as it is
concerned. Otherwise directory information may be corrupted. Show an example
illustrating this need and discuss solutions. 

Answer This example is more subtle and is shown in Figure 8-18. The node issuing the
write request detects completion of the write (as far is its involvement is concerned)
through acknowledgments before processing another request for the block. The
problem is that the home does not wait for its part of the write operation—which
includes waiting for the revision message and directory update—to complete before
it allows another access (here the writeback) to be applied to the block. The Origin

protocol solves this problem through its busy state: The directory will be in busy-
exclusive state when the writeback arrives before the revision message. When the
directory detects that the writeback is coming from the same node that put the
directory into busy-exclusive state, the writeback is NACKed and must be retried.
(Recall from the discussion of handling writebacks that the writeback was treated

1

Home

P1 P2

2 4
3b

Initial Condition: block is in dirty state in P1’s cache

1. P2 sends read-exclusive request to home.

2. Home forwards request to P1 (dirty node).

3. P1 sends data reply to P2 (3a), and “ownership-transfer” 
revise message to home to change owner to P2 (3b). 

4. P2, having received its reply, considers write complete. 
Proceeds, but incurs a replacement of the just-dirtied block, 
causing it to be written back in transaction 4. 

This writeback is received by the home before the owner-
ship transfer request from P1 (even point-to-point network 
order wouldn’t help), and the block is written into memory. 
Then, when the revise message arrives at the home, the 
directory is made to point to P2 as having the dirty copy. 
But this is untrue, and our protocol is corrupted. 

3a

Figure  8-18  Example showing how directory information can be corrupted if a node does not wait for a previous request to be
responded to before it allows a new access to the same block. 
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differently if the request that set the state to busy came from a different node than
the one doing the writeback; in that case the writeback was not NACK’ed but sent
on as the reply to the requestor.) 

These examples illustrate the importance of another general requirement that nodes must locally
fulfil for proper serialization, beyond the existence of a serializing entity: Any node, not just the
serializing entity, should not apply a transaction corresponding to a new memory operation to a
block until a previously outstanding memory operation on that block is complete as far as that
node’s involvement is concerned. 

Preserving the Memory Consistency Model

The dynamically scheduled R10000 processor allows independent memory operations to issue
out of program order, allowing multiple operations to be outstanding at a time and obtaining
some overlap among them. However, it ensures that operations complete in program order, and in
fact that writes leave the processor environment and become visible to the memory system in
program order with respect to other operations, thus preserving sequential consistency
(Chapter 11 will discuss the mechanisms further). The processor does not satisfy the sufficient
conditions for sequential consistency spelled out in Chapter 5, in that it does not wait to issue the
next operation till the previous one completes, but it satisfies the model itself.1

Since the processor guarantees SC, the extended memory hierarchy can perform any reorderings
to different locations that it desires without violating SC. However, there is one implementation
consideration that is important in maintaining SC, which is due to the Origin protocol’s interac-
tions with the processor. Recall from Figure 8-16(d) what happens on a write request (read exclu-
sive or upgrade) to a block in shared state. The requestor receives two types of replies: (i) an
exclusive reply from the home, discussed earlier, whose role really is to indicate that the write has
been serialized at memory with respect to other operations for the block, and (ii) invalidation
acknowledgments indicating that the other copies have been invalidated and the write has com-
pleted. The microprocessor, however, expects only a single reply to its write request, as in a uni-
processor system, so these different replies have to be dealt with by the requesting Hub. To
ensure sequential consistency, the Hub must pass the reply on to the processor—allowing it to
declare completion—only when both the exclusive reply and the invalidation acknowledgments
have been received. It must not pass on the reply simply when the exclusive reply has been
received, since that would allow the processor to complete later accesses to other locations even
before all invalidations for this one have been acknowledged, violating sequential consistency.
We will see in Section 9.2 that such violations are useful when more relaxed memory consistency
models than sequential consistency are used. Write atomicity is provided as discussed earlier: A
node does not allow any incoming accesses to a block for which invalidations are outstanding
until the acknowledgments for those invalidations have returned. 

1.  This is true for accesses that are under the control of the coherence protocol. The processor also supports
memory operations that are not visible to the coherence protocol, called non-coherent memory operations,
for which the system does not guarantee any ordering: it is the user’s responsibility to insert synchronization
to preserve a desired ordering in these cases.
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Deadlock, Livelock and Starvation

The Origin uses finite input buffers and a protocol that is not strict request-reply. To avoid dead-
lock, it uses the technique of reverting to a strict request-reply protocol when it detects a high
contention situation that may cause deadlock, as discussed in Section 8.5.2. Since NACKs are not
used to alleviate contention, livelock is avoided in these situations too. The classic livelock prob-
lem due to multiple processors trying to write a block at the same time is avoided by using the
busy states and NACKs. The first of these requests to get to the home sets the state to busy and
makes forward progress, while others are NACK’ed and must retry. 

In general, the philosophy of the Origin protocol is two-fold: (i) to be “memory-less”, i.e. every
node reacts to incoming events using only local state and no history of previous events; and (ii) to
not have an operation hold globally shared resources while it is requesting other resources. The
latter leads to the choices of NACKing rather than buffering for a busy resource, and helps pre-
vent deadlock. These decisions greatly simplify the hardware, yet provide high performance in
most cases. However, since NACKs are used rather than FIFO ordering, there is still the problem
of starvation. This is addressed by associating priorities with requests. The priority is a function
of the number of times the request has been NACK’ed, so starvation should be avoided.1 

Error Handling

Despite a correct protocol, hardware and software errors can occur at runtime. These can corrupt
memory or write data to different locations than expected (e.g. if the address on which to perform
a write becomes corrupted). The Origin system provides many standard mechanisms to handle
hardware errors on components. All caches and memories are protected by error correction codes
(ECC), and all router and I/O links protected by cyclic redundancy checks (CRC) and a hardware
link-level protocol that automatically detects and retries failures. In addition, the system provides
mechanisms to contain failures within the part of the machine in which the program that caused
the failure is running. Access protection rights are provided on both memory and I/O devices,
preventing unauthorized nodes from making modifications. These access rights also allow the
operating system to be structured into cells or partitions. A cell is a number of nodes, configured
at boot time. If an application runs within a cell, it may be disallowed from writing memory or I/
O outside that cell. If the application fails and corrupts memory or I/O, it can only affect other
applications or the system running within that cell, and cannot harm code running in other cells.
Thus, a cell is the unit of fault containment in the system. 

1.  The priority mechanism works as follows. The directory entry for a block has a “current” priority associ-
ated with it. Incoming transactions that will not cause the directory state to become busy are always ser-
viced. Other transactions are only potentially serviced if their priority is greater than or equal to the current
directory priority. If such a transaction is NACK’ed (e.g. because the directory is in busy state when it
arrives), the current priority of the directory is set to be equal to that of the NACK’ed request. This ensures
that the directory will no longer service another request of lower priority until this one is serviced upon
retry. To prevent a monotonic increase and “topping out” of the directory entry priority, it is reset to zero
whenever a request of priority greater than or equal to it is serviced.
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8.6.3 Details of Directory Structure

While we assumed a full bit-vector directory organization so far for simplicity, the actual struc-
ture is a little more complex for two reasons: first, to deal with the fact that there are two proces-
sors per node, and second, to allow the directory structure to scale to more than 64 nodes. Bits in
the bit vector usually correspond to nodes, not individual processors. However, there are in fact
three possible formats or interpretations of the directory bits. If a block is in an exclusive state in
a processor cache, then the rest of the directory entry is not a bit vector with one bit on but rather
contains an explicit pointer to that specific processor, not node. This means that interventions for-
warded from the home are targeted to a specific processor. Otherwise, for example if the block is
cached in shared state, the directory entry is interpreted as a bit vector. There are two directory
entry sizes: 16-bit and 64-bit (in the 16-bit case, the directory entry is stored in the same DRAM
as the main memory, while in the 64-bit case the rest of the bits are in an extended directory
memory module that is looked up in parallel). Even though the processors within a node are not
cache-coherent, the unit of visibility to the directory in this format is a node or Hub, not a proces-
sor as in the case where the block is in an exclusive state. If an invalidation is sent to a Hub,
unlike an intervention it is broadcast to both processors in the node over the SysAD bus. The 16-
bit vector therefore supports up to 32 processors, and the 64-bit vector supports up to 128 proces-
sors. 

For larger systems, the interpretation of the bits changes to the third format. In a p-node system,
each bit now corresponds to p/64 nodes. The bit is set when any one (or more) of the nodes in that
group of p/64 has a copy of the block. If a bit is set when a write happens, then invalidations are
broadcast to all the p/64 nodes represented by that bit. For example, with 1024 processors (512
nodes) each bit corresponds to 8 nodes. This is called a coarse vector representation, and we shall
see it again when we discuss overflow strategies for directory representations as an advanced
topic in Section 8.11. In fact, the system dynamically chooses between the bit vector and coarse
vector representation on a large machine: if all the nodes sharing the block are within the same
64-node “octant” of the machine, a bit-vector representation is used; otherwise a coarse vector is
used. 

8.6.4 Protocol Extensions

In addition to the protocol optimizations such as reply forwarding speculative memory accesses
the Origin protocol provides some extensions to support special operations and activities that
interact with the protocol. These include input/output and DMA operations, page migration and
synchronization. 

Support for Input/Output and DMA Operations

To support reads by a DMA device, the protocol provides “uncached read shared” requests. Such
a request returns to the DMA device a snapshot of a coherent copy of the data, but that copy is
then no longer kept coherent by the protocol. It is used primarily by the I/O system and the block
transfer engine, and as such is intended for use by the operating system. For writes from a DMA
device, the protocol provides “write-invalidate” requests. A write invalidate simply blasts the new
value into memory, overwriting the previous value. It also invalidates all existing cached copies
of the block in the system, thus returning the directory entry to unowned state. From a protocol
perspective, it behaves much like a read-exclusive request, except that it modifies the block in
memory and leaves the directory in unowned state. 
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Support for Automatic Page Migration

As we discussed in Chapter 3, on a machine with physically distributed memory it is often
important for performance to allocate pages of data intelligently across physical memories, so
that most capacity, conflict and cold misses are satisfied locally. Despite the very aggressive com-
munication architecture in the Origin (much more so than other existing machines) the latency of
an access satisfied by remote memory is at least 2-3 times that of a local access even without con-
tention. The appropriate distribution of pages among memories might change dynamically at
runtime, either because a parallel application’s access patterns change or because the operating
system decides to migrate an application process from one processor to another for better
resource management across multiprogrammed applications. It is therefore useful for the system
to detect the need for moving pages at runtime, and migrate them automatically to where they are
needed. 

Origin provides a miss counter per node at the directory for every page, to help determine when
most of the misses to a page are coming from a nonlocal processor so that the page should be
migrated. When a request comes in for a page, the miss counter for that node is incremented and
compared with the miss counter for the home node. If it exceeds the latter by more than a thresh-
old, then the page can be migrated to that remote node. (Sixty four counters are provided per
page, and in a system with more than 64 nodes eight nodes share a counter.) Unfortunately, page
migration is typically very expensive, which often annuls the advantage of doing the migration.
The major reason for the high cost is not so much moving the page (which with the block transfer
engine takes about 25-30 microseconds for a 16KB page) as changing the virtual to physical
mappings in the TLBs of all processors that have referenced the page. Migrating a page keeps the
virtual address the same but changes the physical address, so the old mappings in the page tables
of processes are now invalid. As page table entries are changed, it is important that the cached
versions of those entries in the TLBs of processors be invalidated. In fact, all processors must be
sent a TLB invalidate message, since we don’t know which ones have a mapping for the page
cached in their TLB; the processors are interrupted, and the invalidating processor has to wait for
the last among them to respond before it can update the page table entry and continue. This pro-
cess typically takes over a hundred microseconds, in addition to the cost to move the page itself. 

To reduce this cost, Origin uses a distributed lazy TLB invalidation mechanism supported by its
seventh directory state, the poisoned state. The idea is to not invalidate all TLB entries when the
page is moved, but rather to invalidate a processor’s TLB entry only when that processor next ref-
erences the page. Not only is the 100 or more microseconds of time removed from the single
migrating processor’s critical path, but TLB entries end up being invalidated for only those pro-
cessors that actually subsequently reference the page. Let’s see how this works. To migrate a
page, the block transfer engine reads cache blocks from the source page location using special
“uncached read exclusive” requests. This request type returns the latest coherent copy of the data
and invalidates any existing cached copies (like a regular read-exclusive request), but also causes
main memory to be updated with the latest version of the block and puts the directory in the poi-
soned state. The migration itself thus takes only the time to do this block transfer. When a proces-
sor next tries to access a block from the old page, it will miss in the cache, and will find the block
in poisoned state at the directory. At that time, the poisoned state will cause the processor to see a
bus error. The special OS handler for this bus error invalidates the processor’s TLB entry, so that
it obtains the new mapping from the page table when it retries the access. Of course, the old
physical page must be reclaimed by the system at some point, to avoid wasting storage. Once the
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block copy has completed, the OS invalidates one TLB entry per scheduler quantum, so that after
some fixed amount of time the old page can be moved on to the free list. 

Support for Synchronization

Origin provides two types of support for synchronization. First, the load linked store conditional
instructions of the R10000 processor are available to compose synchronization operations, as we
saw in the previous two chapters. Second, for situations in which many processors contend to
update a location, such as a global counter or a barrier, uncached fetch&op primitives are pro-
vided. These fetch&op operations are performed at the main memory, so the block is not repli-
cated in the caches and successive nodes trying to update the location do not have to retrieve it
from the previous writer’s cache. The cacheable LL/SC is better when the same node tends to
repeatedly update the shared variable, and the uncached fetch&op is better when different nodes
tend to update in an interleaved or contended way. 

The protocol discussion above has provided us with a fairly complete picture of how a flat mem-
ory-based directory protocol is implemented out of network transactions and state transitions,
just as a bus-based protocol was implemented out of bus transactions and state transitions. Let us
now turn our attention to the actual hardware of the Origin2000 machine that implements this
protocol. We first provide an overview of the system hardware organization. Then, we examine
more deeply how the Hub controller is actually implemented. Finally, we will discuss the perfor-
mance of the machine. Readers interested in only the protocol can skip the rest of this section,
especially the Hub implementation which is quite detailed, without loss of continuity. 

8.6.5 Overview of Origin2000 Hardware

As discussed earlier, each node of the Origin2000 contains two MIPS R10000 processors con-
nected by a system bus, a fraction of the main memory on the machine (1-4 GB per node), the
Hub which is the combined communication/coherence controller and network interface, and an I/
O interface called the Xbow. All but the Xbow are on a single 16”-by-11” printed circuit board.
Each processor in a node has its own separate L1 and L2 caches, with the L2 cache configurable
from 1 to 4 MB with a cache block size of 128 bytes and 2-way set associativity. The directory
state information is stored in the same DRAM modules as main memory or in separate modules,
depending on the size of the machine, and looked up in parallel with memory accesses. There is
one directory entry per main memory block. Memory is interleaved from 4 ways to 32 ways,
depending on the number of modules plugged in (4-way interleaving at 4KB granularity within a
module, and up to 32-way at 512MB granularity across modules). The system has up to 512 such
nodes, i.e. up to 1024 R10000 processors. With a 195 MHz R10000 processor, the peak perfor-
mance per processor is 390 MFLOPS or 780 MIPS (four instructions per cycle), leading to an
aggregate peak performance of almost 500 GFLOPS in the machine. The peak bandwidth of the
SysAD (system address and data) bus that connects the two processors is 780 MB/s, as is that of
the Hub’s connection to memory. Memory bandwidth itself for data is about 670MB/s. The Hub
connections to the off-board network router chip and Xbow are 1.56 GB/sec each, using the same
link technology. A more detailed picture of the node board is shown in Figure 8-19. 

The Hub chip is the heart of the machine. It sits on the system bus of the node, and connects
together the processors, local memory, network interface and Xbow, which communicate with
one another through it. All cache misses, whether to local or remote memory, go through it, and it
implements the coherence protocol. It is a highly integrated, 500K gate standard-cell design in
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0.5µ CMOS technology. It contains outstanding transaction buffers for each of its two processors
(each processor itself allows four outstanding requests), a pair of block transfer engines that sup-
port block memory copy and fill operations at full system bus bandwidth, and interfaces to the
network, the SysAD bus, the memory/directory, and the I/O subsystem. It also implements the at-
memory, uncached fetch&op instructions and page migration support discussed earlier. 

The interconnection network has a hypercube topology for machines with up to 64 processors,
but a different topology called a fat cube beyond that. This topology will be discussed in
Chapter 10. The network links have very high bandwidth (1.56GB/s total per link in the two
directions) and low latency (41ns pin to pin through a router), and can use flexible cabling up to 3
feet long for the links. Each link supports four virtual channels. Virtual channels are described in
Chapter 10; for now, we can think of the machine as having four distinct networks such that each
has about one-fourth of the link bandwidth. One of these virtual channels is reserved for request
network transactions, one for replies. Two can be used for congestion relief and high priority
transactions, thereby violating point-to-point order, or can be reserved for I/O as is usually done.

The Xbow chip connects the Hub to I/O interfaces. It is itself implemented as a cross-bar with
eight ports. Typically, two nodes (Hubs) might be connected to one Xbow, and through it to six
external I/O cards as shown in Figure 8-20. The Xbow is quite similar to the SPIDER router chip,
but with simpler buffering and arbitration that allow eight ports to fit on the chip rather than six.
It provides two virtual channels per physical channel, and supports wormhole or pipelined rout-
ing of packets. The arbiter also supports the reservation of bandwidth for certain devices, to sup-
port real time needs like video I/O. High-performance I/O cards like graphics connect directly to
the Xbow ports, but most other ports are connected through a bridge to an I/O bus that allows
multiple cards to plug in. Any processor can reference any physical I/O device in the machine,
either through uncached references to a special I/O address space or through coherent DMA
operations. An I/O device can DMA to and from any memory in the system, not just that on a
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node to which it is directly connected through the Xbow. Communication between the processor
and the appropriate Xbow is handled transparently by the Hubs and routers. Thus, like memory I/
O is also globally accessible but physically distributed, so locality in I/O distribution is also a
performance rather than correctness issue. 

8.6.6 Hub Implementation

The communication assist, the Hub, must have certain basic abilities to implement the protocol.
It must be able to observe all cache misses, synchronization events and uncached operations,
keep track of outgoing requests while moving on to other outgoing and incoming transactions,
guarantee the sinking of replies coming in from the network, invalidate cache blocks, and inter-
vene in the caches to retrieve data. It must also coordinate the activities and dependences of all
the different types of transactions that flow through it from different components, and implement
the necessary pathways and control. This subsection briefly describes the major components of
the Hub controller used in the Origin2000, and points out some of the salient features it provides
to implement the protocol. Further details of the actual data and control pathways through the
Hub, as well as the mechanisms used to actually control the interactions among messages, are
also very interesting to truly understand how scalable cache coherence is implemented, and can
be read elsewhere [Sin97].

Being the heart of the communication architecture and coherence protocol, the Hub is a complex
chip.It is divided into four major interfaces, one for each type of external entity that it connects
together: the processor interface or PI, the memory/directory interface or MI, the network inter-
face or NI, and the I/O interface (see Figure 8-21). These interfaces communicate with one
another through an on-chip crossbar switch. Each interface is divided into a few major structures,
including FIFO queues to buffer messages to/from other interfaces and to/from external entities.
A key property of the interface design is for the interface to shield its external entity from the
details of other interfaces and entities and vice versa. For example, the PI hides the processors
from the rest of the world, so any other interface must only know the behavior of the PI and not
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of the processors themselves. Let us discuss the structures of the PI, MI, and NI briefly, as well as
some examples of the shielding provided by the interfaces. 

The Processor Interface (PI) 

The PI has the most complex control mechanisms of the interfaces, since it keeps track of out-
standing protocol requests and replies. The PI interfaces with the memory buses of the two
R10000 processors on one side, and with incoming and outgoing FIFO queues connecting it to
each of the other HUB interfaces on the other side (Figure 8-21). Each physical FIFO is logically
separated into independent request and reply “virtual FIFOs” by separate logic and staging buff-
ers. In addition, the PI contains three pairs of coherence control buffers that keep track of out-
standing transactions, control the flow of messages through the PI, and implement the
interactions among messages dictated by the protocol. They do not however hold the messages
themselves. There are two Read Request Buffers (RRB) that track outstanding read requests from
each processor, two Write Request Buffers (WRB) that track outstanding write requests, and two
Intervention Request Buffers (IRB) that track incoming invalidation and intervention requests.
Access to the three sets of buffers is through a single bus, so all messages contend for access to
them. 

A message that is recorded in one type of buffer may also need to look up another type to check
for outstanding conflicting accesses or interventions to the same address (as per the coherence
protocol). For example, an outgoing read request performs an associative lookup in the WRB to

SSD/SSR
LLP

Crossbar

01 32 Msg 

IRB

Protocol
Table

BTE
A

BTE
B

CRB A

Protocol
Table

II

PI Protocol
Table

MD

NI

Inval
Multicast

FandOp
Cache

SysAD

CraylinkXIO

Mem

Dir

Tables
IO 

Transl

SSD/SSR
LLP

01 32 Msg 

CRB B

Figure  8-21  Layout of the Hub chip.

The crossbar at the center connects the buffers of the four different interfaces. Clockwise from the bottom left, the BTEs are the block
transfer engines. The top left corner is the I/O interface (the SSD and SSR interface and translate signals from the I/O ports). Next is
the network interface (NI), including the routing tables. The bottom right is the memory/directory (MD) interface, and at the bottom is
the processor interface (PI) with its request tracking buffers (CRB and IRB). 
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see if a writeback to the same address is pending as well. If there is a conflicting WRB entry, an
outbound request is not placed in the outgoing request FIFO; rather, a bit is set in the RRB entry
to indicate that when the WRB entry is released the read request should be re-issued (i.e. when
the writeback is acknowledged or is cancelled by an incoming invalidation as per the protocol).
Buffers are also looked up to close an outstanding transaction in them when a completion reply
comes in from either the processors or another interface. Since the order of completion is not
deterministic, a new transaction must go into any available slot, so the buffers are implemented as
fully associative rather than FIFO buffers (the queues that hold the actual messages are FIFO).
The buffer lookups determine whether an external request should be generated to either the pro-
cessor or the other interfaces. 

The PI provides some good examples of the shielding provided by interfaces. If the processor
provides data as a reply to an incoming intervention, it is the logic in the PI’s outgoing FIFO that
expands the reply into two replies, one to the home as a sharing writeback revision message and
one to the requestor. The processor itself does not have to modified for this purpose. Another
example is in the mechanisms used to keep track of and match incoming and outgoing requests
and responses. All requests passing through the PI are given request numbers, and responses
carry these request numbers as well. However, the processor itself does not know about these
request numbers, and it is the PI’s job to ensure that when it passes on incoming requests (inter-
ventions or invalidations) to the processor, that it can match the processor’s replies to the out-
standing interventions/invalidations without the processor having to deal with request numbers.

The Memory/Directory Interface (MI)

The MI also has FIFOs between it and the Hub crossbar. The FIFO from the Hub to the MI sepa-
rates out headers from data, so that the header of the next message can be examined by the direc-
tory while the current one is being serviced, allowing writes to be pipelined and performed at
peak memory bandwidth. The MI also contains a directory interface, the memory interface and t
a controller. The directory interface contains the logic and tables that implement the coherence
protocol as well as the logic that generates outgoing message headers; the memory interface con-
tains the logic that generates outgoing message data. Both the memory and directory RAMS have
their own address and data buses. Some messages, like revision messages coming to the home,
may not access the memory but only the directory. 

On a read request, the read is issued to memory speculatively simultaneously with starting the
directory operation. The directory state is available a cycle before the memory data, and the con-
troller uses this (plus the message type and initiator) to look up the directory protocol table. This
hard-wired table directs it to the action to be taken and the message to send. The directory block
sends the latter information to the memory block, where the message headers are assembled and
inserted into the outgoing FIFO, together with the data returning from memory. The directory
lookup itself is a read-modify-write operation. For this, the system provides support for partial
writes of memory blocks, and a one-entry merge buffer to hold the bytes that are to be written
between the time they are read from memory and written back. Finally, to speed up the at-mem-
ory fetch&op accesses provided for synchronization, the MI contains a four-entry LRU fetch&op
cache to hold the recent fetch&op addresses and avoid a memory or directory access. This
reduces the best-case serialization time at memory for fetch&op to 41ns, about four 100MHz
Hub cycles. 
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The Network Interface (NI)

The NI interfaces the Hub crossbar to the network router for that node. The router and the Hub
internals use different data transport formats, protocols and speeds (100MHz in the Hub versus
400MHz in the router), so one major function of the NI is to translate between the two. Toward
the router side, the NI implements a flow control mechanism to avoid network congestion
[Sin97]. The FIFOs between the Hub and the network also implement separate virtual FIFOs for
requests and replies. The outgoing FIFO has an invalidation destination generator which takes the
bit vector of nodes to be invalidated and generates individual message for them, a routing table
that pre-determines the routing decisions based on source and destination nodes, and virtual
channel selection logic. 

8.6.7 Performance Characteristics

The stated hardware bandwidths and occupancies of the system are as follows, assuming a
195MHz processor. Bandwidth on the SysAD bus, shared by two processors in the node, is
780MB/s, as is the bandwidth between the Hub and local memory, and the bandwidth between a
node and the network in each direction. The data bandwidth of the local memory itself is about
670 MB/s. The occupancy of the Hub at the home for a transaction on a cache block is about 20
Hub cycles (about 40 processor cycles), though it varies between 18 and 30 Hub cycles depend-
ing on whether successive directory pages accessed are in the same bank of the directory
SDRAM and on the exact pattern of successive accesses (read or read-exclusives followed by
another of the same or followed by a writeback or an uncached operation). The latencies of refer-
ences depend on many factors such as the type of reference, whether the home is local or not,
where and in what state the data are currently cached, and how much contention is there for
resources along the way. The latencies can be measured using microbenchmarks. As we did for
the Challenge machine in Chapter 6, let us examine microbenchmark results for latency and
bandwidth first, followed by the performance and scaling of our six applications. 

Characterization with Microbenchmarks

Unlike the MIPS R4400 processor used in the SGI Challenge, the Origin’s MIPS R10000 proces-
sor is dynamically scheduled and does not stall on a read miss. This makes it more difficult to
measure read latency. We cannot for example measure the unloaded latency of a read miss by
simply executing the microbenchmark from Chapter 4 that reads the elements of an array with
stride greater than the cache block size. Since the misses are to independent locations, subsequent
misses will simply be overlapped with one another and will not see their full latency. Instead, this
microbenchmark will give us a measure of the throughput that the system can provide on succes-
sive read misses issued from a processor. The throughput is the inverse of the “latency” measured
by this microbenchmark, which we can call the pipelined latency. 

To measure the full latency, we need to ensure that subsequent operations are dependent on each
other. To do this, we can use a microbenchmark that chases pointers down a linked list: The
address of the next read is not available to the processor until the previous read completes, so the
reads cannot be overlapped. However, it turns out this is a little pessimistic in determining the
unloaded read latency. The reason is that the processor implements critical word restart; i.e. it can
use the value returned by a read as soon as that word is returned to the processor, without waiting
for the rest of the cache block to be loaded in the caches. With the pointer chasing microbench-
mark, the next read will be issued before the previous block has been loaded, and will contend
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with the loading of that block for cache access. The latency obtained from this microbenchmark,
which includes this contention, can be called back-to-back latency. Avoiding this contention
between successive accesses requires that we put some computation between the read misses that
depends on the data being read but that does not access the caches between two misses. The goal
is to have this computation overlap the time that it takes for the rest of the cache block to load
into the caches after a read miss, so the next read miss will not have to stall on cache access. The
time for this overlap computation must of course be subtracted from the elapsed time of the
microbenchmark to measure the true unloaded read miss latency assuming critical word restart.
We can call this the restart latency [HLK97]. Table 8-1 shows the restart and back-to-back laten-
cies measured on the Origin2000, with only one processor executing the microbenchmark but the
data that are accessed being distributed among the memories of different numbers of processors.
The back to back latency is usually about 13 bus cycles (133 ns), because the L2 cache block size
(128B) is 12 double words longer than the L1 cache block size (32B) and there is one cycle for
bus turnaround. 

Table 8-2 lists the back-to-back latencies for different initial states of the block being referenced
[HLK97]. Recall that the owner node is home when the block is in unowned or shared state at the
directory, and the node that has a cached copy when the block is in exclusive state. The restart
latency for the case where both the home and the owner are the local node (i.e. if owned the block
is owned by the other processor in the same node) is 338 ns for the unowned state, 656 ns for the
clean-exclusive state, and 892 ns for the modified state.  

Table 8-1  Back-to-back and restart latencies for different system sizes. The first column shows where in the extended memory
hierarchy the misses are satisfied. For the 8P case, for example, the misses are satisfied in the furthest node away from the
requestor in a system of 8 processors. Given the Origin2000 topology, with 8 processors this means traversing through two
network routers. 

Memory level
Network Routers 

Traversed Back-to-Back (ns) Restart (ns)

L1 cache 0 5.5 5.5

L2 cache 0 56.9 56.9

local memory 0 472 329

4P remote memory 1 690 564

8P remote memory 2 890 759

16P remote memory 3 991 862

Table 8-2  Back-to-back latencies (in ns) for different initial states of the block. The first column indicates whether the home of
the block is local or not, the second indicates whether the current owner is local or not, and the last three columns give the
latencies for the block being in different states. 

Home  Owner       

State of Block

 Unowned 
 Clean-
Exclusive  Modified 

local local      472  707  1036 

remote local      704  930  1272 

local remote      472  930  1159 

remote remote  704  917  1097 
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Application Speedups

Figure 8-22 shows the speedups for the six parallel applications on a 32-processor Origin2000,

using two problem sizes for each. We see that most of the applications speed up well, especially
once the problem size is large enough. The dependence on problem size is particular stark in
applications like Ocean and Raytrace. The exceptions to good speedup at this scale are Radiosity
and particularly Radix. In the case of Radiosity, it is because even the larger problem is relatively
small for a machine of this size and power. We can expect to see better speedups for larger data
sets. For Radix, the problem is the highly scattered, bursty pattern of writes in the permutation
phase. These writes are mostly to locations that are allocated remotely, and the flood of requests,
invalidations, acknowledgments and replies that they generate cause tremendous contention and
hot-spotting at Hubs and memories. Running larger problems doesn’t alleviate the situation,
since the communication to computation ratio is essentially independent of problem size; in fact,
it worsens the situation once a processor’s partition of the keys do not fit in its cache, at which
point writeback transactions are also thrown into the mix. For applications like Radix and an FFT
(not shown) that exhibit all-to-all bursty communication, the fact that two processors share a Hub
and two Hubs share a router also causes contention at these resources, despite their high band-
widths. For these applications, the machine would perform better if it had only a single processor
per Hub and per router. However, the sharing of resources does save cost, and does not get in the
way of most of the other applications [JS97]. 

Scaling

Figure 8-23 shows the scaling behavior for the Barnes-Hut galaxy simulation on the Origin2000.
The results are quite similar to those on the SGI Challenge in Chapter 6, although extended to
more processors. For applications like Ocean, in which an important working set is proportional
to the data set size per processor, machines like the Origin2000 display an interesting effect due
to scaling when we start from a problem size where the working set does not fit in the cache on a
uniprocessor. Under PC and TC scaling, the data set size per processor diminishes with increas-
ing number of processors. Thus, although the communication to computation ratio increases, we
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Figure  8-22  Speedups for the parallel applications on the Origin2000. 

Two problem sizes are shown for each application. The Radix sorting program does not scale well, and the Radiosity application is
limited by the available input problem sizes. The other applications speed up quite well when reasonably large problem sizes are used. 
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observe superlinear speedups once the working set starts to fit in the cache, since the performance
within each node becomes much better when the working set fits in the cache. Under MC scaling,
communication to computation ratio does not change, but neither does the working set size per
processor. As a result, although the demands on the communication architecture scale more
favorably than under TC or PC scaling, speedups are not so good because the beneficial effect on
node performance of the working set suddenly fitting in the cache is no longer observed. 

8.7 Cache-based Directory Protocols: The Sequent NUMA-Q 

The flat, cache-based directory protocol we describe is the IEEE Standard Scalable Coherent
Interface (SCI) protocol [Gus92]. As a case study of this protocol, we examine the NUMA-Q
machine from Sequent Computer Systems, Inc., a machine targeted toward commercial work-
loads such as databases and transaction processing [CL96]. This machine relies heavily on third-
party commodity hardware, using stock SMPs as the processing nodes, stock I/O links, and the
Vitesse “data pump” network interface to move data between the node and the network. The only
customization is in the board used to implement the SCI directory protocol. A similar directory
protocol is also used in the Convex Exemplar series of machines [Con93,TSS+96], which like the
SGI Origin are targeted more toward scientific computing. 

NUMA-Q is a collection of homogeneous processing nodes interconnected by a high-speed links
in a ring interconnection (Figure 8-24). Each processing node is an inexpensive Intel Quad bus-
based multiprocessor with four Intel Pentium Pro microprocessors, which illustrates the use of
high-volume SMPs as building blocks for larger systems. Systems from Data General [ClA96]
and from HAL Computer Systems [WGH+97] also use Pentium Pro Quads as their processing
nodes, the former also using an SCI protocol similar to NUMA-Q across Quads and the latter
using a memory-based protocol inspired by the Stanford DASH protocol. (In the Convex Exem-
plar series, the individual nodes connected by the SCI protocol are small directory-based multi-
processors kept coherent by a different directory protocol.) We described the Quad SMP node in
Chapter 1 (see Figure 1-17 on page 48) and so shall not discuss it much here. 

0

5

1 0

1 5

2 0

2 5

3 0

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Processors

S
p

e
e

d
u

p

Naive TC

Naive MC
TC

MC
PC

0

100000

200000

300000

400000

500000

600000

1 5 9

1
3

1
7

2
1

2
5

2
9

Processors

N
u

m
b

e
r 

o
f 

B
o

d
ie

s

Naive TC

Naive MC
TC

MC

Figure  8-23  Scaling of speedups and number of bodies under different scaling models for Barnes-Hut on the Origin2000. 

As with the results for bus-based machines in Chapter 6, the speedups are very good under all scaling models and the number of bod-
ies that can be simulated grows much more slowly under realistic TC scaling than under MC or naive TC scaling. 
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The IQ-Link board in each Quad plugs into the Quad memory bus, and takes the place of the Hub
in the SGI Origin. In addition to the data path from the Quad bus to the network and the directory
logic and storage, it also contains an (expandable) 32MB, 4-way set associative remote cache for
blocks that are fetched from remote memory. This remote cache is the interface of the Quad to
the directory protocol. It is the only cache in the Quad that is visible to the SCI directory proto-
col; the individual processor caches are not, and are kept coherent with the remote cache through
the snoopy bus protocol within the Quad. Inclusion is also preserved between the remote cache
and the processor caches within the node through the snoopy coherence mechanisms, so if a
block is replaced from the remote cache it must be invalidated in the processor caches, and if a
block is placed in modified state in a processor cache then the state in the remote cache must
reflect this. The cache block size of this remote cache is 64 bytes, which is therefore the granular-
ity of both communication and coherence across Quads. 

8.7.1 Cache Coherence Protocol

Two interacting coherence protocols are used in the Sequent NUMA-Q machine. The protocol
used within a Quad to keep the processor caches and the remote cache coherent is a standard bus-
based Illinois (MESI). Across Quads, the machine uses the SCI cache-based, linked list directory
protocol. Since the directory protocol sees only the per-Quad remote caches, it is for the most
part oblivious to how many processors there are within a node and even to the snoopy bus proto-
col itself. This section focuses on the SCI directory protocol across remote caches, and ignores
the multiprocessor nature of the Quad nodes. Interactions with the snoopy protocol in the Quad
will be discussed later.

Figure  8-24  Block diagram of the Sequent NUMA-Q multiprocessor. 
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Directory Structure 

The directory structure of SCI is the flat, cache-based distributed doubly-linked list scheme that
was described in Section  and illustrated in Figure 8-8 on page 527. There is a linked list of shar-
ers per block, and the pointer to the head of this list is stored in the main memory that is the home
of the corresponding memory block. An entry in the list corresponds to a remote cache in a Quad.
It is stored in Synchronous DRAM memory in the IQ-Link board of that Quad, together with the
forward and backward pointers for the list. Figure 8-25 shows a simplified representation of a
list. The first element or node is called the head of the list, and the last node the tail. The head
node has both read and write permission on its cached block, while the other nodes have only
read permission (except in a special-case extension called pairwise sharing that we shall discuss
later). The pointer in a node that points to its neighbor in the direction toward the tail of the list is
called the forward or downstream pointer, and the other is called the backward or upstream
pointer. Let us see how the cross-node SCI coherence protocol uses this directory representation. 

States 

A block in main memory can be in one of three directory states whose names are defined by the
SCI protocol:

Home: no remote cache (Quad) in the system contains a copy of the block (of course, a pro-
cessor cache in the home Quad itself may have a copy, since this is not visible to the SCI 
coherence protocol but is managed by the bus protocol within the Quad). 

Fresh: one or more remote caches may have a read-only copy, and the copy in memory is 
valid.This is like the shared state in Origin. 

Gone: another remote cache contains a writable (exclusive-clean or dirty) copy. There is no 
valid copy on the local node. This is like the exclusive directory state in Origin. 

Consider the cache states for blocks in a remote cache. While the processor caches within a Quad
use the standard Illinois or MESI protocol, the SCI scheme that governs the remote caches has a
large number of possible cache states. In fact, seven bits are used to represent the state of a block
in a remote cache. The standard describes twenty nine stable states and many pending or transient
states. Each stable state can be thought of as having two parts, which is reflected in the naming
structure of the states. The first describes which element of the sharing list for that block that
cache entry is. This may be ONLY (for a single-element list), HEAD, TAIL, or MID (neither the
head nor the tail of a multiple-element list). The second part describes the actual state of the
cached block. This includes states like

Dirty: modified and writable

Clean: unmodified (same as memory) but writable

Fresh: data may be read, but not written until memory is informed

Figure  8-25  An SCI sharing list. 

Home
Memory

Head Tail
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Copy: unmodified and readable 

and several others. A full description can be found in the SCI Standard document [IEE93]. We
shall encounter some of these states as we go along. 

The SCI standard defines three primitive operations that can be performed on a list. Memory
operations such as read misses, write misses, and cache replacements or writebacks are imple-
mented through these primitive operations, which will be described further in our discussion: 

List construction: adding a new node (sharer) to the head of a list,

Rollout: removing a node from a sharing list, which requires that a node communicate with 
its upstream and downstream neighbors informing them of their new neighbors so they can 
update their pointers, and 

Purging (invalidation): the node at the head may purge or invalidate all other nodes, thus 
resulting in a single-element list. Only the head node can issue a purge. 

The SCI standard also describes three “levels” of increasingly sophisticated protocols. There is a
minimal protocol that does not permit even read-sharing; that is, only one node at a time can have
a cached copy of a block. Then there is a typical protocol which is what most systems are
expected to implement. This has provisions for read sharing (multiple copies), efficient access to
data that are in FRESH state in memory, as well as options for efficient DMA transfers and robust
recovery from errors. Finally, there is the full protocol which implements all of the options
defined by the standard, including optimizations for pairwise sharing between only two nodes
and queue-on-lock-bit (QOLB) synchronization (see later). The NUMA-Q system implements
the typical set, and this is the one we shall discuss. Let us see how these states and the three prim-
itives are used to handle different types of memory operations: read requests, write requests, and
replacements (including writebacks). In each case, a request is first sent to the home node for the
block, whose identity is determined from the address of the block. We will initially ignore the
fact that there are multiple processors per Quad, and examine the interactions with the Quad pro-
tocol later. 

Handling Read Requests 

Suppose the read request needs to be propagated off-Quad. We can now think of this node’s
remote cache as the requesting cache as far as the SCI protocol is concerned. The requesting
cache first allocates an entry for the block if necessary, and sets the state of the block to a pending
(busy) state; in this state, it will not respond to other requests for that block that come to it. It then
begins a list-construction operation to add itself to the sharing list, by sending a request to the
home node. When the home receives the request, its block may be in one of three states: HOME,
FRESH and GONE. 

HOME: There are no cached copies and the copy in memory is valid. On receiving this 
request, the home updates its state for the block to FRESH, and set its head pointer to point to 
the requesting node. The home then replies to the requestor with the data, which upon receipt 
updates its state from PENDING to ONLY_FRESH. All actions at nodes in response to a 
given transaction are atomic (the processing for one is completed before the next one is han-
dled), and a strict request-reply protocol is followed in all cases. 

FRESH: There is a sharing list, but the copy at the home is valid. The home changes its head 
pointer to point to the requesting cache instead of the previous head of the list. It then sends 
back a transaction to the requestor containing the data and also a pointer to the previous head. 
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On receipt, the requestor moves to a different pending state and sends a transaction to that 
previous head asking to be attached as the new head of the list. The previous head reacts to 

this message by changing its state from HEAD_FRESH to MID_VALID or from 
ONLY_FRESH to TAIL_VALID as the case may be, updating its backward pointer to point 
to the requestor, and sending an acknowledgment to the requestor. When the requestor 
receives this acknowledgment it sets its forward pointer to point to the previous head and 
changes its state from the pending state to HEAD_FRESH. The sequence of transactions and 
actions is shown in Figure 8-26, for the case where the previous head is in state 
HEAD_FRESH when the request comes to it. 

GONE: The cache at the head of the sharing list has an exclusive (clean or modified) copy of 
the block. Now, the memory does not reply with the data, but simply stays in the GONE state 
and sends a pointer to the previous head back to the requestor. The requestor goes to a new 
pending state and sends a request to the previous head asking for the data and to attach to the 
head of the list. The previous head changes its state from HEAD_DIRTY to MID_VALID or 
ONLY_DIRTY to TAIL_VALID or whatever is appropriate, sets its backward pointer to point 
to the requestor and returns the data to the requestor. (the data may have to be retrieved from 
one of the processor caches in the previous head node). The requestor then updates its copy, 
sets its state to HEAD_DIRTY, and sets its forward pointer to point to the new head, as 
always in a single atomic action. Note that even though the reference was a read, the head of 
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Figure  8-26  Messages and state transitions in a read miss to a block that is in the FRESH state at home, with one node on the
sharing list. 

Solid lines are the pointers in the sharing list, while dotted lines represent network transactions. Null pointers are not shown. 
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the sharing list is in HEAD_DIRTY state. This does not have the standard meaning of dirty 
that we are familiar with; that is, that it can write those data without having to invalidate any-
body. It means that it can indeed write the data without communicating with the home (and 
even before sending out the invalidations), but it must invalidate the other nodes in the sharing 
list since they are in valid state. 

It is possible to fetch a block in HEAD_DIRTY state even when the directory state is not GONE,
for example when that node is expected to write that block soon afterward. In this case, if the
directory state is FRESH the memory returns the data to the requestor, together with a pointer to
the old head of the sharing list, and then puts itself in GONE state. The requestor then prepends
itself to the sharing list by sending a request to the old head, and puts itself in the HEAD_DIRTY
state. The old head changes its state from HEAD_FRESH to MID_VALID or from
ONLY_FRESH to TAIL_VALID as appropriate, and other nodes on the sharing list remain
unchanged. 

In the above cases where a requestor is directed to the old head, it is possible that the old head
(let’s call it A) is in pending state when the request from the new requestor (B) reaches it, since it
may have some transaction outstanding on that block. This is dealt with by extending the sharing
list backward into a (still distributed) pending list. That is, node B will indeed be physically
attached to the head of the list, but in a pending state waiting to truly become the head. If another
node C now makes are request to the home, it will be forwarded to node B and will also attach
itself to the pending list (the home will now point to C, so subsequent requests will be directed
there). At any time, we call the “true head” (here A) the head of the sharing list, the part of the list
before the true head the pending list, and the latest element to have joined the pending list (here
C) the pending head (see Figure 8-27). When A leaves the pending state and completes its opera-

tion, it will pass on the “true head” status to B, which will in turn pass it on to C when its request
is completed. The alternative to using a pending list would have been to NACK requests that
come to a cache that is in pending state and have the requestor retry until the previous head’s
pending state changes. We shall return to these issues and choices when we discuss dealing with
correctness issues in Section 8.7.2. Note also that there is no pending or busy state at the direc-
tory, which always simply takes atomic actions to change its state and head pointer and returns
the previous state/pointer information to the requestor, a point we will revisit there. 

Handling Write Requests 

The head node of a sharing list is assumed to always have the latest copy of the block (unless it is
in a pending state). Thus, only the head node is allowed to write a block and issues invalidations.
On a write miss, there are three cases. The first case is when the writer is already at the head of
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Figure  8-27  Pending lists in the SCI protocol.
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the list, but it does not have the sole modified copy. In this case, it first ensures that it is in the
appropriate state for this case, by communicating with the home if necessary (and in the process
ensuring that the home block is in or transitions to the GONE state). It then modifies the data
locally, and invalidates the rest of the nodes in the sharing list. This case will be elaborated on in
the next two paragraphs. The second case is when the writer is not in the sharing list at all. In this
case, the writer must first allocate space for and obtain a copy of the block, then add itself to the
head of the list using the list construction operation, and then perform the above steps to com-
plete the write. The third case is when the writer is in the sharing list but not at the head. In this
case, it must remove itself from the list (rollout), then add itself to the head (list construction),
and finally perform the above steps. We shall discuss rollout in the context of replacement, where
it is also needed, and we have already seen list construction. Let us focus on the case where the
writing node is already at the head of the list. 

If the block is in HEAD_DIRTY state in the writer’s cache, it is modified right away (since the
directory must be in GONE state) and then the writing node purges the rest of the sharing list.
This is done in a serialized request-reply manner: An invalidation request is sent to the next node
in the sharing list, which rolls itself out from the list and sends back to the head a pointer to the
next node in the list. The head then sends this node a similar request, and so on until all entries
are purged (i.e. the reply to the head contains a null pointer, see also Figure 8-28). The writer, or

head node, stays in a special pending state while the purging is in progress. During this time, new
attempts to add to the sharing list are delayed in a pending list as usual. The latency of purging a
sharing list is a few round trips (invalidation request, acknowledgment and the rollout transac-
tions) plus the associated actions per sharing list entry, so it is important that sharing lists not get
too long. It is possible to reduce the number of network transactions in the critical path by having
each node pass on an invalidation request to the next node rather than return the identity to the
writer. This is not part of the SCI standard since it complicates protocol-level recovery from
errors by distributing the state of the invalidation progress, but practical systems may be tempted
to take advantage of this short-cut. 

If the writer is the head of the sharing list but has the block in HEAD_FRESH state, then it must
be changed to HEAD_DIRTY before the block can be modified and the rest of the entries purged.
The writer goes into a pending state and sends a request to the home, the home changes from
FRESH to GONE state and replies to the message, and then the writer goes into a different pend-
ing state and purges the rest of the blocks as above. It may be that when the request reaches the
home the home is no longer in FRESH state, but it points to a newly queued node that got there in
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Figure  8-28  Purging a sharing list from a HEAD_DIRTY node in SCI. 
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the meantime and has been directed to the writer. When the home looks up its state, it detects this
situation and sends the writer a corresponding reply that is like a NACK. When the writer
receives this reply, based on its local pending state it deletes itself from the sharing list (how it
does this given that a request is coming at it is discussed in the next subsection) and tries to reat-
tach as the head in HEAD_DIRTY or ONLY_DIRTY state by sending the appropriate new
request to the home. Thus, it is not a retry in the sense that it does not try the same request again,
but a suitably modified request to reflect the new state of itself and the home. The last case for a
write is if the writer has the block in ONLY_DIRTY state, in which case it can modify the block
without generating any network transactions. 

Handling Writeback and Replacement Requests

A node that is in a sharing list for a block may need to delete itself, either because it must become
the head in order to perform a write operation, or because it must be replaced to make room for
another block in the cache for capacity or conflict reasons, or because it is being invalidated.
Even if the block is in shared state and does not have to write data back, the space in the cache
(and the pointer) will now be used for another block and its list pointers, so to preserve a correct
representation the block being replaced must be removed from its sharing list. These replace-
ments and list removals use the rollout operation.

Consider the general case of a node trying to roll out from the middle of a sharing list. The node
first sets itself to a special pending state, then sends a request each to its upstream and down-
stream neighbors asking them to update their forward and backward pointers, respectively, to
skip that node. The pending state is needed since there is nothing to prevent two adjacent nodes
in a sharing list from trying to roll themselves out at the same time, which can lead to a race con-
dition in the updating of pointers. Even with the pending state, if two adjacent nodes indeed try to
roll out at the same time they may set themselves to pending state simultaneously and send mes-
sages to each other. This can cause deadlock, since neither will respond while they are in locked
state. A simple priority system is used to avoid such deadlock: By convention, the node closer to
the tail of the list has priority and is deleted first. The neighbors do not have to change their state,
and the operation is completed by setting the state of the replaced cache entry to invalid when
both the neighbors have replied. If the element being replaced is the last element of a two-ele-
ment list, then the head of the list may change its state from HEAD_DIRTY or HEAD_FRESH
to ONLY_DIRTY or ONLY_FRESH as appropriate. 

If the entry to be rolled out is the head of the list, then the entry may be in dirty state (a write-
back) or in fresh state (a replacement). Here too, the same set of transactions is used whether it is
a writeback or merely a replacement. The head puts itself in a special rollout pending state and
first sends a transaction to its downstream neighbor. This causes the latter to set its backward
pointer to the home memory and change its state appropriately (e.g. from TAIL_VALID or
MID_VALID to HEAD_DIRTY, or from MID_FRESH to HEAD_FRESH). When the replacing
node receives a reply, it sends a transaction to the home which updates its pointer to point to the
new head but need not change its state. The home replies to the replacer, which is now out of the
list and sets its state to INVALID. Of course, if the head is the only node in the list then it needs
to communicate only with memory, which will set its state to HOME. 

In a distributed protocol like SCI, it is possible that a node sends a request to another node, but
when it arrives the local state at the recipient is not compatible with the incoming request
(another transaction may have changed the state in the interim). We saw one example in the pre-
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vious subsection, with a write to a block in HEAD_FRESH state in the cache, and the above situ-
ation provides another. For one thing, by the time the message from the head that is trying to
replace itself (let’s call it the replacer) gets to the home, the home may have set its head pointer to
point to a different node X, from which it has received a request for the block in the interim. In
general, whenever a transaction comes in, the recipient looks up its local state and the incoming
request type; if it detects a mismatch, it does not perform the operation that the request solicits
but issues a reply that is a lot like a NACK (plus perhaps some other information). The requestor
will then check its local state again and take an appropriate action. In this specific case, the home
detects that the incoming transaction type requires that the requestor be the current head, which is
not true so it NACKs the request. The replacer keeps retrying the request to the home, and being
NACKed. At some point, the request from X that was pointed to the replacer will reach the
replacer asking to be preprended to the list. The replacer will look up its (pending) state, and
reply to that request telling it to instead go to the downstream neighbor (the real head, since the
replacer is rolling out of the list). The replacer is now off the list and in a different pending state,
waiting to go to INVALID state, which it will when the next NACK from the home reaches it.
Thus, the protocol does include NACKs, though not in the traditional sense of asking requests to
retry when a node or resource is busy. NACKs are just to indicate inappropriate requests and
facilitate changes of state at the requestor; a request that is NACKed will never succeed in its
original form, but may cause a new type of request to be generated which may succeed. 

Finally, a performance question when a block needs to be written back upon a miss is whether the
miss should be satisfied first or the block should be written back first. In discussing bus-based
protocols, we saw that most often the miss is serviced first, and the block to be written back is put
in a writeback buffer (which must also be snooped). In NUMA-Q, the simplifying decision is
made to service the writeback (rollout) first, and only then satisfy the miss. While this slows
down misses that cause writebacks, the complexity of the buffering solution is greater here than
in bus-based systems. More importantly, the replacements we are concerned with here are from
the remote cache, which is large enough (tens of megabytes) that replacements are likely to be
very infrequent.

8.7.2 Dealing with Correctness Issues

A major emphasis in the SCI standard is providing well-defined, uniform mechanisms for pre-
serving serialization, resolving race conditions, and avoiding deadlock, livelock and starvation.
The standard takes a stronger position on these issues, particularly starvation and fairness, than
many other coherence protocols. We have mentioned earlier that most of the correctness consid-
erations are satisfied by the use of distributed lists of sharers as well as pending requests, but let
us look at how this works in one further level of detail. 

Serialization of Operations to a Given Location

In the SCI protocol too, the home node is the entity that determines the order in which cache
misses to a block are serialized. However, here the order is that in which the requests first arrive
at the home, and the mechanism used for ensuring this order is very different. There is no busy
state at the home. Generally, the home accepts every request that comes to it, either satisfying it
wholly by itself or directing it to the node that it sees as the current head of the sharing list (this
may in fact be the true head of the sharing list or just the head of the pending list for the line).
Before it directs the request to another node, it first updates its head pointer to point to the current
requestor. The next request for the block from any node will see the updated state and pointer—
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i.e. to the previous requestor—even though the operation corresponding to the previous request is
not globally complete. This ensures that the home does not direct two conflicting requests for a
block to the same node at the same time, avoiding race conditions. As we have seen, if a request
cannot be satisfied at the previous head node to which it was directed—i.e. if that node is in pend-
ing state—the requestor will attach itself to the distributed pending list for that block and await
its turn as long as necessary (see Figure 8-27 on page 571). Nodes in the pending list obtain
access to the block in FIFO order, ensuring that the order in which they complete is the same as
that in which they first reached the home. 

In some cases, the home may NACK requests. However, unlike in the earlier protocols, we have
seen that those requests will never succeed in their current form, so they do not count in the seri-
alization. They may be modified to new, different requests that will succeed, and in that case
those new requests will be serialized in the order in which they first reach the home.

Memory Consistency Model 

While the SCI standard defines a coherence protocol and a transport layer, including a network
interface design, it does not specify many other aspects like details of the physical implementa-
tion. One of the aspects that it does not prescribe is the memory consistency model. Such matters
are left to the system implementor. NUMA-Q does not satisfy sequential consistency, but rather
more relaxed memory consistency model called processor consistency that we shall discuss in
Section 9.2, since this is the consistency model supported by the underlying microprocessor. 

Deadlock, Livelock and Starvation

The fact that a distributed pending list is used to hold waiting requests at the requestors them-
selves, rather than a hardware queue shared at the home node by all blocks allocated in it, implies
that there is no danger of input buffers filling up and hence no deadlock problem at the protocol
level. Since requests are not NACKed from the home (unless they are inappropriate and must be
altered) but will simply join the pending list and always make progress, livelock does not occur.
The list mechanism also ensures that the requests are handled in FIFO order as they first come to
the home, thus preventing starvation. 

The total number of pending lists that a node can be a part of is the number of requests it can have
outstanding, and the storage for the pending lists is already available in the cache entries
(replacement of a pending entry is not allowed, the processor stalls on the access that is causing
this replacement until the entry is no longer pending). Queuing and buffering issues at the lower,
transport level are left up to the implementation; the SCI standard does not take a position on
them, though most implementations including NUMA-Q use separate request and reply queues
on each of the incoming and outgoing paths.

Error Handling

The SCI standard provides some options in the “typical” protocol to recover from errors at the
protocol level. NUMA-Q does not implement these, but rather assumes that the hardware links
are reliable. Standard ECC and CRC checks are provided to detect and recover from hardware
errors in the memory and network links. Robustness to errors at the protocol level often comes at
the cost of performance. For example, we mentioned earlier that SCI’s decision to have the writer
send all the invalidations one by one serialized by replies simplifies error recovery (the writer
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knows how many invalidations have been completed when an error occurs) but compromises per-
formance. NUMA-Q retains this feature, but it and other systems may not in future releases. 

8.7.3 Protocol Extensions 

While the SCI protocol is fair and quite robust to errors, many types of operations can generate
many serialized network transactions and therefore become quite expensive. A read miss requires
two network transactions with the home, and at least two with the head node if there is one, and
perhaps more with the head node if it is in pending state. A replacement requires a rollout, which
again is four network transactions. But the most troublesome operation from a scalability view-
point is invalidation on a write. As we have seen, the cost of the invalidation scales linearly with
the number of nodes on the sharing list, with a fairly large constant (more than a round-trip time),
which means that writes to widely shared data do not scale well at all. Other performance bottle-
necks arise when many requests arrive for the same block and must be added to a pending list; in
general, the latency of misses tends to be larger in SCI than in memory-based protocols. Exten-
sions have been proposed to SCI to deal with widely shared data, building a combining hierarchy
through the bridges or switches that connect rings. Some extensions require changes to the basic
protocol and hardware structures, while others are plug-in compatible with the basic SCI proto-
col and only require new implementations of the bridges. The complexity of the extensions tends
to reduce performance for low degrees of sharing. They are not finalized in the standard, are quite
complex, and are beyond the scope of this discussion. More information can be found in [IEE95,
KaG96, Kax96]. One extension that is included in the standard specializes the protocol for the
case where only two nodes share a cache block and they ping-pong ownership of it back and
forth between them by both writing it repeatedly. This is described in the SCI protocol document
[IEE93]. 

Unlike Origin, NUMA-Q does not provide hardware or OS support for automatic page migra-
tion. With the very large remote caches, capacity misses needing to go off-node are less of an
issue. However, proper page placement can still be useful when a processor writes and has to
obtain ownership for data: If nobody else has a copy (for example the interior portion of a proces-
sor’s partition in the equation solver kernel or in Ocean) then if the page is allocated locally
obtaining ownership does not generate network traffic while if it is remote it does. The NUMA-Q
position is that data migration in main memory is the responsibility of user-level software. Simi-
larly, little hardware support is provided for synchronization beyond simple atomic exchange
primitives like test&set. 

An interesting aspect of the NUMA-Q in terms of coherence protocols is that it has two of them:
a bus-based protocol within the Quad and an SCI directory protocol across Quads, isolated from
the Quad protocol by the remote cache. The interactions between these two protocols are best
understood after we look more closely at the organization of the IQ-Link. 

8.7.4 Overview of NUMA-Q Hardware

Within a Quad, the second-level caches currently shipped in NUMA-Q systems is 512KB large
and 4-way set associative with a 32-byte block size. The Quad bus is a a 532 MB/s split-transac-
tion in-order bus, with limited facilities for the out-of-order responses needed by a two-level
coherence scheme. A Quad also contains up to 4GB of globally addressible main memory, two
32-bit wide 133MB/s Peripheral Component Interface (PCI) buses connected to the Quad bus by
PCI bridges and to which I/O devices and a memory and diagnostic controller can attach, and the
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IQ-Link board that plugs into the memory bus and includes the communication assist and the net-
work interface. 

In addition to the directory information for locally allocated data and the tags for remotely allo-
cated but locally cached data, which it keeps on both the bus side and the directory side, the IQ-
Link board consists of four major functional blocks as shown in Figure 8-29: the bus interface
controller, the SCI link interface controller, the DataPump, and the RAM arrays. We introduce
these briefly here, though they will be described further when discussing the implementation of
the IQ-Link in Section 8.7.6. 

The Orion bus interface controller (OBIC) provides the interface to the shared Quad bus, 
managing the remote cache data arrays and the bus snooping and requesting logic. It acts as 
both a pseudo-memory controller that translates accesses to nonlocal data as well as a 
pseudo-processor that puts incoming transactions from the network on to the bus. 

The DataPump, a gallium arsenide chip built by Vitesse Semiconductor Corporation, pro-
vides the link and packet level transport protocol of the SCI standard. It provides an interface 
to a ring interconnect, pulling off packets that are destined for its Quad and letting other pack-
ets go by. 

The SCI link interface controller (SCLIC) interfaces to the DataPump and the OBIC, as well 
as to the interrupt controller and the directory tags. It’s main function is to manage the SCI 
coherence protocol, using one or more programmable protocol engines. 

Figure  8-29  Functional block diagram of the NUMA-Q IQ-Link board. 

The remote cache data is implemented in Synchronous DRAM (SDRAM). The bus-side tags and directory are implemented in Static
RAM (SRAM), while the network side tags and directory can afford to be slower and are therefore implemented in SDRAM.
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For the interconnection across Quads, the SCI standard defines both a transport layer and a cache
coherence protocol. The transport layer defines a functional specification for a node-to-network
interface, and a network topology that consists of rings made out of point-to-point links. In par-
ticular, it defines a 1GB/sec ring interconnect, and the transactions that can be generated on it.
The NUMA-Q system is initially a single-ring topology of up to eight Quads as shown in
Figure 8-24, and we shall assume this topology in discussing the protocol (though it does not
really matter for the basic protocol). Cables from the quads connect to the ports of a ring, which
is contained in a single box called the Lash. Larger systems will include multiple eight-quad sys-
tems connected together with local area networks. In general, the SCI standard envisions that due
to the high latency of rings larger systems will be built out of multiple rings interconnected by
switches. The transport layer itself will be discussed in Chapter 10. 

Particularly since the machine is targeted toward database and transaction processing workloads,
I/O is an important focus of the design. As in Origin, I/O is globally addressible, so any processor
can write to or read from any I/O device, not just those attached to the local Quad. This is very
convenient for commercial applications, which are often not structured so that a processor need
only access its local disks. I/O devices are connected to the two PCI busses that attach through
PCI bridges to the Quad bus. Each PCI bus is clocked at half the speed of the memory bus and is
half as wide, yielding roughly one quarter the bandwidth. One way for a processor to access I/O
devices on other Quads is through the SCI rings, whether through the cache coherence protocol
or through uncached writes, just as Origin does through its Hubs and network. However, band-
width is a precious resource on a ring network. Since commercial applications are often not
structured to exploit locality in their I/O operations, I/O transfers can occupy substantial band-
width, interfering with memory accesses. NUMA-Q therefore provides a separate communica-
tion substrate through the PCI busses for inter-quad IO transfers. A “Fiber Channel” link
connects to a PCI bus on each node. The links are connected to the shared disks in the system
through either point to point connections, an arbitrated Fibre Channel loop, or a Fibre Channel
Switch, depending on the scale of the processing and I/O systems (Figure 8-30). 

Fibre Channel talks to the disks through a bridge that converts Fibre Channel data format to the
SCSI format that the disks accept at 60MB/s sustained. I/O to any disk in the system usually
takes a path through the local PCI bus and the Fibre Channel switch; however, if this path fails for
some reason the operating system can cause I/O transfers to go through the SCI ring to another
Quad, and through its PCI bus and Fibre Channel link to the disk. Processors perform I/O
through reads and writes to PCI devices; there is no DMA support in the system. Fibre Channel
may also be used to connect multiple NUMA-Q systems in a loosely coupled fashion, and to
have multiple systems share disks. Finally, a management and diagnostic controller connects to a
PCI bus on each Quad; these controllers are linked together and to a system console through a
private local area network like Ethernet for system maintenance and diagnosis. 

8.7.5 Protocol Interactions with SMP Node

The earlier discussion of the SCI protocol ignored the multiprocessor nature of the Quad node
and the bus-based protocol within it that keeps the processor caches and the remote cache coher-
ent. Now that we understand the hardware structure of the node and the IQ-Link, let us examine
the interactions of the two protocols, the requirements that the interacting protocols place upon
the Quad, and some particular problems raised by the use of an off-the-shelf SMP as a node. 
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A read request illustrates some of the interactions. A read miss in a processor’s second-level
cache first appears on the Quad bus. In addition to being snooped by the other processor caches,
it is also snooped by the OBIC. The OBIC looks up the remote cache as well as the directory
state bits for locally allocated blocks, to see if the read can be satisfied within the Quad or must
be propagated off-node. In the former case, main memory or one of the other caches satisfies the
read and the appropriate MESI state changes occur (snoop results are reported after a fixed num-
ber, four, of bus cycles; if a controller cannot finish its snoop within this time, it asserts a stall sig-
nal for another two bus cycles after which memory checks for the snoop result again; this
continues until all snoop results are available). The Quad bus implements in-order responses to
requests. However, if the OBIC detects that the request must be propagated off-node, then it must
intervene. It does this by asserting a delayed reply signal, telling the bus to violate it’s in-order
response property and proceed with other transactions, and that it will take responsibility for
replying to this request. This would not have been necessary if the Quad bus implemented out-of-
order replies. The OBIC then passes on the request to the SCLIC to engage the directory proto-
col. When the reply comes back it will be passed from the SCLIC back to the OBIC, which will
place it on the bus and complete the deferred transaction. Note that when extending any bus-
based system to be the node of a larger cache-coherent machine, it is essential that the bus be
split-transaction. Otherwise the bus will be held up for the entire duration of a remote transaction,
not allowing even local misses to complete and not allowing incoming network transactions to be
serviced (potentially causing deadlock). 

Writes take a similar path out of and back into a Quad. The state of the block in the remote cache,
snooped by the OBIC, indicates whether the block is owned by the local Quad or must be propa-
gated to the home through the SCLIC. Putting the node at the head of the sharing list and invali-
dating other nodes, if necessary, is taken care of by the SCLIC. When the SCLIC is done, it
places a response on the Quad bus which completes the operation. An interesting situation arises
due to a limitation of the Quad itself. Consider a read or write miss to a locally allocated block
that is cached remotely in a modified state. When the reply returns and is placed on the bus as a
deferred reply, it should update the main memory. However, the Quad memory was not imple-
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Directory-based Cache Coherence

580 DRAFT: Parallel Computer Architecture 9/3/97

mented for deferred requests and replies, and does not update itself on seeing a deferred reply.
When a deferred reply is passed down through the OBIC, it must also ensure that it updates the
memory through a special action before it gives up the bus. Another limitation of the Quad is its
bus protocol. If two processors in a Quad issue read-exclusive requests back to back, and the first
one propagates to the SCLIC, we would like to be able to have the second one be buffered and
accept the reply from the first in the appropriate state. However, the Quad bus will NACK the
second request, which will then have to retry until the first one returns and it succeeds. 

Finally, consider serialization. Since serialization at the SCI protocol level is done at the home,
incoming transactions at the home have to be serialized not only with respect to one another but
also with respect to accesses by the processors in the home Quad. For example, suppose a block
is in the HOME state at the home. At the SCI protocol level, this means that no remote cache in
the system (which must be on some other node) has a valid copy of the block. However, this does
not mean that no processor cache in the home node has a copy of the block. In fact, the directory
will be in HOME state even if one of the processor caches has a dirty copy of the block. A request
coming in for a locally allocated block must therefore be broadcast on the Quad bus as well, and
cannot be handled entirely by the SCLIC and OBIC. Similarly, an incoming request that makes
the directory state change from HOME or FRESH to GONE must be put on the Quad bus so that
the copies in the processor caches can be invalidated. Since both incoming requests and local
misses to data at the home all appear on the Quad bus, it is natural to let this bus be the actual
serializing agent at the home. 

Similarly, there are serialization issues to be addressed in a requesting quad for accesses to
remotely allocated blocks. Activities within a quad relating to remotely allocated blocks are seri-
alized at the local SCLIC. Thus, if there are requests from local processors for a cached block and
also requests from the SCI interconnect for the same block coming in to the local node, these
requests are serialized at the local SCLIC. Other interactions with the node protocol will be dis-
cussed when we have better understood the implementation of the IQ-Link board components. 

8.7.6 IQ-Link Implementation

Unlike the single-chip Hub in Origin, the CMOS SCLIC directory controller, the CMOS OBIC
bus interface controller and the GaAs Data Pump are separate chips. The IQ-Link board also con-
tains some SRAM and SDRAM chips for tags, state and remote cache data (see Figure 8-29 on
page 577). In contrast, the HAL S1 system [WGH+97], discussed later, integrates the entire
coherence machinery on a single chip, which plugs right in to the Quad bus. The remote cache
data are directly accessible by the OBIC. Two sets of tags are used to reduce communication
between the SCLIC and the OBIC, the network-side tags for access by the SCLIC and the bus-
side tags for access by the OBIC. The same is true for the directory state for locally allocated
blocks. The bus-side tags and directory contain only the information that is needed for the bus
snooping, and are implemented in SRAM so they can be looked up at bus speed. The network-
side tags and state need more information and can be slower, so they are implemented in synchro-
nous DRAM (SDRAM). Thus, the bus-side local directory SRAM contains only the two bits of
directory state per 64-byte block (HOME, FRESH and GONE), while the network side directory
contains the 6-bit SCI head pointer as well. The bus side remote cache tags have only four bits of
state, and do not contain the SCI forward and backward list pointers. They actually keep track of
14 states, some of which are transient states that ensure forward progress within the quad (e.g.
keep track of blocks that are being rolled out, or keep track of the particular bus agent that has an
outstanding retry and so must get priority for that block). The network-side tags, which are part
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of the directory protocol, do all this, so they contain 7 bits of state plus two 6-bit pointers per
block (as well as the 13-bit cache tags themselves). 

Unlike the hard-wired protocol tables in Origin, the SCLIC coherence controller in NUMA-Q is
programmable. This means the protocol can be written in software or firmware rather than hard-
wired into a finite state machine. Every protocol-invoking operation from a processor, as well as
every incoming transaction from the network invokes a software “handler” or task that runs on
the protocol engine. These software handlers, written in microcode, may manipulate directory
state, put interventions on the Quad bus, generate network transactions, etc. The SCLIC has mul-
tiple register sets to support 12 read/write/invalidate transactions and one interrupt transaction
concurrently (the SCLIC provides a bridge for routing standard Quad interrupts between Quads;
some available extra bits are used to include the destination Quad number when generating an
interrupt, so the SCLIC can use the standard Quad interrupt interface). A programmable engine is
chosen so that the protocol may be debugged in software and corrected by simply downloading
new protocol code, so that there would be flexibility to experiment with or change protocols even
after the machine was built and bottlenecks discovered, and so that code can be inserted into the
handlers to monitor chosen events for performance debugging. Of course, a programmable proto-
col engine has higher occupancy per transaction than a hard-wired one, so there is a performance
cost associated with this decision. Attempts are therefore made to reduce this performance
impact: The protocol processor has a simple three-stage pipeline, and issues up to two instruc-
tions (a branch and another instruction) every cycle. It uses a cache to hold recently used direc-
tory state and tag information rather than access the directory RAMs every time, and is
specialized to support the kinds of the bit-field manipulation operations that are commonly
needed in directory protocols as well as useful instructions to speed up handler dispatch and man-
agement like “queue on buffer full” and “branch on queue space available”. A somewhat different
programmable protocol engine is used in the Stanford FLASH multiprocessor [KOH+94]. 

Each Pentium Pro processor can have up to four requests outstanding. The Quad bus can have

eight requests outstanding at a time, like the SGI Challenge bus, and replies come in order. The
OBIC can have four requests outstanding (to the SCLIC), and can buffer two incoming transac-
tions to the Quad bus at a time. Thus, if more than four requests on the Quad bus need to go off-
Quad, the OBIC will cause the bus to stall. This scenario is not very likely, though. The SCLIC
can have up to eight requests outstanding and can buffer four incoming requests at a time. A sim-
plified picture of the SCLIC is shown in Figure 8-31. Finally, the Data Pump request and reply
buffers are each two entries deep outgoing to the network and four entries deep incoming. All
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Figure  8-31  Simplified block diagram of SCLIC chip. 
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request and reply buffers, whether incoming or outgoing, are physically separate in this imple-
mentation. 

All three components of the IQ-Link board also provide performance counters to enable non-
intrusive measurement of various events and statistics. There are three 40-bit memory-mapped
counters in the SCLIC and four in the OBIC. Each can be set in software to count any of a large
number of events, such as protocol engine utilization, memory and bus utilization, queue occu-
pancies, the occurrence of SCI command types, and the occurrence of transaction types on the P6
bus. The counters can be read by software at any time, or can be programmed to generate inter-
rupts when they cross a predefined threshold value. The Pentium Pro processor module itself pro-
vides a number of performance counters to count first- and second-level cache misses, as well as
the frequencies of request types and the occupancies of internal resources. Together with the pro-
grammable handlers, these counters can provide a wealth of information about the behavior of
the machine when running workloads.

8.7.7 Performance Characteristics 

The memory bus within a quad has a peak bandwidth of 532 MB/s, and the SCI ring interconnect
can transfer 500MB/s in each direction. The IQ-Link board can transfer data between these two
at about 30MB/s in each direction (note that only a small fraction of the transactions appearing
on the quad bus or on the SCI ring are expected to be relevant to the other). The latency for a
local read miss satisfied in main memory (or the remote cache) is expected to be about 250ns
under ideal conditions. The latency for a read satisfied in remote memory in a two-quad system is
expected to be about 3.1 µs, a ratio of about 12 to 1. The latency through the data pump network
interface for the first 18 bits of a transaction is 16ns, and then 2ns for every 18 bits thereafter. In
the network itself, it takes about 26ns for the first bit to get from a quad into the Lash box that
implements the ring and out to the data pump of the next quad along the ring. 

The designers of the NUMA-Q have performed several experiments with microbenchmarks and
with synthetic workloads that resemble database and transaction processing workloads. To obtain
a flavor for the microbenchmark performance capabilities of the machine, how latencies vary
under load, and the characteristics of these workloads, let us take a brief look at the results. Back-
to-back read misses are found to take 600ns each and obtain a transfer bandwidth to the processor
of 290 MB/s; back to back write misses take 525ns and sustain 185MB/s; and inbound writes
from I/O devices to the local memory take 360ns at 88MB/s bandwidth, including bus
arbitration. 

Table 8-3 shows the latencies and characteristics “under load” as seen in actual workloads run-
ning on eight quads. The first two rows are for microbenchmarks designed to have all quads issu-
ing read misses that are satisfied in remote memory. The third row is for a synthetic, on-line
transaction processing benchmark, the fourth for a workload that looks somewhat like the Trans-
action Processing Council’s TPC-C benchmark, and the last is for a decision support application
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that issues very few remote read/write references since it is written using explicit message pass-
ing. 

Remote latencies are significantly higher than the ideal for all but the message-passing decision
support workload. In general, the SCI ring and protocol have higher latencies than those of more
distributed networks and memory-based protocols (for example, requests that arrive late in a
pending list have to wait a while to be satisfied). However, it turns out at least in these transac-
tion-processing like workloads, much of the time in a remote access is spent passing through the
IQ-Link board itself, and not in the bus or in the SCI protocol. Figure 8-32 shows the breakdowns
of average remote latency into three components for two workloads on an 8-quad system.
Clearly, the path to improved remote access performance, both under load and not under load, is
to make the IQ-Link board more efficient. Opportunities being considered by the designers

include redesigning the SCLIC, perhaps using two instruction sequencers instead of one, and
optimizing the OBIC, with the hope of reducing the remote access latency to about 2.5 µs under
heavy load in the next generation. 

8.7.8 Comparison Case Study: The HAL S1 Multiprocessor

The S1 multiprocessor from HAL Computer Systems is an interesting combination of some fea-
tures of the NUMA-Q and the Origin2000. Like NUMA-Q it also uses Pentium Pro Quads as the
processing nodes; however, it uses a memory-based directory protocol like that of the Origin2000
across Quads rather than the cache-based SCI protocol. Also, to reduce latency and assist occu-
pancy, it integrates the coherence machinery more tightly with the node than the NUMA-Q does.

Table 8-3  Characteristics of microbenchmarks and workloads running on an 8-quad NUMA-Q.
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Figure  8-32  Components of average remote miss latency in two workloads on an 8-quad NUMA-Q.
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Instead of using separate chips for the directory protocol controller (SCLIC), bus interface con-
troller (OBIC) and network interface (Data Pump), the S1 integrates the entire communication
assist and the network interface into a single chip called the Mesh Coherence Unit (MCU). 

Since the memory-based protocol does not require the use of forward and backward pointers with
each cache entry, there is no need for a Quad-level remote data cache except to reduce capacity
misses, and the S1 does not use a remote data cache. The directory information is maintained in
separate SRAM chips, but the directory storage needed is greatly reduced by maintained infor-
mation only for blocks that are in fact cached remotely, organizing the directory itself as a cache
as will be discussed in Section 8.11.1. The MCU also contains a DMA engine to support explicit
message passing and to allow transfers of large chunks of data through block data transfer even in
the cache-coherent case. Message passing can be implemented either through the DMA engine
(preferred for large messages) or through the transfer mechanism used for cache blocks (pre-
ferred for small messages). The MCU is hard-wired instead of programmable, which reduces its
occupancy for protocol processing and hence improves its performance under contention. The
MCU also has substantial hardware support for performance monitoring. The only other custom
chip used is the network router, which is a six-ported crossbar with 1.9 million transistors, opti-
mized for speed. The network is clocked at 200MHz. The latency through a single router is 42 ns,
and the usable per-link bandwidth is 1.6GB/sec in each direction, similar to that of the
Origin2000 network. The S1 interconnect implementation scales to 32 nodes (128 processors). 

A major goal of integrating all the assist functionality into a single chip in S1 was to reduce
remote access latency and increase remote bandwidth. From the designers’ simulated measure-
ments, the best-case unloaded latency for a read miss that is satisfied in local memory is 240ns,
for a read miss to a block that is clean at a remote home is 1065 ns, and for a read miss to a block
that is dirty in a third node is 1365 ns. The remote to local latency ratio is about 4-5, which is a
little worse than on the SGI Origin2000 but better than on the NUMA-Q. The bandwidths
achieved in copying a single 4KB page are 105 MB/s from local memory to local memory
through processor reads and writes (limited primarily by the Quad memory controller which has
to handle both the reads and writes of memory), about 70 MB/s between local memory and a
remote memory (in either direction) when done through processor reads and writes, and about
270 MB/s in either direction between local and remote memory when done through the DMA
engines in the MCUs. The case of remote transfers through processor reads and writes is limited
primarily by the limit on the number of outstanding memory operations from a processor. The
DMA case is also better because it requires only one bus transaction at the initiating end for each
memory block, rather than two split transaction pairs in the case of processor reads and writes
(once for the read and once for the write). At least in the absence of contention, the local Quad
bus becomes a bandwidth bottleneck much before the interconnection network. 

Having understood memory-based and cache-based protocols in some depth, let us now briefly
examine some key interactions with the cost parameters of the communication architecture in
determining performance. 

8.8 Performance Parameters and Protocol Performance

Of the four major performance parameters in a communication architecture—overhead on the
main processor, occupancy of the communication assist, network transit latency, and network
bandwidth—the first is quite small on cache-coherent machines (unlike on message-passing sys-
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tems, where it often dominates). In the best case, the portion that we can call processor overhead,
and which cannot be hidden from the processor through overlap, it is the cost of issuing the mem-
ory operation. In the worst case, it is the cost of traversing the processor’s cache hierarchy and
reaching the assist. All other protocol processing actions are off-loaded to the communication
assist (e.g. the Hub or the IQ-Link). 

As we have seen, the communication assist has many roles in protocol processing, including gen-
erating a request, looking up the directory state, and sending out and receiving invalidations and
acknowledgments. The occupancy of the assist for processing a transaction not only contributes
to the uncontended latency of that transaction, but can also cause contention at the assist and
hence increase the cost of other transactions. This is especially true in cache-coherent machines
because there is a large number of small transactions—both data-carrying transactions and others
like requests, invalidations and acknowledgments—so the occupancy is incurred very frequently
and not amortized very well. In fact, because messages are small, assist occupancy very often
dominates the node-to-network data transfer bandwidth as the key bottleneck to throughput at the
end-points [HHS+95]. It is therefore very important to keep assist occupancy small. At the proto-
col level, it is important to not keep the assist tied up by an outstanding transaction while other
transactions are available for it to process, and to reduce the amount of processing needed from
the assist per transaction. For example, if the home forwards a request to a dirty node, the home
assist should not be held up until the dirty node replies—dramatically increasing its effective
occupancy—but should go on to service the next transaction and deal with the reply when it
comes. At the design level, it is important to specialize the assist enough that its occupancy per
transaction is low. 

Impact of Network Latency and Assist Occupancy

Figure 8-33 shows the impact of assist occupancy and network latency on performance, assum-
ing an efficient memory-based directory protocol similar to the one we shall discuss for the SGI
Origin2000. In the absence of contention, assist occupancy behaves just like network transit
latency or any other component of cost in a transaction’s path. Increasing occupancy by x cycles
would have the same impact as keeping occupancy constant but increasing transit latency by x
cycles. Since the X-axis is total uncontended round-trip latency for a remote read miss—includ-
ing the cost of transit latency and assist occupancies incurred along the way—if there is no con-
tention induced by increasing occupancy then all the curves for different values of occupancy
will be identical. In fact, they are not, and the separation of the curves indicates the impact of the
contention induced by increasing assist occupancy. 

The smallest value of occupancy (o) in the graphs is intended to represent that of an aggressive
hard-wired controller such as the one used in the Origin2000. The least aggressive one represents
placing a slow general-purpose processor on the memory bus to play the role of communication
assist. The most aggressive transit latencies used represent modern high-end multiprocessor
interconnects, while the least aggressive ones are closer to using system area networks like asyn-
chronous transfer mode (ATM). We can see that for an aggressive occupancy, the latency curves
take the expected 1/l shape. The contention induced by assist occupancy has a major impact on
performance for applications that stress communication throughput (especially those in which
communication is bursty), especially for the low-latency networks used in multiprocessors. For
higher occupancies, the curve almost flattens with increasing latency. The problem is especially
severe for applications with bursty communication, such as sorting and FFTs, since there the rate
of communication relative to computation during the phase that performs communication does
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not change much with problem size, so larger problem sizes do not help alleviate the contention
during that phase. Assist occupancy is a less severe a problem for applications in which commu-
nication events are separated by computation and whose communication bandwidth demands are
small (e.g. Barnes-Hut in the figure). When latency tolerance techniques are used (see
Chapter 11), bandwidth is stressed even further so the impact of assist occupancy is much greater
even at higher transit latencies [HHS+95]. These data show that is very important to keep assist
occupancy low in machines that communicate and maintain coherence at a fine granularity such
as that of cache blocks. The impact of contention due to assist occupancy tends to increase with

the number of processors used to solve a given problem, since communication to computation
ratio tends to increase. 

Effects of Assist Occupancy on Protocol Tradeoffs

The occupancy of the assist has an impact not only on the performance of a given protocol but
also on the tradeoffs among protocols. We have seen that cache-based protocols can have higher
latency on write operations than memory-based protocols, since the transactions needed to inval-
idate sharers are serialized. The SCI cache-based protocol tends to have more protocol process-
ing to do on a given memory operation than a memory-based protocol, so an assist for this
protocol tends to have higher occupancy, so the effective occupancy of an assist tends to be sig-
nificantly higher. Combined with the higher latency on writes, this would tend to cause memory-
based protocols to perform better. This difference between the performance of the protocols will
become greater as assist occupancy increases. On the other hand, the protocol processing occu-
pancy for a given memory operation in SCI is distributed over more nodes and assists, so depend-
ing on the communication patterns of the application it may experience less contention at a given
assist. For example, when hot-spotting becomes a problem due to bursty irregular communica-
tion in memory-based protocols (as in Radix sorting), it may be somewhat alleviated in SCI. SCI
may also be more resilient to contention caused by data distribution problems or by less opti-

Figure  8-33  Impact of assist occupancy and network latency on the performance of memory-based cache coherence protocols. 

The Y-axis is the parallel efficiency, which is the speedup over a sequential execution divided by the number of processors used (1 is
ideal speedup). The X-axis is the uncontended round-trip latency of a read miss that is satisfied in main memory at the home, includ-
ing all components of cost (occupancy, transit latency, time in buffers, and network bandwidth). Each curve is for a different value of
assist occupancy (o), while along a curve the only parameter that is varies is the network transit latency (l). The lowest occupancy
assumed is 7 processor cycles, which is labelled O1. O2 corresponds to twice that occupancy (14 processor cycles), and so on. All
other costs, such as the time to propagate through the cache hierarchy and through buffers, and the node-to-network bandwidth are held constant. The
graphs are for simulated 64-processor executions. The main conclusion is that the contention induced by assist occupancy is very important to perfor-
mance, especially in low-latency networks. 
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mized programs. How these tradeoffs actually play out in practice will depend on the characteris-
tics of real programs and machines, although overall we might expect memory-based protocols to
perform better in the most optimized cases. 

Improving Performance Parameters in Hardware

There are many ways to use more aggressive, specialized hardware to improve performance char-
acteristics such as latency, occupancy and bandwidth. Some notable techniques include the fol-
lowing. First, an SRAM directory cache may be placed close to the assist to reduce directory
lookup cost, as is done in the Stanford FLASH multiprocessor [KOH+94]. Second, a single bit of
SRAM can be maintained per memory block at the home, to keep track of whether or not the
block is in clean state in the local memory. If it is, then on a read miss to a locally allocated block
there is no need to invoke the communication assist at all. Third, if the assist occupancy is high, it
can be pipelined into stages of protocol processing (e.g. decoding a request, looking up the direc-
tory, generating a response) or its occupancy can be overlapped with other actions. The former
technique reduces contention but not the uncontended latency of memory operations, while the
latter does the reverse. Critical path latency for an operation can also be reduced by having the
assist generate and send out a response or a forwarded request even before all the cleanup it needs
to do is done. 

This concludes our discussion of directory-based cache coherence protocols. Let us now look at
synchronization on scalable cache-coherent machines. 

8.9 Synchronization

Software algorithms for synchronization on scalable shared address space systems using atomic
exchange instructions or LL-SC have already been discussed in Chapter 7 (Section 7.10). Recall
that the major focus of these algorithms compared to those for bus-based machines was to exploit
the parallelism of paths in the interconnect and to ensure that processors would spin on local
rather than nonlocal variables. The same algorithms are applicable to scalable cache-coherent
machines. However, there are two differences. On one hand, the performance implications of
spinning on remotely allocated variables are likely to be much less significant, since a processor
caches the variable and then spins on it locally until it is invalidated. Having processors spin on
different variables rather than the same one, as achieved in the tree barrier, is of course useful so
that not all processors rush out to the same home memory when the variable is written and inval-
idated, reducing contention. However, there is only one (very unlikely) reason that it may actu-
ally be very important to performance that the variable a processor spins on is allocated locally: if
the cache is unified and direct-mapped and the instructions for the spin loop conflict with the
variable itself, in which case conflict misses will be satisfied locally. A more minor benefit of
good placement is converting the misses that occur after invalidation into 2-hop misses from 3-
hop misses. On the other hand, implementing atomic primitives and LL-SC is more interesting
when it interacts with a coherence protocol. This section examines these two aspects, first com-
paring the performance of the different synchronization algorithms for locks and barriers that
were described in Chapters 5 and 7 on the SGI Origin2000, and then discussing some new imple-
mentation issues for atomic primitives beyond the issues already encountered on bus-based
machines. 
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8.9.1 Performance of Synchronization Algorithms

The experiments we use to illustrate synchronization performance are the same as those we used
on the bus-based SGI Challenge in Section 5.6, again using LL-SC as the primitive used to con-
struct atomic operations. The delays used are the same in processor cycles, and therefore differ-
ent in actual microseconds. The results for the lock algorithms described in Chapters 5 and 7 are
shown in Figure 8-34 for 16-processor executions. Here again, we use three different sets of val-
ues for the delays within and after the critical section for which processors repeatedly contend. 

Here too, until we use delays between critical sections the simple locks behavior unfairly and
yield higher throughput. Exponential backoff helps the LL-SC when there is a null critical sec-
tion, since this is the case where there is significant contention to be alleviated. Otherwise, with
null critical sections the ticket lock itself scales quite poorly as before, but scales very well when
proportional backoff is used. The array-based lock also scales very well. With coherent caches,
the better placement of lock variables in main memory afforded by the software queuing lock is
not particularly useful, and in fact the queueing lock incurs contention on its compare and swap
operations (implemented with LL-SC) and scales worse than the array lock. If we force the sim-
ple locks to behave fairly, they behave much like the ticket lock without proportional backoff. 

If we use a non-null critical section and a delay between lock accesses (Figure 8-34(c)), all locks
behave fairly. Now, the simple LL-SC locks don’t have their advantage, and their scaling disad-
vantage shows through. The array-based lock, the queueing lock, and the ticket lock with propor-
tional backoff all scale very well. The better data placement of the queuing lock does not matter,
but neither is the contention any worse for it now. Overall, we can conclude that the array-based
lock and the ticket lock perform well and robustly for scalable cache-coherent machines, at least
when implemented with LL-SC, and the simple LL-SC lock with exponential backoff performs
best when there is no delay between an unlock and the next lock, due to repeated unfair success-
ful access by a processor in its own cache. The most sophisticated, queueing lock is unnecessary,
but also performs well when there are delays between unlock and lock. 
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Figure  8-34  Performance of locks on the SGI Origin2000, for three different scenarios.
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8.9.2 Supporting Atomic Primitives

Consider implementing atomic exchange (read-modify-write) primitives like test&set performed
on a memory location. What matters here is that a conflicting write to that location by another
processor occur either before the read component of the read-modify-write operation or after its
write component. As we discussed for bus-based machines in Chapter 5 (Section 5.6.3), the read
component may be allowed to complete as soon as the write component is serialized with respect
to other writes. and we can ensure that no incoming invalidations are applied to the block until
the read has completed. If the read-modify-write is implemented at the processor (cacheable
primitives), this means that the read can complete once the write has obtained ownership, and
even before invalidation acknowledgments have returned. Atomic operations can also be imple-
mented at the memory, but it is easier to do this if we disallow the block from being cached in
dirty state by any processor. Then, all writes go to memory, and the read-modify-write can be
serialized with respect to other writes as soon as it gets to memory. Memory can send a response
to the read component in parallel with sending out invalidations corresponding to the write com-
ponent. 

Implementing LL-SC requires all the same consideration to avoid livelock as it did for bus-based
machines, plus one further complication. Recall that an SC should not send out invalidations/
updates if it fails, since otherwise two processors may keep invalidating/updating each other and
failing, causing livelock. To detect failure, the requesting processor needs to determine if some
other processor’s write to the block has happened before the SC. In a bus-based system, the cache
controller can do this by checking upon an SC whether the cache no longer has a valid copy of
the block, or whether there are incoming invalidations/updates for the block that have already
appeared on the bus. The latter detection, which basically checks the serialization order, cannot
be done locally by the cache controller with a distributed interconnect. In an invalidation-based
protocol, if the block is still in valid state in the cache then the read exclusive request correspond-
ing to the SC goes to the directory at the home. There, it checks to see if the requestor is still on
the sharing list. If it isn’t, then the directory knows that another conflicting write has been serial-
ized before the SC, so it does not send out invalidations corresponding to the SC and the SC fails.
In an update protocol, this is more difficult since even if another write has been serialized before
the SC the SC requestor will still be on the sharing list. One solution [Gha95] is to again use a
two-phase protocol. When the SC reaches the directory, it locks down the entry for that block so
no other requests can access it. Then, the directory sends a message back to the SC requestor,
which upon receipt checks to see if the lock flag for the LL-SC has been cleared (by an update
that arrived between now and the time the SC request was sent out). If so, the SC has failed and a
message is sent back to the directory to this effect (and to unlock the directory entry). If not, then
as long as there is point to point order in the network we can conclude that no write beat the SC
to the directory so the SC should succeed. The requestor sends this acknowledgment back to the
directory, which unlocks the directory entry and sends out the updates corresponding to the SC,
and the SC succeeds. 

8.10 Implications for Parallel Software

What distinguishes the coherent shared address space systems described in this chapter from
those described in Chapters 5 and 6 is that they all have physically distributed rather than central-
ized main memory. Distributed memory is at once an opportunity to improve performance
through data locality and a burden on software to exploit this locality. As we saw in Chapter 3, in



Directory-based Cache Coherence

590 DRAFT: Parallel Computer Architecture 9/3/97

the cache-coherent machine with physically distributed memory (or CC-NUMA machines) dis-
cussed in this chapter, parallel programs may need to be aware of physically distributed memory,
particularly when their important working sets don’t fit in the cache. Artifactual communication
occurs when data are not allocated in the memory of a node that incurs capacity, conflict or cold
misses on them (it can also occur due to false sharing or fragmentation of communication, which
occur at cache block granularity). Consider also a multiprogrammed workload, consisting of
even sequential programs, in which application processes are migrated among processing nodes
for load balancing. Migrating a process will turn what should be local misses into remote misses,
unless the system moves all the migrated process’s data to the new node’s main memory as well.

In the CC-NUMA machines discussed in this chapter, main memory management is typically
done at the fairly large granularity of pages. The large granularity can make it difficult to distrib-
ute shared data structures appropriately, since data that should be allocated on two different
nodes may fall on the same unit of allocation. The operating system may migrate pages to the
nodes that incur cache misses on them most often, using information obtained from hardware
counters, or the runtime system of a programming language may do this based on user-supplied
hints or compiler analysis. More commonly today, the programmer may direct the operating sys-
tem to place pages in the memories closest to particular processes. This may be as simple as pro-
viding these directives to the system—such as “place the pages in this range of virtual addresses
in this process X’s local memory”—or it may involve padding and aligning data structures to
page boundaries so they can be placed properly, or it may even require that data structures be
organized differently to allow such placement at page granularity. We saw examples in using
four-dimensional instead of two-dimensional arrays in the equation solver kernel, in Ocean and
in LU. Simple, regular cases like these may also be handled by sophisticated compilers. In Bar-
nes-Hut, on the other hand, proper placement would require a significant reorganization of data
structures as well as code. Instead of having a single linear array of particles (or cells), each pro-
cess would have an array or list of its own assigned particles that it could allocate in its local
memory, and between time-steps particles that were reassigned would be moved from one array/
list to another. However, as we have seen data placement is not very useful for this application,
and may even hurt performance due to its high costs. It is important that we understand the costs
and potential benefits of data migration. Similar issues hold for software-controlled replication,
and the next chapter will discuss alternative approaches to coherent replication and migration in
main memory. 

One of the most difficult and insidious problems for a programmer to deal with in a coherent
shared address space is contention. Not only is data traffic implicit and often unpredictable, but
contention can also be caused by “invisible” protocol transactions such as the ownership requests
above, invalidations and acknowledgments, which a programmer is not inclined to think about at
all. All of these types of transactions occupy the protocol processing portion of the communica-
tion assist, so it is very important to keep the occupancy of the assist per transaction very low to
contain end-point contention. Invisible protocol messages and contention make performance
problems like false sharing all the more important for a programmer to avoid, particularly when
they cause a lot of protocol transactions to be directed toward the same node. For example, we
are often tempted to structure some kinds of data as an array with one entry per process. If the
entries are smaller than a page, several of them will fall on the same page. If these array entries
are not padded to avoid false sharing, or if they incur conflict misses in the cache, all the misses
and traffic will be directed at the home of that page, causing a lot of contention. If we do structure
data this way, then in a distributed memory machine it is advantageous not only to structure mul-
tiple such arrays as an array of records, as we did to avoid false sharing in Chapter 5, but also to
pad and align the records to a page and place the pages in the appropriate local memories. 
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An interesting example of how contention can cause different orchestration strategies to be used
in message passing and shared address space systems is illustrated by a high-performance paral-
lel Fast Fourier Transform. Conceptually, the computation is structured in phases. Phases of local
computation are separated by phases of communication, which involve the transposition of a
matrix. A process reads columns from a source matrix and writes them into its assigned rows of a
destination matrix, and then performs local computation on its assigned rows of the destination
matrix. In a message passing system, it is important to coalesce data into large messages, so it is
necessary for performance to structure the communication this way (as a separate phase apart
from computation). However, in a cache-coherent shared address space there are two differences.
First, transfers are always done at cache block granularity. Second, each fine-grained transfer
involves invalidations and acknowledgments (each local block that a process writes is likely to be
in shared state in the cache of another processor from a previous phase, so must be invalidated),
which cause contention at the coherence controller. It may therefore be preferable to perform the
communication on-demand at fine grain while the computation is in progress, thus staggering out
the communication and easing the contention on the controller. A process that computes using a
row of the destination matrix can read the words of that source matrix column from a remote
node on-demand while it is computing, without having to do a separate transpose phase. 

Finally, synchronization can be expensive in scalable systems, so programs should make a spe-
cial effort to reduce the frequency of high-contention locks or global barrier synchronization. 

8.11 Advanced Topics

Before concluding the chapter, this section covers two additional topics. The first is the actual
techniques used to reduce directory storage overhead in flat, memory-based schemes, as prom-
ised in Section 8.3.3. The second is techniques for hierarchical coherence, both snooping- and
directory-based. 

8.11.1 Reducing Directory Storage Overhead

In the discussion of flat, memory based directories in Section 8.3.3, it was stated that the size or
width of a directory entry can be reduced by using a limited number of pointers rather than a full
bit-vector, and that doing this requires some overflow mechanism when the number of copies of
the block exceeds the number of available pointers. Based on the empirical data about sharing
patterns, the number of pointers likely to be provided in limited pointer directories is very small,
so it is important that the overflow mechanism be efficient. This section first discusses some pos-
sible overflow methods for limited pointer directories. It then examines techniques to reduce
directory “height”, by not having a directory entry for every memory block in the system but
rather organizing the directory as a cache. The overflow methods include schemes called broad-
cast, no broadcast, coarse vector, software overflow, and dynamic pointers. 

Broadcast (DiriB) The overflow strategy in the DiriB scheme [ASH+88] is to set a broadcast bit
in the directory entry when the number of available pointers (indicated by subscript i in DiriB) is
exceeded. When that block is written again, invalidation messages are sent to all nodes, regard-
less of whether or not they were caching the block. It is not semantically incorrect, but simply
wasteful, to send an invalidation message to a processor not caching the block. Network band-
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width may be wasted, and latency stalls may be increased if the processor performing the write
must wait for acknowledgments before proceeding. However, the method is very simple. 

No broadcast (DiriNB) The DiriNB scheme [ASH+88] avoids broadcast by never allowing the
number of valid copies of a block to exceed i. Whenever the number of sharers is i and another
node requests a read-shared copy of the block, the protocol invalidates the copy in one of the
existing sharers and frees up that pointer in the directory entry for the new requestor. A major
drawback of this scheme is that it does not deal well with data that are read by many processors
during a period, even though the data do not have to be invalidated. For example, a piece of code
that is running on all the processors, or a small table of pre-computed values shared by all proces-
sors will not be able to reside in all the processors’ caches at the same time, and a continual
stream of misses will be generated. While special provisions can be made for blocks containing
code, for example, their consistency may be managed by software instead of hardware, it is not
clear how to handle widely shared read-mostly data well in this scheme.

Coarse vector (DiriCVr) The DiriCVr scheme [GWM90] also uses i pointers in its initial repre-
sentation, but overflows to a coarse bit vector scheme like the one used by the Origin2000. In this
representation, each bit of the directory entry is used to point to a unique group of the nodes in
the machine (the subscript r in DiriCVr indicates the size of the group), and that bit is turned ON
whenever any node in that partition is caching that block. When a processor writes that block, all

nodes in the groups whose bits are turned ON are sent an invalidation message, regardless of
whether they have actually accessed or are caching the block. As an example, consider a 256-
node machine for which we store eight pointers in the directory entry. Since each pointer needs to
be 8-bits wide, there are 64-bits available for the coarse-vector on overflow. Thus we can imple-
ment a Dir8CV4 scheme, with each coarse-vector bit pointing to a group of four nodes. A single
bit per entry keeps track of whether the current representation is the normal limited pointers or a
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Figure  8-35  The change in representation in going from limited pointer representation to coarse vector representation on overflow. 

Upon overflow, the two 4-bit pointers (for a 16-node system) are viewed as an eight-bit coarse vector, each bit corresponding to a
group of two nodes. The overflow bit is also set, so the nature of the representation can be easily determined. The dotted lines in (b)
indicate the correspondence between bits and node groups. 
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coarse vector. As shown in Figure 8-36, an advantage of a scheme like DiriCVr (and several of
the following) over DiriB and DiriNB is that its behavior is more robust to different sharing pat-
terns. 

Software Overflow (DiriSW) This scheme is different from the previous ones in that it does not
throw away the precise caching status of a block when overflow occurs. Rather, the current i
pointers and a pointer to the new sharer are saved into a special portion of the node’s local main
memory by software. This frees up space for new pointers, so i new sharers can be handled by
hardware before software must be invoked to store pointers away into memory again. The over-
flow also causes an overflow bit to be set in hardware. This bit ensures that when a subsequent
write is encountered the pointers that were stored away in memory will be read out and invalida-
tion messages sent to those nodes as well. In the absence of a very sophisticated (programmable)
communication assist, the overflow situations (both when pointers must be stored into memory
and when they must be read out and invalidations sent) are handled by software running on the
main processor, so the processor must be interrupted upon these events. The advantages of this
scheme are that precise information is kept about sharers even upon overflow, so there is no extra
traffic generated, and the overflow handling is managed by software. The major overhead is the
cost of the interrupts and software processing. This disadvantage takes three forms: (i) the pro-
cessor at the home of the block spends time handling the interrupt instead of performing user’s
computation, (ii) the overhead for performing these requests is large, thus potentially becoming a
bottleneck for contention if many requests come to it at the same time, and (iii) the requesting
processor may stall longer due to the higher latency of the requests that cause an interrupt as well
as increased contention.1

Example  8-3 Software overflow for limited pointer directories was used in the MIT Alewife
research prototype [ABC+95] and called the “LimitLESS” scheme [ALK+91]. The
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Figure  8-36  Comparison of invalidation traffic generated by Dir4B, Dir4NB, and Dir4CV4 schemes as compared to the full-bit-
vector scheme. 

The results are taken from [Web93], so the simulation parameters are different from those used in this book. The number of proces-
sors (one per node) is 64. The data for LocusRoute application, which has data that are written with some frequency and read by
many nodes, shows the potential pitfalls of the DiriB scheme. Cholesky and Barnes-Hut, which have data that are shared by large
numbers of processors (e.g., nodes close to root of tree in Barnes-Hut) show the potential pitfalls of DiriNB scheme. The DiriCVr
scheme is found to be reasonably robust.
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Alewife machine is designed to scale to 512 processors. Each directory entry is 64-
bits wide. It contains five 9-bit pointers to record remote processors caching the
block, and one dedicated bit to indicate whether the local processor is also caching
the block (thus saving 8 bits when this is true). Overflow pointers are stored in a
hash-table in the main memory. The main processor in Alewife has hardware
support for multithreading (see Chapter 11), with support for fast handing of traps
upon overflow. Nonetheless, while the latency of a request that causes 5
invalidations and can be handled in hardware is only 84 cycles, a request requiring
6 invalidations and hence software intervention takes 707 cycles. 

Dynamic pointers (DiriDP) The DiriDP scheme [SiH91] is a variation of the DiriSW scheme. In
this scheme, in addition to the i hardware pointers each directory entry contains a pointer into a
special portion of the local node’s main memory. This special memory has a free list associated
with it, from which pointer-structures can be dynamically allocated to processors as needed. The
key difference from DiriSW is that all linked-list manipulation is done by a special-purpose pro-
tocol hardware/processor rather than by the general-purpose processor of the local node. As a
result, the overhead of manipulating the linked-lists is small. Because it also contains a pointer to
memory, the number of hardware pointers i used in this scheme is typically very small (1 or 2).
The DiriDP scheme is being used as the default directory organization for the Stanford FLASH
multiprocessor [KOH+94].

Among these many alternative schemes for maintaining directory information in a memory-
based protocol, it is quite clear that the DiriB and DiriNB schemes are not very robust to different
sharing patterns. However, the actual performance (and cost/performance) tradeoffs among the
others are not very well understood for real applications on large-scale machines. The general
consensus seems to be that full bit vectors are appropriate for machines with a moderate number
of processing nodes, while several among the last few schemes above ought to suffice for larger
systems. 

In addition to reducing directory entry width, an orthogonal way to reduce directory memory
overhead is to reduce the total number of directory entries used by not using one per memory
block [GWM90, OKN90]; that is, to go after the M term in the P*M expression for directory
memory overhead. Since the two methods of reducing overhead are orthogonal, they can be
traded off against each other: Reducing the number of entries allows us to make entries wider
(use more hardware pointers) without increasing cost, and vice versa. 

The observation that motivates the use of fewer directory entries is that the total amount of cache
memory is much less than the total main memory in the machine. This means that only a very
small fraction of the memory blocks will be cached at a given time. For example, each processing
node may have a 1 Mbyte cache and 64 Mbytes of main memory associated with it. If there were
one directory entry per memory block, then across the whole machine 63/64 or 98.5% of the
directory entries will correspond to memory blocks that are not cached anywhere in the machine.
That is an awful lot of directory entries lying idle with no bits turned ON, especially if replace-
ment hints are used. This waste of memory can be avoided by organizing the directory as a cache,

1.  It is actually possible to reply to the requestor before the trap is handled, and thus not affect the latency
seen by it. However, that simply means that the next processor’s request is delayed and that processor may
experience a stall.
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and allocating the entries in it to memory blocks dynamically just as cache blocks are allocated to
memory blocks containing program data. In fact, if the number of entries in this directory cache
is small enough, it may enable us to use fast SRAMs instead of slower DRAMs for directories,
thus reducing the access time to directory information. This access time is in the critical path that
determines the latency seen by the processor for many types of memory references. Such a direc-
tory organization is called a sparse directory, for obvious reasons. 

While a sparse directory operates quite like a regular processor cache, there are some significant
differences. First, there is no need for a backing store for this cache: When an entry is replaced, if
any node’s bits in it are turned on then we can simply send invalidations or flush messages to
those nodes. Second, there is only one directory entry per cache entry, so spatial locality is not an
issue. Third, a sparse directory handles references from potentially all processors, whereas a pro-
cessor cache is only accessed by the processor(s) attached to it. And finally, the references stream
the sparse directory sees is heavily filtered, consisting of only those references that were not sat-
isfied in the processor caches. For a sparse directory to not become a bottleneck, it is essential
that it be large enough and have enough associativity to not incur too many replacements of
actively accessed blocks. Some experiments and analysis studying the sizing of the directory
cache can be found in [Web93].

8.11.2 Hierarchical Coherence

In the introduction to this chapter, it was mentioned that one way to build scalable coherent
machines is to hierarchically extend the snoopy coherence protocols based on buses and rings
that we have discussed in Chapters 5 and 6 in this chapter, respectively. We have also been intro-
duced to hierarchical directory schemes in this chapter. This section describes hierarchical
approaches to coherence a little further. While hierarchical ring-based snooping has been used in
commercial systems (e.g. in the Kendall Square Research KSR-1 [FBR93]) as well as research
prototypes (e.g. the University of Toronto’s Hector system [VSL+91, FVS92]), and hierarchical
directories have been studied in academic research, these approaches have not gained much
favor. Nonetheless, building large systems hierarchically out of smaller ones is an attractive
abstraction, and it is useful to understand the basic techniques. 

Hierarchical Snooping

The issues in hierarchical snooping are similar for buses and rings, so we study them mainly
through the former. A bus hierarchy is a tree of buses. The leaves are bus-based multiprocessors
that contain the processors. The busses that constitute the internal nodes don’t contain processors,
but are used for interconnection and coherence control: They allow transactions to be snooped
and propagated up and down the hierarchy as necessary. Hierarchical machines can be built with
main memory centralized at the root or distributed among the leaf multiprocessors (see Figure 8-
37). While a centralized main memory may simplify programming, distributed memory has
advantages both in bandwidth and potentially in performance (note however that if data are not
distributed such most cache misses are satisfied locally, remote data may actually be further away
than the root in the worst case, potentially leading to worse performance). Also, with distributed
memory, a leaf in the hierarchy is a complete bus-based multiprocessor, which is already a com-
modity product with cost advantages. Let us focus on hierarchies with distributed memory, leav-
ing centralized memory hierarchies to the exercises. 
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The processor caches within a leaf node (multiprocessor) are kept coherent by any of the snoopy

protocols discussed in Chapter 5. In a simple, two-level hierarchy, we connect several of these
bus-based systems together using another bus (B2) that has the main memory attached to it (the
extension to multilevel hierarchies is straightforward). What we need is a coherency monitor
associated with each B1 bus that monitors (snoops) the transactions on both buses, and decides
which transactions on its B1 bus should be forwarded to the B2 bus and which ones that appear
on the B2 bus should be forwarded to its B1 bus. This device acts as a filter, forwarding only the
necessary transactions in both directions, and thus reduces the bandwidth demands on the buses.

In a system with distributed memory, the coherence monitor for a node has to worry about two
types of data for which transactions may appear on either the B1 or B2 bus: data that are allo-
cated nonlocally but cached by some processor in the local node, and data that are allocated
locally but cached remotely. To watch for the former on the B2 bus, a remote access cache per
node can be used as in the Sequent NUMA-Q. This cache maintains inclusion (see Section 6.4.1)
with regard to remote data cached in any of the processor caches on that node, including a dirty-
but-stale bit indicating when a processor cache in the node has the block dirty. Thus, it has
enough information to determine which transactions are relevant in each direction and pass them
along.

For locally allocated data, bus transactions can be handled entirely by the local memory or
caches, except when the data are cached by processors in other (remote) nodes. For these data,
there is no need to keep the data themselves in the coherence monitor, since either the valid data
are already available locally or they are in modified state remotely; in fact, we would not want to
since the amount of data may be as large as the local memory. However, the monitor keeps state
information for locally allocated blocks that are cached remotely, and snoops the local B1 bus so
relevant transactions for these data can be forwarded to the B2 bus if necessary. Let’s call this
part of the coherence monitor the local state monitor. Finally, the coherence monitor also watches
the B2 bus for transactions to its local addresses, and passes them on to the local B1 bus unless
the local state monitor says they are cached remotely in a modified state. Both the remote cache
and the local state part of the monitor are looked up on B1 and B2 bus transactions. 

Consider the coherence protocol issues (a) through (c) that were raised in Section 8.2. (a) Infor-
mation about the state in other nodes (subtrees) is implicitly available to enough of an extent in
the local coherence monitor (remote cache and local state monitor); (b) if this information indi-
cates a need to find other copies beyond the local node, the request is broadcast on the next bus
(and so on hierarchically in deeper hierarchies), and other relevant monitors will respond; and (c)

Figure  8-37  Hierarchical bus-based multiprocessors, shown with a two-level hierarchy. 
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communication with the other copies is performed simultaneously as part of finding them
through the hierarchical broadcasts on buses. 

More specifically, let us consider the path of a read miss, assuming a shared physical address
space. A BusRd request appears on the local B1 bus. If the remote access cache, the local mem-
ory or another local cache has a valid copy of the block, they will supply the data. Otherwise,
either the remote cache or the local state monitor will know to pass the request on to the B2 bus.
When the request appears on B2, the coherence monitors of other nodes will snoop it. If a node’s
local state monitor determines that a valid copy of the data exists in the local node, it will pass the
request on to the B1 bus, wait for the reply and put it back on the B2 bus. If a node’s remote
cache contains the data, then if it has it in shared state it will simply reply to the request itself, if
in dirty state it will reply and also broadcast a read on the local bus to have the dirty processor
cache downgrade the block to shared, and if dirty-but-stale then it will simply broadcast the
request on the local bus and reply with the result. In the last case, the local cache that has the data
dirty will change its state from dirty to shared and put the data on the B1 bus. The remote cache
will accept the data reply from the B1 bus, change its state from dirty-but-stale to shared, and
pass the reply on to the B2 bus. When the data response appears on B2, the requestor’s coherence
monitor picks it up, installs it and changes state in the remote cache if appropriate, and places it
on its local B1 bus. (If the block has to be installed in the remote cache, it may replace some other
block, which will trigger a flush/invalidation request on that B1 bus to ensure the inclusion prop-
erty.) Finally, the requesting cache picks up the response to its BusRd request from the B1 bus
and stores it in shared state.

For writes, consider the specific situation shown in Figure 8-37(b), with P0 in the left hand node
issuing a write to location A, which is allocated in the memory of a third node (not shown). Since
P0’s own cache has the data only in shared state, an ownership request (BusUpgr) is issued on the
local B1 bus. As a result, the copy of B in P1’s cache is invalidated. Since the block is not avail-
able in the remote cache in dirty-but-stale state (which would have been incorrect since P1 had it
in shared state), the monitor passes the BusUpgr request to bus B2, to invalidate any other copies,
and at the same time updates its own state for the block to dirty-but-stale. In another node, P2 and
P3 have the block in their caches in shared state. Because of the inclusion property, their associ-
ated remote cache is also guaranteed to have the block in shared state. This remote cache passes
the BusUpgr request from B2 onto its local B1 bus, and invalidates its own copy. When the
request appears on the B1 bus, the copies of B in P2 and P3’s caches are invalidated. If there is
another node on the B2 bus whose processors are not caching block B, the upgrade request will
not pass onto its B1 bus. Now suppose another processor P4 in the left hand node issues a store to
location B. This request will be satisfied within the local node, with P0’s cache supplying the data
and the remote cache retaining the data in dirty-but-stale state, and no transaction will be passed
onto the B2 bus.

The implementation requirements on the processor caches and cache controllers remain
unchanged from those discussed in Chapter 6. However, there are some constraints on the remote
access cache. It should be larger than the sum of the processor caches and quite associative, to
maintain inclusion without excessive replacements. It should also be lockup-free, i.e. able to han-
dle multiple requests from the local node at a time while some are still outstanding (more on this
in Chapter 11). Finally, whenever a block is replaced from the remote cache, an invalidate or
flush request must be issued on the B1 bus depending on the state of the replaced block (shared or
dirty-but-stale, respectively). Minimizing the access time for the remote cache is less critical than
increasing its hit-rate, since it is not in the critical path that determines the clock-rate of the pro-
cessor: The remote caches are therefore more likely to be built out of DRAM rather than SRAM.
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The remote cache controller must also deal with non-atomicity issues in requesting and acquiring
buses that are similar to the ones we discussed in Chapter 6. 

Finally, what about write serialization and determining store completion? From our earlier dis-
cussion of how these work on a single bus in Chapter 6, it should be clear that serialization
among requests from different nodes will be determined by the order in which those requests
appear on the closest bus to the root on which they both appear. For writes that are satisfied
entirely within the same leaf node, the order in which they may be seen by other processors—
within or without that leaf—is their serialization order provided by the local B1 bus. Similarly,
for writes that are satisfied entirely within the same subtree, the order in which they are seen by
other processors—within or without that subtree—is the serialization order determined by the
root bus of that subtree. It is easy to see this if we view each bus hanging off a shared bus as a
processor, and recursively use the same reasoning that we did with a single bus in Chapter 5.
Similarly, for store completion, a processor cannot assume its store has committed until it
appears on the closest bus to the root on which it will appear. An acknowledgment cannot be gen-
erated until that time, and even then the appropriate orders must be preserved between this
acknowledgment and other transactions on the way back to the processor (see Exercise 8.11).
The request reaching this bus is the point of commitment for the store: once the acknowledgment
of this event is sent back, the invalidations themselves no longer need to be acknowledged as they
make their way down toward the processor caches, as long as the appropriate orders are main-
tained along this path (just as with multi-level cache hierarchies in Chapter 6).

Example  8-4 Encore GigaMax One of the earliest machines that used the approach of
hierarchical snoopy buses with distributed memory was the Gigamax [Wil87,
WWS+89] from Encore Corporation. The system consisted of up to eight Encore
Multimax machines (each a regular snoopy bus-based multiprocessor) connected
together by fiber-optic links to a ninth global bus, forming a two-level hierarchy.
Figure 8-38 shows a block diagram. Each node is augmented with a Uniform
Interconnection Card (UIC) and a Uniform Cluster (Node) Cache (UCC) card. The
UCC is the remote access cache, and the UIC is the local state monitor. The
monitoring of the global bus is done differently in the Gigamax due to its particular
organization. Nodes are connected to the global bus through a fiber-optic link, so
while the local node cache (UCC) caches remote data it does not snoop the global
bus directly. Rather, every node also has a corresponding UIC on the global bus,
which monitors global bus transactions for remote memory blocks that are cached
in this local node. It then passes on the relevant requests to the local bus. If the UCC
indeed sat directly on the global bus as well, the UIC on the global bus would not be
necessary. The reason the GigaMax use fiber-optic links and not a single UIC
sitting on both buses is that high-speed buses are usually short: The Nanobus used
in the Encore Multimax and GigaMax is 1 foot long (light travels 1 foot in a
nanosecond, hence the name Nanobus). Since each node is at least 1 foot wide, and
the global bus is also 1 foot wide, flexible cabling is needed to hook these together.
With fiber, links can be made quite long without affecting their transmission
capabilities. 

The extension of snoopy cache coherence to hierarchies of rings is much like the extension of
hierarchies of buses with distributed memory. Figure 8-39 shows a block diagram. The local
rings and the associated processors constitute nodes, and these are connected by one or more glo-
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bal rings. The coherence monitor takes the form of an inter-ring interface, serving the same roles
as the coherence monitor (remote cache and local state monitor) in a bus hierarchy. 

Hierarchical Directory Schemes

Hierarchy can also be used to construct directory schemes. Here, unlike in flat directory schemes,
the source of the directory information is not found by going to a fixed node. The locations of
copies are found neither at a fixed home node nor by traversing a distributed list pointed to by
that home. And invalidation messages are not sent directly to the nodes with copies. Rather, all
these activities are performed by sending messages up and down a hierarchy (tree) built upon the
nodes, with the only direct communication (network transactions) being between parents and
children in the tree. 

Figure  8-38  Block diagram for the Encore Gigamax multiprocessor.
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At first blush the organization of hierarchical directories is much like hierarchical snooping. Con-
sider the example shown in Figure 8-40. The processing nodes are at the leaves of the tree and

main memory is distributed along with the processing nodes. Every block has a home memory
(leaf) in which it is allocated, but this does not mean that the directory information is maintained
or rooted there. The internal nodes of the tree are not processing nodes, but only hold directory
information. Each such directory node keeps track of all memory blocks that are being cached/
recorded by its immediate sub-trees. It uses a presence vector per block to tell which of its sub-
trees have copies of the block, and a bit to tell whether one of them has it dirty. It also records
information about local memory blocks (i.e., blocks allocated in the local memory of one of its
children) that are being cached by processing nodes outside its subtree. As with hierarchical
snooping, this information is used to decide when requests originating within the subtree should
be propagated further up the hierarchy. Since the amount of directory information to be main-
tained by a directory node that is close to the root can become very large, the directory informa-
tion is usually organized as a cache to reduce its size, and maintains the inclusion property with
respect to its children’s caches/directories. This requires that on a replacement from a directory
cache at a certain level of the tree, the replaced block be flushed out of all of its descendent direc-
tories in the tree as well. Similarly, replacement of the information about a block allocated within
that subtree requires that copies of the block in nodes outside the subtree be invalidated or
flushed.

A read miss from a node flows up the hierarchy until either (i) a directory indicates that its sub-
tree has a copy (clean or dirty) of the memory block being requested, or (ii) the request reaches
the directory that is the first common ancestor of the requesting node and the home node for that
block, and that directory indicates that the block is not dirty outside that subtree. The request then
flows down the hierarchy to the appropriate processing node to pick up the data. The data reply
follows the same path back, updating the directories on its way. If the block was dirty, a copy of
the block also finds its way to the home node.

A write miss in the cache flows up the hierarchy until it reaches a directory whose subtree con-
tains the current owner of the requested memory block. The owner is either the home node, if the
block is clean, or a dirty cache. The request travels down to the owner to pick up the data, and the
requesting node becomes the new owner. If the block was previously in clean state, invalidations
are propagated through the hierarchy to all nodes caching that memory block. Finally, all directo-
ries involved in the above transaction are updated to reflect the new owner and the invalidated
copies.

Figure  8-40  Organization of hierarchical directories.
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In hierarchical snoopy schemes, the interconnection network is physically hierarchical to permit
the snooping. With point to point communication, hierarchical directories do not need to rely on
physically hierarchical interconnects. The hierarchy discussed above is a logical hierarchy, or a
hierarchical data structure. It can be implemented on a network that is physically hierarchical
(that is, an actual tree network with directory caches at the internal nodes and processing nodes at
the leaves) or on a non-hierarchical network such as a mesh with the hierarchical directory
embedded in this general network. In fact, there is a separate hierarchical directory structure for
every block that is cached. Thus, the same physical node in a general network can be a leaf (pro-
cessing) node for some blocks and an internal (directory) node for others (see Figure 8-41
below). 

Finally, the storage overhead of the hierarchical directory has attractive scaling properties. It is
the cost of the directory caches at each level. The number of entries in the directory goes up as we
go further up the hierarchy toward to the root (to maintain inclusion without excessive replace-
ments), but the number of directories becomes smaller. As a result, the total directory memory
needed for all directories at any given level of the hierarchy is typically about the same. The
directory storage needed is not proportional to the size of main memory, but rather to that of the
caches in the processing nodes, which is attractive. The overall directory memory overhead is

proportional to , where C is the cache size per processing node at the leaf, M is the

main-memory per node, B is the memory block size in bits, b is the branching factor of the hier-
archy, and P is the number of processing nodes at the leaves (so logbP is the number of levels in
the tree). More information about hierarchical directory schemes can be found in the literature
[Sco91, Wal92, Hag92, Joe95]. 

Performance Implications of Hierarchical Coherence

Hierarchical protocols, whether snoopy or directory, have some potential performance advan-
tages. One is the combining of requests for a block as they go up and down the hierarchy. If a
processing node is waiting for a memory block to arrive from the home node, another processing
node that requests the same block can observe at their common ancestor directory that the block
has already been requested. It can then wait at the intermediate directory and grab the block when
it comes back, rather than send a duplicate request to the home node. This combining of transac-
tions can reduce traffic and hence contention. The sending of invalidations and gathering of inval-
idation acknowledgments can also be done hierarchically through the tree structure. The other
advantage is that upon a miss, if a nearby node in the hierarchy has a cached copy of the block,
then the block can be obtained from that nearby node (cache to cache sharing) rather than having
to go to the home which may be much further away in the network topology. This can reduce
transit latency as well as contention at the home. Of course, this second advantage depends on
how well locality in the hierarchy maps to locality in the underlying physical network, as well as
how well the sharing patterns of the application match the hierarchy. 

While locality in the tree network can reduce transit latency, particularly for very large machines,
the overall latency and bandwidth characteristics are usually not advantageous for hierarchical
schemes. Consider hierarchical snoopy schemes first. With busses there is a bus transaction and
snooping latency at every bus along the way. With rings, traversing rings at every level of the
hierarchy further increases latency to potentially very high levels. For example, the uncontended
latency to access a location on a remote ring in a fully populated Kendall Square Research KSR1
machine [FBR93] was higher than 25 microseconds [SGC93], and a COMA organization was

C Pblog×
M B×

------------------------
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used to reduce ring remote capacity misses. The commercial systems that have used hierarchical
snooping have tended to use quite shallow hierarchies (the largest KSR machine was a two-level
ring hierarchy, with up to 32 processors per ring). The fact that there are several processors per
node also implies that the bandwidth between a node and its parent or child must be large enough
to sustain their combined demands. The processors within a node will compete not only for bus
or link bandwidth but also for the occupancy, buffers, and request tracking mechanisms of the
node-to-network interface. To alleviate link bandwidth limitations near the root of the hierarchy,
multiple buses or rings can be used closer to the root; however, bandwidth scalability in practical
hierarchical systems remains quite limited. 

For hierarchical directories, the latency problem is that the number of network transactions up
and down the hierarchy to satisfy a request tends to be larger than in a flat memory-based
scheme. Even though these transactions may be more localized, each one is a full-fledged net-
work transaction which also requires either looking up or modifying the directory at its (interme-
diate) destination node. This increased end-point overhead at the nodes along the critical path
tends to far outweigh any reduction in total transit latency on the network links themselves, espe-
cially given the characteristics of modern networks. Although some pipelining can be used—for
example the data reply can be forwarded on toward the requesting node while a directory node is
being updated—in practice the latencies can still become quite large compared to machines with
no hierarchy [Hag92, Joe95]. Using a large branching factor in the hierarchy can alleviate the
latency problem, but it increases contention. The root of the directory hierarchy can also become
a bandwidth bottleneck, for both link bandwidth and directory lookup bandwidth. Multiple links
may be used closer to the root—particularly appropriate for physically hierarchical networks
[LAD+92]—and the directory cache may be interleaved among them. Alternatively, a multi-
rooted directory hierarchy may be embedded in a non-hierarchical, scalable point-to-point inter-
connect [Wal92, Sco91, ScG93]. Figure 8-41 shows a possible organization. Like hierarchical

directory schemes themselves, however, these techniques have only been in the realm of research
so far. 

Figure  8-41  A multi-rooted hierarchical directory embedded in an arbitrary network. 
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8.12 Concluding Remarks

Scalable systems that support a coherent shared address space are an important part of the multi-
processing landscape. Hardware support for cache coherence is becoming increasingly popular
for both technical and commercial workloads. Most of these systems use directory-based proto-
cols, whether memory-based or cache-based. They are found to perform well, at least at the mod-
erate scales at which they have been built, and to afford significant ease of programming
compared to explicit message passing for many applications. 

While supporting cache coherence in hardware has a significant design cost, it is alleviated by
increasing experience, the appearance of standards, and the fact that microprocessors themselves
provide support for cache coherence. With the microprocessor coherence protocol understood,
the coherence architecture can be developed even before the microprocessor is ready, so there is
not so much of a lag between the two. Commercial multiprocessors today typically use the latest
microprocessors available at the time they ship. 

Some interesting open questions for coherent shared address space systems include whether their
performance on real applications will indeed scale to large processor counts (and whether signif-
icant changes to current protocols will be needed for this), whether the appropriate node for a
scalable system will be a small scale multiprocessor or a uniprocessor, the extent to which com-
modity communication architectures will be successful in supporting this abstraction efficiently,
and the success with which a communication assist can be designed that supports the most appro-
priate mechanisms for both cache coherence and explicit message passing. 
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8.14 Exercises

8.1  Short answer questions

a. What are the inefficiencies and efficiencies in emulating message passing on a cache 
coherent machine compared to the kinds of machines discussed in the previous chapter? 

b. For which of the case study parallel applications used in this book do you expect there to 
be a substantial advantage to using multiprocessor rather than uniprocessor nodes (assum-
ing the same total number of processors). For which do you think there might be disad-
vantages in some machines, and under what circumstances? Are there any special benefits 
that the Illinois coherence scheme offers for organizations with multiprocessor nodes? 

c. How might your answer to the previous question differ with increasing scale of the 
machine. That is, how do you expect the performance benefits of using fixed-size multi-
processor nodes to change as the machine size is increased to hundreds of processors?

8.2  High-level memory-based protocol tradeoffs. 

a. Given a 512 processor system, in which each node visible to the directory is has 8 proces-
sors and 1GB of main memory, and a cache block size of 64 bytes, what is the directory 
memory overhead for:

(i) a Full Bit Vector Scheme 

(ii) DIRiB, with i = 3.

b. In a full bit vector scheme, why is the volume of data traffic guaranteed to be much 
greater than that of coherence traffic (i.e. invalidation and invalidation-acknowledgment 
messages)?

c. The chapter provided diagrams showing the network transactions for strict request-reply, 
intervention forwarding and reply forwarding for read operations in a flat memory-based 
protocol like that of the SGI Origin. Do the same for write operations. 
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d. The Origin protocol assumed that acknowledgments for invalidations are gathered at the 
requestor. An alternative is to have the acknowledgments be sent back to the home (from 
where the invalidation requests come) and have the home send a single acknowledgment 
back to the requestor. This solution is used in the Stanford FLASH multiprocessor. What 
are the performance and complexity tradeoffs between these two choices? 

e. Under what conditions are replacement hints useful and under what conditions are they 
harmful? In which of our parallel applications do you think they would be useful or harm-
ful to overall performance, and why?

f. Draw the network transaction diagrams (like those in Figure 8-16 on page 549) for an 
uncached read shared request, and uncached read exclusive request, and a write-invalidate 
request in the Origin protocol. State one example of a use of each.

8.3  High-level issues in cache-based protocols. 

a. Instead of the doubly linked list used in the SCI protocol, it is possible to use a single 
linked list. What is the advantage? Describe what modifications would need to be made to 
the following operations if a singly linked list were used:

(i) replacement of a cache block that is in a sharing list

(ii) write to a cache block that is in a sharing list. 

Qualitatively discuss the effects this might have on large scale multiprocessor perfor-
mance?

b. How might you reduce the latency of writes that cause invalidations in the SCI protocol? 
Draw the network transactions. What are the major tradeoffs? 

8.4  Adaptive protocols. 

a. When a variable exhibits migratory sharing, a processor that reads the variable will be the 
next one to write it. What kinds of protocol optimizations could you use to reduce traffic 
and latency in this case, and how would you detect the situation dynamically. Describe a 
scheme or two in some detail.

b. Another pattern that might be detected dynamically is a producer-consumer pattern, in 
which one processor repeatedly writes (produces) a variable and another processor repeat-
edly reads it. Is the standard MESI invalidation-based protocol well-suited to this? Why or 
why not? What enhancements or protocol might be better, and what are the savings in 
latency or traffic? How would you dynamically detect and employ the enhancements or 
variations? 

8.5  Correctness issues in protocols

a. Why is write atomicity more difficult to provide with update protocols in directory-based 
systems? How would you solve the problem? Does the same difficulty exist in a bus-based 
system?

b. Consider the following program fragment running on a cache-coherent multiprocessor, 
assuming all values to be 0 initially.

There is only one shared variable (A). Suppose that a writer magically knows where the 
cached copies are, and sends updates to them directly without consulting a directory node. 

P1 P2 P3 P4

A = 1 u = A w = A A = 2

v = A x = A
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Construct a situation in which write atomicity may be violated, assuming an update-based 
protocol. 

(i) Show the violation of SC that occurs in the results. 

(ii) Can you produce a case where coherence is violated as well? How would you solve 
these problems?

(iii) Can you construct the same problems for an invalidation-based protocol? 

(iv) Could you do it for update protocols on a bus? 

c. In handling writebacks in the Origin protocol, we said that when the node doing the write-
back receives an intervention it ignores it. Given a network that does not preserve point to 
point order, what situations do we have to be careful of? How do we detect that this inter-
vention should be dropped? Would there be a problem with a network that preserved 
point-to-point order?

d. Can the serialization problems discussed for Origin in this chapter arise even with a strict 
request-reply protocol, and do the same guidelines apply? Show example situations, 
including the examples discussed in that section.

e. Consider the serialization of writes in NUMA-Q, given the two-level hierarchical coher-
ence protocol. If a node has the block dirty in its remote cache, how might writes from 
other nodes that come to it get serialized with respect to writes from processors in this 
node. What transactions would have to be generated to ensure the serialization? 

8.6  Eager versus delayed replies to processor. 

a. In the Origin protocol, with invalidation acknowledgments coming to the home rather 
than the requestor, it would be possible for other read and write requests to come to the 
requestor that has outstanding invalidations before the acknowledgments for those invali-
dations come in. 

(i) Is this possible or a problem with delayed exclusive replies? With eager exclusive 
replies? If it is a problem, what is the simplest way to solve it? 

(ii) Suppose you did indeed want to allow the requestor with invalidations outstanding to 
process incoming read and write requests. Consider write requests first, and construct an 
example where this can lead to problems. (Hint: consider the case where P1 writes to a 
location A, P2 writes to location B which is on the same cache block as A and then writes 
a flag, and P3 spins on the flag and then reads the value of location B.) How would you 
allow the incoming write to be handled but still maintain correctness? Is it easier if invali-
dation acknowledgments are collected at the home or at the requestor? 

(iii) Now answer the same questions above for incoming read requests. 

(iv) What if you were using an update-based protocol. Now what complexities arise in 
allowing an incoming request to be processed for a block that has updates outstanding 
from a previous write, and how might you solve them?

(v) Overall, would you choose to allow incoming requests to be processed while invalida-
tions or updates are outstanding, or deny them? 

b. Suppose a block needs to be written back while there are invalidations pending for it. Can 
this lead to problems, or is it safe? If it is problematic, how might you address the prob-
lem? 

c. Are eager exclusive replies useful with an underlying SC model? Are they at all useful if 
the processor itself provides out of order completion of memory operations, unlike the 
MIPS R10000?
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d. Do the tradeoffs between collecting acknowledgments at the home and at the requestor 
change if eager exclusive replies are used instead of delayed exclusive replies?

8.7  Implementation Issues. 

e. In the Origin implementation, incoming request messages to the memory/directory inter-
face are given priority over incoming replies, unless there is a danger of replies being 
starved. Why do you think this choice of giving priorities to requests was made? Describe 
some alternatives for how you might you detect when to invert the priority. What would 
be the danger with replies being starved?

8.8  4. Page replication and migration. 

a. Why is it necessary to flush TLBs when doing migration or replication of pages? 

b. For a CC-NUMA multiprocessor with software reloaded TLBs, suppose a page needs to 
be migrated. Which one of the following TLB flushing schemes would you pick and why? 
(Hint: The selection should be based on the following two criteria: Cost of doing the 
actual TLB flush, and difficulty of tracking necessary information to implement the 
scheme.) 

(i) Only TLBs that currently have an entry for a page 

(ii) Only TLBs that have loaded an entry for a page since the last flush 

(iii) All TLBs in the system. 

c. For a simple two processor CC-NUMA system, the traces of cache misses for 3 virtual 
pages X, Y, Z from the two processors P0 and P1 are shown. Time goes from left to right. 
"R" is a read miss and "W" is a write miss. There are two memories M0 and M1, local to 
P0 and P1 respectively. A local miss costs 1 unit and a remote miss costs 4 units. Assume 
that read misses and write misses cost the same. 

Page X: 

P0:  RRRR R R RRRRR    RRR

P1: R  R R R R     RRRR  RR

Page Y: 

P0: no accesses

P1: RR  WW RRRR RWRWRW WWWR 

Page Z: 

P0: R W  RW  R R RRWRWRWRW 

P1:  WR RW  RW W W     R 

(i) How would you place pages X, Y, and Z, assuming complete knowledge of the entire 
trace? 

(ii) Assume the pages were initially placed in M0, and that a migration or replication can 
be done at zero cost. You have prior knowledge of the entire trace. You can do one migra-
tion, or one replication, or nothing for each page at the beginning of the trace. What action 
would be appropriate for each of the pages? 

(iii) Same as (ii) , but a migration or replication costs 10 units. Also give the final memory 
access cost for each page. 

(iv) Same as (iii), but a migration or replication costs 60 units. 

(v) Same as (iv), but the cache-miss trace for each page is the shown trace repeated 10 
times. (You still can only do one migration or replication at the beginning of the entire 
trace)
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8.9  Synchronization:

a. Full-empty bits, introduced in Section 5.6, provide hardware support for fine-grained syn-
chronization. What are the advantages and disadvantages of full-empty bits, and why do 
you think they are not used in modern systems?

b. With an invalidation based protocol, lock transfers take more network transactions than 
necessary. An alternative to cached locks is to use uncached locks, where the lock variable 
stays in main memory and is always accessed directly there. 

(i) Write pseudocode for a simple lock and a ticket lock using uncached operations?

(ii) What are the advantages and disadvantages relative to using cached locks? Which 
would you deploy in a production system?

c. Since high-contention and low-contention situations are best served by different lock 
algorithms, one strategy that has been proposed is to have a library of synchronization 
algorithms and provide hardware support to switch between them “reactively” at runtime 
based on observed access patterns to the synchronization variable [LiA9??]. 

(i) Which locks would you provide in your library?

(ii) Assuming a memory-based directory protocol, design simple hardware support and a 
policy for switching between locks at runtime. 

(iii) Describe an example where this support might be particularly useful. 

(iv) What are the potential disadvantages?

8.10  Software Implications and Performance Issues

a. You are performing an architectural study using four applications: Ocean, LU, an FFT 
that performs local calculations on rows separated by a matrix transposition, and Barnes-
Hut. For each application, answer the above questions assuming a CC-NUMA system:

(i) what modifications or enhancements in data structuring or layout would you use to 
ensure good interactions with the extended memory hierarchy?

(ii) what are the interactions with cache size and granularities of allocation, coherence and 
communication that you would be particularly careful to represent or not represent? 

b. Consider the example of transposing a matrix of data in parallel, as is used in computa-
tions such as high-performance Fast Fourier Transforms. Figure 8-42 shows the transpose 
pictorially. Every processor tranposes one “patch” of its assigned rows to every other pro-
cessor, including one to itself. Before the transpose, a processor has read and written its 
assigned rows of the source matrix of the transpose, and after the transpose it reads and 
writes its assigned rows of the destination matrix. The rows assigned to a processor in 
both the source and destination matrix are allocated in its local memory. There are two 
ways to perform the transpose: a processor can read the local elements from its rows of 
the source matrix and write them to the associated elements of the destination matrix, 
whether they are local or remote, as shown in the figure; or a processor can write the local 
rows of the destination matrix and read the associated elements of the source matrix 
whether they are local or remote. 

(i) Given an invalidation-based directory protocol, which method do you think will per-
form better and why?

(iii) How do you expect the answer to (i) to change if you assume an update-based direc-
tory protocol? 
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Consider this implementation of a matrix transpose which you plan to run on 8 proces-
sors. Each processor has one level of cache, which is fully associative, 8 KB, with 128 
byte lines. (Note: AT and A are not the same matrix):

Transpose(double **A, double **AT)
{
   int i,j,mynum;

   GETPID(mynum);

   for (i=mynum*nrows/p; i<((mynum+1)*(nrows/p)); i++) {
      for (j=0; j<1024; j++) {
         AT[i][j] = A[j][i];

}
}

}

The input data set is a 1024-by-1024 matrix of double precision floating point numbers, 
decomposed so that each processor is responsible for generating a contiguous block of 
rows in the transposed matrix AT. 

Ignoring the contention problem caused by all processors first going to processor 0, what 
is the major performance problem with this code? What technique would you use to solve 
it?

Restructure the code to alleviate the performance problem as much as possible. Write the 
entire restructured loop. 

8.11  Bus Hierarchies. 

Owned by
Proc 0

Owned by
Proc 1

Owned by
Proc 2

Owned by
Proc 3

Destination MatrixSource Matrix

Patch

Long cache block 
follows traversal order

Figure  8-42  Sender-initiated matrix transposition. 

The source and destination matrices are partitioning among processes in groups of contiguous rows. Each process divides its set of n/
p rows into p patches of size n/p * n/p. Consider process P2 as a representative example: One patch assigned to it ends up in the
assinged set of rows of every other process, and it transposes one patch (third from left, in this case) locally. 

Long cache block 
crosses traversal order
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a. Consider a hierarchical bus-based system with a centralized memory at the root of the 
hierarhcy rather than distributed memory. What would be the main differences in how 
reads and writes are satisfied? Briefly describe in terms of the path taken by reads and 
writes.

b. Could you have a hierarchical bus based system with centralized memory (say) without 
pursuing the inclusion property between the L2 (node) cache and the L1 caches? If so, 
what complications would it cause?

c. Given the hierarchical bus-based multiprocessor shown in Figure 8-37, design a state-
transition diagram for maintaining coherence for the L2 cache. Assume that the L1 caches 
follow the Illinois protocol. Precisely define the cache block states for L2, the available 
bus-transaction types for the B1 and B2 buses, other actions possible, and the state-transi-
tion diagram. Note you have considerable freedom in choosing cache block states and 
other parameters; there is no one fixed right answer. Justify your decisions.

d. Given the ending state of caches in examples for Figure 8-37 on page 596, give some 
more memory references, and ask for detailed description of coherence actions that would 
need to occur.

e. [To ensure SC in a two-level hierarchical bus design, is it okay to return an acknowledg-
ment when the invalidation request reaches the B2 bus? If yes, what constraints are 
imposed on the design/implementation of L1 caches and L2 caches and the orders pre-
served among transactions? If not, why not. Would it be okay if the hierarchy had more 
than two levels? 

f. Suppose two processors in two different nodes of a hierarchical bus-based machine issue 
an upgrade for a block at the same time. Trace their paths through the system, discussing 
all state changes and when they must happen, as well as what precautions prevent dead-
lock and prevent both processors from gaining ownership.

g. An optimization in distributed-memory bus-based hierarchies is that if another proces-
sor’s cache on the local bus can supply the data, we do not have to go to the global bus and 
remote node. What are the tradeoffs of supporting this optimization in ring-based hierar-
chies? (Answer: May need to go around the local ring an extra time to get to the inter-ring 
interface.)

8.12  Consider design of a single chip in year 2005, when you have 100 million transistors. You
decide to put four processors on the chip. How would you design the interface to build a mod-
ular component that can be used in scalable systems: (i) global-memory organization (e.g.,
the chip has multiple CPUs each with local cache, a shared L2 cache, and a single snoopy
cache bus interface), or (ii) distributed memory organization (e.g., the chip has multiple CPUs
each with local cache on an internal snoopy bus, a separate memory bus interface that comes
of this internal snoopy bus, and another separate snoopy cache bus interface). Discuss the
tradeoffs.??? not very well formed???

8.13  Hierarchical directories. 

a. What branching would you choose in a machine with a hierarchical directory? Highlight 
the major tradeoffs. What techniques might you use to alleviate the performance 
tradeoffs? Be as specific in your description as possible. 

b. Is it possible to implement hierarchical directories without maintaining inclusion in the 
directory caches. Design a protocol that does that and discuss the advantages and disad-
vantages. 
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CHAPTER 9

 

Hardware-Software Tradeoffs

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

9.1 Introduction

 

This chapter focuses on addressing some potential limitations of the directory-based, cache-
coherent systems discussed in the previous chapter, and the hardware-software tradeoffs that this
engenders. The primary limitations of those systems, in both performance and cost, are the fol-
lowing. 

 

•

 

High waiting time at memory operations

 

. Sequential consistency (SC) was assumed to be the
memory consistency model of choice, and the chapter discussed how systems might satisfy
the sufficient conditions for SC. To do this, a processor would have to wait for the previous
memory operation to complete before issuing the next one. This has even greater impact on
performance in scalable systems than in bus-based systems, since communication latencies
are longer and there are more network transactions in the critical path. Worse still, it is very
limiting for compilers, which cannot reorder memory operations to shared data at all if the
programmer assumes sequential consistency. 
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•

 

Limited capacity for replication

 

. Communicated data are automatically replicated only in the
processor cache, not in local main memory. This can lead to capacity misses and artifactual
communication when working sets are large and include nonlocal data or when there are a lot
of conflict misses. 

 

•

 

High design and implementation cost

 

. The communication assist contains hardware that is
specialized for supporting cache-coherence and tightly integrated into the processing node.
Protocols are also complex, and getting them right in hardware takes substantial design time.
By cost here we mean the cost of hardware and of system design time. Recall from Chapter 3
that there is also a programming cost associated with achieving good performance, and
approaches that reduce system cost can often increase this cost dramatically.

The chapter will focus on these three limitations, the first two of which have primarily to do with
performance and the third primarily with cost. The approaches that have been developed to
address them are still controversial to varying extents, but aspects of them are finding their way
into mainstream parallel architecture. There are other limitations as well, including the address-
ability limitations of a shared physical address space—as discussed for the Cray T3D in
Chapter 7—and the fact that a single protocol is hard-wired into the machine. However, solutions
to these are often incorporated in solutions to the others, and they will be discussed as advanced
topics. 

The problem of waiting too long at memory operations can be addressed in two ways in hard-
ware. First, the implementation can be designed to not satisfy the sufficient conditions for SC,
which modern non-blocking processors are not inclined to do anyway, but to satisfy the SC
model itself. That is, a processor needn’t wait for the previous operation to complete before issu-
ing the next one; however, the system ensures that operations do not complete or become visible
to other processors out of program order. Second, the memory consistency model can itself be
relaxed so program orders do not have to be maintained so strictly. Relaxing the consistency
model changes the semantics of the shared address space, and has implications for both hardware
and software. It requires more care from the programmer in writing correct programs, but enables
the hardware to overlap and reorder operations further. It also allows the compiler to reorder
memory operations within a process before they are even presented to hardware, as optimizing
compilers are wont to do. Relaxed memory consistency models will be discussed in Section 9.2. 

The problem of limited capacity for replication can be addressed by automatically caching data
in main memory as well, not just in the processor caches, and by keeping these data coherent.
Unlike in hardware caches, replication and coherence in main memory can be performed at a
variety of granularities—for example a cache block, a page, or a user-defined object—and can be
managed either directly by hardware or through software. This provides a very rich space of pro-
tocols, implementations and cost-performance tradeoffs. An approach directed primarily at
improving performance is to manage the local main memory as a hardware cache, providing rep-
lication and coherence at cache block granularity there as well. This approach is called cache-
only memory architecture or COMA, and will be discussed in Section 9.3. It relieves software
from worrying about capacity misses and initial distribution of data across main memories, while
still providing coherence at fine granularity and hence avoiding false-sharing. However, it is
hardware-intensive, and requires per-block tags to be maintained in main memory as well. 

Finally, there are many approaches to reduce hardware cost. One approach is to integrate the
communication assist and network less tightly into the processing node, increasing communica-
tion latency and occupancy. Another is to provide automatic replication and coherence in soft-
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ware rather than hardware. The latter approach provides replication and coherence in main
memory, and can operate at a variety of granularities. It enables the use of off-the-shelf commod-
ity parts for the nodes and interconnect, reducing hardware cost but pushing much more of the
burden of achieving good performance on to the programmer. These approaches to reduce hard-
ware cost are discussed in Section 9.4. 

The three issues are closely related. For example, cost is strongly related to the manner in which
replication and coherence are managed in main memory: The coarser the granularities used, the
more likely that the protocol can be synthesized through software layers, including the operating
system, thus reducing hardware costs (see Figure 9-1). Cost and granularity are also related to the

memory consistency model: Lower-cost solutions and larger granularities benefit more from
relaxing the memory consistency model, and implementing the protocol in software makes it eas-
ier to fully exploit the relaxation of the semantics. To summarize and relate the alternatives,
Section 9.5 constructs a framework for the different types of systems based on the granularities at
which they allocate data in the replication store, keep data coherent and communicate data. This
leads naturally to an approach that strives to achieve a good compromise between the high-cost
COMA approach and the low-cost all-software approach. This approach, called Simple-COMA,
is discussed in Section 9.5 as well. 

The implications of the systems discussed in this chapter for parallel software, beyond those dis-
cussed in the previous chapters, are explored in Section 9.6. Finally, Section 9.7 covers some
advanced topics, including the techniques to address the limitations of a shared physical address
space and a fixed coherence protocol. 

 

9.2 Relaxed Memory Consistency Models

 

Recall from Chapter 5 that the memory consistency model for a shared address space specifies
the constraints on the order in which memory operations (to the same or different locations) can
appear to execute with respect to one another, enabling programmers to reason about the behav-
ior and correctness of their programs. In fact, any system layer that supports a shared address
space naming model has a memory consistency model: the programming model or programmer’s
interface, the communication abstraction or user-system interface, and the hardware-software
interface. Software that interacts with that layer must be aware of its memory consistency model.
We shall focus mostly on the consistency model as seen by the programmer—i.e. at the interface

Figure  9-1  Layers of the communication architecture for systems discussed in this chapter. 
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between the programmer and the rest of the system composed of the compiler, OS and hard-
ware—since that is the one with which programmers reason

 

1

 

. For example, a processor may pre-
serve all program orders presented to it among memory operations, but if the compiler has
already reordered operations then programmers can no longer reason with the simple model
exported by the hardware. 

Other than programmers (including system programmers), the consistency model at the program-
mer’s interface has implications for programming languages, compilers and hardware as well. To
the compiler and hardware, it indicates the constraints within which they can reorder accesses
from a process and the orders that they cannot appear to violate, thus telling them what tricks
they can play. Programming languages must provide mechanisms to introduce constraints if nec-
essary, as we shall see. In general, the fewer the reorderings of memory accesses from a process
we allow the system to perform, the more intuitive a programming model we provide to the pro-
grammer, but the more we constrain performance optimizations. The goal of a memory consis-
tency model is to impose ordering constraints that strike a good balance between programming
complexity and performance. The model should also be portable; that is, the specification should
be implementable on many platforms, so that the same program can run on all these platforms
and preserve the same semantics.

The sequential consistency model that we have assumed so far provides an intuitive semantics to
the programmer—program order within each process and a consistent interleaving across pro-
cesses—and can be implemented by satisfying its sufficient conditions. However, its drawback is
that it by preserving a strict order among accesses it restricts many of the performance optimiza-
tions that modern uniprocessor compilers and microprocessors employ. With the high cost of
memory access, computer systems achieve higher performance by reordering or overlapping the
servicing of multiple memory or communication operations from a processor. Preserving the suf-
ficient conditions for SC clearly does not allow for much reordering or overlap. With SC at the
programmer’s interface, the compiler cannot reorder memory accesses even if they are to differ-
ent locations, thus disallowing critical performance optimizations such as code motion, common-
subexpression elimination, software pipelining and even register allocation. 

 

Example  9-1 

 

Show how register allocation can lead to a violation of SC even if the hardware
satisfies SC. 

 

Answer

 

Consider the code fragment shown in Figure 9-2(a). After register allocation, the
code produced by the compiler and seen by hardware might look like that in
Figure 9-2(b). The result (u,v) = (0,0) is disallowed under SC hardware in (a), but
not only can but will be produced by SC hardware in (b). In effect, register
allocation reorders the write of A and the read of B on P1 and reorders the write of
B and the read of A on P2. A uniprocessor compiler might easily perform these

 

1.  The term programmer here refers to the entity that is responsible for generating the parallel program. If
the human programmer writes a sequential program that is automatically parallelized by system software,
then it is the system software that has to deal with the memory consistency model; the programmer simply
assumes sequential semantics as on a uniprocessor. 
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optimizations in each process: They are valid for sequential programs since the
reordered accesses are to different locations.

SC at the programmer’s interface implies SC at the hardware-software interface; if the sufficient
conditions for SC are met, a processor waits for an access to complete or at least commit before
issuing the next one, so most of the latency suffered by memory references is directly seen by
processors as stall time. While a processor may continue executing non-memory instructions
while a single outstanding memory reference is being serviced, the expected benefit from such
overlap is tiny (even without instruction-level parallelism on average every third instruction is a
memory reference [HeP95]). We need to do something about this performance problem. 

One approach we can take is to preserve sequential consistency at the programmer’s interface but
hide the long latency stalls from the processor. We can do this in several ways, divided into two
categories [GGH91]. The techniques and their performance implications will be discussed fur-
ther in Chapter 11; here, we simply provide a flavor for them. In the first category, the system still
preserves the sufficient conditions for SC. The compiler does not reorder memory operations.
Latency tolerance techniques such as prefetching of data or multithreading (see Chapter 11) are
used to overlap accesses with one another or with computation—thus hiding much of their
latency from the processor—but the actual read and write operations are not issued before previ-
ous ones complete and the operations do not become visible out of program order. 

In the second category, the system preserves SC but not the sufficient conditions at the program-
mer’s interface. The compiler can reorder operations as long as it can guarantee that sequential
consistency will not be violated in the results. Compiler algorithms have been developed for this
[ShS88,KrY94], but they are expensive and their analysis is currently quite conservative. At the
hardware level, memory operations are issued and executed out of program order, but are guaran-
teed to become visible to other processors in program order. This approach is well suited to
dynamically scheduled processors that use an instruction lookahead buffer to find independent
instructions to issue. The instructions are inserted in the lookahead buffer in program order, they
are chosen from the instruction lookahead buffer and executed out of order, but they are guaran-
teed to retire from the lookahead buffer in program order. Operations may even issue and execute
out of order past an unresolved branch in the lookahead buffer based on branch prediction—
called speculative execution—but since the branch will be resolved and retire before them they
will not become visible to the register file or external memory system before the branch is
resolved. If the branch was mis-predicted, the effects of those operations will never become visi-

P1 P2

B = 0 A = 0

A = 1 B = 1

u = B v = A

P1 P2

r1 = 0 r2 = 0

A = 1 B = 1

u = r1 v = r2

B = r1 A = r2

(a) Before register allocation (a) After register allocation

Figure  9-2  Example showing how register allocation by the compiler can violate SC.

The code in (a) is the original code with which the programmer reasons under SC. r1, r2 are registers. 
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ble. The technique called 

 

speculative reads 

 

goes a little further; here, the values returned by reads
are used even before they are known to be correct; later checks determine if they were incorrect,
and if so the computation is rolled back to reissue the read. Note that it is not possible to specu-
late with stores in this manner because once a store is made visible to other processors it is
extremely difficult to roll back and recover: a store’s value should not be made visible to other
processors or the external memory system environment until all previous references have cor-
rectly completed. 

Some or all of these techniques are supported by many modern microprocessors, such as the
MIPS R10000, the HP PA-8000, and the Intel Pentium Pro. However, they do require substantial
hardware resources and complexity, their success at hiding multiprocessor latencies is not yet
clear (see Chapter 11), and not all processors support them. Also, these techniques work for pro-
cessors, but they do not help compilers perform the reorderings of memory operations that are
critical for their optimizations. 

A completely different way to overcome the performance limitations imposed by SC is to change
the memory consistency model itself; that is, to not guarantee such strong ordering constraints to
the programmer, but still retain semantics that are intuitive enough to a programmer. By relaxing
the ordering constraints, these 

 

relaxed consistency models

 

 allow the compiler to reorder accesses
before presenting them to the hardware, at least to some extent. At the hardware level, they allow
multiple memory accesses from the same process to be outstanding at a time and even to com-
plete or become visible out of order, thus allowing much of the latency to be overlapped and hid-
den from the processor. The intuition behind relaxed models is that SC is usually too
conservative, in that many of the orders it preserves are not really needed to satisfy a program-
mer’s intuition in most situations. Much more detailed treatments of relaxed memory consistency
models can be found in [Adv93,Gha95]. 

Consider the simple example shown in Figure 9-3. On the left are the orderings that will be main-

tained by an SC implementation. On the right are the orderings that are necessary for intuitively
correct program semantics. The latter are far fewer. For example, writes to variables 

 

A

 

 and 

 

B

 

 by
P1 can be reordered without affecting the results observed by the program; all we must ensure is

Figure  9-3  Intuition behind relaxed memory consistency models. 

The arrows in the figure indicate the orderings maintained. The left side of the figure (part (a)) shows the orderings maintained by the
sequential consistency model. The right side of the figure (part (b)) shows the orderings that are necessary for “correct / intuitive”
semantics.

P1

A = 1;

B = 1;

flag = 1;

P2

while (flag == 0);

u = A;

v = B;

P1

A = 1;

B = 1;

flag = 1;

P2

... = flag;

u = A;

v = B;

... = flag;

... = flag;

Orderings Maintained By
Sequential Consistency Orderings Necessary For

Correct Program Semantics(a)
(b)
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that both of them complete before variable 

 

flag

 

 is set to 1. Similarly, reads to variables 

 

A

 

 and 

 

B

 

can be reordered at P2, once 

 

flag

 

 has been observed to change to value 1.

 

1

 

 Even with these
reorderings, the results look just like those of an SC execution. On the other hand, while the
accesses to 

 

flag

 

 are also simple variable accesses, a model that allowed them to be reordered
with respect to 

 

A

 

 and 

 

B

 

 at either process would compromise the intuitive semantics and SC
results. It would be wonderful if system software or hardware could automatically detect which
program orders are critical to maintaining SC semantics, and allow the others to be violated for
higher performance [ShS88]. However, the problem is undecidable for general programs, and
inexact solutions are often too conservative to be very useful. 

There are three parts to a complete solution for a relaxed consistency model: the system specifi-
cation, the programmer’s interface, and a translation mechanism. 

 

The system specification

 

. This is a clear specification of two things. First, what program 
orders among memory operations are guaranteed to be preserved, in an observable sense, by 
the system, including whether write atomicity will be maintained. And second, if not all pro-
gram orders are preserved by default, then what mechanisms does the system provide for a 
programmer to enforce those orderings explicitly. As should be clear by now, each of the 
compiler and the hardware has a system specification, but we focus on the specification that 
the two together or the system as a whole presents to the programmer. For a processor archi-
tecture, the specification it exports governs the reorderings that it allows and the order-pre-
serving primitives it provides, and is often called the processor’s memory model. 

 

The programmer’s interface

 

. The system specification is itself a consistency model. A pro-
grammer may use it to reason about correctness and insert the appropriate order-preserving 
mechanisms. However, this is a very low level interface for a programmer: Parallel program-
ming is difficult enough without having to think about reorderings and write atomicity! The 
specific reorderings and order-enforcing mechanisms supported are different across systems, 
compromising portability. Ideally, a programmer would assume SC semantics, and the system 
components would automatically determine what program orders they may alter without vio-
lating this illusion. However, this is too difficult to compute. What a programmer therefore 
wants is a methodology for writing “safe” programs. This is a contract such that if the pro-
gram follows certain high-level rules or provides enough program annotations—such as tell-
ing the system that 

 

flag

 

 in Figure 9-3 is in fact used as a synchronization variable—then 
any system on which the program runs will always guarantee a sequentially consistent execu-
tion, regardless of the default reorderings in the system specifications it supports. The pro-
grammer’s responsibility is to follow the rules and provide the annotations (which hopefully 
does not involve reasoning at the level of potential reorderings); the system’s responsibility is 
to maintain the illusion of sequential consistency. Typically, this means using the annotations 
as constraints on compiler reorderings, and also translating the annotations to the right order-
preserving mechanisms for the processor at the right places. The implication for program-
ming languages is that they should support the necessary annotations.

 

The translation mechanism

 

. This translates the programmer’s annotations to the interface 
exported by the system specification. 

 

1.  Actually, it is possible to further weaken the requirements for correct execution. For example, it is not
necessary for stores to A and B to complete before store to Flag is done; it is only necessary that they be
complete by the time processor P2 observes that the value of Flag has changed to 1. It turns out, such
relaxed models are extremely difficult to implement in hardware, so we do not discuss them here. In soft-
ware, some of these relaxed models make sense, and we will discuss them in Section 9.3.
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We organize our discussion of relaxed consistency models around these three pieces. We first
examine different low-level specifications exported by systems and particularly microprocessors,
organizing them by the types of reorderings they allow. Section 9.2.2 discusses the programmer’s
interface or contract and how the programmer might provide the necessary annotations, and
Section 9.2.3 briefly discusses translation mechanisms. A detailed treatment of implementation
complexity and performance benefits will be postponed until we discuss latency tolerance mech-
anisms in Chapter 11. 

 

9.2.1 System Specifications

 

Several different reordering specifications have been proposed by microprocessor vendors and by
researchers, each with its own mechanisms for enforcing orders. These include total store order-
ing (TSO) [SFC91, Spa91], partial store ordering (PSO) [SFC91, Spa91], and relaxed memory
ordering (RMO) [WeG94] from the SUN Sparc V8 and V9 specifications, processor consistency
described in [Goo89, GLL+90] and used in the Intel Pentium processors, weak ordering (WO)
[DSB86,DuS90], release consistency (RC) [GLL+90], and the Digital Alpha [Sit92] and IBM/
Motorola PowerPC [MSS+94] models. Of course, a particular implementation of a processor
may not support all the reorderings that its system specification allows. The system specification
defines the semantic interface for that architecture, i.e. what orderings the programmer must
assume might happen; the implementation determines what reorderings actually happen and how
much performance can actually be gained. 

Let us discuss some of the specifications or consistency models, using the relaxations in program
order that they allow as our primary axis for grouping models together [Gha95]. The first set of
models only allows a read to bypass (complete before) an earlier incomplete write in program
order; i.e. allows the write->read order to be reordered (TSO, PC). The next set allows this and
also allows writes to bypass previous writes; i.e. write->write reordering (PSO). The final set
allows reads or writes to bypass previous reads as well; that is, allows all reorderings among read
and write accesses (WO, RC, RMO, Alpha, PowerPC). Note that a read-modify-write operation
is treated as being both a read and a write, so it is reordered with respect to another operation
only if both a read and a write can be reordered with respect to that operation. Of course, in all
cases we assume basic cache coherence—write propagation and write serialization—and that
uniprocessor data and control dependences are maintained within each process. The specifica-
tions discussed have in most cases been motivated by and defined for the processor architectures
themselves, i.e. the hardware interface. They are applicable to compilers as well, but since
sophisticated compiler optimizations require the ability to reorder all types of accesses most
compilers have not supported as wide a variety of ordering models. In fact, at the programmer’s
interface, all but the last set of models have their utility limited by the fact that they do not allow
many important compiler optimizations. The focus in this discussion is mostly on the models;
implementation issues and performance benefits will be discussed in Chapter 11. 

 

Relaxing the 

 

Write-to-Read

 

 Program Order

 

The main motivation for this class of models is to allow the hardware to hide the latency of write
operations that miss in the first-level cache. While the write miss is still in the write buffer and
not yet visible to other processors, the processor can issue and complete reads that hit in its cache
or even a single read that misses in its cache. The benefits of hiding write latency can be substan-
tial, as we shall see in Chapter 11, and most processors can take advantage of this relaxation. 
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How well do these models preserve the programmer’s intuition even without any special opera-
tions? The answer is quite well, for the most part. For example, spinning on a flag for event syn-
chronization works without modification (Figure 9-4(a)). The reason is that TSO and PC models
preserve the ordering of writes, so the write of the flag is not visible until all previous writes have
completed in the system. For this reason, most early multiprocessors supported one of these two
models, including the Sequent Balance, Encore Multimax, VAX-8800, SparcCenter1000/2000,
SGI 4D/240, SGI Challenge, and even the Pentium Pro Quad, and it has been relatively easy to
port even complex programs such as the operating systems to these machines.

Of course, the semantics of these models is not SC, so there are situations where the differences
show through and SC-based intuition is violated. Figure 9-4 shows four code examples, the first
three of which we have seen earlier, where we assume that all variables start out having the value
0. In segment (b), SC guarantees that if B is printed as 1 then A too will be printed as 1, since the

writes of A and B by P1 cannot be reordered. For the same reason, TSO and PC also have the
same semantics. For segment (c), only TSO offers SC semantics and prevents A from being
printed as 0, not PC. The reason is that PC does not guarantee write atomicity. Finally, for seg-
ment (d) under SC no interleaving of the operations can result in 0 being printed for both A and
B. To see why, consider that program order implies the precedence relationships (i) -> (ii) and
(iii) -> (iv) in the interleaved total order. If B=0 is observed, it implies (ii) -> (iii), which therefore
implies (i) -> (iv). But (i) -> (iv) implies A will be printed as 1. Similarly, a result of A=0 implies
B=1. A popular software-only mutual exclusion algorithm called Dekker’s algorithm—used in
the absence of hardware support for atomic read-modify-write operations [TW97]—relies on the
property that both A and B will not be read as 0 in this case. SC provides this property, further
contributing to its view as an intuitive consistency model. Neither TSO nor PC guarantees it,
since they allow the read operation corresponding to the print to complete before previous writes
are visible. 

To ensure SC semantics when desired (e.g., to port a program written under SC assumptions to a
TSO system), we need mechanisms to enforce two types of extra orderings: (i) to ensure that a
read does not complete before an earlier write (applies to both TSO and PC), and (ii) to ensure
write atomicity for a read operation (applies only to PC). For the former, different processor
architectures provide somewhat different solutions. For example, the SUN Sparc V9 specification

P1

A = 1;
Flag = 1;

P2

while (Flag==0);
print A;

P1

A = 1;

P2

while (A==0);
B = 1;

P3

while (B==0);
print A;

P1

A = 1; 
print B;

P2

B = 1;
print A;

(a)

(c) (d)

Figure  9-4  Example code sequences repeated to compare TSO, PC and SC. 

Both TSO and PC provide same results as SC for code segments (a) and (b), PC can violate SC semantics for segment (c) (TSO still
provides SC semantics), and both TSO and PC violate SC semantics for segment (d).

P1

A = 1;
B = 1;

P2

print B;
print A;

(b)

(i)
(ii)

(iii)
(iv)
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[WeG94] provides 

 

memory barrier

 

 (MEMBAR) or 

 

fence

 

 instructions of different flavors that can
ensure any desired ordering. Here, we would insert a write-to-read ordering flavored MEMBAR
before the read. This MEMBAR flavor prevents a read that follows it in program order from issu-
ing before a write that precedes it has completed. On architectures that do not have memory bar-
riers, it is possible to achieve this effect by substituting an atomic read-modify-write operation or
sequence for the original read. A read-modify-write is treated as being both a read and a write, so
it cannot be reordered with respect to previous writes in these models. Of course the value written
in the read-modify-write must be the same as the value read to preserve correctness. Replacing a
read with a read-modify-write also guarantees write atomicity at that read on machines support-
ing the PC model. The details of why this works are subtle, and the interested reader can find
them in the literature [AGG+93].

 

Relaxing the 

 

Write-to-Read

 

 and 

 

Write-to-Write

 

 Program Orders

 

Allowing writes as well to bypass previous outstanding writes to different locations allows multi-
ple writes to be merged in the write buffer before updating main memory, and thus multiple write
misses to be overlapped and become visible out of order. The motivation is to further reduce the
impact of write latency on processor stall time, and to improve communication efficiency
between processors by making new data values visible to other processors sooner. SUN Sparc’s
PSO model [SFC91, Spa91] is the only model in this category. Like TSO, it guarantees write ato-
micity.

Unfortunately, reordering of writes can violate our intuitive SC semantics quite a bit. Even the
use of ordinary variables as flags for event synchronization (Figure 9-4(a)) is no longer guaran-
teed to work: The write of 

 

flag

 

 may become visible to other processors before the write of 

 

A

 

.
This model must therefore demonstrate a substantial performance benefit to be attractive. 

The only additional instruction we need over TSO is one that enforces write-to-write ordering in
a process’s program order. In SUN Sparc V9, this can be achieved by using a MEMBAR instruc-
tion with the write-to-write flavor turned on (the earlier Sparc V8 provided a special instruction
called store-barrier or STBAR to achieve this effect). For example, to achieve the intuitive
semantics we would insert such an instruction between the writes of 

 

A

 

 and 

 

flag

 

. 

 

Relaxing 

 

All

 

 Program Orders: Weak Ordering and Release Consistency

 

In this final class of specifications, no program orders are guaranteed by default (other than data
and control dependences within a process, of course). The benefit is that multiple read requests
can also be outstanding at the same time, can be bypassed by later writes in program order, and
can themselves complete out of order, thus allowing us to hide read latency. These models are
particularly useful for dynamically scheduled processors, which can in fact proceed past read
misses to other memory references. They are also the only ones that allow many of the reorder-
ings (even elimination) of accesses that are done by compiler optimizations. Given the impor-
tance of these compiler optimizations for node performance, as well as their transparency to the
programmer, these may in fact be the only reasonable high-performance models for multiproces-
sors unless compiler analysis of potential violations of consistency makes dramatic advances.
Prominent models in this group are weak ordering (WO) [DSB86,DuS90], release consistency
(RC) [GLL+90], Digital Alpha [Sit92], Sparc V9 relaxed memory ordering (RMO) [WeG94],
and IBM PowerPC [MSS+94,CSB93]. WO is the seminal model, RC is an extension of WO sup-
ported by the Stanford DASH prototype [LLJ+93], and the last three are supported in commercial
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architectures. Let us discuss them individually, and see how they deal with the problem of pro-
viding intuitive semantics despite all the reordering; for instance, how they deal with the flag
example. 

 

Weak Ordering

 

: The motivation behind the weak ordering model (also known as the weak consis-
tency model) is quite simple. Most parallel programs use synchronization operations to coordi-
nate accesses to data when this is necessary. Between synchronization operations, they do not
rely on the order of accesses being preserved. Two examples are shown in Figure 9-5.The left
segment uses a lock/unlock pair to delineate a critical section inside which the head of a linked
list is updated. The right segment uses flags to control access to variables participating in a pro-
ducer-consumer interaction (e.g., 

 

A

 

 and 

 

D

 

 are produced by P1 and consumed by P2). The key in
the flag example is to think of the accesses to the flag variables as synchronization operations,
since that is indeed the purpose they are serving. If we do this, then in both situations the intuitive
semantics are not violated by any read or write reorderings that happen between synchronization
accesses (i.e. the critical section in segment (a) and the four statements after the while loop in
segment (b)). Based on these observations, weak ordering relaxes all program orders by default,
and guarantees that orderings will be maintained only at synchronization operations that can be
identified by the system as such. Further orderings can be enforced by adding synchronization
operations or labeling some memory operations as synchronization. How appropriate operations
are identified as synchronization will be discussed soon. 

The left side of Figure 9-6 illustrates the reorderings allowed by weak ordering. Each block with
a set of reads/writes represents a contiguous run of non-synchronization memory operations from
a processor. Synchronization operations are shown separately. Sufficient conditions to ensure a
WO system are as follows. Before a synchronization operation is issued, the processor waits for

 

all

 

 previous operations in program order (both reads and writes) to have completed. Similarly,
memory accesses that follow the synchronization operation are not issued until the synchroniza-
tion operation completes. Read, write and read-modify-write operations that are not labeled as
synchronization can be arbitrarily reordered between synchronization operations. Especially
when synchronization operations are infrequent, as in many parallel programs, WO typically pro-
vides considerable reordering freedom to the hardware and compiler. 

Figure  9-5  Use of synchronization operations to coordinate access to ordinary shared data variables.

The synchronization may be through use of explicit lock and unlock operations (e.g., implemented using atomic test-&-set instruc-
tions) or through use of flag variables for producer-consumer sharing.

P1, P2,..., Pn

...
Lock(TaskQ)

if (Head != NULL)
newTask->next = Head;

Head->prev = newTask;

Head = newTask;
UnLock(TaskQ)
...

P1

A = 1;
u = B;

P2

while(flag1==0);
x = A;

v = C;
D = B * C;
flag2 = 0;

y = D;
B = 3;
C = D / B;
flag1 = 0;
flag2 = 1;
goto TOP;

flag1 = 1;

TOP: TOP:

goto TOP;

(a) (b)

while(flag2==0);
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Release Consistency

 

: Release consistency observes that weak ordering does not go far enough. It
extends the weak ordering model by distinguishing among the types of synchronization opera-
tions and exploiting their associated semantics. In particular, it divides synchronization opera-
tions into acquires and releases. An 

 

acquire

 

 is a read operation (it can also be a read-modify-
write) that is performed to gain access to a set of variables. Examples include the

 

Lock(TaskQ)

 

 operation in part (a) of Figure 9-5, and the accesses to 

 

flag

 

 variables within
the while conditions in part (b). A 

 

release

 

 is a write operation (or a read-modify-write) that grants
permission to another processor to gain access to some variables. Examples include the
“UnLock(TaskQ)” operation in part (a) of Figure 9-5, and the statements setting the 

 

flag

 

 vari-
ables to 1 in part (b).

 

1

 

 

The separation into acquire and release operations can be used to further relax ordering con-
straints as shown in Figure 9-6. The purpose of an acquire is to delay memory accesses that fol-
low the acquire statement until the acquire succeeds. It has nothing to do with accesses that
precede it in program order (accesses in the block labeled “1”), so there is no reason to wait for
those accesses to complete before the acquire can be issued. That is, the acquire itself can be
reordered with respect to previous accesses. Similarly, the purpose of a release operation is to
grant access to the new values of data modified before it in program order. It has nothing to do
with accesses that follow it (accesses in the block labeled “3”), so these need not be delayed until
the release has completed. However, we must wait for accesses in block “1” to complete before
the release is visible to other processors (since we do not know exactly which variables are asso-
ciated with the release or that the release “protects”

 

2

 

), and similarly we must wait for the acquire

 

1.  Exercise: In Figure 9-5 are the statements setting Flag variables to 0 synchronization accesses?

2.  It is possible that the release also grants access to variables outside of the variables controlled by the pre-
ceding acquire. The exact association of variables with synchronization accesses is very difficult to exploit
at the hardware level. Software implementations of relaxed models, however, do exploit such optimizations,
as we shall see in Section 9.4.

Figure  9-6  Comparison of weak-ordering and release consistency models.

The operations in block 1 precede the first synchronization operation, which is an acquire, in program order. Block 2 is between the two
synchronization operations, and block 3 follows the second synchronization operation, which is a release. 

read/write
...
read/write

sync 

sync

read/write
...
read/write

read/write
...
read/write

acquire (read)

release (write)

read/write
...
read/write

read/write
...
read/write

read/write
...
read/write

1

2

3

1

2

3

Weak Ordering

Release Consistency



 

Relaxed Memory Consistency Models

 

9/4/97 DRAFT: Parallel Computer Architecture

 

625

 

to complete before the operations in block “3” can be performed. Thus, the sufficient conditions
for providing an RC interface are as follows: Before an operation labeled as a release is issued,
the processor waits until all previous operations in program order have completed; and operations
that follow an acquire operation in program order are not issued until that acquire operation com-
pletes. These are sufficient conditions, and we will see how we might be more aggressive when
we discuss alternative approaches to a shared address space that rely on relaxed consistency mod-
els for performance. 

 

Digital Alpha, Sparc V9 RMO, and IBM PowerPC memory models. 

 

The WO and RC models are
specified in terms of using labeled synchronization operations to enforce orders, but do not take a
position on the exact operations (instructions) that must be used. The memory models of some
commercial microprocessors provide no ordering guarantees by default, but provide specific
hardware instructions called memory barriers or 

 

fences

 

 that can be used to enforce orderings. To
implement WO or RC with these microprocessors, operations that the WO or RC program labels
as synchronizations (or acquires or releases) cause the compiler to insert the appropriate special
instructions, or the programer can insert these instructions directly. 

The Alpha architecture [Sit92], for example, supports two kinds of fence instructions: (i) the

memory barrier (MB) and (ii) the write memory barrier (WMB). The MB fence is like a synchro-
nization operation in WO: It waits for all previously issued memory accesses to complete before
issuing any new accesses. The WMB fence imposes program order only between writes (it is like
the STBAR in PSO). Thus, a read issued after a WMB can still bypass a write access issued
before the WMB, but a write access issued after the WMB cannot. The Sparc V9 relaxed memory
order (RMO) [WeG94] provides a fence instruction with four flavor bits associated with it. Each
bit indicates a particular type of ordering to be enforced between previous and following load/
store operations (the four possibilities are read-to-read, read-to-write, write-to-read, and write-to-
write orderings). Any combinations of these bits can be set, offering a variety of ordering
choices. Finally, the IBM PowerPC model [MSS+94,CSB93] provides only a single fence
instruction, called SYNC, that is equivalent to Alpha’s MB fence. It also differs from the Alpha
and RMO models in that the writes are not atomic, as in the processor consistency model. The

Table 9-1  

 

Characteristics of various system-centric relaxed models. A “yes” in the appropriate column 
indicates that those orders can be violated by that system-centric model. 

 

Model
W-to-R 
reorder

W-to-W 
reorder

R-to-R / W 
reorder

Read 
Other’s 
Write 
Early

Read 
Own 
Write 
Early Operations for Ordering

SC yes

TSO yes yes MEMBAR, RMW

PC yes yes yes MEMBAR, RMW

PSO yes yes yes STBAR, RMW

WO yes yes yes yes SYNC

RC yes yes yes yes yes REL, ACQ, RMW

RMO yes yes yes yes various MEMBARs

Alpha yes yes yes yes MB, WMB

PowerPC yes yes yes yes yes SYNC
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model envisioned is WO, to be synthesized by putting SYNC instructions before and after every
synchronization operation. You will see how different models can be synthesized with these
primitives in Exercise 9.3. 

The prominent specifications discussed above are summarized in Table 9-1.1 They have different
performance implications, and require different kinds of annotations to ensure orderings. It is
worth noting again that although several of the models allow some reordering of operations, if
program order is defined as seen by the programmer then only the models that allow both read
and write operations to be reordered within sections of code (WO, RC, Alpha, RMO, and Pow-
erPC) allow the flexibility needed by many important compiler optimizations. This may change if
substantial improvements are made in compiler analysis to determine what reorderings are possi-
ble given a consistency model. The portability problem of these specifications should also be
clear: for example, a program with enough memory barriers to work “correctly” (produce intui-
tive or sequentially consistent executions) on a TSO system will not necessarily work “correctly”
when run on an RMO system: It will need more special operations. Let us therefore examine
higher-level interfaces that are convenient for programmers and portable to the different systems,
in each case safely exploiting the performance benefits and reorderings that the system affords. 

9.2.2 The Programming Interface

The programming interfaces are inspired by the WO and RC models, in that they assume that
program orders do not have to be maintained at all between synchronization operations. The idea
is for the program to ensure that all synchronization operations are explicitly labeled or identified
as such. The compiler or runtime library translates these synchronization operations into the
appropriate order-preserving operations (memory barriers or fences) called for by the system
specification. Then, the system (compiler plus hardware) guarantees sequentially consistent exe-
cutions even though it may reorder operations between synchronization operations in any way it
desires (without violating dependences to a location within a process). This allows the compiler
sufficient flexibility between synchronization points for the reorderings it desires, and also allows
the processor to perform as many reorderings as permitted by its memory model: If SC execu-
tions are guaranteed even with the weaker models that allow all reorderings, they surely will be
guaranteed on systems that allow fewer reorderings. The consistency model presented at the pro-
grammer’s interface should be at least as weak as that at the hardware interface, but need not be
the same. 

Programs that label all synchronization events are called synchronized programs. Formal models
for specifying synchronized programs have been developed; namely the data-race-free models
influenced by weak ordering [AdH90a] and the properly-labeled model [GAG+92] influenced by
release consistency [GLL+90]. Interested readers can obtain more details from these references
(the differences between them are small). The basic question for the programmer is how to
decide which operations to label as synchronization. This is of course already done in the major-

1.  The relaxation “read own write early” relates to both program order and write atomicity. The 
processor is allowed to read its own previous write before the write is serialized with respect to 
other writes to the same location. A common hardware optimization that relies on this relaxation is 
the processor reading the value of a variable from its own write buffer. This relaxation applies to 
almost all models without violating their semantics. It even applies to SC, as long as other program 
order and atomicity requirements are maintained.
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ity of cases, when explicit, system-specified primitives such as locks and barriers are used. These
are usually also easy to distinguish as acquire or release, for memory models such as RC that can
take advantage of this distinction; for example, a lock is an acquire and an unlock is a release,
and a barrier contains both since arrival at a barrier is a release (indicates completion of previous
accesses) while leaving it is an acquire (obtaining permission for the new set of accesses). The
real question is how to determine which memory operations on ordinary variables (such as our
flag variables) should be labeled as synchronization. Often, programmers can identify these eas-
ily, since they know when they are using this event synchronization idiom. The following defini-
tions describe a more general method when all else fails: 

Conflicting operations: Two memory operations from different processes are said to conflict 
if they access the same memory location and at least one of them is a write. 

Competing operations: These are a subset of the conflicting operations. Two conflicting 
memory operations (from different processes) are said to be competing if it is possible for 
them to appear next to each other in a sequentially consistent total order (execution); that is, 
to appear one immediately following the other in such an order, with no intervening memory 
operations on shared data between them. 

Synchronized Program: A parallel program is synchronized if all competing memory opera-
tions have been labeled as synchronization (perhaps differentiated into acquire and release by 
labeling the read operations as acquires and the write operations as releases). 

The fact that competing means competing under any possible SC interleaving is an important
aspect of the programming interface. Even though the system uses a relaxed consistency model,
the reasoning about where annotations are needed can itself be done while assuming an intuitive,
SC execution model, shielding the programmer from reasoning directly in terms of reorderings.
Of course, if the compiler could automatically determine what operations are conflicting or com-
peting, then the programmer’s task would be made a lot simpler. However, since the known anal-
ysis techniques are expensive and/or conservative [ShS88, KrY94], the job is almost always left
to the programmer.

Consider the example in Figure 9-7. The accesses to the variable flag are competing operations

by the above definition. What this really means is that on a multiprocessor they may execute
simultaneously on their respective processors, and we have no guarantee about which executes
first. Thus, they are also said to constitute data races. In contrast, the accesses to variable A (and

Figure  9-7  An example code sequence using spinning on a flag to synchronize producer-consumer behavior. 

The arcs labeled “po” show program order, and that labeled “co” shows conflict order. Notice that between write to A by P1 and read to
A by P2, there is a chain of accesses formed by po and co arcs. This will be true in all executions of the program. Such chains which
have at least one po arc, will not be present for accesses to the variable flag (there is only a co arc).

P1

A = 1;

B = 1;

flag = 1;

P2

... = flag;

u = A;

v = B;

... = flag;

... = flag;

po

po

po

po

co po

po P2 spinning on flag

P2 finally reads flag=1
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to B) by P1 and P2 are conflicting operations, but they are necessarily separated in any SC inter-
leaving by an intervening write to the variable flag by P1 and a corresponding read of flag by
P2. Thus, they are not competing accesses and do not have to be labeled as synchronization.

To be a little more formal, given a particular SC execution order the conflict order (co) is the
order in which the conflicting operations occur (note that in a given total or execution order one
must occur before the other). In addition, we have the program order (po) for each process.
Figure 9-7 also shows the program orders and conflict order for a sample execution of our code
fragment. Two accesses are non-competing if under all possible SC executions (interleavings)
there always exists a chain of other references between them, such that at least one link in the
chain is formed by a program-order rather than conflict order arc. The complete formalism can be
found in the literature [Gha95]. 

Of course, the definition of synchronized programs allows a programmer to conservatively label
more operations than necessary as synchronization, without compromising correctness. In the
extreme, labeling all memory operations as synchronization always yields a synchronized pro-
gram. This extreme example will of course deny us the performance benefits that the system
might otherwise provide by reordering non-synchronization operations, and will on most systems
yield much worse performance than straightforward SC implementations due to the overhead of
the order-preserving instructions that will be inserted. The goal is to only label competing opera-
tions as synchronization. 

In specific circumstances, we may decide not to label some competing accesses as synchroniza-
tion, since we want to allow data races in the program. Now we are no longer guaranteed SC
semantics, but we may know through application knowledge that the competing operations are
not being used as synchronization and we do not need such strong ordering guarantees in certain
sections of code. An example is the use of the asynchronous rather than red-black equation solver
in Chapter 2. There is no synchronization between barriers (sweeps) so within a sweep the read
and write accesses to the border elements of a partition are competing accesses. The program will
not satisfy SC semantics on a system that allows access reorderings, but this is okay since the
solver repeats the sweeps until convergence: Even if the processes sometimes read old values in
an iteration and sometimes new (unpredictably), they will ultimately read updated values and
make progress toward convergence. If we had labeled the competing accesses, we would have
compromised reordering and performance. 

The last issue related to the programming interface is how the above labels are to be specified by
the programmer. In many cases, this is quite stylized and already present in the programming lan-
guage. For example, some parallel programming languages (e.g., High-Performance Fortran
[HPF93] allow parallelism to be expressed in only stylized ways from which it is trivial to extract
the relevant information. For example, in FORALL loops (loops in which all iterations are inde-
pendent) only the implicit barrier at the end of the loop needs to be labeled as synchronization:
The FORALL specifies that there are no data races within the loop body. In more general pro-
gramming models, if programmers use a library of synchronization primitives such as LOCK,
UNLOCK and BARRIER, then the code that implements these primitives can be labeled by the
designer of the library; the programmer needn’t do anything special. Finally, if the application
programmer wants to add further labels at memory operations—for example at flag variable
accesses or to preserve some other orders as in the examples of Figure 9-4 on page 621—we
need programming language or library support. A programming language could provide an
attribute for variable declarations that indicates that all references to this variable are synchroni-
zation accesses, or there could be annotations at the statement level, indicating that a particular
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access is to be labeled as a synchronization operation. This tells the compiler to constrain its reor-
dering across those points, and the compiler in turn translates these references to the appropriate
order-preserving mechanisms for the processor. 

9.2.3 Translation Mechanisms

For most microprocessors, translating labels to order preserving mechanisms amounts to insert-
ing a suitable memory barrier instruction before and/or after each operation labeled as a synchro-
nization (or acquire or release). It would save instructions if one could have flavor bits associated
with individual loads/stores themselves, indicating what orderings to enforce and avoiding extra
instructions, but since the operations are usually infrequent this is not the direction that most
microprocessors have taken so far. 

9.2.4 Consistency Models in Real Systems

With the large growth in sales of multiprocessors, modern microprocessors are designed so that
they can be seamlessly integrated into these machines. As a result, microprocessor vendors
expend substantial effort defining and precisely specifying the memory model presented at the
hardware-software interface. While sequential consistency remains the best model to reason
about correctness and semantics of programs, for performance reasons many vendors allow
orders to be relaxed. Some vendors like Silicon Graphics (in the MIPS R10000) continue to sup-
port SC by allowing out-of-order issue and execution of operations, but not out of order comple-
tion or visibility. This allows overlapping of memory operations by the dynamically scheduled
processor, but forces them to complete in order. The Intel Pentium family supports a processor
consistency model, so reads can complete before previous writes in program order (see illustra-
tion), and many microprocessors from SUN Microsystems support TSO which allows the same
reorderings. Many other vendors have moved to models that allow all orders to be relaxed (e.g.,
Digital Alpha and IBM PowerPC) and provide memory barriers to enforce orderings where nec-
essary. 

At the hardware interface, multiprocessors usually follow the consistency model exported by the
microprocessors they use, since this is the easiest thing to do. For example, we saw that the
NUMA-Q system exports the processor consistency model of its Pentium Pro processors at this
interface. In particular, on a write the ownership and/or data are obtained before the invalidations
begin. The processor is allowed to complete its write and go on as soon as the ownership/data is
received, and the SCLIC takes care of the invalidation/acknowledgment sequence. It is also pos-
sible for the communication assist to alter the model, within limits, but this comes at the cost of
design complexity. We have seen an example in the Origin2000, where preserving SC requires
that the assist (Hub) only reply to the processor on a write once the exclusive reply and all invali-
dation acknowledgments have been received (called delayed exclusive replies). The dynamically
scheduled processor can then retire its write from the instruction lookahead buffer and allow sub-
sequent operations to retire and complete as well. If the Hub replies as soon as the exclusive reply
is received and before invalidation acknowledgments are received (called eager exclusive
replies), then the write will retire and subsequent operations complete before the write is actually
completed, and the consistency model is more relaxed. Essentially, the Hub fools the processor
about the completion of the write. 

Having the assist cheat the processor can enhance performance but increases complexity, as in
the case of eager exclusive replies. The handling of invalidation acknowledgments must now be
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done asynchronously by the Hub through tracking buffers in its processor interface, in accor-
dance with the desired relaxed consistency model. There are also questions about whether subse-
quent accesses to a block from other processors, forwarded to this processor from the home,
should be serviced while invalidations for a write on that block are still outstanding (see
Exercise 9.2), and what happens if the processor has to write that block back to memory due to
replacement while invalidations are still outstanding in the Hub. In the latter case, either the
writeback has to be buffered by the Hub and delayed till all invalidations are acknowledged, or
the protocol must be extended so a later access to the written back block is not satisfied by the
home until the acknowledgments are received by the requestor. The extra complexity and the per-
ceived lack of substantial performance improvement led the Origin designers to persist with a
sequential consistency model, and reply to the processor only when all acknowledgments are
received. 

On the compiler side, the picture for memory consistency models is not so well defined, compli-
cating matters for programmers. It does not do a programmer much good for the processor to
support sequential consistency or processor consistency if the compiler reorders accesses as it
pleases before they even get to the processor (as uniprocessor compilers do). Microprocessor
memory models are defined at the hardware interface; they tend to be concerned with program
order as presented to the processor, and assume that a separate arrangement will be made with the
compiler. As we have discussed, exporting intermediate models such as TSO, processor consis-
tency and PSO up to the programmer’s interface does not allow the compiler enough flexibility
for reordering. We might assume that the compiler most often will not reorder the operations that
would violate the consistency model, e.g. since most compiler reorderings of memory operations
tend to focus on loops, but this is a very dangerous assumption, and sometimes the orders we rely
upon indeed occur in loops. To really use these models at the programmer’s interface, uniproces-
sor compilers would have to be modified to follow these reordering specifications, compromising
performance significantly. An alternative approach, mentioned earlier, is to use compiler analysis
to determine when operations can be reordered without compromising the consistency model
exposed to the user [ShS88, KrY94]. However, the compiler analysis must be able to detect con-
flicting operations from different processes, which is expensive and currently rather conservative. 

More relaxed models like Alpha, RMO, PowerPC, WO, RC and synchronized programs can be
used at the programmer’s interface because they allow the compiler the flexibility it needs. In
these cases, the mechanisms used to communicate ordering constraints must be heeded not only
by the processor but also by the compiler. Compilers for multiprocessors are beginning to do so
(see also Section 9.6). Underneath a relaxed model at the programmer’s interface, the processor
interface can use the same or a stronger ordering model, as we saw in the context of synchronized
programs. However, there is now significant motivation to use relaxed models even at the proces-
sor interface, to realize the performance potential. As we move now to discussing alternative
approaches to supporting a shared address space with coherent replication of data, we shall see
that relaxed consistency models can be critical to performance when we want to support coher-
ence at larger granularities than cache blocks. We will also see that the consistency model can be
relaxed even beyond release consistency (can you think how?).

9.3 Overcoming Capacity Limitations

The systems that we have discussed so far provide automatic replication and coherence in hard-
ware only in the processor caches. A processor cache replicates remotely allocated data directly
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upon reference, without it being replicated in the local main memory first. Access to main mem-
ory has nonuniform cost depending on whether the memory is local or remote, so these systems
are traditionally called cache coherent non-uniform memory access (CC-NUMA) architectures.
On a cache miss, the assist determines from the physical address whether to look up local mem-
ory and directory state or to send the request directly to a remote home node. The granularity of
communication, of coherence, and of allocation in the replication store (cache) is a cache block.
As discussed earlier, a problem with these systems is that the capacity for local replication is lim-
ited to the hardware cache. If a block is replaced from the cache, it must be fetched from remote
memory if it is needed again, incurring artifactual communication. The goal of the systems dis-
cussed in this section is to overcome the replication capacity problem while still providing coher-
ence in hardware and at fine granularity of cache blocks for efficiency.

9.3.1 Tertiary Caches

There are several ways to achieve this goal. One is to use a large but slower remote access cache,
as in the Sequent NUMA-Q and Convex Exemplar [Con93,TSS+96]. This may be needed for
functionality anyway if the nodes of the machine are themselves small-scale multiprocessors—to
keep track of remotely allocated blocks that are currently in the local processor caches—and can
simply be made larger for performance. It will then also hold replicated remote blocks that have
been replaced from local processor caches. In NUMA-Q, this DRAM remote cache is at least
32MB large while the sum of the four lowest-level processor caches in a node is only 2 MB. A
similar method, which is sometimes called the tertiary cache approach, is to take a fixed portion
of the local main memory and manage it like a remote cache. 

These approaches replicate data in main memory at fine grain, but they do not automatically
migrate or change the home of a block to the node that incurs cache misses most often on that
block. Space is always allocated for the block in the regular part of main memory at the original
home. Thus, if data were not distributed appropriately in main memory by the application, then in
the tertiary cache approach even if only one processor ever accesses a given memory block (no
need for multiple copies or replication) the system may end up wasting half the available main
memory in the system: There are two copies of each block, but only one is ever used. Also, a stat-
ically established tertiary cache is wasteful if its replication capacity is not is not needed for per-
formance. The other approach to increasing replication capacity, which is called cache-only
memory architecture or COMA, is to treat all of local memory as a hardware-controlled cache.
This approach, which achieves both replication and migration, is discussed in more depth next. In
all these cases, replication and coherence are managed at a fine granularity, though this does not
necessarily have to be the same as the block size in the processor caches.

9.3.2 Cache-only Memory Architectures (COMA)

In COMA machines, every fine-grained memory block in the entire main memory has a hardware
tag associated with it. There is no fixed node where there is always guaranteed to be space allo-
cated for a memory block. Rather, data dynamically migrate to or are replicated at the main
memories of the nodes that access or “attract” them; these main memories organized as caches
are therefore called attraction memories. When a remote block is accessed, it is replicated in
attraction memory as well as brought into the cache, and is kept coherent in both places by hard-
ware. Since a data block may reside in any attraction memory and may move transparently from
one to the other, the location of data is decoupled from its physical address and another address-
ing mechanism must be used. Migration of a block is obtained through replacement in the attrac-
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tion memory: If block x originally resides in node A’s main (attraction) memory, then when node
B reads it B will obtain a copy (replication); if the copy in A’s memory is later replaced by
another block that A references, then the only copy of that block left is now in B’s attraction
memory. Thus, we do not have the problem of wasted original copies that we potentially had with
the tertiary cache approach. Automatic data migration also has substantial advantages for multi-
programmed workloads in which the operating system may decide to migrate processes among
nodes at any time. 

Hardware-Software Tradeoffs

The COMA approach introduces clear hardware-software tradeoffs (as do the other approaches).
By overcoming the cache capacity limitations of the pure CC-NUMA approach, the goal is to
free parallel software from worrying about data distribution in main memory. The programmer
can view the machine as if it had a centralized main memory, and worry only about inherent com-
munication and false sharing (of course, cold misses may still be satisfied remotely). While this
makes the task of software writers much easier, COMA machines require a lot more hardware
support than pure CC-NUMA machines to implement main memory as a hardware cache. This
includes per-block tags and state in main memory, as well as the necessary comparators. There is
also the extra memory overhead needed for replication in the attraction memories, which we shall
discuss shortly. Finally, the coherence protocol for attraction memories is more complicated than
that we saw for processor caches. There are two reasons for this, both having to do with the fact
that data move dynamically to where they are referenced and do not have a fixed “home” to back
them up. First, the location of the data must be determined upon an attraction memory miss, since
it is no longer bound to the physical address. Second, with no space necessarily reserved for the
block at the home, it is important to ensure that the last or only copy of a block is not lost from
the system by being replaced from its attraction memory. This extra complexity is not a problem
in the tertiary cache approach. 

Performance Tradeoffs

Performance has its own interesting set of tradeoffs. While the number of remote accesses due to
artifactual communication is reduced, COMA machines tend to increase the latency of accesses
that do need to be satisfied remotely, including cold, true sharing and false sharing misses. The
reason is that even a cache miss to nonlocal memory needs to first look up the local attraction
memory, to see if it has a local copy of the block. The attraction memory access is also a little
more expensive than a standard DRAM access because the attraction memory is usually imple-
mented to be set-associative, so there may be a tag selection in the critical path. 

In terms of performance, then, COMA is most likely to be beneficial for applications that have
high capacity miss rates in the processor cache (large working sets) to data that are not allocated
locally to begin with, and most harmful to applications where performance is dominated by com-
munication misses. The advantages are also greatest when access patterns are unpredictable or
spatially interleaved from different processes at fine grain, so data placement or replication/
migration at page granularity in software would be difficult. For example, COMA machines are
likely to be more advantageous when a two-dimensional array representation is used for a near-
neighbor grid computation than when a four-dimensional array representation is used, because in
the latter case appropriate data placement at page granularity is not difficult in software. The
higher cost of communication may in fact make them perform worse than pure CC-NUMA when
four-dimensional arrays are used with data placement. Figure 9-8 summarizes the tradeoffs in
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terms of application characteristics. Let us briefly look at some design options for COMA proto-

cols, and how they might solve the architectural problems of finding the data on a miss and not
losing the last copy of a block. 

Design Options: Flat versus Hierarchical Approaches

COMA machines can be built with hierarchical or with flat directory schemes, or even with hier-
archical snooping (see Section 8.11.2). Hierarchical directory-based COMA was used in the Data
Diffusion Machine prototype [HLH92,Hag92], and hierarchical snooping COMA was used in
commercial systems from Kendall Square Research [FBR93]. In these hierarchical COMA
schemes, data are found on a miss by traversing the hierarchy, just as in regular hierarchical
directories in non-COMA machines. The difference is that while in non-COMA machines there
is a fixed home node for a memory block in a processing node, here there is not. When a refer-
ence misses in the local attraction memory, it proceeds up the hierarchy until a node is found that
indicates the presence of the block in its subtree in the appropriate state. The request then pro-
ceeds down the hierarchy to the appropriate processing node (which is at a leaf), guided by direc-
tory lookups or snooping at each node along the way. 

In flat COMA schemes, there is still no home for a memory block in the sense of a reserved loca-
tion for the data, but there is a fixed home where just the directory information can be found

Figure  9-8  Performance tradeoffs between COMA and non-COMA architectures. 
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[SJG92,Joe95]. This fixed home is determined from either the physical address or a global identi-
fier obtained from the physical address, so the directory information is also decoupled from the
actual data. A miss in the local attraction memory goes to the directory to look up the state and
copies, and the directory may be maintained in either a memory-based or cache-based way.The
tradeoffs for hierarchical directories versus flat directories are very similar to those without
COMA (see Section 8.11.2). 

Let us see how hierarchical and flat schemes can solve the last copy replacement problem. If the
block being replaced is in shared state, then if we are certain that there is another copy of the
block in the system we can safely discard the replaced block. But for a block that is in exclusive
state or is the last copy in the system, we must ensure that it finds a place in some other attraction
memory and is not thrown away. In the hierarchical case, for a block in shared state we simply
have to go up the hierarchy until we find a node that indicates that a copy of the block exists
somewhere in its subtree. Then, we can discard the replaced block as long as we have updated the
state information on the path along the way. For a block in exclusive state, we go up the hierarchy
until we find a node that has a block in invalid or shared state somewhere in its subtree, which
this block can replace. If that replaceable block found is in shared rather than invalid state, then
its replacement will require the previous procedure. 

In a flat COMA, more machinery is required for the last copy problem. One mechanism is to
label one copy of a memory block as the master copy, and to ensure that the master copy is not
dropped upon replacement. A new cache state called master is added in the attraction memory.
When data are initially allocated, every block is a master copy. Later, a master copy is either an
exclusive copy or one of the shared copies. When a shared copy of a block that is not the master
copy is replaced, it can be safely dropped (we may if we like send a replacement hint to the direc-
tory entry at the home). If a master copy is replaced, a replacement message is sent to the home.
The home then chooses another node to send this master to in the hope of finding room, and sets
that node to be the master. If all available blocks in that set of the attraction memory cache at this
destination are masters, then the request is sent back to the home which tries another node, and so
on. Otherwise, one of the replaceable blocks in the set is replaced and discarded (some optimiza-
tions are discussed in [JoH94]). 

Regardless of whether a hierarchical or flat COMA organization is used, the initial data set of the
application should not fill the entire main or attraction memory, to ensure that there is space in
the system for a last copy to find a new residence. To find replaceable blocks, the attraction mem-
ories should be quite highly associative as well. Not having enough extra (initially unallocated)
memory can cause performance problems for several reasons. First, the less the room for replica-
tion in the attraction memories, the less effective the COMA nature of the machine in satisfying
cache capacity misses locally. Second, little room for replication implies that the replicated
blocks are more likely to be replaced to make room for replaced last copies. And third, the traffic
generated by replaced last copies can become substantial when the amount of extra memory is
small, which can cause a lot of contention in the system. How much memory should be set aside
for replication and how much associativity is needed should be determined empirically [JoH94]. 

Summary: Path of a Read Operation

Consider a flat COMA scheme. A virtual address is first translated to a physical address by the
memory management unit. This may cause a page fault and a new mapping to be established, as
in a uniprocessor, though the actual data for the page is not loaded into memory. The physical
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address is used to look up the cache hierarchy. If it hits, the reference is satisfied. If not, then it
must look up the local attraction memory. Some bits from the physical address are used to find
the relevant set in the attraction memory, and the tag store maintained by the hardware is used to
check for a tag match. If the block is found in an appropriate state, the reference is satisfied. If
not, then a remote request must be generated, and the request is sent to the home determined from
the physical address. The directory at the home determines where to forward the request, and the
owner node uses the address as an index into its own attraction memory to find and return the
data. The directory protocol ensures that states are maintained correctly as usual. 

9.4 Reducing Hardware Cost 

The last of the major issues discussed in this chapter is hardware cost. Reducing cost often
implies moving some functionality from specialized hardware to software running on existing or
commodity hardware. In this case, the functionality in question is managing for replication and
coherence. Since it is much easier for software to control replication and coherence in main
memory rather than in the hardware cache, the low-cost approaches tend to provide replication
and coherence in main memory as well. The differences from COMA, then, are the higher over-
head of communication, and potentially the granularity at which replication and coherence are
managed. 

Consider the hardware cost of a pure CC-NUMA approach. The portion of the communication
architecture that is on a node can be divided into four parts: the part of the assist that checks for
access control violations, the per-block tags that it uses for this purpose, the part that does the
actual protocol processing (including intervening in the processor cache), and the network inter-
face itself. To keep data coherent at cache block granularity, the access control part needs to see
every load or store to shared data that misses in the cache so it can take the necessary protocol
action. Thus, for fine-grained access control to be done in hardware, the assist must at least be
able to snoop on the local memory system (as well as issue requests to it in response to incoming
requests from the network). 

For coherence to be managed efficiently, each of the other functional components of the assist
can benefit greatly from hardware specialization and integration. Determining access faults (i.e.
whether or not to invoke the protocol) quickly requires that the tags per block of main memory be
located close to this part of the assist. The speed with which protocol actions can be invoked and
the assist can intervene in the processor cache increases as the assist is integrated closer to the
cache. Performing protocol operations quickly demands that the assist be either hard-wired, or if
programmable (as in then Sequent NUMA-Q) then specialized for the types of operations that
protocols perform most often (for example bit-field extractions and manipulations). Finally, mov-
ing small pieces of data quickly between the assist and network interface asks that the network
interface be tightly integrated with the assist. Thus, for highest performance we would like that
these four parts of the communication architecture be tightly integrated together, with as few bus
crossings as possible needed to communicate among them, and that this whole communication
architecture be specialized and tightly integrated into the memory system. 

Early cache-coherent machines such as the KSR-1 [FBR93] accomplished this by integrating a
hard-wired assist into the cache controller and integrating the network interface tightly into the
assist. However, modern processors tend to have even their second-level cache controllers on the
processor chip, so it is increasingly difficult to integrate the assist into this controller once the
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processor is built. The SGI Origin therefore integrates its hard-wired Hub into the memory con-
troller (and the network interface tightly with the Hub), and the Stanford Flash integrates its spe-
cialized programmable protocol engine into the memory controller. These approaches use
specialized, tightly integrated hardware support for cache coherence, and do not leverage inex-
pensive commodity parts for the communication architecture. They are therefore expensive, more
so in design and implementation time than in the amount of actual hardware needed. 

Research efforts are attempting to lower this cost, with several different approaches. One
approach is to perform access control in specialized hardware, but delegate much of the other
activity to software and commodity hardware. Other approaches perform access control in soft-
ware as well, and are designed to provide a coherent shared address space abstraction on com-
modity nodes and networks with no specialized hardware support. The software approaches
provide access control either by instrumenting the program code, or by leveraging the existing
virtual memory support to perform access control at page granularity, or by exporting an object-
based programming interface and providing access control in a runtime layer at the granularity of
user-defined objects. 

Let us discuss each of these approaches, which are currently all at the research stage. More time
will be spent on the so-called page-based shared virtual memory approach, because it changes
the granularity at which data are allocated, communicated and kept coherent while still preserv-
ing the same programming interface as hardware-coherent systems, and because it relies on
relaxed memory consistency for performance and requires substantially different protocols. 

9.4.1 Hardware Access Control with a Decoupled Assist

While specialized hardware support is used for fine-grained access control in this approach, some
or all of the other aspects (protocol processing, tags, and network interface) are decoupled from
one another. They can then either use commodity parts attached to less intrusive parts of the node
like the I/O bus, or use no extra hardware beyond that on the uniprocessor system. For example,
the per-block tags and state can be kept in specialized fast memory or in regular DRAM, and pro-
tocol processing can be done in software either on a separate, inexpensive general-purpose pro-
cessor or even on the main processor itself. The network interface usually has some specialized
support for fine-grained communication in all these cases, since otherwise the end-point over-
heads would dominate. Some possible combinations for how the various functions might be inte-
grated are shown in Figure 9-9. 

The problem with the decoupled hardware approach, of course, is that it increases the latency of
communication, since the interaction of the different components with each other and with the
node is slower (e.g. it may involve several bus crossings). More critically, the effective occupancy
of the decoupled communication assist is much larger than that of a specialized, integrated assist,
which can hurt performance substantially for many applications as we saw in the previous chap-
ter (Section 8.8).

9.4.2 Access Control through Code Instrumentation

It is also possible to use no additional hardware support at all, but perform all the functions
needed for fine-grained replication and coherence in main memory in software. The trickiest part
of this is fine-grained access control in main memory, for which a standard uniprocessor does not
provide support. To accomplish this in software, individual read and write operations can be
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instrumented in software to look up per-block tag and state data structures maintained in main
memory [SFL+94,SGT96]. To the extent that cache misses can be predicted, only the reads and
writes that miss in the processor cache hierarchy need to be thus instrumented. The necessary
protocol processing can be performed on the main processor or on whatever form of communica-
tion assist is provided. In fact, such software instrumentation allows us to provide access control
and coherence at any granularity chosen by the programmer and system, even different granular-
ities for different data structures.

Software instrumentation incurs a run-time cost, since it inserts extra instructions into the code to
perform the necessary checks. The approaches that have been developed use several tricks to
reduce the number of checks and lookups needed [SGT96], so the cost of access control in this
approach may well be competitive with that in the decoupled hardware approach. Protocol pro-
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(a) AC, NI, and PP integrated together (b) AC, NI, and PP integrated together
on memory bus (Wisc. Typhoon design) and into memory controller (SGI Origin)

(c) AC and NI integrated together and 
on memory bus; separate commodity PP
also on bus (Wisc. Typhoon-1 design)

Figure  9-9  Some alternatives for reducing cost over the highly integrated solution. 

AC is the access control facility, NI is the network interface, and PP is the protocol processing facility (whether hardwired finite state
machine or programmable). The highly integrated solution is shown in (a). The more the parts are separated out, the more the expen-
sive bus crossings needed for them to communicate with one another to process a transaction. The alternatives we have chosen are
the Typhoon-0 research prototype from the University of Wisconsin and two other proposals. In these designs, the commodity PP in
(b) and (c) is a complete processor like the main CPU, with its own cache system. 

(d) Separate AC, commodity NI and 
 commodity PP on memory bus
(Wisc. Typhoon-0)
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cessing in software on the main processor also has a significant cost, and the network interface
and interconnect in these systems are usually commodity-based and hence less efficient than in
tightly-coupled multiprocessors. 

9.4.3 Page-based Access Control: Shared Virtual Memory

Another approach to providing access control and coherence with no additional hardware support
is to leverage the virtual memory support provided by the memory management units of micro-
processors and the operating system. Memory management units already perform access control
in main memory at the granularity of pages, for example to detect page faults, and manage main
memory as a fully associative cache on the virtual address space. By embedding a coherence pro-
tocol in the page fault handlers, we can provide replication and coherence at page granularity
[LiH89], and manage the main memories of the nodes as coherent, fully associative caches on a
shared virtual address space. Access control now requires no special tags, and the assist needn’t
even see every cache miss. Data enter the local cache only when the corresponding page is
already present in local memory. Like in the previous two approaches the processor caches do not
have to be kept coherent by hardware, since when a page is invalidated the TLB will not let the
processor access its blocks in the cache. 

This approach is called page-based shared virtual memory or SVM for short. Since the cost can
be amortized over a whole page of data, protocol processing is often done on the main processor
itself, and we can more easily do without special hardware support for communication in the net-
work interface. Thus, there is less need for hardware assistance beyond that available on a stan-
dard uniprocessor system. 

A very simple form of shared virtual memory coherence is illustrated in Figure 9-10, following
an invalidation protocol very similar to those in pure CC-NUMA. A few aspects are worthy of
note. First, since the memory management units of different processors manage their main mem-
ories independently, the physical address of the page in P1’s local memory may be completely
different from that of the copy in P0’s local memory, even though the pages have the same
(shared) virtual address. Second, a page fault handler that implements the protocol must know or
determine from where to obtain the up-to-date copy of a page that it has missed on, or what pages
to invalidate, before it can set the page’s access rights as appropriate and return control to the
application process. A directory mechanism can be used for this—every page may have a home,
determined by its virtual address, and a directory entry maintained at the home—though high-
performance SVM protocols tend to be more complex as we shall see. 

The problems with page-based shared virtual memory are (i) the high overheads of protocol invo-
cation and processing and (ii) the large granularity of coherence and communication. The former
is expensive because most of the work is done in software on a general-purpose uniprocessor.
Page faults take time to cause an interrupt and to switch into the operating system and invoke a
handler; the protocol processing itself is done in software, and the messages sent to other proces-
sors use the underlying message passing mechanisms that are expensive. On a representative
SVM system in 1997, the round-trip cost of satisfying a remote page fault ranges from a few hun-
dred microseconds with aggressive system software support to over a millisecond. This should be
compared with less than a microsecond needed for a read miss on aggressive hardware-coherent
systems. In addition, since protocol processing is typically done on the main processor (due to
the goal of using commodity uniprocessor nodes with no additional hardware support), even
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incoming requests interrupt the processor, pollute the cache and slow down the currently running
application thread that may have nothing to do with that request. 

The large granularity of communication and coherence is problematic for two reasons. First, if
spatial locality is not very good it causes a lot of fragmentation in communication (only a word is
needed but a whole page is fetched). Second, it can easily lead to false sharing, which causes
these expensive protocol operations to be invoked frequently. Under a sequential consistency
model, invalidations are propagated and performed as soon as the corresponding write is
detected, so pages may be frequently ping-ponged back and forth among processors due to either
true or false sharing (Figure 9-11 shows an example). This is extremely undesirable in SVM sys-
tems due to the high cost of the operations, and it is very important that the effects of false shar-
ing be alleviated. 

Using Relaxed Memory Consistency 

The solution is to exploit a relaxed memory consistency model such as release consistency, since
this allows coherence actions such as invalidations or updates, collectively called write notices, to
be postponed until the next synchronization point (writes do not have to become visible until
then). Let us continue to assume an invalidation-based protocol. Figure 9-12 shows the same
example as Figure 9-11 above: The writes to x by processor P1 will not generate invalidations to
the copy of the page at P0 until the barrier is reached, so the effects of false sharing will be
greatly mitigated and none of the reads of y by P0 before the barrier will incur page faults. Of

SVM Library

Virtual address space (pages)

Local 
Memories
of Nodes

P0 P1 P0 P1

1 2r r 4r

(a) (b)

Figure  9-10  Illustration of Simple Shared Virtual Memory. 

At the beginning, no node has a copy of the stippled shared virtual page with which we are concerned. Events occur in the order 1, 2,
3, 4. Read 1 incurs a page fault during address translation and fetches a copy of the page to P0 (presumably from disk). Read 2,
shown in the same frame, incurs a page fault and fetches a read-only copy to P1 (from P0). This is the same virtual page, but is at two
different physical addresses in the two memories. Write 3 incurs a page fault (write to a read-only page), and the SVM library in the
page fault handlers determines that P1 has a copy and causes it to be invalidated. P0 now obtains read-write access to the page, which
is like the modified or dirty state. When Read 4 by P1 tries to read a location on the invalid page, it incurs a page fault and fetches a
new copy from P0 through the SVM library. 
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course, if P0 accesses y after the barrier it will incur a page fault due to false sharing since the
page has now been invalidated. 

There is a significant difference from how relaxed consistency is typically used in hardware-
coherent machines. There, it is used to avoid stalling the processor to wait for acknowledgments
(completion), but the invalidations are usually propagated and applied as soon possible, since this
is the natural thing for hardware to do. Although release consistency does not guarantee that the
effects of the writes will be seen until the synchronization, in fact they usually will be. The
effects of false sharing cache blocks are therefore not reduced much even within a period with no
synchronization, and nor is the number of network transactions or messages transferred; the goal
is mostly to hide latency from the processor. In the SVM case, the system takes the contract liter-
ally: Invalidations are actually not propagated until the synchronization points. Of course, this
makes it critical for correctness that all synchronization points be clearly labeled and communi-
cated to the system. 1

When should invalidations (or write notices) be propagated from the writer to other copies, and
when should they be applied. One possibility is to propagate them when the writer issues a
release operation. At a release, invalidations for each page that the processor wrote since its pre-
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Figure  9-11  Problem with sequential consistency for SVM. 

Process P0 repeatedly reads variable y, while process P1 repeatedly writes variable x which happens to fall on the same page as y.
Since P1 cannot proceed until invalidations are propagated and acknowledged under SC, the invalidations are propagated immedi-
ately and substantial (and very expensive) communication ensues due to this false sharing. 
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Figure  9-12  Reducing SVM communication due to false sharing with a relaxed consistency model. 

There is not communication at reads and writes until a synchronization event, at which point invalidations are propagated to make
pages coherent. Only the first access to an invalidated page after a synchronization point generates a page fault and hence request. 
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vious release are propagated to all processors that have copies of the page. If we wait for the
invalidations to complete, this satisfies the sufficient conditions for RC that were presented ear-
lier. However, even this is earlier than necessary: Under release consistency, a given process does
not really need to see the write notice until it itself does an acquire. Propagating and applying
write notices to all copies at release points, called eager release consistency (ERC)
[CBZ91,CBZ95], is conservative because it does not know when the next acquire by another pro-
cessor will occur. As shown in Figure 9-13(a), it can send expensive invalidation messages to
more processors than necessary (P2 need not have been invalidated by P0), it requires separate
messages for invalidations and lock acquisitions, and it may invalidate processors earlier than
necessary thus causing false sharing (see the false sharing between variables x and y, as a result

1.  In fact, a similar approach can be used to reduce the effects of false sharing in hardware as well. Invalida-
tions may be buffered in hardware at the requestor, and sent out only at a release or a synchronization
(depending on whether release consistency or weak ordering is being followed) or when the buffer becomes
full. Or they may be buffered at the destination, and only applied at the next acquire point by that destina-
tion. This approach has been called delayed consistency [DWB+91] since it delays the propagation of inval-
idations. As long as processors do not see the invalidations, they continue to use their copies without any
coherence actions, alleviating false sharing effects. 
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Figure  9-13  Eager versus lazy implementations of release consistency. 

The former performs consistency actions (invalidation) at a release point, while the latter performs them at an acquire. Variables x and
y are on the same page. The reduction in communication can be substantial, particular for SVM. 

inv.
lock
grant

lock
grant
+ inv.

inv.

inv.
lock
grant

lock
grant
+ inv.

r(y)

r(y)

r(y)

r(y)



Hardware-Software Tradeoffs

642 DRAFT: Parallel Computer Architecture 9/4/97

of which the page is fetched twice by P1 and P2, once at the read of y and once at the write of x).
The extra messages problem is even more significant when an update-based protocol is used.
These issues and alternatives are discussed further in Exercise 9.6. 

The best known SVM systems tend to use a lazier form of release consistency, called lazy release
consistency or LRC, which propagates and applies invalidations to a given processor not at the
release that follows those writes but only at the next acquire by that processor [KCZ92]. On an
acquire, the processor obtains the write notices corresponding to all previous release operations
that occurred between its previous acquire operation and its current acquire operation. Identify-
ing which are the release operations that occurred before the current acquire is an interesting
question. One way to view this is to assume that this means all releases that would have to appear
before this acquire in any sequentially consistent1 ordering of the synchronization operations that
preserves dependences. Another way of putting this is that there are two types of partial orders
imposed on synchronization references: program order within each process, and dependence
order among acquires and releases to the same synchronization variable. Accesses to a synchroni-
zation variable form a chain of successful acquires and releases. When an acquire comes to a
releasing process P, the synchronization operations that occurred before that release are those that
occur before it in the intersection of these program orders and dependence orders. These synchro-
nization operations are said to have occurred before it in a causal sense. Figure 9-14 shows an
example. 

By further postponing coherence actions, LRC alleviates the three problems associated with
ERC; for example, if false sharing on a page occurs before the acquire but not after it, its ill
effects will not be seen (there is no page fault on the read of y in Figure 9-13(b)). On the other
hand, some of the work to be done is shifted from release point to acquire point, and LRC is sig-
nificantly more complex to implement than ERC as we shall see. However, LRC has been found
to usually perform better, and is currently the method of choice. 

The relationship between these software protocols and consistency models developed for hard-
ware-coherent systems is interesting. First, the software protocols do not satisfy the requirements
of coherence that were discussed in Chapter 5, since writes are not automatically guaranteed to
be propagated unless the appropriate synchronization is present. Making writes visible only
through synchronization operations also makes write serialization more difficult to guarantee—
since different processes may see the same writes through different synchronization chains and
hence in different orders—and most software systems do not provide this guarantee. The differ-
ence between hardware implementations of release consistency and ERC is in when writes are
propagated; however, by propagating write notices only at acquires LRC may differ from release
consistency even in whether writes are propagated, and hence may allow results that are not per-
mitted under release conssitency. LRC is therefore a different consistency model than release
consistency, while ERC is simply a different implementation of RC, and it requires greater pro-
gramming care. However, if a program is properly labeled then it is guaranteed to run “correctly”
under both RC and LRC. 

1.  Or even processor consistent, since RC allows acquires (reads) to bypass previous releases (writes). 
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Example  9-2 Design an example in which LRC produces a different result than release
consistency? How would you avoid the problem?

Answer Consider the code fragment below, assuming the pointer ptr is initialized to NULL. 

P1 P2

while (ptr == null) {};
lock L1; lock L1;
ptr = non_null_ptr_val;  a = ptr;
unlock L1; unlock L1;

Under RC and ERC, the new non-null pointer value is guaranteed to propagate to
P2 before the unlock (release) by P1 is complete, so P2 will see the new value and
jump out of the loop as expected. Under LRC, P2 will not see the write by P1 until
it performs its lock (acquire operation); it will therefore enter the while loop, never
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Figure  9-14  The causal order among synchronization events (and hence data accesses).

The figure shows what synchronization operations are before the acquire A1 (by process P3) or the release R1 by process P2 that
enables it. The dotted horizontal lines are time-steps, increasing downward, indicating a possible interleaving in time. The bold
arrows show dependence orders along an acquire-release chain, while the dotted arrows show the program orders that are part of the
causal order. The A2, R2 and A4, R4 pairs that are untouched by arrows do not “happen before” the acquire of interest in causal order,
so the accesses after the acquire are not guaranteed to see the accesses between them. 
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see the write by P1, and hence never exit the while loop. The solution is to put the
appropriate acquire synchronization before the reads in the while loop, or to label
the reads of ptr appropriately as acquire synchronizations. 

The fact that coherence information is propagated only at synchronization operations that are
recognized by the software SVM layer has an interesting, related implication. It may be difficult
to run existing application binaries on relaxed SVM systems, even if those binaries were com-
piled for systems that support a very relaxed consistency model and they are properly labeled.
The reason is that the labels are compiled down to the specific fence instructions used by the
commercial microprocessor, and those fence instructions may not be visible to the software SVM
layer unless the binaries are instrumented to make them so. Of course, if the source code with the
labels is available, then the labels can be translated to primitives recognized by the SVM layer. 

Multiple Writer Protocols

Relaxing the consistency model works very well in mitigating the effects of false sharing when
only one of the sharers writes the page in the interval between two synchronization points, as in
our previous examples. However, it does not in itself solve the multiple-writer problem. Consider
the revised example in Figure 9-15. Now P0 and P1 both modify the same page between the same

two barriers. If we follow a single-writer protocol, as in hardware cache coherence schemes, then
each of the writers must obtain ownership of the page before writing it, leading to ping-ponging
communication even between the synchronization points and compromising the goal of using
relaxed consistency in SVM. In addition to relaxed consistency, we need a “multiple-writer” pro-
tocol. This is a protocol that allows each processor writing a page between synchronization
points to modify its own copy locally, allowing the copies to become inconsistent, and makes the
copies consistent only at the next synchronization point, as needed by the consistency model and
implementation (lazy or eager). Let us look briefly at some multiple writer mechanisms that can
be used with either eager or lazy release consistency. 

The first method is used in the TreadMarks SVM system from Rice University [KCD+94]. The
idea is quite simple. To capture the modifications to a shared page, it is initially write-protected.
At the first write after a synchronization point, a protection violation occurs. At this point, the
system makes a copy of the page (called a twin) in software, and then unprotects the actual page
so further writes can happen without protection violations. Later, at the next release or incoming
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Figure  9-15  The multiple-writer problem. 

At the barrier, two different processors have written the same page independently, and their modifications need to be merged. 
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acquire (for ERC or LRC), the twin and the current copy are compared to create a “diff”, which is
simply a compact encoded representation of the differences between the two. The diff therefore
captures the modifications that processor has made to the page in that synchronization interval.
When a processor incurs a page fault, it must obtain the diffs for that page from other processors
that have created them, and merge them into its copy of the page. As with write notices, there are
several alternatives for when we might compute the diffs and when we might propagate them to
other processors with copies of the page (see Exercise 9.6). If diffs are propagated eagerly at a
release, they and the corresponding write notices can be freed immediately and the storage
reused. In a lazy implementation, diffs and write notices may be kept at the creator until they are
requested. In that case, they must be retained until it is clear that no other processor needs them.
Since the amount of storage needed by these diffs and write notices can become very large, gar-
bage collection becomes necessary. This garbage collection algorithm is quite complex and
expensive, since when it is invoked each page may have uncollected diffs distributed among
many nodes [KCD+94]. 

An alternative multiple writer method gets around the garbage collection problem for diffs while
still implementing LRC, and makes a different set of performance tradeoffs [ISL96b,ZIL96]. The
idea here is to not maintain the diffs at the writer until they are requested nor to propagate them to
all the copies at a release. Instead, every page has a home memory, just like in flat hardware
cache coherence schemes, and the diffs are propagated to the home at a release. The releasing
processor can then free the storage for the diffs as soon as it has sent them to the home. The arriv-
ing diffs are merged into the home copy of the page (and the diff storage freed there too), which
is therefore kept up to date. A processor performing an acquire obtains write notices for pages
just as before. However, when it has a subsequent page fault on one of those pages, it does not
obtain diffs from all previous writers but rather fetches the whole page from the home. Other than
storage overhead and scalability, this scheme has the advantage that on a page fault only one
round-trip message is required to fetch the data, whereas in the previous scheme diffs had to be
obtained from all the previous (“multiple”) writers. Also, a processor never incurs a page fault for
a page for which it is the home. The disadvantages are that whole pages are fetched rather than
diffs (though this can be traded off with storage and protocol processing overhead by storing the
diffs at the home and not applying them there, and then fetching diffs from the home), and that
the distribution of pages among homes becomes important for performance despite replication in
main memory. Which scheme performs better will depend on how the application sharing pat-
terns manifest themselves at page granularity, and on the performance characteristics of the com-
munication architecture. 

Alternatives Methods for Propagating Writes

Diff processing—twin creation, diff computation, and diff application—incurs significant over-
head, requires substantial additional storage, and can also pollute the first-level processor cache,
replacing useful application data. Some recent systems provide hardware support for fine-grained
communication in the network interface—particularly fine-grained propagation of writes to
remote memories—which that can be used to accelerate these home-based, multiple-writer SVM
protocols and avoid diffs altogether. As discussed in Chapter 7, the idea of hardware propagation
of writes originated in the PRAM [LS88] and PLUS [BR90] systems, and modern examples
include the network interface of the SHRIMP multicomputer prototype at Princeton University
[BLA+94] and the Memory Channel from Digital Equipment Corporation [GCP96]. 
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For example, the SHRIMP network interface allows unidirectional mappings to be established
between a pair of pages on different nodes, so that the writes performed to the source page are
automatically snooped and propagated in hardware to the destination page on the other node. To
detect these writes, a portion of the “assist” snoops the memory bus. However, it does not have to
arbitrate for the memory bus, and the rest of it sits on the I/O bus, so the hardware is not very
intrusive in the node. Of course, this “automatic update” mechanism requires that the cache be
write-through, or that writes to remotely mapped pages somehow do appear on the memory bus
at or before a release. This can be used to construct a home-based multiple writer scheme without
diffs as follows [IDF+96,ISL96a]. Whenever a processor asks for a copy of the page, the system
establishes a mapping from that copy to the home version of the page (see Figure 9-16). Then,

writes issued by the non-home processor to the page are automatically propagated by hardware to
the home copy, which is thus always kept up to date. The outgoing link that carries modifications
to their homes is flushed at a release point to ensure that all updates will reach (point to point net-
work order is assumed). If a processor receives write notices for a page on an acquire (coherence
actions are managed at synchronization points exactly as before), then when it faults on that page
it will fetch the entire page from the home. 

The DEC Memory Channel interface provides a similar mechanism, but it does not snoop the
memory bus. Instead, special I/O writes have to be performed to mapped pages and these writes
are automatically propagated to the mapped counterparts in main memory at the other end. Com-
pared to the all-software home-based scheme, these hardware “automatic update” schemes have
the advantage of not requiring the creation, processing and application of diffs. On the other
hand, they increase data traffic, both on the memory bus when shared pages are cached write-
through and in the network: Instead of communicating only the final diff of a page at a release,
every write to a page whose home is remote is propagated to the home in fine-grained packets
even between synchronization points, so multiple writes to the same location will all be propa-
gated. The other disadvantage, of course, is that it uses hardware support, no matter how non-
intrusive. 

Even without this hardware support, twinning and diffing are not the only solutions for the multi-
ple writers problem even in all software scheme. What we basically need to convey is what has
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(a) The automatic update mechanism

P2

P2

automatic updates page fetch

page fetch

(b) Supporting multiple writers using automatic update

Figure  9-16  Using an automatic update mechanism to solve the multiple writer problem. 

The variables x and y fall on the same page, which has node P2 as its home. If P0 (or P1) were the home, it would not need to propa-
gate automatic updates and would not incur page faults on that page (only the other node would). 
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changed on that page during that interval. An alternative mechanism is to use software dirty bits.
In this case, a bit is maintained for every word (or block) in main memory that keeps track of
whether that block has been modified. This bit is set whenever that word is written, and the words
whose bits are set at a release or acquire point constitute the diff equivalent that needs to be com-
municated. The problem is that the dirty bits must be set and reset in separate instructions from
the stores themselves—since microprocessors have no support for this—so the program must be
instrumented to add an instruction to set the corresponding bit at every shared store. The instru-
mentation is much like that needed for the all-software fine-grained coherence schemes men-
tioned earlier, and similar optimizations can be used to eliminate redundant setting of dirty bits.
The advantage of this approach is the elimination of twinning and diff creation; the disadvantage
is the extra instructions executed with high frequency. 

The discussion so far has focussed on the functionality of different degrees of laziness, but has
not addressed implementation. How do we ensure that the necessary write notices to satisfy the
partial orders of causality get to the right places at the right time, and how do we reduce the num-
ber of write notices transferred. There is a range of methods and mechanisms for implementing
release consistent protocols of different forms (single versus multiple writer, acquire- versus
release-based, degree of laziness actually implemented). The mechanisms, what forms of lazi-
ness each can support, and their tradeoffs are interesting, and will be discussed in the Advanced
Topics in Section 9.7.2. 

Summary: Path of a Read Operation

To summarize the behavior of an SVM system, let us look at the path of a read. We examine the
behavior of a home-based system since it is simpler. A read reference first undergoes address
translation from virtual to physical address in the processor’s memory management unit. If a
local page mapping is found, the cache hierarchy is looked up with the physical address and it
behaves just like a regular uniprocessor operation (the cache lookup may of course be done in
parallel for a virtually indexed cache). If a local page mapping is not found, a page fault occurs
and then the page is mapped in (either from disk or from another node), providing a physical
address. If the operating system indicates that the page is not currently mapped on any other
node, then it is mapped in from disk with read/write permission, otherwise it is obtained from
another node with read-only permission. Now the cache is looked up. If inclusion is preserved
between the local memory and the cache, the reference will miss and the block is loaded in from
local main memory where the page is now mapped. Note that inclusion means that a page must
be flushed from the cache (or the state of the cache blocks changed) when it is invalidated or
downgraded from read/write to read-only mode in main memory. If a write reference is made to a
read-only page, then also a page fault is incurred and ownership of the page obtained before the
reference can be satisfied by the cache hierarchy. 

Performance Implications

Lazy release consistency and multiple writer protocols improve the performance of SVM sys-
tems dramatically compared to sequentially consistent implementations. However, there are still
many performance problems compared with machines that manage coherence in hardware at
cache block granularity. The problems of false sharing and either extra communication or proto-
col processing overhead do not disappear with relaxed models, and the page faults that remain
are still expensive to satisfy. The high cost of communication, and the contention induced by
higher end-point processing overhead, magnifies imbalances in communication volume and
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hence time among processors. Another problem in SVM systems is that synchronization is per-
formed in software through explicit software messages, and is very expensive. This is exacer-
bated by the fact that page misses often occur within critical sections, artificially dilate them and
hence greatly increasing the serialization at critical sections. The result is that while applications
with coarse-grained data sharing patterns (little false sharing and communication fragmentation)
perform quite well on SVM systems, applications with finer-grained sharing patterns do not
migrate well from hardware cache-coherent systems to SVM systems. The scalability of SVM
systems is also undetermined, both in performance and in the ability to run large problems since
the storage overheads of auxiliary data structures grow with the number of processors. 

All in all, it is still unclear whether fine-grained applications that run well on hardware-coherent
machines can be restructured to run efficiently on SVM systems as well, and whether or not such
systems are viable for a wide range of applications. Research is being done to understand the per-
formance issues and bottlenecks [DKC+93, ISL96a, KHS+97, JSS97], as well as the value of
adding some hardware support for fine-grained communication while still maintaining coherence
in software at page granularity to strike a good balance between hardware and software support
[KoS96, ISL96a, BIS97]. With the dramatically increasing popularity of low-cost SMPs, there is
also a lot of research in extending SVM protocols to build coherent shared address space
machines as a two-level hierarchy: hardware coherence within the SMP nodes, and software
SVM coherence across SMP nodes [ENC+96, SDH+97, SBI+97]. The goal of the outer SVM
protocol is to be invoked as infrequently as possible, and only when cross-node coherence is
needed. 

9.4.4 Access Control through Language and Compiler Support

Language and compiler support can also be enlisted to support coherent replication. One
approach is to program in terms of data objects of “regions” of data, and have the runtime system
that manages these objects provide access control and coherent replication at the granularity of
objects or regions. This “shared object space” programming model motivates the use of even
more relaxed memory consistency models, as we shall see next. We shall also briefly discuss
compiler-based coherence and approaches that provide a shared address space in software but do
not provide automatic replication and coherence. 

Object-based Coherence

The release consistency model takes advantage of the when dimension of memory consistency.
That is, it tells us by when it is necessary for writes by one process to be performed with respect
to another process. This allows successively lazy implementations to be developed, as we have
discussed, which delay the performing of writes as long as possible. However, even with release
consistency, if the synchronization in the program requires that process P1’s writes be performed
or become visible at process P2 by a certain point, then this means that all of P1’s writes to all the
data it wrote must become visible (invalidations or updates conveyed), even if P2 does not need
to see all the data. More relaxed consistency models take into the account the what dimension, by
propagating invalidations or updates only for those data that the process acquiring the synchroni-
zation may need. The when dimension in release consistency is specified by the programmer
through the synchronization inserted in the program. The question is how to specify the what
dimension. It is possible to associate with a synchronization event the set of pages that must be
made consistent with respect to that event. However, this is very awkward for a programmer to
do. 
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Region- or object-based approaches provide a better solution. The programmer breaks up the
data into logical objects or regions (regions are arbitrary, user-specified ranges of virtual
addresses that are treated like objects, but do not require object-oriented programming). A runt-
ime library then maintains consistency at the granularity of these regions or objects, rather than
leaving it entirely to the operating system to do at the granularity of pages. The disadvantages of
this approach are the additional programming burden of specifying regions or objects appropri-
ately, and the need for a sophisticated runtime system between the application and the OS. The
major advantages are: (i) the use of logical objects as coherence units can help reduce false shar-
ing and fragmentation to begin with, and (ii) they provide a handle on specifying data logically,
and can be used to relax the consistency using the what dimension. 

For example, in the entry consistency model [BZS93], the programmer associates a set of data
(regions or objects) with every synchronization variable such as a lock or barrier (these associa-
tions or bindings can be changed at runtime, with some cost). At synchronization events, only
those objects or regions that are associated with that synchronization variable are guaranteed to
be made consistent. Write notices for other modified data do not have to be propagated or
applied. An alternative is to specify the binding for each synchronization event rather than vari-
able. If no bindings are specified for a synchronization variable, the default release consistency
model is used. However, the bindings are not hints: If they are specified, they must be complete
and correct, otherwise the program will obtain the wrong answer. The need for explicit, correct
bindings imposes a substantial burden on the programmer, and sufficient performance benefits
have not yet been demonstrated to make this worthwhile. The Jade language achieves a similar
effect, though by specifying data usage in a different way [RSL93]. Finally, attempts have been
made to exploit the association between synchronization and data implicitly in a page-based
shared virtual memory approach, using a model called scope consistency [ISL96b]. 

write A

write B

release (L)

acquire (L)

acquire (L)

read B

release (L)

Figure  9-17  Why release consistency is conservative. 

Suppose A and B are on different pages. Since P1 wrote A and B before releasing L (even though A was not written inside the critical
section), invalidations for both A and B will be propagated to P2 and applied to the copies of A and B there. However, P2 does not
need to see the write to A, but only that to B. Suppose now P2 reads another variable C that resides on the same page as A. Since the
page containing A has been invalidated, P2 will incur a page miss on its access to C due to false sharing. If we could somehow associ-
ate the page containing B with the lock L1, then only the invalidation of B can be propagated on the acquire of L by P2, and the false
sharing miss would be saved. 

read C
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Compiler-based Coherence

Research has been done in having the compiler keep caches coherent in a shared address space,
using some additional hardware support in the processor system. These approaches rely on the
compiler (or programmer) to identify parallel loops. A simple approach to coherence is to insert a
barrier at the end of every parallel loop, and flush the caches between loops. However, this does
not allow any data locality to be exploited in caches across loops, even for data that are not
actively shared at all. More sophisticated approaches have been proposed that require support for
selective invalidations initiated by the processor and fairly sophisticated hardware support to
keep track of version numbers for cache blocks. We shall not describe these here, but the inter-
ested reader can refer to the literature [CV90]. Other than non-standard hardware and compiler
support for coherence, the major problem with these approaches is that they rely on the automatic
parallelization of sequential programs by the compiler, which is simply not there yet for realistic
programs. 

Shared Address Space without Coherent Replication

Systems in this category supports a shared address space abstraction through the language and
compiler, but without automatic replication and coherence, just like the Cray T3D and T3E did in
hardware. One type of example is a data parallel languages (see Chapter 2) like High Perfor-
mance Fortran. The distributions of data specified by the user, together with the owner computes
rule, are used by the compiler or runtime system to translate off-node memory references to
explicit send/receive messages, to make messages larger, or to align data for better spatial locality
etc. Replication and coherence are usually up to the user, which compromises ease of program-
ming, or system software may try to replicate in main memory automatically. Efforts similar to
HPF are being made with languages based on C and C++ as well [BBG+93,LRV96]. 

A more flexible language and compiler based approach is taken by the Split-C language
[CDG+93]. Here, the user explicitly specifies arrays as being local or global (shared), and for
global arrays specifies how they should be laid out among physical memories. Computation may
be assigned independently of the data layout, and references to global arrays are converted into
messages by the compiler or runtime system based on the layout. The decoupling of computation
assignment from data distribution makes the language much more flexible than an owner com-
putes rule for load balancing irregular programs, but it still does not provide automatic support
for replication and coherence which can be difficult to manage. Of course, all these software sys-
tems can be easily ported to hardware-coherent shared address space machines, in which case the
shared address space, replication and coherence are implicitly provided. 

9.5 Putting it All Together: A Taxonomy and Simple-COMA

The approaches to managing replication and coherence in the extended memory hierarchy dis-
cussed in this chapter have had different goals: improving performance by replicating in main
memory, in the case of COMA, and reducing cost, in the case of SVM and the other systems of
the previous section. However, it is useful to examine the management of replication and coher-
ence in a unified framework, since this leads to the design of alternative systems that can pick and
choose aspects of existing ones. A useful framework is one that distinguishes the approaches
along two closely related axes: the granularities at which they allocate data in the replication
store, keep data coherent and communicate data between nodes, and the degree to which they uti-
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lize additional hardware support in the communication assist beyond that available in uniproces-
sor systems. The two axes are related because some functions are either not possible at fine
granularity without additional hardware support (e.g. allocation of data in main memory) or not
possible with high performance. The framework applies whether replication is done only in the
cache (as in CC-NUMA) or in main memory as well, though we shall focus on replication in
main memory for simplicity. 

Figure 9-18 depicts the overall framework and places different types of systems in it. We divide

granularities into “page” and “block” (cache block), since these are the most common in systems
that do not require a stylized programming model such as objects. However, “block” includes
other fine granularities such as individual words, and “page” also covers coarse-grained objects
or regions of memory that may be managed by a runtime system. 

On the left side of the figure are COMA systems, which allocate space for data in main memory
at the granularity of cache blocks, using additional hardware support for tags etc. Given replica-
tion at cache block granularity, it makes sense to keep data coherent at a granularity at least this
fine as well, and also to communicate at fine granularity.1 

On the right side of the figure are systems that allocate and manage space in main memory at
page granularity, with no extra hardware needed for this function. Such systems may provide

1.  This does not mean that fine-grained allocation necessarily implies fine-grained coherence or communi-
cation. For example, is possible to exploit communication at coarse grain even when allocation and coher-
ence are at fine grain, to gain the benefits of large data transfers. However, the situations discussed are
indeed the common case, and we shall focus on these. 

Allocation: Block Page

Coherence Block Block

Block

Page

Block* PageCommunication Block

Figure  9-18  Granularities of allocation, coherence and communication in coherent shared address space systems. 

The granularities specified are for the replication store in which data are first replicated automatically when they are brought into a
node. This level is main memory in all the systems, except for pure CC-NUMA where it is the cache. Below each leaf in the taxon-
omy are listed some representative systems of that type, and next to each node is a letter indicating whether the support for that func-
tion is usually provided in hardware (H) or software (S). The asterisk next to block and H in one case means that not all
communication is performed at fine granularity. Citations for these systems include: COMA [HLH+92, SJG92, FBR93], Typhoon
[RLW94], Simple COMA [SWC+95], Blizzard-S [SFL+94], Shasta [LGT96], SHRIMP [BLA+94,IDF+96], Cashmere [KoS96], Ivy
[LiH89], TreadMarks [KCD+94]. 
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access control and hence coherence at page granularity as well, as in SVM, in which case they
may either provide or not provide support for fine-grained communication as we have seen. Or
they may provide access control and coherence at block granularity as well, using either software
instrumentation and per-block tags and state or hardware support for these functions. Systems
that support coherence at fine granularity typically provide some form of hardware support for
efficient fine-grained communication as well. 

9.5.1 Putting it All Together: Simple-COMA and Stache

While COMA and SVM both replicate in main memory, and each addresses some but not all of
the limitations of CC-NUMA, they are at two ends of the spectrum in the above taxonomy. While
COMA is a hardware intensive solution and maintains fine granularities, issues in managing
main memory such as the last copy problem are challenging for hardware. SVM leaves these
complex memory management problems to system software—which also allows main memory
to be a fully associative cache through the OS virtual to physical mappings—but its performance
may suffer due to the large granularities and software overheads of coherence. The framework in
Figure 9-18 leads to interesting ways to combine the cost and hardware simplicity of SVM with
the performance advantages and ease of programming of COMA; namely the Simple-COMA
[SWC+95] and Stache [RLW94] approaches shown in the middle of the figure. These approaches
divide the task of coherent replication in main memory into two parts: (i) memory management
(address translation, allocation and replacement), and (ii) coherence, including replication and
communication and coherence. Like COMA, they provide coherence at fine granularity with spe-
cialized hardware support for high performance, but like SVM (and unlike COMA) they leave
memory management to the operating system at page granularity. Let us begin with Simple
COMA. 

The major appeal of Simple COMA relative to COMA is design simplicity. Performing alloca-
tion and memory management through the virtual memory system instead of hardware simplifies
the hardware protocol and allows fully associative management of the “attraction memory” with
arbitrary replacement policies. To provide coherence or access control at fine grain in hardware,
each page in a node’s memory is divided into coherence blocks of any chosen size (say a cache
block), and state information is maintained in hardware for each of these units. Unlike in COMA
there is no need for tags since the presence check is done at page level. The state of the block is
checked in parallel with the memory access for that unit when a miss occurs in the hardware
cache. Thus, there are two levels of access control: for the page, under operating system control,
and if that succeeds then for the block, under hardware control. 

Consider the performance tradeoffs relative to COMA. Simple COMA reduces the latency in the
path to access the local main memory (which is hopefully the frequent case among cache
misses). There is no need for the hardware tag comparison and selection used in COMA, or in
fact for the local/remote address check that is needed in pure CC-NUMA machines to determine
whether to look up the local memory. On the other hand, every cache miss looks up the local
memory (cache), so like in COMA the path of a nonlocal access is longer. Since a shared page
can reside in different physical addresses in different memories, controlled independently by the
node operating systems, unlike in COMA we cannot simply send a block’s physical address
across the network on a miss and use it at the other end. This means that we must support a
shared virtual address space. However, the virtual address issued by the processor is no longer
available by the time the attraction memory miss is detected. This requires that the physical
address, which is available, be “reverse translated” to a virtual address or other globally consis-
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tent identifier; this identifier is sent across the network and is translated back to a physical
address by the other node. This process incurs some added latency, and will be discussed further
in Section 9.7. 

Another drawback of Simple COMA compared to COMA is that although communication and
coherence are at fine granularity, allocation is at page grain. This can lead to fragmentation in
main memory when the access patterns of an application do not match page granularity well. For
example, if a processor accesses only one word of a remote page, only that coherence block will
be communicated but space will be allocated in the local main memory for the whole page. Sim-
ilarly, if only one word is brought in for an unallocated page, it may have to replace an entire
page of useful data (fortunately, the replacement is fully associative and under the control of soft-
ware, which can make sophisticated choices). In contrast, COMA systems typically allocate
space for only that coherence block. Simple COMA is therefore more sensitive to spatial locality
than COMA. 

An approach similar to Simple COMA is taken in the Stache design proposed for the Typhoon
system [SWC+95] and implemented in the Typhoon-zero research prototype [RPW96]. Stache
uses the tertiary cache approach discussed earlier for replication in main memory, but with allo-
cation managed at page level in software and coherence at fine grain in hardware. Other differ-
ences from Simple COMA are that the assist in the Typhoon systems is programmable, physical
addresses are reverse translated to virtual addresses rather than other global identifiers (to enable
user-level software protocol handlers, see Section 9.7). Designs have also been proposed to com-
bine the benefits of CC-NUMA and Simple COMA [FaW97]. 

Summary: Path of a Read Reference

Consider the path of a read in Simple COMA. The virtual address is first translated to a physical
address by the processor’s memory management unit. If a page fault occurs, space must be allo-
cated for a new page, though data for the page are not loaded in. The virtual memory system
decides which page to replace, if any, and establishes the new mapping. To preserve inclusion,
data for the replaced page must be flushed or invalidated from the cache. All blocks on the page
are set to invalid. The physical address is then used to look up the cache hierarchy. If it hits (it
will not if a page fault occurred), the reference is satisfied. If not, then it looks up the local attrac-
tion memory, where by now the locations are guaranteed to correspond to that page. If the block
of interest is in a valid state, the reference completes. If not, the physical address is “reverse
translated” to a global identifier, which plays the role of a virtual address, which is sent across the
network guided by the directory coherence protocol. The remote node translates this global iden-
tifier to a local physical address, uses this physical address to find the block in its memory hierar-
chy, and sends the block back to the requestor. The data is then loaded into the local attraction
memory and cache, and delivered to the processor. 

To summarize the approaches we have discussed, Figure 9-19 summarizes the node structure of
the approaches that use hardware support to preserve coherence at fine granularity.

9.6 Implications for Parallel Software

Let us examine the implications for parallel software of all the approaches discussed in this chap-
ter, beyond those discussed already in earlier chapters. 
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Relaxed memory consistency models require that parallel programs label the desired conflicting
accesses as synchronization points. This is usually quite stylized, for example looking for vari-
ables that a process spins on in a while loop before proceeding, but sometimes orders must be
preserved even without spin-waiting as in some of the examples in Figure Figure 9-4. A program-
ming language may provide support to label some variables or accesses as synchronization,
which will then be translated by the compiler to the appropriate order-preserving instruction.
Current programming languages do not provide integrated support for such labeling, but rely on
the programmer inserting special instructions or calls to a synchronization library. Labels can
also be used by the compiler itself, to restrict its own reorderings of accesses to shared memory.
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node in the figures traces the path of a read miss that must be satisfied remotely (going through main memory means that main
memory must be looked up, though this may be done in parallel with issuing the remote request if speculative lookups are
used). 
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One mechanism is to declare some (or all) shared variables to be of a “volatile” type, which
means that those variables will not be allocated in registers and will not be reordered with respect
to the accesses around them. Some new compilers also recognize explicit synchronization calls
and disallow reorderings across them (perhaps distinguishing between acquire and release calls),
or obey orders with respect to special order-preserving instructions that the program may insert. 

The automatic, fine-grained replication and migration provided by COMA machines is designed
to allows the programmer to ignore the distributed nature of main memory in the machine. It is
very useful when capacity or conflict misses dominate. Experience with parallel applications
indicates that because of the sizes of working sets and of caches in modern systems, the migra-
tion feature may be more broadly useful than the replication and coherence, although systems
with small caches or applications with large, unstructured working sets can benefit from the latter
as well. Fine-grained, automatic migration is particularly useful when the data structures in the
program cannot easily be distributed appropriately at page granularity, so page migration tech-
niques such as those provided by the Origin2000 may not be so successful; for example, when
data that should be allocated on two different nodes fall on the same page (see Section 8.10).
Data migration is also very useful in multiprogrammed workloads, consisting of even sequential
programs, in which application processes are migrated among processing nodes by the operating
system for load balancing. Migrating a process will turn what should be local misses into remote
misses, unless the system moves all the migrated process’s data to the new node’s main memory
as well. However, this case is likely to be handled quite well by software page migration. 

In general, while COMA systems suffer from higher communication latencies than CC-NUMA
systems, they may allow a wider class of applications to perform well with less programming
effort. However, explicit migration and proper data placement can still be moderately useful even
on these systems. This is because ownership requests on writes still go to the directory, which
may be remote and does not migrate with the data, and thus can cause extra traffic and contention
even if only a single processor ever writes a page. 

Commodity-oriented systems put more pressure on software not only to reduce communication
volume, but also to orchestrate data access and communication carefully since the costs and/or
granularities of communication are much larger. Consider shared virtual memory, which per-
forms communication and coherence at page granularity. The actual memory access and data
sharing patterns interact with this granularity to produce an induced sharing pattern at page gran-
ularity, which is the pattern relevant to the system [ISL96a]. Other than by high communication
to computation ratio, performance is adversely affected when the induced pattern involves write-
sharing and hence multiple writers of the same page, or fine grained access patterns in which ref-
erences from different processes are interleaved at a fine granularity. This makes it important to
try to structure data accesses so that accesses from different processes tend not to be interleaved
at a fine granularity in the address space. The high cost of synchronization and the dilation of
critical sections makes it important to reduce the use of synchronization in programming for
SVM systems. Finally, the high cost of communication and synchronization may make it more
difficult to use task stealing successfully for dynamic load balancing in SVM systems. The
remote accesses and synchronization needed for stealing may be so expensive that there is little
work left to steal by the time stealing is successful. It is therefore much more important to have a
well balanced initial assignment of tasks in a task stealing computation in an SVM system than in
a hardware-coherent system. In similar ways, the importance of programming and algorithmic
optimizations depend on the communication costs and granularities of the system at hand. 
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9.7 Advanced Topics

Before we conclude this chapter, let us discuss two other limitations of the traditional CC-
NUMA approach, and examine (as promised) the mechanisms and techniques for taking advan-
tage of relaxed memory consistency models in software, for example for shared virtual memory
protocols. 

9.7.1 Flexibility and Address Constraints in CC-NUMA Systems

The two other limitations of traditional CC-NUMA systems mentioned in the introduction to this
chapter were the fact that a single coherence protocol is hard-wired into the machine and the
potential limitations of addressability in a shared physical address space. Let us discuss each in
turn. 

Providing Flexibility

One size never really fits all. It will always be possible to find workloads that would be better
served by a different protocol than the one hard-wired into a given machine. For example, while
we have seen that invalidation-based protocols overall have advantages over update-based proto-
cols for cache-coherent systems, update-based protocols are advantageous for purely producer-
consumer sharing patterns. For a one-word producer-consumer interaction, in an invalidation-
based protocol the producer will generate an invalidation which will be acknowledged, and then
the consumer will issue a read miss which the producer will satisfy, leading to four network
transactions; an update-based protocol will need only one transaction in this case. As another
example, if large amounts of pre-determinable data are to be communicated from one node to
another, then it may be useful to transfer them in a single explicit large message than one cache
block at a time through load and store misses. A single protocol does not even necessarily best fit
all phases or all data structures of a single application, or even the same data structure in different
phases of the application. If the performance advantages of using different protocols in different
situations are substantial, it may be useful to support multiple protocols in the communication
architecture. This is particularly likely when the penalty for mismatched protocols is very high,
as in commodity-based systems with less efficient communication architectures. 

Protocols can be altered—or mixed and matched—by making the protocol processing part of the
communication assist programmable rather than hard-wired, thus implementing the protocol in
software rather than hardware. This is clearly quite natural in page-based coherence protocols
where the protocol is in the software page fault handlers. For cache-block coherence it turns out
that the requirements placed on a programmable controller by different protocols are usually very
similar. On the control side, they all need quick dispatch to a protocol handler based on a transac-
tion type, and support for efficient bit-field manipulation in tags. On the data side, they need
high-bandwidth, low-overhead pipelined movement of data through the controller and network
interface. The Sequent NUMA-Q discussed earlier provides a pipelined, specialized programma-
ble coherence controller, as does the Stanford FLASH design [KOH+94, HKO+94]. Note that the
controller being programmable doesn’t alter the need for specialized hardware support for coher-
ence; those issues remain the same as with a fixed protocol. 

The protocol code that runs on the controllers in these fine-grained coherent machines operates in
privileged mode so that it can use the physical addresses that it sees on the bus directly. Some
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researchers also advocate that users be allowed to write their own protocol handlers in user-level
software so they can customize protocols to exactly the needs of individual applications
[FLR+94]. While this can be advantageous, particularly on machines with less efficient commu-
nication architectures, it introduces several complications. One cause of complications is similar
to the issue discussed earlier for Simple COMA systems, though now for a different reason.
Since the address translation is already done by the processor’s memory management unit by the
time a cache miss is detected, the assist sees only physical addresses on the bus. However, to
maintain protection, user-level protocol software cannot be allowed access to these physical
addresses. So if protocol software is to run on the assist at user-level, the physical addresses must
be reverse translated back to virtual addresses before this software can use them. Such reverse
translation requires further hardware support and increases latency, and it is complicated to
implement. Also, since protocols have many subtle complexities related to correctness and dead-
lock and are difficult to debug, it is not clear how desirable it is to allow users to write protocols
that may deadlock a shared machine. 

Overcoming Physical Address Space Limitations

In a shared physical address space, the assist making a request sends the physical address of the
location (or cache line) across the network, to be interpreted by the assist at the other end. As dis-
cussed for Simple COMA, this has the advantage that the assist at the other end does not have to
translate addresses before accessing physical memory. However, a problem arises when the phys-
ical addresses generated by the processor may not have enough bits to serve as global addresses
for the entire shared address space, as we saw for the Cray T3D in Chapter 7 (the Alpha 21064
processor emitted only 32 bits of physical address, insufficient to address the 128 GB or 37 bits
of physical memory in a 2048-processor machine). In the T3D, segmentation through the annex
registers was used to extend the address space, potentially introducing delays into the critical
paths of memory accesses. The alternative is to not have a shared physical address space, but
send virtual addresses across the network which will be retranslated to physical addresses at the
other end. 

SVM systems as well as Simple COMA systems use this approach of implementing a shared vir-
tual rather than physical address space. One advantage of this approach is that now only the vir-
tual addresses need to be large enough to index the entire shared (virtual) address space; physical
addresses need only be large enough to address a given processor’s main memory, which they
certainly ought to be. A second advantage, seen earlier, is that each node manages its own address
space and translations so more flexible allocation and replacement policies can be used in main
memory. However, this approach does require address translation at both ends of each communi-
cation. 

9.7.2 Implementing Relaxed Memory Consistency in Software

The discussion of shared virtual memory schemes that exploit release consistency showed that
they can be either single-writer or multiple-writer, and can propagate coherence information at
either release or acquire operations (eager and lazy coherence, respectively). As mentioned in
that discussion, a range of techniques can be used to implement these schemes, successively add-
ing complexity, enabling new schemes, and making the propagation of write notices lazier. The
techniques are too complex and require too many structures to implement for hardware cache
coherence, and the problems they alleviate are much less severe in that case due to the fine gran-
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ularity of coherence, but they are quite well suited to software implementation. This section
examines the techniques and their tradeoffs. 

The basic questions for coherence protocols that were raised in Section 8.2 are answered some-
what differently in SVM schemes. To begin with, the protocol is invoked not only at data access
faults as in the earlier hardware cache coherence schemes, but both at access faults (to find the
necessary data) as well as at synchronization points (to communicate coherence information in
write notices). The next two questions—finding the source of coherence information and deter-
mining with which processors to communicate—depend on whether release-based or acquire-
based coherence is used. In the former, we need to send write notices to all valid copies at a
release, so we need a mechanism to keep track of the copies. In the latter, the acquirer communi-
cates with only the last releaser of the synchronization variable and pulls all the necessary write
notices from there to only itself, so there is no need to explicitly keep track of all copies. The last
standard question is communication with the necessary nodes (or copies), which is done with
point-to-point messages. 

Since coherence information is not propagated at individual write faults but only at synchroniza-
tion events, a new question arises, which is how to determine for which pages write notices
should be sent. In release-based schemes, at every release write notices are sent to all currently
valid copies. This means that a node has only to send out write notices for writes that it per-
formed since its previous release. All previous write notices in a causal sense have already been
sent to all relevant copies, at the corresponding previous releases. In acquire-based methods, we
must ensure that causally necessary write notices, which may have been produced by many dif-
ferent nodes, will be seen even though the acquirer goes only to the previous releaser to obtain
them. The releaser cannot simply send the acquirer the write notices it has produced since its last
release, or even the write notices it has produced ever. In both release- and acquire-based cases,
several mechanisms are available to reduce the number of write notices communicated and
applied. These include version numbers and time-stamps, and we shall see them as we go along. 

To understand the issues more clearly, let us first examine how we might implement single-writer
release consistency using both release-based and acquire-based approaches. Then, we will do the
same thing for multiple-writer protocols. 

Single Writer with Coherence at Release

The simplest way to maintain coherence is to send write notices at every release to all sharers of
the pages that the releasing processor wrote since its last release. In a single-writer protocol, the
copies can be kept track of by making the current owner of a page (the one with write privileges)
maintain the current sharing list, and transferring the list at ownership changes (when another
node writes the page). At a release, a node sends write notices for all pages it has written to the
nodes indicated on its sharing lists (see Exercise 9.6). 

There are two performance problems with this scheme. First, since ownership transfer does not
cause copies to be invalidated (read-only copies may co-exist with one writable copy), a previous
owner and the new owner may very well have the same nodes on their sharing lists. When both of
them reach their releases (whether of the same synchronization variable or different ones) they
will both send invalidations to some of the same pages, so a page may receive multiple (unneces-
sary) invalidations. This problem can be solved by using a single designated place to keep track
of which copies of a page have already been invalidated, e.g. by using directories to keep track of
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sharing lists instead of maintaining them at the owners. The directory is looked up before write
notices are sent, and invalidated copies are recorded so multiple invalidations won’t be sent to the
same copy. 

The second problem is that a release may invalidate a more recent copy of the page (but not the

most recent), which it needn’t have done, as illustrated in Figure 9-20. This can be solved by
associating a version number with each copy of a page. A node increments its version number for
a page whenever it obtains ownership of that page from another node. Without directories, a pro-
cessor will send write notices to all sharers (since it doesn’t know their version numbers) together
with its version number for that page, but only the receivers that have smaller version numbers
will actually invalidate their pages. With directories, we can reduce the write notice traffic as
well, not just the number of invalidations applied, by maintaining the version numbers at the
directory entry for the page and only sending write notices to copies that have lower version
numbers than the releaser. Both ownership and write notice requests come to the directory, so this
is easy to manage. Using directories and version numbers together solves both the above prob-
lems. However, this is still a release-based scheme, so invalidations may be sent out and applied
earlier than necessary for the consistency model, causing unnecessary page faults. 

Single Writer with Coherence at Acquire

A simple way to use the fact that coherence activity is not needed until the acquire is to still have
the releaser send out write notices to all copies, but do this not at the release but only when the
next acquire request comes in. This delays the sending out of write notices; however, the acquire
must wait until the releaser has sent out the write notices and acknowledgments have been
received, which slows down acquire operation. The best bet for such fundamentally release-based
approaches would be to send write notices out at the release, and wait for acknowledgments only
before responding to the next incoming acquire request. This allows the propagation of write
notices to be overlapped with the computation done between the release and the next incoming
acquire. 

Consider now the lazier, pull-based method of propagating coherence operations at an acquire,
from the releaser to only that acquirer. The acquirer sends a request to the last releaser (or current
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rx rxP2 and P3 have read
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therefore on P1’s sharing list
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Figure  9-20  Invalidation of a more recent copy in a simple single-writer protocol. 

Processor P2 steals ownership from P1, and then P3 from P2. But P1’s release happens after all this. At the release, P1 sends invalida-
tions to both P2 and P3. P2 applies the invalidation even though it’s copy is more recent than P1’s, since it doesn’t know, while P3 does
not apply the invalidation since it is the current owner. 
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holder) of the synchronization variable, whose identity it can obtain from a designated manager
node for that variable. This is the only place from where the acquirer is obtaining information,
and it must see all writes that have happened before it in the causal order. With no additional sup-
port, the releaser must send to the acquirer all write notices that the releaser has either produced
so far or received from others (at least since the last time it sent the acquirer write notices, if it
keeps track of that) It cannot only send those that it has itself produced since the last release,
since it has no idea how many of the necessary write notices the acquirer has already seen
through previous acquires from another processors. The acquirer must keep those write notices to
pass on to the next acquirer. 

Carrying around an entire history of write notices is obviously not a good idea. Version numbers,
incremented at changes of ownership as before, can help reduce the number of invalidations
applied if they are communicated along with the write notices, but they do not help reduce the
number of write notices sent. The acquirer cannot communicate version numbers to the releaser
for this, since it has no idea what pages the releaser wants to send it write notices for. Directories
with version numbers don’t help, since the releaser would have to send the directory the history
of write notices. 

In fact, what the acquirer wants is the write notices corresponding to all releases that precede it
causally and that it hasn’t already obtained through its previous acquires. Keeping information at
page level doesn’t help, since neither acquirer nor releaser knows which pages the other has seen
and neither wants to send all the information it knows. The solution is to establish a system of
virtual time. Conceptually, every node keeps track of the virtual time period up to which it has
seen write notices from each other node. An acquire sends the previous releaser this time vector;
the releaser compares it with its own, and sends the acquirer write notices corresponding to time
periods the releaser has seen but the acquirer hasn’t. Since the partial orders to be satisfied for
causality are based on synchronization events, associating time increments with synchronization
events lets us represent these partial orders explicitly. 

More precisely, the execution of every process is divided into a number of intervals, a new one
beginning (and a local interval counter for that process incrementing) whenever the process suc-
cessfully executes a release or an acquire. The intervals of different processes are partially
ordered by the desired precedence relationships discussed earlier: (i) intervals on a single process
are totally ordered by the program order, and (ii) an interval on process P precedes an interval on
process Q if its release precedes Q’s acquire for that interval in a chain of release-acquire opera-
tions on the same variable. However, interval numbers are maintained and incremented locally
per process, so the partial order (ii) does not mean that the acquiring process’s interval number
will be larger than the releasing process’s interval number. What it does mean, and what we are
trying to ensure, is that if a releaser has seen write notices for interval 8 from process X, then the
next acquirer should also have seen at least interval 8 from process X before it is allowed to com-
plete its acquire. To keep track of what intervals a process has seen and hence preserve the partial
orders, every process maintains a vector timestamp for each of its intervals [KCD+94]. Let VP

i be
the vector timestamp for interval i on process P. The number of elements in the vector VP

i equals
the number of processes. The entry for process P itself in VP

i is equal to i. For any other process
Q, the entry denotes the most recent interval of process Q that precedes interval i on process P in
the partial orders. Thus, the vector timestamp indicates the most recent interval from every other
process that this process ought to have already received and applied write notices for (through a
previous acquire) by the time it enters interval i. 
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On an acquire, a process P needs to obtain from the last releaser R write notices pertaining to
intervals (from any processor) that R has seen before its release but the acquirer has not seen
through a previous acquire. This is enough to ensure causality: Any other intervals that P should
have seen from other processes, it would have seen through previous acquires in its program
order. P therefore sends its current vector timestamp to R, telling it which are the latest intervals
from other processes it has seen before this acquire. R compares P’s incoming vector time-stamp
with its own, entry by entry, and piggybacks on its reply to P write notices for all intervals that
are in R’s current timestamp but not in P’s (this is conservative, since R’s current time-stamp may
have seen more than R had at the time of the relevant release). Since P has now received these
write notices, it sets its new vector timestamp, for the interval starting with the current acquire, to
the pairwise maximum of R’s vector timestamp and its own previous one. P is now up to date in
the partial orders. Of course, this means that unlike in a release-based case, where write notices
could be discarded by the releaser once they had been sent to all copies, in the acquire-based case
a process must retain the write notices that it has either produced or received until it is certain
that no later acquirer will need them. This can lead to significant storage overhead, and may
require garbage collection techniques to keep the storage in check. 

Multiple Writer with Release-based Coherence

With multiple writers, the type of coherence scheme we use depends on how the propagation of
data (e.g. diffs) is managed; i.e. whether diffs are maintained at the multiple writers or propa-
gated at a release to a fixed home. In either case, with release-based schemes a process needs
only send write notices for the writes it has done since the previous release to all copies, and wait
for acknowledgments for them at the next incoming acquire. However, since there is no single
owner (writer) of a page at a given time, we cannot rely on an owner having an up to date copy of
the sharing list. We need a mechanism like a directory to keep track of copies. 

The next question is how does a process find the necessary data (diffs) when it incurs a page fault
after an invalidation. If a home-based protocols is used to manage multiple writers, then this is
easy: the page or diffs can be found at the home (the release must wait till the diffs reach the
home before it completes). If diffs are maintained at the writers in a distributed form, the faulting
process must know not only from where to obtain the diffs but also in what order they should be
applied. This is because diffs for the same data may have been produced either in different inter-
vals in the same process, or in intervals on different processes but in the same causal chain or
acquires and releases; when they arrive at a processor, they must be applied in accordance with
the partial orders needed for causality. The locations of the diffs may be determined from the
incoming write notices. However, the order of application is difficult to determine without vector
time-stamps. This is why when homes are not used for data, simple directory and release-based
multiple writer coherence schemes use updates rather than invalidations as the write notices: The
diffs themselves are sent to the sharers at the release. Since a release waits for acknowledgments
before completing, there is no ordering problem in applying diffs: It is not possible for diffs for a
page that correspond to different releases that are part of the same causal order to reach a proces-
sor at the same time. In other words, the diffs are guaranteed to reach processors exactly accord-
ing to the desired partial order. This type of mechanism was used in the Munin system [CBZ91]. 

Version numbers are not useful with release-based multiple writer schemes. We cannot update
version numbers at ownership changes, since there are none, but only at release points. And then
version numbers don’t help us save write notices: Since the releaser has just obtained the latest
version number for the page at the release itself, there is no question of another node having a
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more recent version number for that page. Also, since a releaser only has to send the write notices
(or diffs) it has produced since its previous release, with an update-based protocol there is no
need for vector time-stamps. If diffs were not sent out at a release but retained at the releaser,
time-stamps would have been needed to ensure that diffs are applied in the correct order, as dis-
cussed above. 

Multiple Writer with Acquire-based Coherence

The coherence issues and mechanisms here are very similar to the single-writer acquire-based
schemes (the main difference is in how the data are managed). With no special support, the
acquirer must obtain from the last releaser all write notices that it has received or produced since
their last interaction, so large histories must be maintained and communicated. Version numbers
can help reduce the number of invalidations applied, but not the number transferred (with home-
based schemes, the version number can be incremented every time a diff gets to the home, but the
releaser must wait to receive this number before it satisfies the next incoming acquire; without
homes, a separate version manager must be designated anyway for a page, which causes compli-
cations). The best method is to use vector time-stamps as described earlier. The vector time-steps
manage coherence for home-based schemes; for non home-based schemes, they also manage the
obtaining and application of diffs in the right order (the order dictated by the time-stamps that
came with the write notices). 

To implement LRC, then, a processor has to maintain a lot of auxiliary data structures. These
include: 

• For every page in its local memory an array, indexed by process, each entry being a list of
write notices or diffs received from that process. 

• A separate array, indexed by process, each entry being a pointer to a list of interval records.
These represent the intervals of that processor for which the current processor has already
received write notices. An interval record points to the corresponding list of write notices, and
each write notice points to its interval record. 

• A free pool for creating diffs. 

Since these data structures may have to be kept around for a while, determined by the precedence
order established at runtime, they can limit the sizes of problems that can be run and the scalabil-
ity of the approach. Home-based approaches help reduce the storage for diffs: Diffs do not have
to be retained at the releaser past the release, and the first array does not have to maintain lists of
diffs received. Details of these mechanisms can be found in [KCD+94, ZIL97].

9.8 Concluding Remarks

The alternative approaches to supporting coherent replication in a shared address space discussed
in this chapter raise many interesting sets of hardware-software tradeoffs. Relaxed memory mod-
els increase the burden on application software to label programs correctly, but allow compilers
to perform their optimizations and hardware to exploit more low-level concurrency. COMA sys-
tems require greater hardware complexity but simplify the job of te programmer. Their effect on
performance depends greatly on the characteristics of the application (i.e. whether sharing misses
or capacity misses dominate inter-node communication). Finally, commodity-based approaches
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that reduce system cost and provide a better incremental procurement model, but they often
require substantially greater programming care to achieve good performance. 

The approaches are also still controversial, and the tradeoffs have not shaken out. Relaxed mem-
ory models are very useful for compilers, but we will see in Chapter 11 that several modern pro-
cessors are electing to implement sequential consistency at the hardware-software interface with
increasingly sophisticated alternative techniques to obtain overlap and hide latency. Contracts
between the programmer and the system have also not been very well integrated into current pro-
gramming languages and compilers. Full hardware support for COMA was implemented in the
KSR-1 [FBR93] but is not very popular in systems being built today because of to its high cost.
However, approaches similar to Simple COMA are beginning to find acceptance in commercial
products. 

All-software approaches like SVM and fine-grained software access control have been demon-
strated to achieve good performance at relatively small scale for some classes of applications.
Because they are very easy to build and deploy, they will be likely be used on clusters of worksta-
tions and SMPs in several environments. However, the gap between these and all-hardware sys-
tems is still quite large in programmability as well as in performance on a wide range of
applications, and their scalability has not yet been demonstrated. The commodity based
approaches are still in the research stages, and it remains to be seen if they will become viable
competitors to hardware cache-coherent machines for a large enough set of applications. It may
also happen that the commoditization of hardware coherence assists and methods to integrate
them into memory systems will make these all-software approaches more marginal, for use
largely in those environments that do not wish to purchase parallel machines but rather use clus-
ters of existing machines as shared address space multiprocessors when they are otherwise idle.
In the short term, economic reasons might nonetheless provide all-software solutions with
another likely role. Since vendors are likely to build tightly-coupled systems with only a few tens
or a hundred nodes, connecting these hardware-coherent systems together with a software coher-
ence layer may be the most viable way to construct very large machines that still support the
coherent shared address space programming model. While supporting a coherent shared address
space on scalable systems with physically distributed memory is well established as a desirable
way to build systems, only time will tell how these alternative approaches will shake out. 

9.9 References

[Adv93] Sarita V. Adve. Designing Memory Consistency Models for Shared-Memory Multiprocessors,
Ph.D. Thesis, University of Wisconsin-Madison, 1993. Available as Computer Sciences Techni-
cal Report #1198, University of Wisconsin-Madison, December 1993.

[AdH90a] Sarita Adve and Mark Hill. Weak Ordering: A New Definition. In Proceedings of 17th Interna-
tional Symposium on Computer Architecture, pp. 2-14, May 1990.

[AdH90b] Sarita Adve and Mark Hill. Implementing Sequential Consistency in Cache-Based Systems. In
Proceedings of 1990 International Conference on Parallel Processing, pp. 47-50, August 1990.
<<unused>>

[AdH93] Sarita Adve and Mark Hill. A Unified Formalization of Four Shared-Memory Models. IEEE
Transactions on Parallel and Distributed Systems, 4(6):613-624, June 1993. <<unused>>

[AGG+93] Sarita Adve, Kourosh Gharachorloo, Anoop Gupta, John Hennessy, and Mark Hill. Sufficient
Systems Requirements for Supporting the PLpc Memory Model. Technical Report #1200, Com-



Hardware-Software Tradeoffs

664 DRAFT: Parallel Computer Architecture 9/4/97

puter Sciences, University of Wisconsin - Madison, December 1993. Also available as Stanford
University Technical Report CSL-TR-93-595.

[AnL93] Jennifer Anderson and Monica Lam. Global Optimizations for Parallelism and Locality on Scal-
able Parallel Machines. In Proceedings of the SIGPLAN’93 Conference on Programming Lan-
guage Design and Implementation, June 1993. <<unused>>

[BZS93] Brian N. Bershad, Matthew J. Zekauskas and Wayne A. Sawdon. The Midway Distributed Shared
Memory System. In Proceedings of COMPCON'93, February 1993. 

[BIS97] Angelos Bilas, Liviu Iftode and Jaswinder Pal Singh. Evaluation of Hardware Support for Next-
Generation Shared Virtual Memory Clusters. Technical Report no. CS-TR-97-xx, Computer Sci-
ence Department, Princeton University.

[BR90] R. Bisiani and M. Ravishankar. PLUS: A Distributed Shared-Memory System. In Proceedings of
17th International Symposium on Computer Architecture, pp. 115-124, May 1990. 

[BLA+94] Matthias Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edward Felten and Jonathan Sand-
berg. A Virtual Memory Mapped Network Interface for the Shrimp Multicomputer. In Proceed-
ings of 21st International Symposium on Computer Architecture, pp. 142-153, April 1994. 

[BBG+93] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony and B. Mohr. Implementing
a Parallel C++ Runtime System for Scalable Parallel Systems. In Proceedings of Supercomput-
ing’93, pp. 588-597, November 1993. See also Scientific Programming, vol. 2, no. 3, Fall 1993.

[CBZ91] John B. Carter, J.K. Bennett and Willy Zwaenepoel. Implementation and Performance of Munin.
In Proceedings of the Thirteenth Symposium on Operating Systems Principles, pp. 152-164, Oc-
tober, 1991. 

[CBZ95] John B. Carter, J. K. Bennett and Willy Zwaenepoel. Techniques for Reducing Consistency-Re-
lated Communication in Distributed Shared-Memory Systems. In ACM Transactions of Comput-
er Systems, vol. 13, no. 3, August 1995, pp. 205-244. 

[CV90] Hoichi Cheong and Alexander Viedenbaum. Compiler-directed Cache Management in Multipro-
cessors. IEEE Computer, vol. 23, no. 6, June 1990, p. 39-47. 

[Con93] Convex Computer Corporation. Exemplar Architecture. Convex Computer Corporation, Richard-
son, Texas. November 1993.

[CSB93] Francisco Corella, Janice Stone, Charles Barton. A Formal Specification of the PowerPC Shared
Memory Architecture. Technical Report Computer Science RC 18638 (81566), IBM Research Di-
vision, T.J. Watson Research Center, January 1993.

[CDG+93] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy, Steven Lumetta,
Thorsten von Eicken, and Katherine Yelick. Parallel Programming in Split-C. In Proceedings of
Supercomputing'93, pp. 262-273, November 1993. 

[DSB86] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory Access Buffering in Multiproces-
sors. In Proceedings of 13th International Symposium on Computer Architecture, pp. 434-442,
June 1986.

[DuS90] Michel Dubois and Christoph Scheurich. Memory Access Dependencies in Shared-Memory Mul-
tiprocessors. IEEE Transactions on Software Engineering, 16(6):660-673, June 1990.

[DWB+91] Michel Dubois, J.-C. Wang, L.A. Barroso, K. Chen and Y.-S. Chen. Delayed consistency and its
effects on the miss rate of parallel programs. In Proceedings of Supercomputing'91, pp. 197-206,
November 1991. 

[DKC+93] Sandhya Dwarkadas, Peter Keleher, Alan L. Cox, and Willy Zwaenepoel. Evaluation of Release
Consistent Software Distributed Shared Memory on Emerging Network Technology. In Proceed-
ings of 20th International Symposium on Computer Architecture, pp. 144-155, May 1993. 



References

9/4/97 DRAFT: Parallel Computer Architecture 665

[ENC+96] Andrew Erlichson, Neal Nuckolls, Greg Chesson and John Hennessy. SoftFLASH: Analyzing the
Performance of Clustered Distributed Virtual Shared Memory. In Proceedings of 7th Internation-
al Conference on Architectural Support for Programming Languages and Operating Systems, pp.
210--220, October, 1996. 

[FLR+94]  Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, Ioannis Schoinas, Mark D. Hill, James R.
Larus, Anne Rogers, and David A. Wood. Application-Specific Protocols for User-Level Shared
Memory. In Proceedings of Supercomputing’94, November 1994. 

[FaW97] Babak Falsafi and David A. Wood. Reactive NUMA: A Design for Unifying S-COMA and CC-
NUMA. In Proceedings of 24th International Symposium on Computer Architecture, June 1997. 

[FBR93] Steve Frank, Henry Burkhardt III, James Rothnie. The KSR1: Bridging the Gap Between Shared
Memory and MPPs. In Proceedings of COMPCON, pp. 285-294, Spring 1993.

[FCS+93] Jean-Marc Frailong, et al. The Next Generation SPARC Multiprocessing System Architecture. In
Proceedings of COMPCON, pp. 475-480, Spring 1993.

[GCP96] R. Gillett and M. Collins and D. Pimm. Overview of Network Memory Channel for PCI. In Pro-
ceedings of the IEEE Spring COMPCON '96, February 1996. 

[GLL+90] Kourosh Gharachorloo, et al. Memory Consistency and Event Ordering in Scalable Shared-Mem-
ory Multiprocessors. In Proceedings of 17th International Symposium on Computer Architecture,
pp. 15-26, May 1990.

[GGH91] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two Techniques to Enhance the Per-
formance of Memory Consistency Models. In Proceedings of 1991 International Conference on
Parallel Processing, pp. I:355-364, August 1991.

[GAG+92] Kourosh Gharachorloo, et al. Programming for Different Memory Consistency Models. Journal
of Parallel and Distributed Computing, 15(4):399-407, August 1992.

[Gha95] Kourosh Gharachorloo. Memory Consistency Models for Shared-Memory Multiprocessors.
Ph.D. Dissertation, Computer Systems Laboratory, Stanford University, December 1995.

[Goo89] James R. Goodman. Cache Consistency and Sequential Consistency. Technical Report No. 1006,
Computer Science Department, University of Wisconsin-Madison, February 1989.

[Hag92] Erik Hagersten. Toward Scalable Cache Only Memory Architectures. Ph.D. Dissertation, Swed-
ish Institute of Computer Science, Sweden, October 1992.

[HLH92] E. Hagersten, A. Landin, and S. Haridi. DDM—A Cache Only Memory Architecture. IEEE Com-
puter, vol. 25, no. 9, pp. 44-54, September 1992.

[HeP95] John Hennessy and David Patterson. Computer Architecture: A Quantitative Approach. Second
Edition, Morgan Kaufmann Publishers, 1995.

[HKO+94] Mark Heinrich, Jeff Kuskin, Dave Ofelt, John Heinlein, Joel Baxter, J.P. Singh, Rich Simoni,
Kourosh Gharachorloo, Dave Nakahira, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and
John Hennessy. The Performance Impact of Flexibility on the Stanford FLASH Multiprocessor.
In Proceedings of 6th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 274-285, October 1994.

[HPF93 High Performance Fortran Forum. High Performance Fortran Language Specification. Scientific
Programming, vol. 2, pp. 1-270, 1993. 

[IDF+96] L. Iftode and C. Dubnicki and E. W. Felten and Kai Li. Improving Release-Consistent Shared Vir-
tual Memory using Automatic Update. In Proceedings of the Second Symposium on High Perfor-
mance Computer Architecture, February 1996. 

[ISL96a] Liviu Iftode, Jaswinder Pal Singh and Kai Li. Understanding Application Performance on Shared
Virtual Memory Systems. In Proceedings of the 23rd International Symposium on Computer Ar-



Hardware-Software Tradeoffs

666 DRAFT: Parallel Computer Architecture 9/4/97

chitecture, April1996.

[ISL96b] Liviu Iftode, Jaswinder Pal Singh and Kai Li. Scope Consistency: a Bridge Between Release Con-
sistency and Entry Consistency. In Proceedings of the Symposium on Parallel Algorithms and Ar-
chitectures, June 1996. 

[JSS97] Dongming Jiang, Hongzhang Shan and Jaswinder Pal Singh. Application Restructuring and Per-
formance Portability on Shared Virtual Memory and Hardware-Coherent Multiprocessors. In Pro-
ceedings of the Sixth ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 217-229, June 1997. 

[Joe95] Truman Joe. COMA-F A Non-Hierarchical Cache Only Memory Architecture. Ph.D. thesis, Com-
puter Systems Laboratory, Stanford University, March 1995.

[JoH94] Truman Joe and John L. Hennessy. Evaluating the Memory Overhead Required for COMA Ar-
chitectures. In Proceedings of the 21st International Symposium on Computer Architecture, pp.
82-93, April 1994. 

[KCD+94] Peter Keleher, Alan L. Cox, Sandhya Dwarkadas and Willy Zwaenepoel. TreadMarks: Distribut-
ed Shared Memory on Standard Workstations and Operating Systems. Proceedings of the Winter
USENIX Conference, January 1994, pp. 15-132. 

[KCZ92] Peter Keleher and Alan L. Cox and Willy Zwaenepoel. Lazy Consistency for Software Distributed
Shared Memory. In Proceedings of the 19th International Symposium on Computer Architecture,
pp. 13-21, May 1992. 

[KHS+97] Leonidas Kontothanassis, Galen Hunt, Robert Stets, Nikolaos Hardavellas, Michal Cierniak, Srin-
ivasan Parthasarathy, Wagner Meira, Sandhya Dwarkadas and Michael Scott. VM-Based Shared
Memory on Low-Latency, Remote-Memory-Access Networks. In Proceedings of the 24th Inter-
national Symposium on Computer Architecture, June 1997. 

[KoS96] Leonidas. I. Kontothanassis and Michael. L. Scott. Using Memory-Mapped Network Interfaces to
Improve the Performance of Distributed Shared Memory", In Proceedings of the Second Sympo-
sium on High Performance Computer Architecture, pp. ??, February 1996. 

[KOH+94] Jeff Kuskin, Dave Ofelt, Mark Heinrich, John Heinlein, Rich Simoni, Kourosh Gharachorloo,
John Chapin, Dave Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta, Mendel Rosenblum,
and John Hennessy. The Stanford FLASH Multiprocessor. In Proceedings of the 21st Internation-
al Symposium on Computer Architecture, pp. 302-313, April 1994.

[LiH89] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems. In ACM Trans-
actions on Computer Systems, vol. 7, no. 4, Nov. 1989, pp. 321--359. 

[LS88] Richard Lipton and Jonathan Sandberg. PRAM: A Scalable Shared Memory. Technical report no.
CS-TR-180-88, Computer Science Department, Princeton University, September 1988. 

[LRV96] James R. Larus, Brad Richards and Guhan Viswanathan. Parallel Programming in C**: A Large-
Grain Data-Parallel Programming Language. In Gregory V. Wilson and Paul Lu, eds., Parallel
Programming Using C++, MIT Press 1996. 

[LLJ+93] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop Gupta, and
John Hennessy. The DASH Prototype: Logic Overhead and Performance. IEEE Transactions on
Parallel and Distributed Systems, 4(1):41-61, January 1993.

[MSS+94] Cathy May, Ed Silha, Rick Simpson, and Hank Warren, editors. The PowerPC Architecture: A
Specification for a New Family of RISC Processors. Morgan Kaufman Publishers, Inc., 1994.

[RLW94] Steven K. Reinhardt, James R. Larus and David A. Wood. Tempest and Typhoon: User-Level
Shared Memory. In Proceedings of 21st International Symposium on Computer Architecture, pp.
325-337, 1994. 

[RPW96] Steven K. Reinhardt, Robert W. Pfile and David A. Wood. Decoupled Hardware Support for Dis-



References

9/4/97 DRAFT: Parallel Computer Architecture 667

tributed Shared Memory. In Proceedings of 23rd International Symposium on Computer Archi-
tecture, 1996. 

[RSL93] Martin Rinard, Daniel Scales and Monica Lam. Jade: A High-Level, Machine-Independent Lan-
guage for Parallel Programming. IEEE Computer, June 1993. 

[RSG93] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. Working Sets, Cache Sizes, and Node
Granularity Issues for Large-Scale Multiprocessors. In Proceedings of the 20th International Sym-
posium on Computer Architecture, pp. 14-25, May 1993. <<unused>>

[SBI+97] Rudrojit Samanta, Angelos Bilas, Liviu Iftode and Jaswinder Pal Singh. Home-based SVM for
SMP Clusters. Technical Report no. CS-TR-97-xx, Computer Science Department, Princeton
University

[SWC+95] Ashley Saulsbury, Tim Wilkinson, John Carter, and Anders Landin. An Argument For Simple
COMA. In Proceedings of the First IEEE Symposium on High Performance Computer Architec-
ture, pp. 276-285, January 1995. 

[SGT96] Daniel J. Scales, Kourosh Gharachorloo and Chandramohan A. Thekkath. Shasta: A Low Over-
head, SOftware-Only Approach for Supporting Fine-Grain Shared Memory. In Proceedings of 6th
International Conference on Architectural Support for Programming Languages and Operating
Systems, October 1996. 

[SFC91] P. Sindhu, J.-M. Frailong, and M. Cekleov. Formal Specification of Memory Models. Technical
Report (PARC) CSL-91-11, Xerox Corporation, Palo Alto Research Center, December 1991.

[SFL+94] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R. Larus and Dav-
id A. Wood. Fine-grain Access Control for Distributed Shared Memory. In Proceedings of 6th In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 297-307, 1994. 

[ShS88] Shasha, D. and Snir, M. Efficient and Correct Execution of Parallel Programs that Share Memory.
ACM Transactions on Programming Languages and Operating Systems, vol. 10, no. 2, April
1988, pp. 282-312. 

[Sit92] Richard L. Sites, editor. Alpha Architecture Reference Manual. Digital Press, 1992.

[SJG92] Per Stenstrom, Truman Joe, and Anoop Gupta. Comparative Performance Evaluation of Cache-
Coherent NUMA and COMA Architectures. In Proceedings of the 19th International Symposium
on Computer Architecture, pp. 80-91, May 1992.

[SDH+97] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas Kontothanassis,
Srivinasan Parthasarathy, and Michael Scott. Cashmere-2L: Software Coherent Shared Memory
on a Clustered Remote-Write Network. In Proceedings of the 16th ACM Symposium on Operat-
ing Systems Principles, October 1997. 

[Spa91] The SPARC Architecture Manual. SUN Microsystems Inc., No. 800-199-12, Version 8, January
1991.

[TSS+96] Radhika Thekkath, Amit Pal Singh, Jaswinder Pal Singh, John Hennessy and Susan John. An Ap-
plication-Driven Evaluation of the Convex Exemplar SP-1200. In Proceedings of the Internation-
al Parallel Processing Symposium, June 1997.

[WeG94] David Weaver and Tom Germond, editors. The SPARC Architecture Manual. Prentice Hall, 1994.
SPARC International, Version 9.

[WeS94] Shlomo Weiss and James Smith. Power and PowerPC. Morgan Kaufmann Publishers Inc. 1994.
<<unused>>

[ZIL96] Yuanyuan Zhou, Liviu Iftode and Kai Li. Performance Evaluation of Two Home-Based Lazy Re-
lease Consistency Protocols for Shared Virtual Memory Systems. In Proceedings of the Operating
Systems Design and Implementation Symposium, October 1996. 



Hardware-Software Tradeoffs

668 DRAFT: Parallel Computer Architecture 9/4/97

9.10 Exercises

9.1  General

a. Why are update-based coherence schemes relatively incompatible with the sequential 
consistency memory model in a directory-based machine? 

b. The Intel Paragon machine discussed in Chapter 7 has two processing elements per node, 
one of which always executes in kernel mode to support communication. Could this pro-
cessor be used effectively as a programmable communication assist to support cache 
coherence in hardware, like the programmable assist of the Stanford FLASH or the 
Sequent NUMA-Q? 

9.2  Eager versus delayed replies to processor. 

a. In the Origin protocol, with invalidation acknowledgments coming to the home, it would 
be possible for other read and write requests to come to the requestor that has outstanding 
invalidations before the acknowledgments for those invalidations come in. 

(i) Is this possible or a problem with delayed exclusive replies? With eager exclusive 
replies? If it is a problem, what is the simplest way to solve it? 

(ii) Suppose you did indeed want to allow the requestor with invalidations outstanding to 
process incoming read and write requests. Consider write requests first, and construct an 
example where this can lead to problems. (Hint: consider the case where P1 writes to a 
location A, P2 writes to location B which is on the same cache block as A and then writes 
a flag, and P3 spins on the flag and then reads the value of location B.) How would you 
allow the incoming write to be handled but still maintain correctness? Is it easier if invali-
dation acknowledgments are collected at the home or at the requestor? 

(iii) Now answer the same questions above for incoming read requests. 

(iv) What if you were using an update-based protocol. Now what complexities arise in 
allowing an incoming request to be processed for a block that has updates outstanding 
from a previous write, and how might you solve them?

(v) Overall, would you choose to allow incoming requests to be processed while invalida-
tions or updates are outstanding, or deny them? 

b. Suppose a block needs to be written back while there are invalidations pending for it. Can 
this lead to problems, or is it safe? If it is problematic, how might you address the prob-
lem? 

c. Are eager exclusive replies useful with an underlying SC model? Are they at all useful if 
the processor itself provides out of order completion of memory operations, unlike the 
MIPS R10000?

d. Do the tradeoffs between collecting acknowledgments at the home and at the requestor 
change if eager exclusive replies are used instead of delayed exclusive replies?

9.3  Relaxed Memory Consistency Models 

a. If the compiler reorders accesses according to WO, and the processor’s memory model is 
SC, what is the consistency model at the programmer’s interface? What if the compiler is 
SC and does not reorder memory operations, but the processor implements RMO?

b. In addition to reordering memory operations (reads and writes) as discussed in the exam-
ple in the chapter, register allocation by a compiler can also eliminate memory accesses 
entirely. Consider the example code fragment shown below. Show how register allocation 
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can violate SC. Can a uniprocessor compiler do this? How would you prevent it in the 
compiler you normally use?  

c. Consider all the system specifications discussed in the chapter. Order them in order of 
weakness, i.e. draw arcs between models such that an arc from model A to model B indi-
cates that A is stronger than B, i.e. that is any execution that is correct under A is also cor-
rect under B, but not necessarily vice versa. 

d. Which of PC and TSO is better suited to update-based directory protocols and why?  

e. Can you describe a more relaxed system specification than Release Consistency, without 
explicitly associating data with synchronization as in Entry Consistency? Does it require 
additional programming care beyond RC?

f. Can you describe a looser set of sufficient conditions for WO? For RC?

9.4  More Relaxed Consistency: Imposing orders through fences.

a. Using the fence operations provided by the DEC Alpha and Sparc RMO consistency spec-
ifications, how would you ensure sufficient conditions for each of the RC, WO, PSO, 
TSO, and SC models? Which ones do you expect to be efficient and which ones not, and 
why? 

b. A write-fence operation stalls subsequent write operations until all of the processor’s 
pending write operations have completed. A full-fence stalls the processor until all of its 
pending operations have completed. 

(i) Insert the minimum number of fence instructions into the following code to make it 
sequentially consistent. Don’t use a full-fence when a write-fence will suffice.

ACQUIRE LOCK1

LOAD A

STORE A

RELEASE LOCK1 

LOAD B

STORE B

ACQUIRE LOCK1

LOAD C

STORE C

RELEASE LOCK1

(ii) Repeat part (i) to guarantee release consistency.

c. The IBM-370 consistency model is much like TSO, except that it does not allow a read to 
return the value written by a previous write in program order until that write has com-
pleted. Given the following code segments, what combination of values for (u,v,w,x) are 
not allowed by SC. In each case, do the IBM-370, TSO, PSO, PC, RC and WO models 
preserve SC semantics without any ordering instructions or labels, or do they not? If not, 
insert the necessary fence operations to make them conform to SC. Assume that all vari-
ables had the value 0 before this code fragment was reached. 

P1 P2

A = 1 while (flag == 0);

flag = 1 u = A.
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(i) 

(ii) 

d. Consider a two-level coherence protocol with snooping-based SMPs connected by a 
memory-based directory protocol, uisng release consistency. While invalidation acknowl-
edgments are still pending for a write to a memory block, is it okay to supply the data to 
another processor in (i) the same SMP node, or (ii) a different SMP node? Justify your 
answers and state any assumptions.

9.5  More Relaxed Consistency: Labeling and Performance

a. Can a program that is not properly labeled run correctly on a system that supports release 
consistency? If so, how, and if not then why not?

b. Why are there four flavor bits for memory barriers in the SUN Sparc V9 specification. 
Why not just two bits, one to wait for all previous writes to complete, and another for pre-
vious reads to complete? 

c. To communicate labeling information to the hardware (i.e. that a memory operations is 
labeled as an acquire or a release), there are two options: One is to associate the label with 
the address of the location, the other with the specific operation in the code. What are the 
tradeoffs between the two? [

d. Two processors P1 and P2 are executing the following code fragments under the sequen-
tial consistency (SC) and release consistency (RC) models. Assume an architecture where 
both read and write misses take 100 cycles to complete. However, you can assume that 
accesses that are allowed to be overlapped under the consistency model are indeed over-
lapped. Grabbing a free lock or unlocking a lock takes 100 cycles, and no overlap is possi-
ble with lock/unlock operations from the same processor. Assume all the variables and 
locks are initially uncached and all locks are unlocked. All memory locations are initial-
ized to 0. All memory locations are distinct and map to different indices in the caches.

P1 P2

LOCK (L1) LOCK(L1)

A = 1 x = A

B = 2 y = B

UNLOCK(L1) x1 = A

P1 P2

A = 1 B = 1

u = A v = B

w = B x = A

P1 P2

A = 1 B = 1

C = 1 C = 2

u = C v = C

w = B x = A



Exercises

9/4/97 DRAFT: Parallel Computer Architecture 671

(i) What are the possible outcomes for x and y under SC? What are the possible outcomes 
of x and y under RC?

(ii) Assume P1 gets the lock first. After how much time will P2 complete under SC? 
Under RC?

e. Given the following code fragment, we want to compute its execution time under various 
memory consistency models. Assume a processor architecture with an arbitrarily deep 
write buffer. All instructions take 1 cycle ignoring memory system effects. Both read and 
write misses take 100 cycles to complete (i.e. globally perform). Locks are cacheable and 
loads are non-blocking. Assume all the variables and locks are initially uncached, and all 
locks are unlocked. Further assume that once a line is brought into the cache it does not 
get invalidated for the duration of the code’s execution. All memory locations referenced 

above are distinct; furthermore they all map to different cache lines.

(i) If sequential consistency is maintained, how many cycles will it take to execute this 
code? 

(ii) Repeat part (i) for weak ordering. 

(iii) Repeat part (i) for release consistency.

f. The following code is executed on an aggressive dynamically scheduled processor. The 
processor can have multiple outstanding instructions, the hardware allows for multiple 
outstanding misses and the write buffer can hide store latencies (of course, the above fea-
tures may only be used if allowed by the memory consistency model.) 

Processor 1:
sendSpecial(int value) {

A = 1;
LOCK(L);
C = D*3;
E = F*10
G = value;
READY = 1;
UNLOCK(L);

UNLOCK(L1)

x2 = B

LOAD A

STORE B

LOCK (L1)

STORE C

LOAD D

UNLOCK (L1)

LOAD E

STORE F
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}

Processor 2:
receiveSpecial() {

LOCK(L);
if (READY) {

D = C+1;
F = E*G;

}
UNLOCK(L);

}

Assume that locks are non-cachable and are acquired either 50 cycles from an issued 
request or 20 cycles from the time a release completes (whichever is later). A release takes 
50 cycles to complete. Read hits take one cycle to complete and writes take one cycle to 
put into the write buffer. Read misses to shared variables take 50 cycles to complete. 
Writes take 50 cycles to complete. The write buffer on the processors is sufficiently large 
that it never fills completely. Only count the latencies of reads and writes to shared vari-
ables (those listed in capitals) and the locks. All shared variables are initially uncached 
with a value of 0. Assume that Processor 1 obtains the lock first. 

(i) Under SC, how many cycles will it take from the time processor 1 enters sendSpecial() 
to the time that processor 2 leaves receiveSpecial()? Make sure that you justify your 
answer. Also make sure to note the issue and completion time of each synchronization 
event.

(ii) How many cycles will it take to return from receiveSpecial() under Release Consis-
tency?

9.6  Shared Virtual Memory

a. In eager release consistency diffs are created and also propagated at release time, while in 
one form of lazy release consistency they are created at release time but propagated only 
at acquire time, i.e. when the acquire synchronization request comes to the processor.: 

(i) Describe some other possibilities for when diffs might be created, propagated, and 
applied in all-software lazy release consistency (think of release time, acquire time, or 
access fault time). What is the laziest scheme you can design? 

(ii) Construct examples where each lazier scheme leads to less diffs being created/com-
municated, and/or fewer page faults. 

(iii) What complications does each lazier scheme cause in implementation, and which 
would you choose to implement? 

b. Delaying the propagation of invalidations until a release point or even until the next 
acquire point (as in lazy release consistency) can be done in hardware-coherent systems 
as well. Why is LRC not used in hardware-coherent systems? Would delaying invalida-
tions until a release be advantageous?  

c. Suppose you had a co-processor to perform the creation and application of diffs in an all-
software SVM system, and therefore did not have to perform this activity on the main pro-
cessor. Considering eager release consistency and the lazy variants you designed above, 
comment on the extent to which protocol processing activity can be overlapped with com-
putation on the main processor. Draw time-lines to show what can be done on the main 
processor and on the co-processor. Do you expect the savings in performance to be sub-
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stantial? What do you think would be the major benefit and implementation complexity of 
having all protocol processing and management be performed on the co-processor?

d. Why is garbage collection more important and more complex in lazy release consistency 
than in eager release consistency? What about in home-based lazy release consistency? 
Design a scheme for periodic garbage collection (when and how), and discuss the compli-
cations.

9.7  Fine-grained Software Shared Memory

a. In systems like Blizzard-S or Shasta that instrument read and write operations in software 
to provide fine-grained access control, a key performance goal is to reduce the overhead 
of instrumentation. Describe some techniques that you might use to do this. To what 
extent do you think the techniques can be automated in a compiler or instrumentation 
tool? 

b. When messages (e.g. page requests or lock requests) arrive at a node in a software shared 
memory system, whether fine-grained or coarse grained, there are two major ways to han-
dle them in the absence of a programmable communication assist. One is to interrupt the 
main processor, and the other is to have the main processor poll for messages. 

(i) What are the major tradeoffs between the two methods? 

(ii) Which do you expect to perform better for page-based shared virtual memory and 
why? For fine-grained software shared memory? What application characteristics would 
most influence your decision?

(iii) What new issues arise and how might the tradeoffs change if each node is an SMP 
rather than a uniprocessor? 

(iv) How do you think you would organize message handling with SMP nodes?

9.8  Shared Virtual Memory and Memory Consistency Models

a. List all the tradeoffs you can think of between LRC based on diffs (not home based) ver-
sus based on automatic update. Which do you think would perform better? What about 
home-based LRC based on diffs versus based on automatic update?

b. Is a properly labeled program guaranteed to run correctly under LRC? Under ERC? 
Under RC? Under Scope Consistency? Is a program that runs correctly under ERC guar-
anteed to run correctly under LRC? Is it guaranteed to be properly labeled (i.e. can a pro-
gram that is not properly labeled run correctly under ERC? Is a program that runs 
correctly under LRC guaranteed to run correctly under ERC? Under Scope Consistency?  

c. Consider a single-writer release-based protocol. On a release, does a node need to find the 
up-to-date sharing list for each page you’ve modified since the last release from the cur-
rent owner, or just send write notices to nodes on your version of the sharing list for each 
such page? Explain why. 

d. Consider version numbers without directories. Does this avoid the problem of sending 
multiple invalidates to the same copy. Explain why, or give a counter-example.

e. Construct an example where Scope Consistency transparently delivers performance 
improvement over regular home-based LRC, and one where it needs additional program-
ming complexity for correctness; i.e. a program that satisfied release consistency but 
would not work correctly under scope consistency. 

9.9  Alternative Approaches. Trace the path of a write reference in (i) a pure CC-NUMA, (ii) a flat
COMA, (iii) an SVM with automatic update, (iv) an SVM protocol without automatic update,
and (v) a simple COMA. 

9.10  Software Implications and Performance Issues
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a. You are performing an architectural study using four applications: Ocean, LU, an FFT 
that uses a matrix transposition between local calculations on rows, and Barnes-Hut. For 
each application, answer the above questions assuming a page-grained SVM system 
(these questions were asked for a CC-NUMA system in the previous chapter):

(i) what modifications or enhancements in data structuring or layout would you use to 
ensure good interactions with the extended memory hierarchy?

(ii) what are the interactions with cache size and granularities of allocation, coherence and 
communication that you would be particularly careful to represent or not represent? What 
new ones become important in SVM systems that were not so important in CC-NUMA?

(iii) are the interactions with cache size as important in SVM as they are in CC-NUMA? 
If they are of different importance, say why. 

9.11  Consider the FFT calculation with a matrix transpose described in the exercises at the end of
the previous chapter. Suppose you are running this program on a page-based SVM system
using an all-software, home-based multiple-writer protocol. 

a. Would you rather use the method in which a processor reads locally allocated data and 
writes remotely allocated data, or the one in which the processor reads remote data and 
writes local data? 

b. Now suppose you have hardware support for automatic update propagation to further 
speed up your home-based protocol? How does this change the tradeoff, if at all?

c. What protocol optimizations can you think of that would substantially increase the perfor-
mance of one scheme or the other?
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CHAPTER 10

 

Interconnection Network Design

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

10.1 Introduction

 

We have seen throughout this book that scalable high-performance interconnection networks lie
at the core of parallel computer architecture. Our generic parallel machine has basically three
components: the processor-memory nodes, the node-to-network interface, and the network that
holds it all together. The previous chapters give a general understanding of the requirements
placed on the interconnection network of a parallel machine; this chapter examines the design of
high-performance interconnection networks for parallel computers in depth. These networks
share basic concepts and terminology with local area networks (LAN) and wide area networks
(WAN), which may be familiar to many readers, but the design trade-offs are quite different
because of the dramatic difference of time scale.

Parallel computer networks are a rich and interesting topic because they have so many facets, but
this richness also make the topic difficult to understand in an overall sense. For example, parallel



 

Interconnection Network Design

 

676 

 

DRAFT: Parallel Computer Architecture 9/4/97

 

computer networks are generally wired together in a regular pattern. The topological structure of
these networks have elegant mathematical properties and there are deep relationships between
these topologies and the fundamental communication patterns of important parallel algorithms.
However, pseudo-random wiring patterns have a different set of nice mathematical properties and
tend to have more uniform performance, without really good or really bad communication pat-
terns. There is a wide range of interesting trade-offs to examine at this abstract level and a huge
volume of research papers focus completely on this aspect of network design. On the other hand,
passing information between two independent asynchronous devices across an electrical or opti-
cal link presents a host of subtle engineering issues. These are the kinds of issues that give rise to
major standardization efforts. From yet a third point of view, the interactions between multiple
flows of information competing for communications resources have subtle performance effects
which are influenced by a host of factors. The performance modeling of networks is another huge
area of theoretical and practical research. Real network designs address issues at each of these
levels. The goal of this chapter is to provide a holistic understanding of the many facets of paral-
lel computer networks, so the reader may see the large, diverse networks design space within the
larger problem of parallel machine design as driven by application demands. 

As with all other aspects of design, network design involves understanding trade-offs and making
compromises so that the solution is near-optimal in a global sense, rather than optimized for a
particular component of interest. The performance impact of the many interacting facets can be
quite subtle. Moreover, there is not a clear consensus in the field on the appropriate cost model
for networks, since trade-offs can be made between very different technologies, for example,
bandwidth of the links may be traded against complexity of the switches. It is also very difficult
to establish a well-defined workload against which to assess network designs, since program
requirements are influenced by every other level of the system design before being presented to
the network. This is the kind of situation that commonly gives rise to distinct design “camps” and
rather heated debates, which often neglect to bring out the differences in base assumptions. In the
course of developing the concepts and terms of computer networks, this chapter points out how
the choice of cost model and workload lead to various important design points, which reflect key
technological assumptions.

Previous chapters have illuminated the key driving factors on network design. The communica-
tion-to-computation ratio of the program places a requirement on the data 

 

bandwidth

 

 the network
must deliver if the processors are to sustain a given computational rate. However, this load varies
considerably between programs, the flow of information may be physically localized or dis-
persed, and it may be bursty in time or fairly uniform. In addition, the waiting time of the pro-
gram is strongly affected by the 

 

latency

 

 of the network, and the time spent waiting affects the
bandwidth requirement. We have seen that different programming models tend to communicate
at different granularities, which impacts the size of data transfers seen by the network, and that
they use different protocols at the network transaction level to realize the higher level program-
ming model.

This chapter begins with a set of basic definitions and concepts that underlie all networks. Simple
models of communication latency and bandwidth are developed to reveal the core differences in
network design styles. Then the key components which are assembled to form networks are
described concretely. Section 10.3 explains the rich space of interconnection topologies in a com-
mon framework. Section 10.4 ties the trade-offs back to cost, latency, and bandwidth under basic
workload assumptions. Section 10.5 explains the various ways that messages are routed within
the topology of the network in a manner that avoids deadlock and describes the further impact of
routing on communication performance. Section 10.6 dives deeper into the hardware organiza-
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tion of the switches that form the basic building block of networks in order to provide a more pre-
cise understanding of the inherent cost of various options and the mechanics underlying the more
abstract network concepts. Section 10.7 explores the alternative approaches to flow control
within a network. With this grounding in place, Section 10.8 brings together the entire range of
issues in a collection of case studies and examines the transition of parallel computer network
technology into other network regimes, including the emerging 

 

System Area Network

 

s.

 

10.1.1 Basic definitions

 

The job of an interconnection network in a parallel machine is to transfer information from any
source node to any desired destination node, in support of the network transactions that are used
to realize the programming model. It should accomplish this task with as small a latency as pos-
sible, and it should allow a large number of such transfers to take place concurrently. In addition,
it should be inexpensive relative to the cost of the rest of the machine. 

The expanded diagram for our Generic Large-Scale Parallel Architecture in Figure 10-1 illus-
trates the structure of an interconnection network in a parallel machine. The communication
assist on the source node initiates network transactions by pushing information through the net-
work interface (NI). These transactions are handled by the communication assist, processor, or
memory controller on the destination node, depending on the communication abstraction that is
supported.

The network is composed of links and switches, which provide a means to route the information
from the source node to the destination node. A link is essentially a bundle of wires or a fiber that
carries an analog signal. For information to flow along a link, a transmitter converts digital infor-
mation at one end into an analog signal that is driven down the link and converted back into digi-

Figure  10-1  Generic Parallel Machine Interconnection Network

The communication assist initiates network transactions on behalf of the processor or memory controller, through a
network interface that causes information to be transmitted across a sequence of links and switches to a remote
node where the network transaction takes place.
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tal symbols by the receiver at the other end. The 

 

physical 

 

protocol for converting between
streams of digital symbols and an analog signal forms the lowest layer of the network design. The
transmitter, link, and receiver collectively form a 

 

channel

 

 for digital information flow between
switches (or NIs) attached to the link. The 

 

link level

 

 protocol segments the stream of symbols
crossing a channel into larger logical units, called packets or messages, that are interpreted by the
switches in order to steer each packet or message arriving on an input channel to the appropriate
output channel. Processing nodes communicate across a sequence of links and switches. The

 

node level protocol

 

 embeds commands for the remote communication assist within the packets or
messages exchanged between the nodes to accomplish network transactions.

Formally, a parallel machine interconnection network is a graph, where the vertices, , are pro-

cessing hosts or switch elements connected by communication 

 

channels

 

, . A channel is
a physical link between host or switch elements and a 

 

buffer

 

 to hold data as it is being trans-

ferred. It has a width, , and a signalling rate, , which together determine the 

 

channel

bandwidth

 

, . The amount of data transferred across a link in a cycle

 

1

 

 is called a physical
unit, or 

 

phit

 

. Switches connect a fixed number of input channels to a fixed number of output
channels; this number is called the switch 

 

degree

 

. Hosts typically connect to a single switch, but
can be multiply connected with separate channels. Messages are transferred through the network
from a source host node to a destination host along a path, or 

 

route

 

, comprised of a sequence of
channels and switches.

A useful analogy to keep in mind is a roadway system composed of streets and intersections.
Each street has a speed limit and a number of lanes, determining its peak bandwidth. It may be
either unidirectional (one-way) or bidirectional. Intersections allow travelers to switch among a
fixed number of streets. In each trip a collection of people travel from a source location along a
route to a destination. There are many potential routes they may use, many modes of transporta-
tion, and many different ways of dealing with traffic encountered en route. A very large number
of such “trips” may be in progress in a city concurrently, and their respective paths may cross or
share segments of the route.

A network is characterized by its 

 

topology, routing algorithm, switching strategy

 

, and 

 

flow con-
trol

 

 mechanism. 

 

•

 

The 

 

topology

 

 is the physical interconnection structure of the network graph; this may be reg-
ular, as with a two-dimensional grid (typical of many metropolitan centers), or it may be
irregular. Most parallel machines employ highly regular networks. A distinction is often made
between 

 

direct

 

 and 

 

indirect

 

 networks; direct networks have a host node connected to each
switch, whereas indirect networks have hosts connected only to a specific subset of the
switches, which form the edges of the network. Many machines employ hybrid strategies, so
the more critical distinction is between the two types of nodes: hosts generate and remove

 

1.  Since many networks operate asynchronously, rather than being controlled by a single global clock, the
notion of a network “cycle” is not as widely used as in dealing with processors. One could equivalently
define the network cycle time as the time to transmit the smallest physical unit of information, a phit.

For parallel architectures, it is convenient to think about the processor cycle time and the network cycle time
in common terms. Indeed, the two technological regimes are becoming more similar with time.
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traffic, whereas switches only move traffic along. An important property of a topology is the

 

diameter

 

 of a network, which is the maximum shortest path between any two nodes.

 

•

 

The 

 

routing algorithm

 

 determines 

 

which

 

 routes messages may follow through the network
graph. The routing algorithm restricts the set of possible paths to a smaller set of legal paths.
There are many different routing algorithms, providing different guarantees and offering dif-
ferent performance trade-offs. For example, continuing the traffic analogy, a city might elimi-
nate gridlock by legislating that cars must travel east-west before making a single turn north
or south toward their destination, rather than being allowed to zig-zag across town. We will
see that this does, indeed, eliminate deadlock, but it limits a driver’s ability to avoid traffic en
route. In a parallel machine, we are only concerned with routes from a host to a host.

 

•

 

The

 

 switching strategy

 

 determines 

 

how

 

 the data in a message traverses its route. There are
basically two switching strategies. In 

 

circuit switching

 

 the path from the source to the destina-
tion is established and reserved until the message is transferred over the circuit. (This strategy
is like reserving a parade route; it is good for moving a lot of people through, but advanced
planning is required and it tends to be unpleasant for any traffic that might cross or share a
portion of the reserved route, even when the parade is not in sight. It is also the strategy used
in phone systems, which establish a circuit through possibly many switches for each call.)
The alternative is 

 

packet switching

 

, in which the message is broken into a sequence of 

 

pack-
ets

 

. A packet contains routing and sequencing information, as well as data. Packets are indi-
vidually routed from the source to the destination. (The analogy to traveling as small groups
in individual cars is obvious.) Packet switching typically allows better utilization of network
resources because links and buffers are only occupied while a packet is traversing them.

 

•

 

The 

 

flow control mechanism

 

 determines 

 

when

 

 the message, or portions of it, move along its
route. In particular, flow control is necessary whenever two or more messages attempt to use
the same network resource, 

 

e.g.

 

, a channel, at the same time. One of the traffic flows could be
stalled in place, shunted into buffers, detoured to an alternate route, or simply discarded. Each
of these options place specific requirements on the design of the switch and also influence
other aspects of the communication subsystem. (Discarding traffic is clearly unacceptable in
our traffic analogy.) The minimum unit of information that can be transferred across a link
and either accepted or rejected is called a flow control unit, or 

 

flit

 

. It may be as small as a phit
or as large as a packet or message.

To illustrate the difference between a phit and a flit, consider the nCUBE case study in
Section 7.2.4. The links are a single bit wide so a phit is one bit. However, a switch accepts
incoming messages in chunks of 36 bits (32 bits of data plus four parity bits). It only allows the
next 36 bits to come in when it has a buffer to hold it, so the flit is 36 bits. In other machines, such
as the T3D, the phit and flit are the same.

The 

 

diameter

 

 of a network is the maximum distance between two nodes in the graph. The 

 

routing
distance

 

 between a pair of nodes is the number of links traversed en route; this is at least as large
as the shortest path between the nodes and may be larger. The 

 

average distance

 

 is simply the
average of the routing distance over all pairs of node; this is also the expected distance between a
random pair of nodes. In a direct network routes must be provided between every pair of
switches, whereas in an indirect network it is only required that routes are provided between
hosts. A network is 

 

partitioned

 

 if a set of links or switches are removed such that some nodes are
no longer connected by routes. 

Most of the discussion in this chapter centers on packets, because packet switching is used in
most modern parallel machine networks. Where specific important properties of circuit switching
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arise, they are pointed out. A packet is a self-delimiting sequence of digital symbols and logically
consists of three parts, illustrated in Figure 10-2: a 

 

header

 

, a data 

 

payload

 

, and a 

 

trailer

 

. Usually
the routing and control information comes in the header at the front of the packet so that the
switches and network interface can determine what to do with the packet as it arrives. Typically,
the error code is in the trailer, so it can be generated as the message spools out, onto the link. The
header may also have a separate error checking code.

The two basic mechanisms for building abstractions in the context of networks are 

 

encapsulation

 

and 

 

fragmentation

 

. Encapsulation involves carrying higher level protocol information in an unin-
terpreted form within the message format of a given level. Fragmentation involves splitting the
higher level protocol information into a sequence of messages at a given level. While these basic
mechanisms are present in any network, in parallel computer networks the layers of abstraction
tend to be much shallower than in, say, the internet, and designed to fit together very efficiently.
To make these notions concrete, observe that the header and trailer of a packet form an “enve-
lope” that encapsulates the data payload. Information associated with the node-level protocol is
contained within this payload. For example, a read request is typically conveyed to a remote
memory controller in a single packet and the cache line response is a single packet. The memory
controllers are not concerned with the actual route followed by the packet, or the format of the
header and trailer. At the same time, the network is not concerned with the format of the remote
read request within the packet payload. A large bulk data transferred would typically not be car-
ried out as a single packet, instead, it would be fragmented into several packets. Each would need
to contain information to indicate where its data should be deposited or which fragments in the
sequence it represents. In addition, a single packet is fragmented at the link level into a series of
symbols, which are transmitted in order across the link, so there is no need for sequencing infor-
mation. This situation in which higher level information is carried within an envelope that is
interpreted by the lower level protocol, or multiple such envelopes, occurs at every level of net-
work design.

 

10.1.2 Basic communication performance

 

There is much to understand on each of the four major aspects of network design, but before
going to these aspects in detail it is useful to have a general understanding of how they interact to
determine the performance and functionality of the overall communication subsystem. Building
on the brief discussion of networks in Chapter 5, let us look at performance from the latency and
bandwidth perspectives.

Figure  10-2  Typical Packet Format

A packet forms the logical unit of information that is steered along a route by switches. It is comprised of three
parts, a header, data payload, and trailer. The header and trailer are interpreted by the switches as the packet
progresses along the route, but the payload is not. The node level protocol is carried in the payload.
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Latency

 

To establish a basic performance model for understanding networks, we may expand the model
for the communication time from Chapter 1. The time to transfer a single -bytes of information
from its source to its destination has four components, as follows.

 

(EQ 10.1)

 

The 

 

overhead

 

 associated with getting the message into and out of the network on the ends of the
actual transmission has been discussed extensively in dealing with the node-to-network interface
in previous chapters. We have seen machines that are designed to move cache line sized chunks
and others that are optimized for large message DMA transfers. In previous chapters, the routing
delay and channel occupancy are effectively lumped together as the 

 

unloaded latency 

 

of the net-
work for typical message sizes, and contention has been largely ignored. These other components
are the focus of this chapter.

The channel occupancy provides a convenient lower bound on the communication latency, inde-
pendent of where the message is going or what else is happening in the network. As we look at
network design in more depth, we see below that the occupancy of each link is influenced by the
channel width, the signalling rate, and the amount of control information, which is in turn influ-
enced by the topology and routing algorithm. Whereas previous chapters were concerned with
the 

 

channel occupancy

 

 seen from “outside” the network, the time to transfer the message across
the bottleneck channel in the route, the view from within the network is that there is a channel
occupancy associated with each step along the route. The communication assist is occupied for a
period of time accepting the communication request from the processor or memory controller
and spooling a packet into the network. Each channel the packet crosses en route is occupied for
a period of time by the packet, as is the destination communication assist.

For example, an issue that we need to be aware of is the efficiency of the packet encoding. The
packet envelop increases the occupancy because header and trailer symbols are added by the

source and stripped off by the destination. Thus, the occupancy of a channel is , where 

is the size of the envelope and  is the raw bandwidth of the channel. This issue is addressed in
the “outside view” by specifying the 

 

effective bandwidth

 

 of the link, derated from the raw band-

width by , at least for fixed sized packets. However, within the network packet efficiency

remains a design issue. The effect is more pronounced with small packets, but it also depends on
how routing is performed.

The 

 

routing delay

 

 is seen from outside the network as the time to move a given symbol, say the
first byte of the message, from the source to the destination. Viewed from within the network,
each step along the route incurs a routing delay that accumulates into the delay observed from the
outside. The routing delay is a function of the number of channels on the route, called the 

 

routing
distance

 

, , and the delay,  incurred as each switch as part of selecting the correct output port.
(It is convenient to view the node-to-network interface as contributing to the routing delay like a
switch.) The routing distance depends on the network topology, the routing algorithm, and the
particular pair of source and destination nodes. The overall delay is strongly affected by switch-
ing and routing strategies. 
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With packet switched, 

 

store-and-forward

 

 routing, the entire packet is received by a switch before
it is forwarded on the next link, as illustrated in Figure 10-3a. This strategy is used in most wide-
area networks and was used in several early parallel computers. The unloaded network latency
for an  byte packet, including envelope, with store-and-forward routing is

.

 

(EQ 10.2)

 

Equation 10.2 would suggest that the network topology is paramount in determining network
latency, since the topology fundamentally determines the routing distance, . In fact, the story is
more complicated.

First, consider the switching strategy. With circuit switching one expects a delay proportional to
 to establish the circuit, configure each of the switches along the route, and inform the source

that the route is established. After this time, the data should move along the circuit in time 
plus an additional small delay proportional to . Thus, the unloaded latency in units of the net-
work cycle time, , for an  byte message traveling distance  in a circuit switched network is: 

.

 

(EQ 10.3)

 

In Equation 10.3, the routing delay is an additive term, independent of the size of the message.
Thus, as the message length increases, the routing distance, and hence the topology, becomes an
insignificant fraction of the unloaded communication latency. Circuit switching is traditionally
used in telecommunications networks, since the call set-up is short compared to the duration of
the call. It is used in a minority of parallel computer networks, including the Meiko CS-2. One
important difference is that in parallel machines the circuit is established by routing the message
through the network and holding open the route as a circuit. The more traditional approach is to
compute the route on the side and configure the switches, then transmit information on the cir-
cuit.

It is also possible to retain packet switching and yet reduce the unloaded latency from that of
naive store-and-forward routing. The key concern with Equation 10.2 is that the delay is the
product of the routing distance and the occupancy for the full message. However, a long message
can be fragmented into several small packets, which flow through the network in a pipelined
fashion. In this case, the unloaded latency is

,

 

(EQ 10.4)

 

where  is the size of the fragments. The effective routing delay is proportional to the packet
size, rather than the message size. This is basically the approach adopted (in software) for tradi-
tional data communication networks, such as the internet.

In parallel computer networks, the idea of pipelining the routing and communication is carried
much further. Most parallel machines use packet switching with 

 

cut-through

 

 routing, in which
the switch makes its routing decision after inspecting only the first few phits of the header and
allows the remainder of the packet to “cut through” from the input channel to the output channel,
as indicated by Figure 10-3b. (If we may return to our vehicle analogy, cut-through routing is like
what happens when a train encounters a switch in the track. The first car is directed to the proper
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output track and the remainder follow along behind. By contrast, store-and-forward routing is
like what happens at the station, where all the cars in the train must have arrived before the first
can proceed toward the next station.) For cut-through routing, the unloaded latency has the same
form as the circuit switch case,

. (EQ 10.5)

although the routing coefficients may differ since the mechanics of the process are rather differ-
ent. Observe that with cut-through routing a single message may occupy the entire route from the
source to the destination, much like circuit switching. The head of the message establishes the
route as it moves toward its destination and the route clears as the tail moves through.

The discussion of communication latency above addresses a message flowing from source to des-
tination without running into traffic along the way. In this unloaded case, the network can be
viewed simply as a pipeline, with a start-up cost, pipeline depth, and time per stage. The different
switching and routing strategies change the effective structure of the pipeline, whereas the topol-
ogy, link bandwidth, and fragmentation determine the depth and time per stage. Of course, the
reason that networks are so interesting is that they are not a simple pipeline, but rather an inter-
woven fabric of portions of many pipelines. The whole motivation for using a network, rather
than a bus, is to allow multiple data transfers to occur simultaneously. This means that one mes-
sage flow may collide with others and contend for resources. Fundamentally, the network must
provide a mechanism for dealing with contention. The behavior under contention depends on

Tct n h,( ) n
b
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Figure  10-3  Store-and-forward vs. Cut-through routing

A four flit packet traverses three hops from source to destination under store&forward and cut-through routing. Cut-
through achieves lower latency by making the routing decision (grey arrow) on the first flit and pipelining the
packet through a sequence of switches. Store&forward accumulates the entire packer before routing it toward the
destination.
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several facets of the network design: the topology, the switching strategy, and the routing algo-
rithm, but the bottom line is that at any given time a channel can only be occupied by one mes-
sage. If two messages attempt to use the same channel at once, one must be deferred. Typically,
each switch provides some means of arbitration for the output channels. Thus, a switch will
select one of the incoming packets contending for each output and the others will be deferred in
some manner.

An overarching design issue for networks is how contention is handled. This issue recurs
throughout the chapter, so let’s first just consider what it means for latency. Clearly, contention
increases the communication latency experienced by the nodes. Exactly how it increases depends
on the mechanisms used for dealing with contention within the network, which in turn differ
depending on the basic network design strategy. For example, with packet switching, contention
may be experienced at each switch. Using store-and-forward routing, if multiple packets that are
buffered in the switch need to use the same output channel, one will be selected and the others are
blocked in buffers until they are selected. Thus, contention adds queueing delays to the basic
routing delay. With circuit switching, the effect of contention arises when trying to establish a cir-
cuit; typically, a routing probe is extended toward the destination and if it encounters a reserved
channel, it is retracted. The network interface retries establishing the circuit after some delay.
Thus, the start-up cost in gaining access to the network increases under contention, but once the
circuit is established the transmission proceeds at full speed for the entire message.

With cut-through packet switching, two packet blocking options are available. The virtual cut-
through approach is to spool the blocked incoming packet into a buffer, so the behavior under
contention degrades to that of store-and-forward routing. The worm-hole approach buffers only a
few phits in the switch and leaves the tail of the message in-place along the route. The blocked
portion of the message is very much like a circuit held open through a portion of the network.

Switches have limited buffering for packets, so under sustained contention the buffers in a switch
may fill up, regardless of routing strategy. What happens to incoming packets if there is no buffer
space to hold them in the switch? In traditional data communication networks the links are long
and there is little feedback between the two ends of the channel, so the typical approach is to dis-
card the packet. Thus, under contention the network becomes highly unreliable and sophisticated
protocols (e.g., TCP/IP) are used at the nodes to adapt the requested communication load to what
the network can deliver without a high loss rate. Discarding on buffer overrun it also used with
most ATM switches, even if they are employed to build closely integrated clusters. Like the wide
area case, the source receives no indication that its packet was dropped, so it must rely on some
kind of timeout mechanism to deduce that a problem has occured.

In most parallel computer networks, a packet headed for a full buffer is typically blocked in
place, rather than discarded; this requires a handshake between the output port and input port
across the link, i.e, link level flow control. Under sustained congestion, traffic ‘backs-up’ from
the point in the network where contention for resources occurs towards the sources that are driv-
ing traffic into that point. Eventually, the sources experience back-pressure from the network
(when it refuses to accept packets), which causes the flow of data into the network to slow down
to that which can move through the bottleneck.1 Increasing the amount of buffering within the
network allows contention to persist longer without causing back-pressure at the source, but it
also increases the potential queuing delays within the network when contention does occur.

One of the concerns that arises in networks with message blocking is that the ‘back up’ can
impact traffic that is not headed for the highly contended output. Suppose that the network traffic
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favors one of the destinations, say because it holds an important global variable that is widely
used. This is often called a “hot spot.” If the total amount of traffic destined for that output
exceeds the bandwidth of the output, this traffic will back up within the network. If this condition
persists, the backlog will propagate backward through the tree of channels directed at this desti-
nation, which is calledtree saturation. [PfNo85]. Any traffic that cross the tree will also be
delayed. In a worm-hole routed network, an interesting alternative to blocking the message is to
discard it, but to inform the source of the collision. For example, in the BBN Butterfly the source
held onto the tail of the message until the head reached the destination and if a collision occured
in route, the worm was retracted all the way back to the source[ReTh86].

We can see from this brief discussion that all aspects of network design – link bandwidth, topol-
ogy, switching strategy, routing algorithm, and flow control – combine to determine the latency
per message. It should also be clear that there is a relationship between latency and bandwidth. If
the communication bandwidth demanded by the program is low compared to the available net-
work bandwidth, there will be few collisions, buffers will tend to be empty, and the latency will
stay low, especially with cut-through routing. As the bandwidth demand increases, latency will
increase due to contention. 

An important point that is often overlooked is that parallel computer networks are effectively a
closed system. The load placed on the network depends on the rate at which processing nodes
request communication, which in turn depends on how fast the network delivers this communica-
tion. Program performance is affected most strongly by latency some kind of dependence is
involved; the program must wait until a read completes or until a message is received to continue.
While it waits, the load placed on the network drops and the latency decreases. This situation is
very different from that of file transfers across the country contending with unrelated traffic. In a
parallel machine, a program largely contends with itself for communication resources. If the
machine is used in a multiprogrammed fashion, parallel programs may also contend with one
another, but the request rate of each will be reduced as the serviced rate of the network is reduced
due to the contention. Since low latency communication is critical to parallel program perfor-
mance, the emphasis in this chapter is on cut-through packet-switched networks.

Bandwidth

Network bandwidth is critical to parallel program performance in part because higher bandwidth
decreases occupancy, in part because higher bandwidth reduces the likelihood of contention, and
in part because phases of a program may push a large volume of data around without waiting for
individual data items to be transmitted along the way. Since networks behave something like
pipelines it is possible to deliver high bandwidth even when the latency is large.

1.  This situation is exactly like multiple lanes of traffic converging on a narrow tunnel or bridge.
When the traffic flow is less than the flow-rate of the tunnel, there is almost no delay, but when
the in-bound flow exceeds this bandwidth traffic backs-up. When the traffic jam fills the available
storage capacity of the roadway, the aggregate traffic moves forward slowly enough that the
aggregate bandwidth is equal to that of the tunnel. Indeed, upon reaching the mouth of the tunnel
traffic accelerates, as the Bernoulli effect would require.
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It is useful to look at bandwidth from two points of view: the “global” aggregate bandwidth avail-
able to all the nodes through the network and the “local” individual bandwidth available to a
node. If the total communication volume of a program is  bytes and the aggregate communica-

tion bandwidth of the network is  bytes per second, then clearly the communication time is at

least  seconds. On the other hand, if all of the communication is to or from a single node , this

estimate is far too optimistic; the communication time would be determined by the bandwidth
through that single node.

Let us look first at the bandwidth available to a single node and see how it may be influenced by
network design choices. We have seen that the effective local bandwidth is reduced from the raw

link bandwidth by the density of the packet, . Furthermore, if the switch blocks the

packet for the routing delay of  cycles while it makes its routing decision, then the effective

local bandwidth is further derated to , since  is the opportunity to transmit data

that is lost while the link is blocked. Thus, network design issues such as the packet format and
the routing algorithm will influence the bandwidth seen by even a single node. If multiple nodes
are communicating at once and contention arises, the perceived local bandwidth will drop further
(and the latency will rise). This happens in any network if multiple nodes send messages to the
same node, but it may occur within the interior of the network as well. The choice of network
topology and routing algorithm affect the likelihood of contention within the network.

If many of the nodes are communicating at once, it is useful to focus on the global bandwidth that
the network can support, rather than the bandwidth available to each individual node. First, we
should sharpen the concept of the aggregate communication bandwidth of a network. The most
common notion of aggregate bandwidth is the bisection bandwidth: of the network, which is the
sum of the bandwidths of the minimum set of channels which, if removed, partition the network
into two equal sets of nodes. This is a valuable concept, because if the communication pattern is
completely uniform, half of the messages are expected to cross the bisection in each direction.
We will see below that the bisection bandwidth per node varies dramatically in different network
topologies. However, bisection bandwidth is not entirely satisfactory as a metric of aggregate net-
work bandwidth, because communication is not necessarily distributed uniformly over the entire
machine. If communication is localized, rather than uniform, bisection bandwidth will give a pes-
simistic estimate of communication time. An alternative notion of global bandwidth that caters to
localized communication patterns would be the sum of the bandwidth of the links from the nodes
to the network. The concern with this notion of global bandwidth, is that the internal structure of
the network may not support it. Clearly, the available aggregate bandwidth of the network
depends on the communication pattern; in particular, it depends on how far the packets travel, so
we should look at this relationship more closely.

The total bandwidth of all the channels (or links) in the network is the number of channels times
the bandwidth per channel, i.e.,  bytes per second,  bits per cycle, or  phits per cycle. If

each of  hosts issues a packet every  cycles with an average routing distance of  , a packet

occupies, on average,  channels for  cycles. Thus, he total load on the network is 

phits per cycle. The average link utilization is at least
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, (EQ 10.6)

which obviously must be less than one. One way of looking at this is that the number of links per

node, , reflects the communication bandwidth (flits per cycle per node) available, on average,

to each node. This bandwidth is consumed in direct proportion to the routing distance and the
message size. The number of links per node is a static property of the topology. The average rout-
ing distance is determined by the topology, the routing algorithm, the program communication
pattern, and the mapping of the program onto the machine. Good communication locality may
yield a small , while random communication will travel the average distance, and really bad
patterns may traverse the full diameter. The message size is determined by the program behavior
and the communication abstraction. In general, the aggregate communication requirements in
Equation 10.6 says that as the machine is scaled up, the network resources per node must scale
with the increase in expected latency.

In practice, several factors limit the channel utilization, , well below unity. The load may not be
perfectly balanced over all the links. Even if it is balanced, the routing algorithm may prevent all
the links from being used for the particular communication pattern employed in the program.
Even if all the links are usable and the load is balanced over the duration, stochastic variations in
the load and contention for low-level resources may arise. The result of these factors is networks
have a saturation point, representing the total channel bandwidth they can usefully deliver. As
illustrated in Figure 10-4, if the bandwidth demand placed on the network by the processors is
moderate, the latency remains low and the delivered bandwidth increases with increased
demanded. However, at some point, demanding more bandwidth only increases the contention
for resources and the latency increases dramatically. The network is essentially moving as much
traffic as it can, so additional requests just get queued up in the buffers. One attempts to design
parallel machines so that the network stays out of saturation, either by providing ample commu-
nication bandwidth or by limiting the demands placed by the processors.

A word of caution is in order regarding the dramatic increase in latency illustrated in Figure 10-4
as the network load approaches saturation. The behavior illustrated in the figure is typical of all
queueing systems (and networks) under the assumption that the load placed on the system is
independent of the response time. The sources keep pushing messages into the system faster than
it can service them, so a queue of arbitrary length builds up somewhere and the latency grows
with the length of this queue. In other words, this simple analysis assumes an open system. In
reality, parallel machines are closed systems. There is only a limited amount of buffering in the
network and, usually, only a limited amount of communication buffering in the network inter-
faces. Thus, if these “queues” fill up, the sources will slow down to the service rate, since there is
no place to put the next packet until one is removed. The flow-control mechanisms affect this
coupling between source and sink. Moreover, dependences within the parallel programs inher-
ently embed some degree of end-to-end flow-control, because a processor must receive remote
information before it can do additional work which depends on the information and generate
additional communication traffic. Nonetheless, it is important to recognize that a shared resource,
such as a network link, is not expected to be 100% utilized.

This brief performance modeling of parallel machine networks shows that the latency and band-
width of real networks depends on all aspects of the network design, which we will examine in
some detail in the remainder of the chapter. Performance modeling of networks itself is a rich
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area with a voluminous literature base, and the interested reader should consult the references at
the end of this chapter as a starting point. In addition, it is important to note that performance is
not the only driving factor in network designs. Cost and fault tolerance are two other critical cri-
teria. For example, the wiring complexity of the network is a critical issue in several large scale
machines. As these issues depend quite strongly on specifics of the design and the technology
employed, we will discuss them along with examining the design alternatives.

10.2 Organizational Structure

This section outlines the basic organizational structure of a parallel computer network. It is useful
to think of this issue in the more familiar terms of the organization of the processor and the appli-
cable engineering constraints. We normally think of the processor as being composed of datap-
ath, control, and memory interface, including perhaps the on-chip portions of the cache
hierarchy. The datapath is further broken down into ALU, register file, pipeline latches, and so

Figure  10-4  Typical Network Saturation Behavior

Networks can provide low latency when the requested bandwidth is well below that which can be deliv-
ered. In this regime, the delivered bandwidth scales linearly with that requested. However, at some point
the network saturates and additional load causes the latency to increase sharply without yielding addi-
tional delivered bandwidth.
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forth. The control logic is built up from examining the data transfers that take place in the datap-
ath. Local connections within the datapath are short and scale well with improvements in VLSI
technology, whereas control wires and busses are long and become slower relative to gates as
chip density increases. A very similar notion of decomposition and assembly applies to the net-
work. Scalable interconnection networks are composed of three basic components: links,
switches, and network interfaces. A basic understanding of these components, their performance
characteristics, and inherent costs is essential for evaluating network design alternatives. The set
of operations is quite limited, since they fundamentally move packets toward their intended desti-
nation.

10.2.1 Links

A link is a cable of one or more electrical wires or optical fibers with a connector at each end
attached to a switch or network interface port. It allows an analog signal to be transmitted from
one end, received at the other, and sampled to obtain the original digital information stream. In
practice, there is tremendous variation in the electrical and physical engineering of links, how-
ever, their essential logical properties can be characterized along three independent dimensions:
length, width, clocking.

• A “short” link is one in which only a single logical value can be on the link at any time; a
“long” link is viewed as a transmission line, where a series of logical values propagate along
the link at a fraction of the speed of light, (1-2 feet per ns, depending on the specific medium). 

• A “thin” link is one in which data, control, and timing information are multiplexed onto each
wire, such as on a single serial link. A “wide” link is one which can simultaneously transmit
data and control information. In either case, network links are typically narrow compared to
internal processor datapath, say 4 to 16 data bits.

• The clocking may be “synchronous” or “asynchronous.” In the synchronous case, the source
and destination operate on the same global clock, so data is sampled at the receiving end
according to the common clock. In the asynchronous case, the source encodes its clock in
some manner within the analog signal that is transmitted and the destination recovers the
source clock from the signal and transfers the information into its own clock domain.

A short electrical link behaves like a conventional connection between digital components. The
signalling rate is determined by the time to charge the capacitance of the wire until it represents a
logical value on both ends. This time increases only logarithmicaly with length if enough power
can be used to drive the link.1 Also, the wire must be terminated properly to avoid reflections,
which is why it is important that the link be point-to-point.

The Cray T3D is a good example of a wide, short, synchronous link design. Each bidirectional
link contains 24 bits in each direction, 16 for data, 4 for control, and 4 providing flow control for
the link in the reverse direction, so a switch will not try to deliver flits into a full buffer. The entire
machine operates under a single 150 MHz clock. A flit is a single phit of 16 bits. Two of the con-

1.  The RC delay of a wire increases with the square of the length, so for a fixed amount of signal
drive the network cycle time is strongly affected by length. However, if the driver strength is
increased using an ideal driver tree, the time to drive the load of a longer wire only increases log-
arithmically. (If  is the propagation delay of a basic gate, then the effective propagation delay
of a “short” wire of length  grows as .) 

τ inv
l ts K τ inv llog=
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trol bits identify the phit type (00 No info, 01 Routing tag, 10 packet, 11 last). The routing tag
phit and the last-packet phit provide packet framing. 

In a long wire or optical fiber the signal propagates along the link from source to destination. For
a long link, the delay is clearly linear in the length of the wire. The signalling rate is determined
by the time to correctly sample the signal at the receiver, so the length is limited by the signal
decay along the link. If there is more than one wire in the link, the signalling rate and wire length
are also limited by the signal skew across the wires.

A correctly sampled analog signal can be viewed as a stream of digital symbols (phits) delivered
from source to destination over time. Logical values on each wire may be conveyed by voltage
levels or voltage transitions. Typically, the encoding of digital symbols is chosen so that it is easy
to identify common failures, such as stuck-at faults and open connections, and easy to maintain
clocking. Within the stream of symbols individual packets must be identified. Thus, part of the
signaling convention of a link is its framing, which identifies the start and end of each packet. In
a wide link, distinct control lines may identify the head and tail phits. In a narrow link, special
control symbols are inserted in the stream to provide framing. In an asynchronous serial link, the
clock must be extracted from the incoming analog signal as well; this is typically done with a
unique synchronization burst.[PeDa96].

The Cray T3E network provides a convenient contrast to the T3D. It uses a wide, asynchronous
link design. The link is 14 bits wide in each direction, operating at 375 MHz. Each “bit” is con-
veyed by a low voltage differential signal (LVDS) with a nominal swing of 600 mV on a pair of
wires, i.e., the receiver senses the difference in the two wires, rather than the voltage relative to
ground. The clock is sent along with the data. The maximum transmission distance is approxi-
mately one meter, but even at this length there will be multiple bits on the wire at a time. A flit
contains five phits, so the switches operate at 75MHz on 70 bit quantities containing one 64 bit
word plus control information. Flow control information is carried on data packets and idle sym-
bols on the link in the reverse direction. The sequence of flits is framed into single-word and 8-
word read and write request packets, message packets, and other special packets. The maximum
data bandwidth of a link is 500 MB/s.

The encoding of the packet within the frame is interpreted by the nodes attached to the link. Typ-
ically, the envelope is interpreted by the switch to do routing and error checking. The payload is
delivered uninterpreted to the destination host, at which point further layers or internal envelopes
are interpreted and peeled away. However, the destination node may need to inform the source
whether it was able to hold the data. This requires some kind of node-to-node information that is
distinct from the actual communication, for example, an acknowledgment in the reverse direc-
tion. With wide links, control lines may run in both directions to provide this information. Thin
links are almost always bidirectional, so that special flow-control signals can be inserted into the
stream in the reverse direction.1

The Scalable Coherent Interface (SCI) defines both a long, wide copper link and a long, narrow
fiber link. The links are unidirectional and nodes are always organized into rings. The copper link
comprises 18 pairs of wires using differential ECL signaling on both edges of a 250 MHz clock.

1.  This view of flow-control as inherent to the link is quite different from view in more traditional network-
ing applications, where flow control is realized on top of the link-level protocol by special packets.
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It carries 16 bits of data, clock, and a flag bit. The fiber link is serial and operates at 1.25 Gb/s.
Packets are a sequence of 16-bit phits, with the header consisting of a destination node number
phit and a command phit. The trailer consists of a 32-bit CRC. The flag bit provides packet fram-
ing, by distinguishing idle symbols from packet flits. At least one idle phit occurs between suc-
cessive packets.

Many evaluations of networks treat links as having a fixed cost. Common sense would suggest
that the cost increases with the length of the link and its width. This is actually a point of consid-
erable debate within the field, because the relative quality of different networks depends on the
cost model that is used in the evaluation. Much of the cost is in the connectors and the labor
involved in attaching them, so there is a substantial fixed cost. The connector costs increases with
width, whereas the wire cost increases with width and length. In many cases, the key constraint is
the cross sectional area of a bundle of links, say at the bisection; this increases with width.

10.2.2 Switches

A switch consists of a set of input ports, a set of output ports, an internal “cross-bar” connecting
each input to every output, internal buffering, and control logic to effect the input-output connec-
tion at each point in time, as illustrated in Figure 10-5. Usually, the number of input ports is equal
to the number of output ports, which is called the degree of the switch.1 Each output port
includes a transmitter to drive the link. Each input port includes a matching receiver. The input
port includes a synchronizer in most designs to align the incoming data with the local clock
domain of the switch. This is essentially a FIFO, so it is natural to provide some degree of buffer-
ing with each input port. There may also be buffering associated with the outputs or shared buff-
ering for the switch as a whole. The interconnect within the switch may be an actual cross bar, a
set of multiplexors, a bus operating at a multiple of the link bandwidth, or an internal memory.
The complexity of the control logical depends on the routing and scheduling algorithm, as we
will discuss below. At the very least, it must be possible to determine the output port required by
each incoming packet, and to arbitrate among input ports that need to connect to the same output
port.

Many evaluations of networks treat the switch degree as its cost. This is clearly a major factor,
but again there is room for debate. The cost of some parts of the switch is linear in the degree,
e.g., the transmitters, receivers, and port buffers. However, the internal interconnect cost may
increase with the square of the degree. The amount of internal buffering and the complexity of
the routing logic also increase more than linearly with degree. With recent VLSI switches, the
dominant constraint tends be the number of pins, which is proportional to the number of ports
times the width of each port.

1.  As with most rules, there are exceptions. For example, in the BBN Monarch design two distinct kinds of
switches were used that had unequal number of input and output ports.[Ret*90] Switches that routed pack-
ets to output ports based on routing information in the header could have more outputs than inputs. A alter-
native device, called a concentrator, routed packets to any output port, which were fewer than the number of
input ports and all went to the same node.
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10.2.3 Network Interfaces

The network interface (NI) contains one or more input/output ports to source packets into and
sink packets from the network, under direction of the communication assist which connects it to
the processing node, as we have seen in previous chapters. The network interface, or host nodes,
behave quite differently than switch nodes and may be connected via special links. The NI for-
mats the packets and constructs the routing and control information. It may have substantial input
and output buffering, compared to a switch. It may perform end-to-end error checking and flow
control. Clearly, its cost is influenced by its storage capacity, processing complexity, and number
of ports.

10.3 Interconnection Topologies

Now that we understand the basic factors determining the performance and the cost of networks,
we can examine each of the major dimensions of the design space in relation to these factors.
This section covers the set of important interconnection topologies. Each topology is really a
class of networks scaling with the number of host nodes, , so we want to understand the key
characteristics of each class as a function of . In practice, the topological properties, such as
distance, are not entirely independent of the physical properties, such as length and width,
because some topologies fundamentally require longer wires when packed into a physical vol-
ume, so it is important to understand both aspects.

Cross-bar

Input
Buffer

Control

Output
Ports

Input 
Receiver Transmiter

Ports

Routing, Scheduling

Figure  10-5  Basic Switch Organiation

A switch consists of a set of input ports, a set of output ports, an internal “cross-bar” connecting each
input to every output, internal buffering, and control logic to effect the input-output connection at each
point in time.
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10.3.1 Fully connected network

A fully-connected network consists of a single switch, which connects all inputs to all outputs.
The diameter is one. The degree is . The loss of the switch wipes out the whole network, how-
ever, loss of a link removes only one node. One such network is simply a bus, and this provides a
useful reference point to describe the basic characteristics. It has the nice property that the cost
scales as O( ). Unfortunately, only one data transmission can occur on a bus at once, so the total
bandwidth is O(1), as is the bisection. In fact, the bandwidth scaling is worse than O(1) because
the clock rate of a bus decreases with the number of ports due to RC delays. (An ethernet is really
a bit-serial, distributed bus; it just operates at a low enough frequency that a large number of
physical connections are possible.) Another fully connected network is a cross-bar. It provides

 bandwidth, but the cost of the interconnect is proportional to the number of cross-points,
or . In either case, a fully connected network is not scalable in practice. This is not to say
they are not important. Individual switches are fully connected and provide the basic building
block for larger networks. A key metric of technological advance in networks is the degree of a
cost-effective switch. With increasing VLSI chip density, the number of nodes that can be fully
connected by a cost-effective switch is increasing.

10.3.2 Linear arrays and rings

The simplest network is a linear array of nodes numbered consecutively  and con-

nected by bidirectional links. The diameter is , the average distance is roughly , and

removal of a single link partitions the network, so the bisection width is one. Routing in such a
network is trivial, since there is exactly one route between any pair of nodes. To describe the
route from node  to node , let us define  to be the relative address of  from .

This signed,  bit number is the number of links to cross to get from  to  with the positive
direction being away from node 0. Since there is a unique route between a pair of nodes, clearly
the network provides no fault tolerance. The network consists of N-1 links and can easily be laid
out in  space using only short wires. Any contiguous segment of nodes provides a subnet-
work of the same topology as the full network.

A ring or torus of N nodes can be formed by simply connecting the two ends of an array. With
unidirectional links, the diameter is N-1, the average distance is N/2, the bisection width is one
link, and there is one route between any pair of nodes. The relative address of  from  is

. With bidirectional links, the diameter is N/2, the average distance is N/3, the
degree of the node is two and the bisection is two. There are two routes (two relative addresses)
between pair of nodes, so the network can function with degraded performance in the presence of
a single faulty link. The network is easily laid out with  space using only short wires, as
indicated by Figure 10-6, by simply folding the ring. The network can be partitioned into smaller
subnetworks, however, the subnetworks are linear arrays, rather than rings. 

Although these one dimensional networks are not scalable in any practical sense, they are an
important building block, conceptually and in practice. The simple routing and low hardware
complexity of rings has made them very popular for local area interconnects, including FDDI,
Fiber Channel Arbitrated Loop, and Scalable Coherent Interface (SCI). Since they can be laid out
with very short wires, it is possible to make the links very wide. For example, the KSR-1 used a
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32-node ring as a building block which was 128 bits wide. SCI obtains its bandwidth by using
16-bit links. 

10.3.3 Multidimensional meshes and tori

Rings and arrays generalize naturally to higher dimensions, including 2D ‘grids’ and 3D ‘cubes’,
with or without end-around connections. A -dimensional array consists of 

nodes, each identified by its -vector of coordinates , where  for

. Figure 10-6 shows the common cases of two and three dimensions. For simplicity,

we will assume the length along each dimension is the same, so  ( , ).

This is called an -dimensional -ary array. (In practice, engineering constraints often result in
non-uniform dimensions, but the theory is easily extended to handle that case.) Each node is a
switch addressed by a -vector of radix  coordinates and is connected to the nodes that differ

by one in precisely one coordinate. The node degree varies between  and , inclusive, with
nodes in the middle having full degree and the corners having minimal degree. 

For a dimensional -ary torus, the edges wrap-around from each face, so every node has degree
 (in the bidirectional case) and is connected to nodes differing by one (mod k) in each dimen-

sion. We will refer to arrays and tori collectively as meshes. The -dimensional -ary unidirec-
tional torus is a very important class of networks, often called a -ary -cube, employed widely
in modern parallel machines. These networks are usually employed as direct networks, so an
additional switch degree is required to support the bidirectional host connection from each
switch. They are generally viewed as having low degree, two or three, so the network scales by
increasing  along some or all of the dimensions.

To define the routes from a node  to node , let  be the relative

address of  from . A route must cross  links in each dimension  in the appropriate

direction.The simplest approach is to traverse the dimensions in order, so for  travel

 hops in the -th dimension. This corresponds to traveling between two locations in a metro-

politan grid by driving in, say, the east-west direction, turning once, and driving in the north-
south direction. Of course, we can reach the same destination by first travelling north/south and

Figure  10-6  Linear and Ring Topologies

The linear array and torus are easily laid out to use uniformly short wires. The distance and cost grow a
, whereas the aggregate bandwidth is only .O N( ) O 1( )
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then east/west, or by zig-zagging anywhere between these routes. In general, we may view the
source and destination points as corners of a subarray and follow any path between the corners
that reduces the relative address from the destination at each hop. 

The diameter of the network is . The average distance is simply the average distance in

each dimension, roughly . If  is even, the bisection of an -dimensional -ary array is

 bidirectional links. This is obtained by simply cutting the array in the middle by a

(hyper)plane perpendicular to one of the dimensions. (If  is odd, the bisection may be a little bit
larger.) For a unidirectional torus, the relative address and routing generalizes along each dimen-

sion just as for a ring. All nodes have degree  (plus the host degree) and  links cross the
middle in each direction.

It is clear that a 2-dimensional mesh can be laid out  space in a plane with short wires, and
3-dimensional mesh in  volume in free space. In practice, engineering factors come into
play. It is not really practical to build a huge 2D structure and mechanical issues arise in how 3D
is utilized, as illustrated by the following example.

Example  10-1 Using a direct 2D array topology, such as in the Intel Paragon where a single
cabinet holds 64 processors forming a 4 wide by 16 high array of nodes (each node
containing a message processor and 1 to 4 compute processors), how might you
configure cabinets to construct a large machine with only short wires?

Answer Although there are many possible approaches, the one used by Intel is illustrated in
Figure 1-24 of Chapter 1. The cabinets stand on the floor and large configurations
are formed by attaching these cabinets side by side, forming a  array. The
largest configuration was a 1824 node machine at Sandia National Laboratory

Figure  10-7  Grid, Torus, and Cube Topologies

Grids, tori, and cubes are special cases of -ary -cube networks, which are constructed with  nodes
in each of  dimensions. Low dimensional networks pack well in physical space with short wires.
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configured as a  array. The bisection bandwidth is determined by the 16
links that cross between cabinets.

Other machines have found alternative strategies for dealing with real world packaging restric-
tions. The MIT J-machine is a 3D torus, where each board comprises an 8x16 torus in the first
two dimensions. Larger machines are constructed by stacking these boards next to one another,
with board-to-board connections providing the links in the third dimension. The Intel ASCI Red
machine with 4536 compute nodes is constructed as 85 cabinets. It allows long wires to run
between cabinets in each dimension. In general, with higher dimensional meshes several logical
dimensions are embedded in each physical dimension using longer wires. Figure 10-6 shows a
6x3x2 array and a 4-dimensional 3-ary array embedded in a plane. It is clear that for a given
physical dimension, the average wire length and the number of wires increases with the number
of logical dimensions.  

10.3.4 Trees

In meshes, the diameter and average distance increases with the -th root of . There are many
other topologies where the routing distance grows only logarithmically. The simplest of these is a
tree. A binary tree has degree three.Typically, trees are employed as indirect networks with hosts
as the leaves, so for  leaves the diameter is . (Such a topology could be used as a direct

network of  nodes.) In the indirect case, we may treat the binary address of each node

as a  bit vector specifying a path from the root of the tree – the high order bit indicates
whether the node is below the left or right child of the root, and so on down the levels of the tree.

16 114×

Figure  10-8  Embeddings of many logical dimensions in two phjysical dimensions

Higher dimensional -ary -cube can be laid out in 2D by replicating a 2D slice and then connecting slices across
the remaining dimensions. This wiring complexity of these higher dimensional networks can be easily seen in the
figure.
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The levels of the tree correspond directly to the “dimension” of the network. One way to route
from node  to node  would be to go all the way up to the root and then follow the path down

specified by the address of . Of course, we really only need to go up to the first common parent

of the two nodes, before heading down. Let , the bit-wise xor of the node addresses,

be the relative address of  and  be the position of the least significant 1 in . The route

from  to node  is simply  hops up and the low-order bits of  down.

Formally, a complete indirect binary tree is a network of  nodes organized as 

levels. Host nodes occupy level 0 and are identified by a -bit level address . A

switch node is identified by its level, , and its  bit level address, . A

switch node  is connected to a parent, , and two children, 

and , where the vertical bars indicate bit-wise concatenation. There is a unique
route between any pair of nodes by going up to the least common ancestor, so there is no fault
tolerance. The average distance is almost as large as the diameter and the tree partitions into sub-
trees. One virtue of the tree is the ease of supporting broadcast or multicast operations

Clearly, by increasing the branching factor of the tree the routing distance is reduced. In a -ary
tree, each node has  children, the height of the tree is  and the address of a host is
specified by a -vector of radix  coordinates describing the path down from the root.

One potential problem with trees is that they seem to require long wires. After all, when one
draws a tree in a plane, the lines near the root appear to grow exponentially in length with the
number of levels, as illustrated in the top portion of Figure 10-9, resulting in a  layout
with  long wires. This is really a matter of how you look at it. The same 16-node tree is laid
out compactly in two dimensions using a recursive “H-tree” pattern, which allows an  lay-
out with only  long wires [BhLe84]. One can imagine using the H-tree pattern with multiple
nodes on a chip, among nodes (or subtrees) on a board, or between cabinets on a floor, but the lin-
ear layout might be used between boards.

The more serious problem with the tree is its bisection. Removing a single link near the root
bisects the network. It has been observed that computer scientists have a funny notion of trees;
real trees get thicker toward the trunk. An even better analogy is your circulatory system, where
the heart forms the root and the cells the leaves. Blood cells are routed up the veins to the root
and down the arteries to the cells. There is essentially constant bandwidth across each level, so
that blood flows evenly. This idea has been addressed in an interesting variant of tree networks,
called fat-trees, where the upward link to the parent has twice the bandwidth of the child links. Of
course, packets don’t behave quite like blood cells, so there are some issues to be sorted out on
how exactly to wire this up. These will fall out easily from butterflies.

10.3.5 Butterflies

The constriction at the root of the tree can be avoided if there are “lots of roots.” This is provided
by an important logarithmic network, called a butterfly. (The butterfly topology arises in many
settings in the literature. It is the inherent communication pattern on an element-by-element level
of the FFT, the Batcher odd-even merge sort, and other important parallel algorithms. It is iso-
morphic to topologies in the networking literature including the Omega and SW-Banyan net-
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works, and closely related to the shuffle-exchange network and the hypercube, which we discuss
later.) Given 2x2 switches, the basic building-block of the butterfly obtained by simply crossing
one of each pair of edges, as illustrated in the top of Figure 10-10. This is a tool for correcting
one bit of the relative address – going straight leaves the bit the same, crossing flips the bit. These
2x2 butterflies are composed into a network of  nodes in  levels by systematically
changing the cross edges. A 16-node butterfly is illustrated in the bottom portion of Figure 10-10.
This configuration shows an indirect network with unidirectional links going upward, so hosts
deliver packets into level 0 and receive packets from level . Each level corrects one additional
bit of the relative address. Each node at level  forms the root of a tree with all the hosts as
leaves., and from each host there is a tree of routes reaching every node at level .

A -dimensional indirect butterfly has  host nodes and  switch nodes of degree 2

organized as  levels of  nodes each. A switch node at level ,  has its outputs connected

to nodes  and . To route from  to , compute the relative address

 and at level  use the “straight edge” if  is 0 and the cross edge otherwise. The

diameter is . In fact, all routes are  long. The bisection is . (A slightly different for-

mulation with only one host connected to each edge switch has bisection , but twice as many
switches at each level and one additional level.) 
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Figure  10-9  Binary Trees
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A -dimensional -ary butterfly is obtained using switches of degree , a power of 2. The

address of a node is then viewed as a -vector of radix  coordinates, so each level corrects 

bits in the relative address. In this case, there are  levels. In effect, this fuses adjacent levels

into a higher radix butterfly.

There is exactly one route from each host output to each host input, so there is no inherent fault
tolerance in the basic topology. However, unlike the 1D mesh or the tree where a broken link par-
titions the network, in the butterfly there is the potential for fault tolerance. For example, the
route from A to B may be broken, but there is a path from A to another node C and from C to B.
There are may proposals for making the butterfly fault tolerant by just adding a few extra links.
One simple approach is add an extra level to the butterfly so there are two routes to every destina-
tion from every source. This approach was used in the BBN T2000.

The butterfly appears to be a qualitatively more scalable network than meshes and trees, because
each packet crosses  links and there are  links in the network, so on average it should
be possible for all the nodes to send messages anywhere all at once. By contrast, on a 2D torus or
tree there are only two links per node, so nodes can only send messages a long distance infre-
quently and very few nodes are close. A similar argument can be made in terms of bisection. For

a random permutation of data among the  nodes,  messages are expected to cross the bisec-

tion in each direction. The butterfly has  links across the bisection, whereas the -dimensional
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Figure  10-10  Butterfly

Butterflies are a logarithmic depth network constructed by composing 2x2 blocks which correct one bit in the relative
address. It can be viewed as a tree with multiple roots. 
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mesh has only  links and the tree only one. Thus, as the machine scales, a given node in a
butterfly can send every other message to a node on the other side of the machine, whereas a node

in a 2D mesh can send only every -th message and the tree only every -th message to the

other side. 

There are two potential problems with this analysis, however. The first is cost. In a tree or -
dimensional mesh, the cost of the network is a fixed fraction of the cost of the machine. For each
host node there is one switch and  links. In the butterfly the cost of the network per node

increases with the number of nodes, since for each host node there is  switches and links.
Thus, neither scales perfectly. The real question comes down to what a switch costs relative to a
processor and what fraction of the overall cost of the machine we are willing to invest in the net-
work in order to be able to deliver a certain communication performance. If the switch and link is
10% of the cost of the node, then on a thousand processor machine the network will be only one
half of the total cost with a butterfly. On the other hand, if the switch is equal in cost to a node, we
are unlikely to consider more than a low dimensional network. Conversely, if we reduce the
dimension of the network, we may be able to invest more in each switch.

The second problem is that even though there is enough links in the butterfly to support band-
width-distance product of a random permutation, the topology of the butterfly will not allow an
arbitrary permutation of  message among the  nodes to be routed without conflict. A path
from an input to an output blocks the paths of many other input-output pairs, because there are
shared edges. In fact, even if going through the butterfly twice, there are permutations that cannot
be routed without conflicts. However, if two butterflies are laid back-to-back, so a message goes
through one forward and the other in the reverse direction, then for any permutation there is a
choice of intermediate positions that allow a conflict-free routing of the permutation. This back-
to-back butterfly is called a Benes[Ben65,Lei92] network and it has been extensively studied
because of its elegant theoretical properties. It is often seen as having little practical significance
because it is costly to compute the intermediate positions and the permutation has to be known in
advance. On the other hand, there is another interesting theoretical result that says that on a but-
terfly any permutation can be routed with very few conflicts with high probability by first sending
every message to a random intermediate node and then routing them to the desired destina-
tion[Lei92]. These two results come together in a very nice practical way in the fat-tree network.

A -dimensional -ary fat-tree is formed by taking a -dimensional -ary Benes network and
folding it back on itself at the high order dimension, as illustrated in Figure 10-10. The collection

of  switches at level  are viewed as  “fat nodes” of  switches. The edges of the for-

ward going butterfly go up the tree toward the roots and the edges of the reverse butterfly go
down toward the leaves. To route from  to , pick a random node  in the least common

ancestor fat-node of  to , take the unique tree route from  to  and the unique tree route

back down from  to . Let  be the highest dimension of difference in  and , then there are

 root nodes to choose from, so the longer the routing distance the more the traffic can be dis-
tributed. This topology clearly has a great deal of fault tolerance, it has the bisection of the butter-
fly, the partitioning properties of the tree, and allows essentially all permutations to be routed
with very little contention. It is used in the Connection Machine CM-5 and the Meiko CS-2. In
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the CM-5 the randomization on the upward path is down dynamically by the switches, in the CS-
2 the source node chooses the ancestor. A particularly important practical property of butterflies
and fat-trees is that the nodes have fixed degree, independent of the size of the network. This
allows networks of any size to be constructed with the same switches. As is indicated in
Figure 10-11, the physical wiring complexity of the higher levels of a fat-tree or any butterfly-
like network become critical, as there are a large number of long wires that connect to different
places.

10.3.6 Hypercubes

It may seem that the straight-edges in the butterfly are a target for potential, since they take a
packet forward to the next level in the same column. Consider what happens if we collapse all the
switches in a column into a single  degree switch. This has brought us full circle; it is
exactly a -dimensional 2-ary torus! It is often called a hypercube or binary n-cube. Each of the

 nodes are connected to the  nodes that differ by exactly one bit in address. The relative
address  specifies the dimensions that must be crossed to go from A to B.
Clearly, the length of the route is equal to the number of ones in the relative address. The dimen-
sions can be corrected in any order (corresponding the different ways of getting between opposite
corners of the subcube) and the butterfly routing corresponds exactly to dimension order routing,
called e-cube routing in the hypercube literature. Fat-tree routing corresponds to picking a ran-
dom node in the subcube defined by the high order bit in the relative address, sending the packet
“up” the random node and back “down” to the destination. Observe that the fat-tree uses distinct
sets of links for the two directions, so to get the same properties we need a pair of bidirectional
links between nodes in the hypercube.

16-node Benes Network (Unidirectional)

16-node 2-ary Fat-Tree (Bidirectional)

Figure  10-11  Benes network and fat-tree

A Benes network is constructed essentially by connecting two butterflies back-to-back. It has the interesting property
that it can route any permutation in a conflict free fashion, given the opportunity to compute the route off-line. Two
forward going butterflies do not have this property. The fat tree is obtained by folding the second half of the Benes
network back on itself and fusing the two directions, so it is possible to turn around at each level.
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The hypercube is an important topology that has received tremendous attention in the theoretical
literature. For example, lower dimensional meshes can be embedded one-to-one in the hypercube
by choosing an appropriate labeling of the nodes. Recall, a greycode sequence orders the num-
bers from 0 to  so adjacent numbers differ by one bit. This shows how to embed a 1D mesh
into a -cube, and it can be extended to any number of dimensions. (See exercises) Clearly, but-
terflies, shuffle-exchange networks and the like embed easily. Thus, there is a body of literature
on “hypercube algorithms” which subsumes the mesh and butterfly algorithms. (Interestingly, a

-cube does not quite embed a  level tree, because there is one extra node in the -cube. 

Practically speaking, the hypercube was used by many of the early large scale parallel machines,
including the Cal Tech research prototypes[Seit85], the first three Intel iPSC generations[Rat85],
and three generations of nCUBE machines. Later large scale machines, including the Intel Delta
Intel Paragon, and Cray T3D have used low dimensional meshes. One of reasons for the shift is
that in practice the hypercube topology forces the designer to use switches of a degree that sup-
ports the largest possible configuration. Ports are wasted in smaller configuration. The -ary -
cube approach provides the practical scalability of allowing arbritary sized configurations to be
construct with a given set of components, i.e., with switches of fixed degree. None the less, this
begs the question of what should be the degree?

The general trend in network design in parallel machines is toward switches that can be wired in
an arbitrary topology. This what we see, for example, in the IBM SP-2, SGI Origin, Myricom
network, and most ATM switches. The designer may choose to adopt a particular regular toplogy,
or may wire together configurations of different sizes differently. At any point in time, technol-
ogy factors such as pin-out and chip area limit the largest potential degree. Still, it is a key ques-
tion, how large should be the degree? 

10.4 Evaluating Design Trade-offs in Network Topology

The k-ary d-cube provides a convenient framework for evaluating desing alternatives for direct
networks. The design question can be posed in two ways. Given a choice of dimension, the
design of the switch is determined and we can ask how the machine scales. Alternatively, for the

machine scale of interest, i.e., , we may ask what is the best dimensionality under salient
cost constraints. We have the 2D torus at one extreme, the hypercube at the other, and a spectrum
of networks between. As with most aspects of architecture, the key to evaluating trade-offs is to
define the cost model and performance model and then to optimize the design accordingly. Net-
work topology has been a point of lively debate over the history of parallel architectures. To a
large extent this is because different positions make sense under different cost models, and the
technology keeps changing. Once the dimensionality (or degree) of the switch is determined the
space of candidate networks is relatively constrained, so the question that is being addressed is
how large a degree is worth working toward.

Let’s collect what we know about this class of networks in one place. The total number of
switches is , regardless of degree, however, the switch degree is  so the total number of links

is  and there are  pins per node. The average routing distance is , the diam-

2d 1–
d

d d 1– d

k d

N kd=

N d

C Nd= 2wd d
k 1–

2
----------- 

 



Evaluating Design Trade-offs in Network Topology

9/4/97 DRAFT: Parallel Computer Architecture 703

eter is , and  links cross the bisection in each direction (for even ). Thus,

there are  wires crossing the middle of the network.

If our primary concern is the routing distance, then we are inclined to maximize the dimension
and build a hypercube. This would be the case with store-and-forward routing, assuming that the
degree of the switch and the number of links were not a significant cost factor. In addition, we get
to enjoy its elegant mathematical properties. Not surprisingly, this was the topology of choice for
most of the first generation large-scale parallel machine. However, with cut-through routing and a
more realistic hardware cost model, the choice is much less clear. If the number of links or the
switch degree are the dominant costs, we are inclined to minimize the dimension and build a
mesh. For the evaluation to make sense, we want to compare the performance of design alterna-
tives with roughly equal cost. Different assumptions about what aspects of the system are costly
lead to very different conclusions.

The assumed communication pattern influences the decision too. If we look at the worst case
traffic pattern for each network, we will prefer high dimensional networks where essentially all
the paths are short. If we look at patterns where each node is communicating with only one or
two near neighbors, we will prefer low dimensional networks, since only a few of the dimensions
are actually used.

10.4.1 Unloaded Latency

Figure 10-12 shows the increase in unloaded latency under our model of cut-through routing for
2, 3, and 4-cubes, as well as binary d-cubes ( ), as the machine size is scaled up. It assumes
unit routing delay per stage and shows message sizes of 40 and 140 flits. This reflects two com-
mon message sizes, for . The bottom line shows the portion of the latency resulting
from channel occupancy. As we should expect, for smaller messages (or larger routing delay per
stage) the scaling of the low dimension networks is worse because a message experiences more
routing steps on average. However, in making comparisons across the curves in this figure, we
are tacitly assuming that the difference is degree is not a signficant component of the system cost.
Also, one cycle routing is very aggressive; more typical values for high performance switches are
4-8 network cycles (See Table 10-1). On the other hand, larger message sizes are also common. 

To focus our attention on the dimensionality of the network as a design issue, we can fix the cost
model and the number of nodes that reflects our design point and examine the performance char-
acteristics of networks with fixed cost for a range of . Figure 10-13 shows the unloaded latency
for short messages as a function of the dimensionality for four machine sizes. For large machines
the routing delays in low dimensionality networks dominate. For higher dimensionality, the
latency approaches the channel time. This “equal number of nodes” cost model has been widely
used to support the view that low dimensional networks do not scale well. 

It is not surprising that higher dimensional network are superior under the cost model of
Figure 10-13, since the added switch degree, number of channels and channel length comes
essentially for free. The high dimension networks have a much larger number of wires and pins,
and bigger switches than the low dimension networks. For the rightmost end of the graph in
Figure 10-13, the network design is quite impractical. The cost of the network is a significant
fraction of the cost of a large scale parallel machine, so it makes sense to compare equal cost
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designs under appropriate technological assumptions. As chip size and density improves, the
switch internals tend to become a less significant cost factor, whereas pins and wires remain crit-
ical. In the limit, the physical volume of the wires presents a fundamental limit on the amount of

Figure  10-12  Unloaded Latency Scaling of networks for various dimensions with fixed link width

The n/w line shows the channel occupancy component of message transmission, i.e, the time for the bits to cross a
single channel, which is independent of network topology. The curves show the additional latency due to routing
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Figure  10-13  Unloaded Latency for k-ary d-cubes with Equal Node Count ( n=14B, ) as a function of the
degree

With the link width and routing delay fixed, the unloaded latency for large networks rises sharply at low dimensions
due to routing distance.

∆ 2=

0

5 0

100

150

200

250

0 5 1 0 1 5 2 0

A
ve

ra
g

e 
L

at
en

cy
 

(n
 

=
 

40
, 

∆ 
=

 
2)

256

1024

16384

1048576



Evaluating Design Trade-offs in Network Topology

9/4/97 DRAFT: Parallel Computer Architecture 705

interconnection that is possible. So lets compare these networks under assumptions of equal wir-
ing complexity.

One sensible comparison is to keep the total number of wires per node constant, i.e., fix the num-
ber of pins . Let’s take as our baseline a 2-cube with channel width , so there are a
total of 128 wires per node. With more dimensions there are more channels and they must each
be thinner. In particular, . So, in an 8-cube the links are only 8 bits wide. Assuming
40 and 140 byte messages, a uniform routing delay of 2 cycles per hop, and uniform cycle time,
the unloaded latency under equal pin scaling is shown in Figure 10-14. This figure shows a very
different story. As a result of narrower channels, the channel time becomes greater with increas-
ing dimension; this mitigates the reduction in routing delay stemming from the smaller routing
distance. The very large configurations still experience large routing delays for low dimensions,
regardless of the channel width, but all the configurations have an optimum unloaded latency at
modest dimension.

If the design is not limited by pin count, the critical aspect of the wiring complexity is likely to be
the number of wires that cross through the middle of the machine. If the machine is viewed as
laid out in a plane, the physical bisection width grows only with the square root of the area, and
in three-space it only grows as the two-thirds power of the volume. Even if the network has a
high logical dimension, it must be embedded in a small number of physical dimensions, so the
designer must contend with the cross-sectional area of the wires crossing the midplane.

We can focus on this aspect of the cost by comparing designs with equal number of wires cross-
ing the bisection. At one extreme, the hypercube has  such links. Let us assume these have unit
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Figure  10-14  Unloaded Latency for k-ary d-cubes with Equal Pin Count (n=40B and n=140B, )

With equal pin count, higher dimensions implies narrower channels, so the optimal design point balances the routing
delay, which increases with lower dimension, against channel time, which increases with higher dimension.
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size. A 2D torus has only  links crossing the bisection, so each link could be  times the

width of that used in the hypercube. By the equal bisection criteria, we should compare a 1024
node hypercube with bit-serial links with a torus of the same size using 32-bit links. In general,
the -dimensional mesh with the same bisection width as the  node hypercube has links of

width . Assuming cut-through routing, the average latency of an -byte packet to

a random destination on an unloaded network is as follows.

(EQ 10.7)

Thus, increasing the dimension tends to decrease the routing delay but increase the channel time,
as with equal pin count scaling. (The reader can verify that the minimum latency is achieved
when the two terms are essentially equal.) Figure 10-15 shows the average latency for 40 byte
messages, assuming , as a function of the dimension for a range of machine sizes. As the

dimension increases from  the routing delay drops rapidly whereas the channel time

increases steadily throughout as the links get thinner. (The  point is not shown for

 nodes because it is rather ridiculous; the links are 512 bits wide and the average number

of hops is 1023.) For machines up to a few thousand nodes,  and  are very close, so
the impact of the additional channels on channel width becomes the dominant effect. If large
messages are considered, the routing component becomes even less significant. For large
machines the low dimensional meshes under this scaling rule become impractical because the
links become very wide.

Thus far we have concerned ourselves with the wiring cross-sectional area, but we have not wor-
ried about the wire length. If a -cube is embedded in a plane, i.e.,  dimensions are embed-
ded in each physical dimension, such that the distance between the centers of the nodes is fixed,

then each additional dimension increases the length of the longest wire by a  factor. Thus, the

length of the longest wire in a -cube is  times that in the 2-cube. Accounting for increased
wire length further strengthens the argument for a modest number of dimensions. There are three
ways this accounting might be done. If one assumes that multiple bits are pipelined on the wire,
then the increased length effectively increases the routing delay. If the wires are not pipelined,
then the cycle time of the network is increased as a result of the long time to drive the wire. If the
drivers are scaled up perfectly to meet the additional capacitive load, the increase is logarithmic
in the wire length. If the signal must propagate down the wire like a transmission line, the
increase is linear in the length.

The embedding of the -dimensional network into few physical dimensions introduces second-
order effects that may enhance the benefit of low dimensions. If a high dimension network is
embedded systematically into a plane, the wire density tends to be highest near the bisection and
low near the perimeter. A 2D mesh has uniform wire density throughout, so it makes better use of
the area that it occupies.
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We should also look at the trade-offs in network design from a bandwidth viewpoint. The key
factor influencing latency with equal wire complexity scaling is the increased channel bandwidth
at low dimension. Wider channels are beneficial if most of the traffic arises from or is delivered to
one or a few nodes. If traffic is localized, so each node communicates with just a few neighbors,
only a few of the dimensions are utilized and again the higher link bandwidth dominates. If a
large number of nodes are communicating throughout the machine, then we need to model the
effects of contention on the observed latency and see where the network saturates.

Before leaving the examination of trade-offs for latency in the unloaded case, we note that the
evaluation is rather sensitive to the relative time to cross a wire and to cross a switch. If the rout-
ing delay per switch is 20 times that of the wire, the picture is very different, as shown in
Figure 10-16.

10.4.2 Latency under load

In order to analyze the behavior of a network under load, we need to capture the effects of traffic
congestion on all the other traffic that is moving through the network. These effects can be subtle
and far reaching. Notice when you are next driving down a loaded freeway, for example, that
where a pair of freeways merge and then split the traffic congestion is worse than even a series of
on-ramps merging into a single freeway. There is far more driver-to-driver interaction in the inter-
change and at some level of traffic load the whole thing just seems to stop. Networks behave in a
similar fashion, but there are many more interchanges. (Fortunately, rubber-necking at a roadside

Figure  10-15  Unloaded Latency for k-ary d-cubes Equal Bisection Width (n=40B, ∆=2).

The balance between routing delay and channel time shifts even more in favor of low degree networks with
an equal bisection width scaling rule.
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disturbance is less of an issue). In order to evaluate these effects in a family of topologies, we
must take a position on the traffic pattern, the routing algorithm, the flow-control strategy, and a
number of detailed aspects of the internal design of the switch. One can then either develop a
queuing model for the system or build a simulator for the proposed set of designs. The trick, as in
most other aspects of computer design, is to develop models that are simple enough to provide
intuition at the appropriate level of design, yet accurate enough to offer useful guidance as the
design refinement progresses. 

We will use a closed-form model of contention delays in -ary -cubes for random traffic using
dimension-order cut-through routing and unbounded internal buffers, so flow control and dead-
lock issues do not arise, due to Agarwal [Aga91]. The model predictions correlate well with sim-
ulation results for networks meeting the same assumptions. This model is based on earlier work
by Kruskal and Snir modeling the performance of indirect (Banyan) networks [KrSn83]. Without
going through the derivation, the main result is that we can model the latency for random com-
munication of messages of size  on a -ary -cube with channel width  at a load correspond-
ing to an aggregate channel utilization of  by:

(EQ 10.8)

where .

Figure  10-16  Unloaded Latency for k-ary d-cubes with Equal Pin Count and larger routing delays(n=140B,
)

When the time to cross a switch is significantly larger than the time to cross a wire, as is common in practice, higher
degree switches become much more attractive.
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Using this model, we can compare the latency under load for networks of low or high dimension
of various sizes, as we did for unloaded latency. Figure 10-17 shows the predicted latency on a
1000 node 10-ary 3-cube and a 1024 node 32-ary 2-cube as a function of the requested aggregate
channel utilization, assuming equal channel width, for relatively small messages sizes of 4, 8, 16,
and 40 phits. We can see from the right-hand end of the curves that the two networks saturate at
roughly the same channel utilization, however, this saturation point decreases rapidly with the
message size. The left end of the curves indicates the unloaded latency. The higher degree switch
enjoys a lower base routing delay with the same channel time, since there are fewer hops and
equal channel widths. As the load increases, this difference becomes less significant. Notice how
large is the contended latency compared to the unloaded latency. Clearly, in order to deliver low
latency communication to the user program, it is important that the machine is designed so that
the network does not go into saturation easily; either by providing excess network bandwidth,
“headroom”, or by conditioning the processor load.

The data in Figure 10-17 raises a basic tradeoff in network design. How large a packet should the
network be designed for? The data shows clearly that networks move small packets more effi-
ciently than large ones. However, smaller packets have worse packet efficiency, due to the routing
and control information contained in each one, and require more network interface events for the
same amount of data transfer.
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Figure  10-17  Latency with Contention vs. load for 2-ary 32-cube and 3-ary 10-cube with routing delay 2

At low channel utilization the higher dimensional network has significantly low latency, with equal channel
width, but as the utilization increases they converge toward the same saturation point.
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We must be careful about the conclusions we draw from Figure 10-17 regarding the choice of
network dimension. The curves in the figure show how efficiently each network utilizes the set of
channels it has available to it. The observation is that both use their channels with roughly equal
effectiveness. However, the higher dimensional network has a much greater available bandwidth
per node; it has 1.5 times as many channels per node and each message uses fewer channels. In a

-ary -cube the available flits per cycle under random communication is , or

 flits per cycle per node (  bits per cycle). The 3-cube in our example has almost

four times as much available bandwidth at the same channel utilization, assuming equal channel
width. Thus, if we look at latency against delivered bandwidth, the picture looks rather different,
as shown in Figure 10-18. The 2-cube starts out with a higher base latency and saturates before
the 3-cube begins to feel the load.

This comparison brings us back to the question of appropriate equal cost comparison. As an exer-
cise, the reader can investigate the curves for equal pin out and equal bisection comparison. Wid-
ening the channels shifts the base latency down by reducing channel time, increases the total
bandwidth available, and reduces the waiting time at each switch, since each packet is serviced
faster. Thus, the results are quite sensitive to the cost model.

There are interesting observations that arise when the width is scaled against dimension. For

example, using the equal bisection rule, the capacity per node is. . The

aggregate capacity for random traffic is essentially independent of dimension! Each host can
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expect to drive, on average, a fraction of a bit per network clock period. This observation yields a
new perspective on low dimension networks. Generally, the concern is that each of several nodes
must route messages a considerable distance along one dimension. Thus, each node must send
packets infrequently. Under the fixed bisection width assumption, with low dimension the chan-
nel becomes a shared resource pool for several nodes, whereas high dimension networks partition
the bandwidth resource for traffic in each of several dimensions. When a node uses a channel, in
the low dimension case it uses it for a shorter amount of time. In most systems, pooling results in
better utilization than partitioning.

In current machines, the area occupied by a node is much larger than the cross-section of the
wires and the scale is generally limited to a few thousand nodes. In this regime, the bisection of
the machine is often realized by bundles of cables. This does represent a significant engineering
challenge, but it is not a fundamental limit on the machine design. There is a tendency to use
wider links and faster signalling in topologies with short wires, as illustrated by Table 10-1, but it
is not as dramatic as the equal bisection scaling rule would suggest.

10.5 Routing

The routing algorithm of a network determines which of the possible paths from source to desti-
nation are used as routes and how the route followed by each particular packet is determined. We
have seen, for example, that in a -ary -cube the set of shortest routes is completely described
by the relative address of the source and destination, which specifies the number of links that
need to be crossed in each dimension. Dimension order routing restricts the set of legal paths so
that there is exactly one route from each source to each destination, the one obtained by first trav-
eling the correct distance in the high-order dimension, then the next dimension and so on. This
section describes the different classes of routing algorithms that are used in modern machines
and the key properties of good routing algorithms, such as producing a set of deadlock-free
routes, maintaining low latency, spreading load evenly, and tolerating faults.

10.5.1 Routing Mechanisms

Let’s start with the nuts and bolts. Recall, the basic operation of a switch is to monitor the packets
arriving at its inputs and for each input packet select an output port on which to send it out. Thus,
a routing algorithm is a function , which at each switch maps the destination node,

, to the next channel on the route. There are basically three mechanisms that high-speed
switches use to determine the output channel from information in the packet header: arithmetic,
source-based port select, and table look-up. All of these mechanisms are drastically simpler than
the kind of general routing computations performed in traditional LAN and WAN routers. In par-
allel computer networks, the switch needs to be able to make the routing decision for all its inputs
every cycle, so the mechanism needs to be simple and fast.

k d
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Simple arithmetic operations are sufficient to select the output port in most regular topologies.
For example, in a 2D mesh each packet will typically carry the signed distance to travel in each
dimensions, , in the packet header. The routing operation at switch  is given by: 

To accomplish this kind of routing, the switch needs to test the address in the header and decre-
ment or increment one routing field. For a binary cube, the switch computes the position of the
first bit that differs between the destination and the local node address, or the first non-zero bit if
the packet carries the relative address of the destination. This kind of mechanism is used in Intel
and nCUBE hypercubes, the Paragon, the Cal Tech Torus Routing Chip[Sesu93], and the J-
machine, among others.

A more general approach is source based routing, in which the source builds a header consisting
of the output port number for each switch along the route, . Each switch simply
strips off the port number from the front of the message and sends the message out on the speci-
fied channel. This allows a very simple switch with little control state and without even arith-
metic units to support sophisticated routing functions on arbitrary topologies. All of the
intelligence is in the host nodes. It has the disadvantage that the header tends to be large, and usu-
ally of variable size. If the switch degree is  and routes of length  are permitted, the header
may need to carry  routing bits. This approach is usedin MIT Parc and Arctic routers,
Meiko CS-2, and Myrinet.

A third approach, which is general purpose and allows for a small fixed size header is table
driven routing, in which each switch contains a routing table, , and the packet header contains a
routing field, , so the output port is determined by indexing into the table by the routing field,

. This is used, for example, in HPPI and ATM switches. Generally, the table entry also
gives the routing field for the next step in the route, , to allow more flexibility in the
table configuration. The disadvantage of this approach is that the switch must contain a sizable
amount of routing state, and it requires additional switch-specific messages or some other mech-
anism for establishing the contents of the routing table. Furthermore, fairly large tables are
required to simulate even simple routing algorithms. This approach is better suited to LAN and
WAN traffic, where only a few of the possible routes among the collection of nodes are used at a
time and these are mostly long lasting connections. By contrast, in a parallel machine there is
often traffic among all the nodes.

Traditional networking routers contain a full processor which can inspect the incoming message,
perform an arbitrary calculation to select the output port, and build a packet containing the mes-
sage data for that output. This kind of approach is often employed in routers and (sometimes)
bridges, which connect completely different networks (e.g., those that route between ethernet,
FDDI, ATM) or at least different data link layers. It really does not make sense at the time scale
of the communication within a high performance parallel machine.
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10.5.2 Deterministic Routing

A routing algorithm is deterministic (or nonadaptive) if the route taken by a message is deter-
mined solely by its source and destination, and not by other traffic in the network. For example,
dimension order routing is deterministic; the packet will follow its path regardless of whether a
link along the way is blocked. Adaptive routing algorithms allow the route for a packet to be
influenced by traffic it meets along the way. For example, in a mesh the route could zig-zag
towards its destination if links along the dimension order path was blocked or faulty. In a fat tree,
the upward path toward the common ancestor can steer away from blocked links, rather than fol-
lowing a random path determined when the message was injected into the network. If a routing
algorithm only selects shortest paths toward the destination, it is minimal; otherwise it is non-
minimal. Allowing multiple routes between each source and destination is clearly required for
fault tolerance, and it also provides a way to spread load over more links. These virtues are
enjoyed by source-based and table driven routing, but the choice is made when the packet is
injected. Adaptive routing delays the choice until the packet is actually moving through the
switch, which clearly makes the switch more complex, but has the potential of obtaining better
link utilization.

We will concentrate first on deterministic routing algorithms and develop an understanding of
some of the most popular routing algorithms and the techniques for proving them deadlock free,
before investigating adaptive routing.

10.5.3 Deadlock Freedom

In our discussions of network latency and bandwidth we have tacitly assumed that messages
make forward progress so it is meaningful to talk about performance. In this section, we show
how one goes about proving that a network is deadlock free. Recall, deadlock occurs when a
packet waits for an event that cannot occur, for example when no message can advance toward its
destination because the queues of the message system are full and each is waiting for another to
make resources available. This can be distinguished from indefinite postponement, which occurs
when a packet awaits for an event that can occur, but never does, and from livelock, which occurs
when the routing of a packet never leads to its destination. Indefinite postponement is primarily a
question of fairness and livelock can only occur with adaptive nonminimal routing. Being free
from deadlock is a basic property of well-designed networks that must be addressed from the
very beginning.

Deadlock can occur in a variety of situations. A ‘head-on’ deadlock may occur when two nodes
attempt to send to each other and each begins sending before either receives. It is clear that if they
both attempt to complete sending before receiving, neither will make forward progress. We saw
this situation at the user message passing layer using synchronous send and receive, and we saw
it at the node-to-network interface layer. Within the network it could potentially occur with half
duplex channels, or if the switch controller were not able to transmit and receive simultaneously
on a bidirectional channel. We should think of the channel as a shared resource, which is acquired
incrementally, first at the sending end and then at the receiver. In each case, the solution is to
ensure that nodes can continue to receive while being unable to send. One could make this exam-
ple more elaborate by putting more switches and links between the two nodes, but it is clear that
a reliable network can only be deadlock free if the nodes are able to remove packets from the net-
work even when they are unable to send packets. (Alternatively, we might recover from the dead-
lock by eventually detecting a timeout and aborting one or more of the packets, effectively
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preempting the claim on the shared resource. This does raise the possibility of indefinite post-
ponement, which we will address later.) In this head-on situation there is no routing involved,
instead the problem is due to constraints imposed by the switch design. 

A more interesting case of deadlock occurs when there are multiple messages competing for
resources within the network, as in the routing deadlock illustrated in Figure 10-19. Here we
have several messages moving through the network, where each message consists of several
phits. We should view each channel in the network as having associated with it a certain amount
of buffer resources; these may be input buffers at the channel destination, output buffers at the
channel source, or both. In our example, each message is attempting to turn to the left and all of
the packet buffers associated with the four channels are full. No message will release a packet
buffer until after it has acquired a new packet buffer into which it can move. One could make this
example more elaborate by separating the switches involved by additional switches and channels,
but it is clear that the channel resources are allocated within the network on a distributed basis as
a result of messages being routed through. They are acquired incrementally and non-preemptible,
without losing packets.

This routing deadlock can occur with store-and-forward routing or even more easily with cut-
through routing because each packet stretches over several phit buffers. Only the header flits of a
packet carry routing information, so once the head of a message is spooled forward on a channel,
all of the remaining flits of the message must spool along on the same channel. Thus, a single
packet may hold onto channel resources across several switches. While we might hope to inter-
leave packets with store-and-forward routing, the phits of a packet must be kept together. The
essential point in these examples is that there are resources logically associated with channels
and that messages introduce dependences between these resources as they move through the net-
work.

The basic technique for proving a network deadlock free is to articulate the dependencies that can
arise between channels as a result of messages moving through the networks and to show that
there are no cycles in the overall channel dependency graph; hence there is no traffic patterns that
can lead to deadlock. The most common way of doing this is to number the channel resources
such that all routes follow a monotonically increasing (or decreasing) sequence, hence, no depen-
dency cycles can arise. For a butterfly this is trivial, because the network itself is acyclic. It is also
simple for trees and fat-trees, as long as the upward and downward channels are independent. For
networks with cycles in the channel graph, the situation is more interesting. 

To illustrate the basic technique for showing a routing algorithm to be deadlock-free, let us show
that  routing on a k-ary 2D array is deadlock free. To prove this, view each bidirectional
channel as a pair of unidirectional channels, numbered independently. Assign each positive-
channel  the number , and similarly number the negative-  going channel
starting from 0 at the most positive edge. Number the positive-  channel  the
number , and similarly number the negative-  edges from the from the most positive edge.
This numbering is illustrated in Figure 10-20. Any route consisting of a sequence of consecutive
edges in one  direction, a 90 degree turn, and a sequence of consecutive edges in one  direc-
tion is strictly increasing. The channel dependence graph has a node for every unidirectional link
in the network and there is an edge from node A to node B if it is possible for a packet to traverse
channel A and then channel B. All edges in the channel dependence graph go from lower num-
bered nodes to higher numbered ones, so there are no cycles in the channel dependence graph.
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This proof easily generalizes to any number of dimensions and, since a binary -cube consists of
a pair of unidirectional channels in each dimension, also shows that e-cube routing is deadlock
free on a hypercube. Observe, however, that the proof does not apply to -ary -cubes in gen-
eral, because the channel number decreases at the wrap-around edges. Indeed, it is not hard to
show that for , dimension order routing will introduce a dependence cycle on a unidirec-
tional torus, even with . 

Notice that deadlock-free routing proof applies even if there is only a single flit of buffering on
each channel and that the potential for deadlock exists in -ary -cube even with multiple packet
buffers and store-and-forward routing, since a single message may fill up all the packet buffers
along its route. However, if the use of channel resources is restricted, it is possible to break the
deadlock. For example, consider the case of a unidirectional torus with multiple packet buffers
per channel and store-and-forward routing. Suppose that one of the packet buffers associated
with each channel is reserved for messages destined for nodes with a larger number than their
source, i.e., packets that do not use wrap-around channels. This means that it will always be pos-
sible for “forward going” messages to make progress. Although wrap-around messages may be
postponed, the network does not deadlock. This solution is typical of the family of techniques for
making store-and-forward packet-switched networks deadlock free; there is a concept of a struc-
tured buffer pool and the routing algorithm restricts the assignment of buffers to packets to break
dependence cycles. This solution is not sufficient for worm-hole routing, since it tacitly assumes
that packets of different messages can be interleaved as they move forward.

Observe that deadlock free routing does not mean the system is deadlock free. The network is
deadlock free only as long as it is drained into the NIs, even when the NIs are unable to send. If

Figure  10-19  Examples of Network Routing Deadlock

Each of four switches has four input and output ports. Four packets have each aquired an input port and output
buffer and an input port, and all are attempting to acquire the next output buffer as they turn left. None will relen-
quish their output buffer until it moves forward,so none can progress.
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two-phase protocols are employed, we need to ensure that fetch-deadlock is avoided. This means
either providing two logically independent networks, or ensuring that the two phases are decou-
pled through NI buffers. Of course, the program may still have deadlocks, such as circular-waits
on locks or head-on collision using synchronous message passing. We have worked our way
down from the top, showing how to make each of these layers deadlock free, as long as the next
layer is deadlock free.

Given a network topology and a set of resources per channel, there are two basic approaches for
constructing a deadlock-free routing algorithm: restrict the paths that packets may follow or
restrict how resources are allocated. This observation raises a number of interesting questions. Is
there a general technique for producing deadlock free routes with wormhole routing on an arbi-
trary topology? Can such routes be adaptive? Is there some minimum amount of channel
resources required? 

10.5.4 Virtual Channels

The basic technique making networks with worm-hole routing deadlock free is to provide multi-
ple buffers with each physical channel and to split these buffers into a group of virtual channels.
Going back to our basic cost model for networks, this does not increase the number of links in the
network, nor the number of switches. In fact, it does not even increase the size of the cross-bar
internal to each switch, since only one flit at a time moves through the switch for each output
channel. As indicated in Figure 10-21, it does require additional selectors and multiplexors

Figure  10-20  Channel ordering in the network graph and corresponding channel dependence graph

To show the routing algoirithm is deadlock free, it is sufficient to demonstrate that the channel depen-
dence graph has no cycles.
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within the switch to allow the links and the cross-bar to be shared among multiple virtual chan-
nels per physical channel. 

Virtual channels are used to avoid deadlock by systematically breaking cycles in the channel
dependency graph. Consider, for example, the four-way routing deadlock cycle of Figure 10-19.
Suppose we have two virtual channels per physical and messages at a node numbered higher than
their destination are routed on the high channels, while messages at a node numbered less than
their destinations are routed on the low channels. As illustrated in Figure 10-22, the dependence
cycle is broken. Applying this approach to the -ary -cube, treat the channel labeling as a radix

 number of the form , where  is the dimension,  is the coordinate of the source
node of the channel in dimension , and  is the virtual channel number. In each dimension, if
the destination node has a smaller coordinate that the source node in that dimension, i.e., the mes-
sage must use a wrap-around edge, use the  virtual channel in that dimension. Otherwise,
use the  channel. The reader may verify that dimension order routing is deadlock free with
this assignment of virtual channels. Similar techniques can be employed with other popular
topologies [DaSe87]. Notice that with virtual channels we need to view the routing algorithm as
a function , because the virtual channel selected for the output depends on which
channel it came in on.

10.5.5 Up*-Down* Routing

Are virtual channels required for deadlock free wormhole routing on an arbitrary topology? No.
If we assume that all the channels are bidirectional there is a simple algorithm for deriving dead-
lock free routes for an arbitrary topology. Not surprisingly, it restricts the set of legal routes. The
general strategy is similar to routing in a tree, where routes go up the tree away from the source
and then down to the destination. We assume the network consists of a collection of switches,
some of which have one or more hosts attached to them. Given the network graph, we want to
number the switches so that the numbers increase as we get farther away from the hosts. One

Output
Ports

Input 
Ports

Cross-Bar

Figure  10-21  Multiple Virtual Channels in a basic switch

Each physical channel is shared by multiple virtual channels. The input ports of the switch split the
incoming virtual channels into separate buffers, however, these are multiplexed through the switch to
avoid expanding the cross-bar.
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approach is to partition the network into levels, with the host nodes at level zero and each switch
at the level corresponding to its maximum distance from a host. Assign numbers starting with
level 0 and increasing with level. This numbering is easily accomplished with a breadth-first-
search of the graph. (Alternatively, construct a spanning tree of the graph with hosts at the leaves
and numbers increasing toward the root.) It is clear that for any source host, any destination host
can be reached by a path consisting of a sequence of up channels (toward higher numbered
nodes), a single turn, and a series of down channels. Moreover, the set of routes following such
up*-down* paths are deadlock free. The network graph may have cycles, but the channel depen-
dence graph under up*-down* routing does not. The up channels form a DAG and the down
channels form a DAG. The up channels depend only on lower numbered up channels and the
down channels depend only on up channels and higher numbered down channels. 

This style of routing was developed for Autonet[And*92], which was intended to be self config-
uring. Each of the switches contained a processor, which could run a distributed algorithm to
determine the topology of the network and find a unique spanning tree. Each of the hosts would
compute up*-down* routes as a restricted shortest-paths problem. Then routing tables in the
switches could be established. The breadth-first search version is used by Atomic[Fel94] and
Myrinet[Bod*95], where the switches are passive and the hosts determine the topology by prob-
ing the network. Each host runs the BFS and shortest paths algorithms to determine its set of
source-based routes to the other nodes. A key challenge in automatic mapping of networks, espe-
cially with simple switches that only move messages through without any special processing is
determining when two distinct routes through the network lead to the same switch[Mai*97]. One
solution is to try returning to the source using routes from previously known switches, another is

Figure  10-22  Breaking Deadlock Cycles with Virtual Channels

Each physical channel is broken into two virtual channels, call them lo and hi. The virtual channel “parity”
of the input port is used for the output, except on turns north to west, which make a transition from lo to hi.

Packet switches
from lo to hi channel
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detecting when there exists identical paths from two, supposedly distinct switches to the same
host.

10.5.6 Turn-model Routing

We have seen that a deadlock free routing algorithm can be constructed by restricting the set of
routes within a network or by providing buffering with each channel that is used in a structured
fashion. How much do we need to restrict the routes? Is there a minimal set of restrictions or a
minimal combination of routing restrictions and buffers? An important development in this direc-
tion, which has not yet appeared in commercial parallel machines, is turn-model routing. Con-
sider, for example, a 2D array. There are eight possible turns, which form two simple cycles, as
shown in Figure 10-23. (The figure is illustrating cycles appearing in the network involving mul-
tiple messages. The reader should see that there is a corresponding cycle in the channel depen-
dency graph.) Dimension order routing prevents the use of four of the eight turns – when
traveling in  it is legal to turn in , but once a packet is traveling in  it can make no further
turns. The illegal turns are indicated by grey lines in the figure. Intuitively, it should be possible
to prevent cycles by eliminating only one turn in each cycle.

Of the 16 different ways to prohibit two turns in a 2D array, 12 prevent deadlock. These consist of
the three unique shown in Figure 10-24 and rotations of these. The west-first algorithm is so
named because there is no turn allowed into the  direction; therefore, if a packet needs to
travel in this direction it must do so before making any turns. Similarly, in north-last there is no
way to turn out of the  direction, so the route must make all its other adjustments before head-
ing in this direction. Finally, negative-first prohibits turns from a positive direction into a negative
direction, so the route must go as negative as its needs to before heading in either positive direc-
tion.

Each of these turn-model algorithms allow very complex, even non-minimal routes. For example,
Figure 10-23 shows some of the routes that might be taken under west-first routing. The elon-
gated rectangles indicate blockages or broken links that might cause such a set of routes to be
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Figure  10-23  Turn Restrictions of  routing

.Dimension order routing on a 2D array prohibits the use of four of the eight possible turns, thereby
breaking both of the simple dependence cycles. A deadlock free routing algorithm can be obtained by
prohibiting only two turns.

∆x ∆y,

x–

+y



Interconnection Network Design

720 DRAFT: Parallel Computer Architecture 9/4/97

used. It should be clear that minimal turn models allow a great deal of flexibility in route selec-
tion. There are many legal paths between pairs of nodes. 

West-first

North-last Negative-first

Figure  10-24  Minimal Turn Model Routing in 2D

Only two of the eight possible turns need be prohibited in order to obtain a deadlock free routing
algorithm. Legal turns are shown for three such algorithms.

Figure  10-25  Examples of legal west-first routes in a 8x8 array

Substantial routing adaptation is obtained with turn model routing, thus providing the ability to
route around faults in a deadlock free manner.
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The turn-model approach can be combined with virtual channels and it can be applied in any
topology. (In some networks, such as unidirectional d-cubes, virtual channels are still required.)
The basic method is (1) partition the channels into sets according to the direction they route pack-
ets (excluding wraparound edges), (2) identify the potential cycles formed by “turns” between
directions, and (3) prohibit one turn in each abstract cycle, being careful to break all the complex
cycles as well. Finally, wraparound edges can be incorporated, as long as they do not introduce
cycles. If virtual channels are present, treat each set of channels as a distinct virtual direction.

Up*-down* is essentially a turn-model algorithm, with the assumption of bidirectional channels,
using only two directions. Indeed, reviewing the up*-down* algorithm, there may be many short-
est paths that conform to the up*-down* restriction, and there are certainly many non-minimal
up*-down* routes in most networks. Virtual channels allow the routing restrictions to be loos-
ened even further.

10.5.7 Adaptive Routing

The fundamental advantage of loosening the routing restrictions is that it allows there to be mul-
tiple legal paths between pairs of nodes. This is essential for fault tolerance. If the routing algo-
rithm allows only one path, failure of a single link will effectively leave the network
disconnected. With multipath routing, it may be possible to steer around the fault. In addition, it
allows traffic to be spread more broadly over available channels and thereby improves the utiliza-
tion of the network. When a vehicle is parked in the middle of the street, it is often nice to have
the option of driving around the block.

Simple deterministic routing algorithms can introduce tremendous contention within the net-
work, even though communication load is spread evenly over independent destinations. For
example, Figure 10-26 shows a simple case where four packets are traveling to distinct destina-
tions in a 2D mesh, but under dimension order routing they are all forced to travel through the
same link. The communication is completely serialized through the bottleneck, while links for
other shortest paths are unused. A multipath routing algorithm could use alternative channels, as
indicated in the right hand portion of the figure. For any network topology there exist bad permu-
tations[GoKr84], but simple deterministic routing makes these bad permutations much easier to
run across. The particular example in Figure 10-26 has important practical significance. A com-
mon global communication pattern is a transpose. On a 2D mesh with dimension order routing,
all the packets in a row must go through a single switch before filling in the column. 

Multipath routing can be incorporated as an extension of any of the basic switch mechanisms.
With source based routing, the source simply chooses among the legal routes and builds the
header accordingly. No change to the switch is required. With table driven routing, this can be
accomplished by setting up table entries for multiple paths. For arithmetic routing additional con-
trol information would need to be incorporated in the header and interpreted by the switch.

Adaptive routing is a form of multipath routing where the choice of routes is made dynamically
by the switch in response to traffic encountered en route. Formally, an adaptive routing function
is a mapping of the form: , where  represents the switch state. In particular,
if one of the desired outputs is blocked or failed, the switch may choose to send the packet on an
alternative channel. Minimal adaptive routing will only route packets along shortest paths to their
destination, i.e., every hop must reduce the distance to the destination. An adaptive algorithm that
allows all shortest paths to be used is fully adaptive, otherwise it is partially adaptive. An inter-

RA : C N Σ C→×× Σ
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esting extreme case of non-minimal adaptive routing is what is called “hot potato” routing. In this
scheme the switch never buffers packets. If more than one packet is destined for the same output
channel, the switch sends one towards its destination and misroutes the rest onto other channels. 

Adaptive routing is not widely used in current parallel machines, although it has been studied
extensively in the literature[NgSe89,LiHa91], especially through the Chaos router[KoSn91]. The
nCUBE/3 is to provide minimal adaptive routing in a hypercube. The network proposed for the
Tera machine is to use hot potato routing, with 128 bit packets delivered in one 3ns cycle.

Although adaptive routing has clear advantages, it is not without its disadvantages. Clearly it
adds to the complexity of the switch, which can only make the switch slower. The reduction in
bandwidth can outweigh the gains of the more sophisticated routing – a simple deterministic net-
work in its operating regime is likely to outperform a clever adaptive network in saturation. In
non-uniform networks, such as a -dimensional array, adaptivity hurts performance on uniform
random traffic. Stochastic variations in the load introduce temporary blocking in any network.
For switches at the boundary of the array, this will tend to propel packets toward the center. As a
result, contention forms in the middle of the array that is not present under deterministic routing.

Adaptive routing can cause problems with certain kinds of non-uniform traffic as well. With
adaptive routing, packets destined for a hot spot will bounce off the saturated path and clog up
the rest of the network, not just the tree to the destination, until all traffic is effected. In addition,
when the hot spot clears, it will take even longer for the network saturation to drain because more
packets destined for the problem node are in the network.

Non-minimal adaptive routing performs poorly as the network reaches saturation, because pack-
ets traverse extra links and hence consume more bandwidth. The throughput of the network tends
to drop off as load is increased, rather than flattening at the saturation point, as suggested by
Figure 10-17.

Recently there have been a number of proposals for low-cost partially and fully adaptive that use
a combination of a limited number of virtual channels and restrictions on the set of
turns[ChKi92, ScJa95]. It appears that most of the advantages of adaptive routing, including fault
tolerance and channel utilization, can be obtained with a very limited degree of adaptability.

Figure  10-26  Routing path conflicts under deterministic dimension-order routing

Several message from distinct source to distinct destination contend for resources under dimension
order routing, whereas an adaptive routing scheme may be able to use disjoint paths.
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10.6 Switch Design

Ultimately, the design of a network boils down to the design of the switch and how the switches
are wired together. The degree of the switch, its internal routing mechanisms, and its internal
buffering determine what topologies can be supported and what routing algorithms can be imple-
mented. Now that we understand these higher level network design issues, let us return to the
switch design in more detail. Like any other hardware component of a computer system, a net-
work switch comprises: datapath, control, and storage. This basic structure was illustrated at the
beginning of the chapter in Figure 10-5. Throughout most of the history of parallel computing,
switches were built from a large number of low integration components, occupying a board or a
rack. Since the mid 1980s, most parallel computer networks are built around single chip VLSI
switches – exactly the same technology as the microprocessor. (This transition is taking place in
LANs a decade later.) Thus, switch design is tied to the same technological trends discussed in
Chapter 1: decreasing feature size, increasing area, and increasing pin count. We should view
modern chip design from a VLSI perspective.

10.6.1 Ports

The total number of pins is essentially the total number of input and output ports times the chan-
nel width. Since the perimeter of the chip grows slowly compared to area, switches tend to be pin
limited. The pushes designers toward narrow high frequency channels. Very high speed serial
links are especially attractive, because it uses the least pins and eliminates problems with skew
across the bit lines in a channel. However, with serial links the clock and all control signals must
be encoded within the framing of the serial bit stream. With parallel links, one of the wires is
essentially a clock for the data on the others. Flow control is realized using an additional wire,
providing a ready, acknowledge handshake.

10.6.2 Internal Datapath

The datapath is the connectivity between each of a set of input ports, i.e., input latches, buffers or
FIFO, and every output port. This is generally referred to as the internal cross-bar, although it can
be realized in many different ways. A non-blocking cross-bar is one in which each input port can
be connected to a distinct output in any permutation simultaneously. Logically, for an 
switch the non-blocking cross-bar is nothing more than an -way multiplexor associated with
each destination, as shown in Figure 10-27. The multiplexor may be implemented in a variety of
different ways, depending on the underlying technology. For example, in VLSI it is typically
realized as a single bus with  tristate drivers, also shown in Figure 10-27. In this case, the con-
trol path provides  selects per output.

It is clear that the hardware complexity of the cross bar is determined by the wires. There are 
data wires in each direction, requiring  area. There are also  control wires, which add to
this significantly. How do we expect switches to track improvements in VLSI technology?
Assume that the area of the cross-bar stays constant, but the feature size decreases. The ideal
VLSI scaling law says that if the feature size is reduced by a factor of  (including the gate thick-
ness) and reduce the voltage level by the same factor, then the speed of the transistors improves
by a factor of , the propagation delay of wires connecting neighboring transistors improves
by a factor of , and the total number of transistors per unit area increases by  with the
same power density. For switches, this means that the wires get thinner and closer together, so the
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degree of the switch can increase by a factor of . Notice, the switch degree improves as only
the square root of the improvement in logic density. The bad news is that these wires run the
entire length of the cross bar, hence the length of the wires stays constant. The wires get thinner,
so they have more resistance. The capacitance is reduced and the net effect is that the propagation
delay is unchanged[Bak90]. In other words, ideal scaling gives us an improvement is switch
degree for the same area, but no improvement is speed. The speed does improve (by a factor of

 if the voltage level is held constant, but then the power increases with . Increases in
chip area will allow larger degree, but the wire lengths increase and the propagation delays will
increase.

There is some degree of confusion over the term cross bar. In the traditional switching literature
multistage interconnection network that have a single controller are sometimes called cross bars,
eventhough the data path through the switch is organized as an interconnection of small cross
bars. In many cases these are connected in a butterfly topology, called a Banyan network in the
switching literature. A banyan networks is non-blocking if its inputs are sorted, so some non-
blocking cross-bars are built as batcher sorting network in front of a banyan network. An
approach that has many aspects in common with Benes networks is to employ a variant of the
butterfly, called a delta network, and use two of these networks in series. The first serves to ran-
domize packets position relative to the input ports and the second routes to the output port. This
is used, for example, in some commercial ATM switches[Tu888]. In VLSI switches, it is usually
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Figure  10-27  Cross-bar Implementations

The cross bar internal to a switch can be implemented as a collection of multiplexors, a grid of tristate drivers, or
via a contentional static RAM that time multiplexes across the ports.
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more effective to actually build a non-blocking cross-bar, since its is simple, fast and regular. The
key limit is pins anyways.

It is clear that VLSI switches will continue to advance with the underlying technology, although
the growth rate is likely to be slower than the rate of improvement in storage and logic. The hard-
ware complexity of the cross-bar can be reduced if we give up the non-blocking property and
limit the number of inputs that can be connected to outputs at once. In the extreme, this reduces
to a bus with  drivers and  output selects. However, the most serious issue in practice turns out
to be the length of the wires and the number of pins, so reducing the internal bandwidth of the
individual switches provides little savings and a significant loss in network performance. 

10.6.3 Channel Buffers

The organization of the buffer storage within the switch has a significant impact on the switch
performance. Traditional routers and switches tend to have large SRAM or DRAM buffers exter-
nal to the switch fabric, whereas in VLSI switches the buffering is internal to the switch and
comes out of the same silicon budget as the datapath and the control section. There are four basic
options: no buffering (just input and output latches), buffers on the inputs, buffers on the outputs,
or a centralized shared buffer pool. A few flits of buffering on input and output channels decou-
ples the switches on either end of the link and tends to provide a significant improvement in per-
formance. As chip size and density increase, more buffering is available and the network designer
has more options, but still the buffer real-estate comes at a premium and its organization is
important. Like so many other aspects in network design, the issue is not just how effectively the
buffer resources are utilized, but how the buffering effects the utilization of other components of
the network. 

Intuitively, one might expect sharing of the switch storage resources to be harder to implement,
but allow better utilization of these resources than partitioning the storage among ports. They are
indeed harder to implement, because all of the communication ports need to access the pool
simultaneously, requiring a very high bandwidth memory. More surprisingly, sharing the buffer
pool on demand can hurt the network utilization, because a single congested output port can
“hog” most of the buffer pool and thereby prevent other traffic from moving through the switch.
Given the trends in VLSI, it makes sense to keep the design simple and throw a little more inde-
pendent resources at the problem. 

Input buffering

An attractive approach is to provide independent FIFO buffers with each input port, as illustrated
in Figure 10-28. Each buffer needs to be able to accept a flit every cycle and deliver one flit to an
output, so the internal bandwidth of the switch is easily matched to the flow of data coming in.
The operation of the switch is relatively simple; it monitors the head of each input fifo, computes
the desired output port of each, and schedules packets to move through the cross-bar accordingly.
Typically, there is routing logic associated with each input port to determine the desired output.
This is trivial for source-based routing; it requires an arithmetic unit per input for algorithmic
routing, and, typically a routing table per input with table-driven routing. With cut-through rout-
ing, the decision logic does not make an independent choice every cycle, but only every packet.
Thus, the routing logic is essentially a finite state machine, which spools all the flits of a packet to
the same output channel before making a new routing decision at the packet boundary[SeSu93]. 
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One problem with the simple input buffered approach is the occurrence of “head of line” (HOL)
blocking. Suppose that two ports have packets destined for the same output port. One of them
will be scheduled onto the output and the other will be blocked. The packet just behind the
blocked packet may be destined for one of the unused outputs (there is guaranteed to be unused
outputs), but it will not be able to move forward. This head-of-line blocking problem is familiar
in our vehicular traffic analogy, it corresponds to having only one lane approaching an intersec-
tion. If the car ahead is blocked attempting to turn there is no way to proceed down the empty
street ahead.

We can easily estimate the effect of head-of-line blocking on channel utilization. If we have two
input ports and randomly pick an output for each, the first succeeds and the second has a 50-50
chance of picking the unused output. Thus, the expected number of packets per cycle moving
through the switch is 1.5 and, hence, the expected utilization of each output is 75%. Generalizing
this, if  is the expect number of output ports covered by  random inputs to an -port

switch then, . Computing this recurrence up to  for vari-

ous switch sizes reveals that the expected output channel utilization for a single cycle of a fully
loaded switch quickly drops to about 65%. Queueing theory analysis shows that the expected uti-
lization in steady state with input queueing is 59%[Kar*87].

The impact of HOL blocking can be more significant than this simple probabilistic analysis indi-
cates. Within a switch, there may be bursts of traffic for one output followed by bursts for
another, and so on. Even though the traffic is evenly distributed, given a large enough window,
each burst results in blocking on all inputs.[Li88] Even if there is no contention for an output
within a switch, the packet at the head of an input buffer may be destined for an output that is
blocked due to congestion elsewhere in the network. Still the packets behind it cannot move for-
ward. In a wormhole routed network, the entire worm will be stuck in place, effectively consum-

Figure  10-28  Input Buffered Switch

A FIFO is provided at each of the input ports, but the controller can only inspect and service the packets
at the heads of the input FIFOs.
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ing link bandwidth without going anywhere. A more flexible organization of buffer resources
might allow packets to slide ahead of packets that are blocked.

Output buffering

The basic enhancement we need to make to the switch is to provide a way for it to consider mul-
tiple packets at each input as candidates for advancement to the output port. A natural option is to
expand the input FIFOs to provide an independent buffer for each output port, so packets sort
themselves by destination upon arrival, as indicated by Figure 10-29. (This is the kind of switch
assumed by the conventional delay analysis in Section 10.4; the analysis is simplified because the
switch does not introduce additional contention effects internally.) With a steady stream of traffic
on the inputs, the outputs can be driven at essentially 100%. However, the advantages of such a
design are not without a cost; additional buffer storage and internal interconnect is required.1

Along with the sorting stage and the wider multiplexors, this may increase the switch cycle time
or increase its routing delay. 

It is a matter of perspective whether the buffers in Figure 10-29 are associated with the input or
the output ports. If viewed as output port buffers, the key property is that each output port has
enough internal bandwidth to receive a packet from every input port in one cycle. This could be
obtained with a single output FIFO, but it would have to run at an internal clock rate of  times
that of the input ports. 

Virtual Channels buffering

Virtual channels suggest an alternative way of organizing the internal buffers of the switch.
Recall, a set of virtual channels provide transmission of multiple independent packets across a
single physical link. As illustrated in Figure 10-29, to support virtual channels the flow across the
link is split upon arrival at an input port into distinct channel buffers. (These are multiplexed
together again, either before or after the crossbar, onto the output ports. If one of the virtual chan-
nel buffers is blocked, it is natural to consider advancing the other virtual channels toward the
outputs. Again, the switch has the opportunity to select among multiple packets at each input for
advance to the output ports, however, in this case the choice is among different virtual channels
rather than different output ports. It is possible that all the virtual channels will need to route to
the same output port, but expected coverage of the outputs is much better. In a probabilistic anal-
ysis, we can ask what the expected number of distinct output ports are covered by choosing
among  requests for  ports, where  is the number of virtual channels.. 

Simulation studies show that large (256 to 1024 node) 2-ary butterflies using wormhole routing
with moderate buffering (16 flits per channel) saturate at a channel utilization of about 25%
under random traffic. If the same sixteen flits of buffering per channel are distributed over a larger
number of virtual channels, the saturation bandwidth increases substantially. It exceeds 40% with
just two virtual channels (8-flit buffers) and is nearly 80% at sixteen channels with single-flit
buffers[Dal90a]. While this study keeps the total buffering per channel fixed, it does not really

1.  The MIT Parc switch[Joe94] provides the capability of the nxn buffered switch but avoid the storage and
interconnect penalty. It is designed for fixed-size packets. The set of buffers at each input form a pool and
each output has a list of pointers to packets destined for it. The timing constraint in this design is the ability
to push n pointers per cycle into the output port buffer, rather than n packets per cycle.
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keep the cost constant. Notice that a routing decision needs to be computed for each virtual chan-
nel, rather than each physical channel, if packets from any of the channels are to be considered
for advancement to output ports. 

By now the reader is probably jumping a step ahead to additional cost/performance trade-offs
that might be considered. For example, if the cross-bar in Figure 10-27 has an input per virtual
channel, then multiple packets can advance from a single input at once. This increases the proba-
bility of each packet advancing and hence the channel utilization. The cross-bar increases in size
in only one dimension and the multiplexors are eliminated, since each output port is logically a

-way mux.

10.6.4 Output Scheduling

We have seen routing mechanisms that determine the desired output port for each input packet,
datapaths that provide a connection from the input ports to the outputs, and buffering strategies
that allow multiple packets per input port to be considered as candidates for advancement to the
output port. A key missing component in the switch design is the scheduling algorithm which
selects which of the candidate packets advance in each cycle. Given a selection, the remainder of
the switch control asserts the control points in the cross-bar/mux’s and buffers/latches to effect
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Figure  10-29  Switch Design to avoid HOL blocking

Packets are sorted by output port at each input port so that the controller can a packet for an output port if
any input has a packet destined for that output.
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the register transfer from each selected inputs to the associated output. As with the other aspects
of switch design, there is a spectrum of solutions varying from simple to complex.

A simple approach is to view the scheduling problem as  independent arbitration problems, one
for each output port. Each candidate input buffer has a request line to each output port and a grant
line from each port, as indicated by Figure 10-30. (The figure shows four candidate input buffers
driving three output ports to indicate that routing logic and arbitration input is on a per input
buffer basis, rather than per input port.) The routing logic computes the desired output port and
asserts the request line for the selected output port. The output port scheduling logic arbitrates
among the requests, selects one and asserts the corresponding grant signal. Specifically, with the
cross-bar using tri-state drivers in Figure 10-27b output port  enables input buffer  by asserting
control enable . The input buffer logic advances its FIFO as a result of one of the grant lines
being asserted. 

An additional design question in the switch is the arbitration algorithm used for scheduling flits
onto the output. Options include a static priority scheme, random, round-robin, and oldest-first
(or deadline scheduling). Each of these have different performance characteristics and implemen-
tation complexity. Clearly static priority is the simplest; it is simply a priority encoder. However,
in a large network it can cause indefinite postponement. In general, scheduling algorithms that
provide fair service to the inputs perform better. Round-robin requires extra state to change the
order of priority in each cycle. Oldest-first tends to have the same average latency as random
assignment, but significantly reduces the variance in latencies[Dal90a]. One way to implement
oldest-first scheduling, is to use a control FIFO of input port numbers at each output port. When
an input buffer requests an output, the request is enqueued. The oldest request at the head of the
FIFO is granted.

It is useful to consider the implementation of various routing algorithms and topologies in terms
of Figure 10-30. For example, in a direct -cube, there are  inputs, let’s number them

, and  outputs, numbered , with the host connected to input  and out-
put . The straight path  corresponds to routing in the same dimension, other paths
are a change in dimension. With dimension order routing, packets can only increase in dimension
as they cross the switch. Thus, the full complement of request/grant logic is not required. Input 
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Figure  10-30  Control Structure for Output Scheduling

.Associated with each input buffer is routing logic to determine the output port, a request line and a
grant line per output. Each output has selection logic to arbitrate among asserted request and assert one
grant, causing a flit to advance from the input buffer to the output port.
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need only request outputs  and output  need only grant inputs . Obvious static
priority schemes assign priority in increasing or decreasing numerical order. If we further spe-
cialize the switch design to dimension order routing and use a stacked 2x2 cross-bar design (See
exercise) then each input requests only two outputs and each output grants only two inputs. The
scheduling issue amounts to preferring traffic continuing in a dimension vs. traffic turning onto
the next higher dimension.

What are implementation requirements of adaptive routing? First, the routing logic for an input
must compute multiple candidate outputs according to the specific rules of the algorithm, e.g.,
turn restrictions or plane restrictions. For partially adaptive routing, this may be only a couple of
candidates. Each output receives several request and can grant one. (Or if the output is blocked, it
may not grant any.) The tricky point is that an input may be selected by more than one output. It
will need to choose one, but what happens to the other output? Should it iterate on its arbitration
and select another input or go idle? This problem can be formalized as one of on-line bipartite
matching[Kar*90]. The requests define a bipartite graph with inputs on one side and outputs on
the other. The grants (one per output) define a matching of input-output pairs within the request
graph. The maximum matching would allow the largest number of inputs to advance in a cycle,
which ought to give the highest channel utilization. Viewing the problem in this way, one can
construct logic that approximates fast parallel matching algorithms[And*92]. The basic idea is to
form a tentative matching using a simple greedy algorithm, such as random selection among
requests at each output followed by selection of grants at each inputs. Then, for each unselected
output, try to make an improvement to the tentative matching. In practice, the improvement
diminishes after a couple of iterations. Clearly, this is another case of sophistication vs. speed. It
the scheduling algorithm increases the switch cycle time or routing delay, it may be better to
accept a little extra blocking and get the job done faster.

This maximum matching problem applies to the case where multiple virtual channels are multi-
plexed through each input of the cross-bar, even with deterministic routing. (Indeed, the tech-
nique was proposed for the AN2 ATM switch to address the situation of scheduling cells from
several “virtual circuits”.1 Each input port has multiple buffers that it can schedule onto its cross-
bar input, and these may be destined for different outputs. The selection of the outputs determine
which virtual channel to advance. If the cross-bar is widened, rather than multiplexing the inputs,
the matching problem vanishes and each output can make a simple independent arbitration.

10.6.5 Stacked Dimension Switches

Many aspects of switch design are simplified if there are only two input and two outputs, includ-
ing the control, arbitration, and data paths. Several designs, including the torus routing
chip[SeSu93], J-machine, and Cray T3D, have used a simple 2x2 building block and stacked
these to construct switches of higher dimension, as illustrated in Figure 10-31. If we have in mind
a d-cube, traffic continuing in a given dimension passes straight through the switch in that dimen-
sion, whereas if it need to turn into another dimension it is routed vertically through the switch.
Notice that this adds a hop for all but the lowest dimension. This same technique yields a topol-
ogy called cube-connected cycles when applied to a hypercube.

1.  Virtual circuits should not be confused with virtual channels. The former is a technique for associating
routing a resources along an entire source to destination route. The latter is a strategy for structuring the
buffering associated with each link.
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10.7 Flow Control

In this section we consider in detail what happens when multiple flows of data in the network
attempt to use the same shared network resources at the same time. Some action must be taken to
control these flows. If no data is to be lost, some of the flows must be blocked while others pro-
ceed. The problem of flow control arises in all networks and at many levels, but it is qualitatively
different in parallel computer networks than in local and wide area networks. In parallel comput-
ers network traffic needs to be delivered about as reliably as traffic across a bus and there are a
very large number of concurrent flows on very small time scales. No other networking regime has
such stringent demands. We will look briefly at some of these differences and then examine in
detail how flow control is addressed at the link level and end-to-end in parallel machines.

10.7.1 Parallel Computer Networks vs. LANs and WANs

To build intuition for the unique flow-control requirements of the parallel machine networks, let
us take a little digression and examine the role of flow control in the networks we deal with every
day for file transfer and the like. We will look at three examples: ethernet style collision based
arbitration, FDDI style global arbitration, and unarbitrated wide-area networks.

In an ethernet, the entire network is effectively a single shared wire, like a bus only longer. (The
aggregate bandwidth is equal to the link bandwidth.) However, unlike a bus there is no explicit
arbitration unit. A host attempts to send a packet by first checking that the network appears to be
quiet and then (optimistically) driving its packet onto the wire. All nodes watch the wire, includ-
ing the hosts attempting to send. If there is only one packet one the wire, every host will “see” it
and the host specified as the destination will pick it up. If there is a collision, every host will

Figure  10-31  Dimension stacked switch

Traffic continuing in a dimension passes straight through one 2x2 switch, whereas when it turns to route
in another dimension it is routed vertically up the stack
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detect the garbled signal, including the multiple senders. The minimum that a host may drive a
packet, i.e., the minimum channel time, is about 50 µs; this is to allow time for all hosts to detect
collisions.

The flow-control aspect is how the retry is handled. Each sender backs off for a random amount
of time and then retries. With each repeated collision the retry interval from which the random
delay is chosen is increased. The collision detection is performed within the network interface
hardware, and the retry is handled by the lowest level of the ethernet driver. If there is no success
after a large number of tries, the ethernet driver gives up and drops the packet. However, the mes-
sage operation originated from some higher-level communication software layer which has its
own delivery contract. For example, the TCP/IP layer will detect the delivery failure via a timeout
and engage its own adaptive retry mechanism, just as it does for wide-area connection, which we
discuss below. The UDP layer will ignore the delivery failure, leaving it to the user application to
detect the event and retry. The basic concept of the ethernet rests on the assumption that the wire
is very fast compared to the communication capability of the hosts. (This assumption was reason-
able in the mid 70s when ethernet was developed.) A great deal of study has been given to the
properties of collision-based media access control, but basically as the network reaches satura-
tion, the delivered bandwidth drops precipitously.

Ring-based LANS, such as token-ring and FDDI, use a distributed form of global arbitration to
control access to the shared medium. A special arbitration token circulates the ring when there is
an empty slot. A host that desires to send a packet waits until the token comes around, grabs it,
and drives the packet onto the ring. After the packet is sent, the arbitration token is returned to the
ring. In effect, flow-control is performed at the hosts on every packet as part of gaining access to
the ring. Even if the ring is idle, a host must wait for the token to traverse half the ring, on aver-
age. (This is why the unloaded latency for FDDI is generally higher than that of Ethernet.) How-
ever, under high load the full link capacity can be used. Again, the basic assumption underlying
this global arbitration scheme is that the network operates on a much small timescale than the
communication operations of the hosts.

In the wide-area case, each TCP connection (and each UDP packet) follows a path through a
series of switches, bridges and routers across media of varying speeds between source and desti-
nation. Since the internet is a graph, rather than a simple linear structure, at any point there may
be a set of incoming flows with a collective bandwidth greater than the outgoing link. Traffic will
back up as a result. Wide-area routers provide a substantial amount of buffering to absorb sto-
chastic variations in the flows, but if the contention persists these buffers will eventually fill up.
In this case, most routers will just drop the packets. Wide-area links may be stretches of fibers
many miles long, so when the packet is driven onto a link it is hard to know if it will find buffer
space available when it arrives. Furthermore, the flows of data through a switch are usually unre-
lated transfers. They are not, in general, a collection of flows from within a single parallel pro-
gram, which imposes a degree of inherent end-to-end flow control by waiting for data it needs
before continuing. The TCP layer provides end-to-end flow control and adapts dynamically to the
perceived characteristics of the route occupied by a connection. It assumes that packet loss
(detected via timeout) is a result of contention at some intermediate point, so when it experiences
a loss it sharply decreases the send rate (by reducing the size of its burst window). It slowly
increases this rate, i.e., the window size, as data is transferred successfully (detected via acknowl-
edgments from destination to source), until it once again experiences a loss. Thus, each flow is
controlled at the source governed by the occurrence of time-outs and acknowledgments.
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Of course, the wide-area case operates on timescale of fractions of a second, whereas parallel
machine networks operate on a scale nanoseconds. Thus, one should not expect the techniques to
carry over directly. Interestingly, the TCP flow-control mechanisms do work well in the context
of collision-based arbitration, such as ethernet. (Partly the software overhead time tends to give a
chance for the network to clear.) However, with the emergence of high-speed, switched local and
wide area networks, especially ATM, the flow-control problem has taken on much more of the
characteristics of the parallel machine case. At the time of writing, most commercial ATM
switches provide a sizable amount of buffering per link (typically 64 to 128 cells per link) but
drop cells when this is exceeded. Each cell is 53 bytes, so at the 155 Mb/s OC-3 rate a cell trans-
fer time is 2.7 µs. Buffers fill very rapidly compared to typical LAN/WAN end-to-end times.
(The TCP mechanisms prove to be quite ineffective in the ATM settings when contending with
more aggressive protocols, such as UDP.) Currently, the ATM standardization efforts are hotly
debating link-level flow and rate control measures. This development can be expected to draw
heavily on the experiences from parallel machines.

10.7.2 Link-level flow control

Essentially all parallel machine interconnection networks provide link-level flow control. The
basic problem is illustrated in Figure 10-32. Data is to be transferred from an output port of one
node across a link to an input port of a node operating autonomously. The storage may be a sim-
ple latch, a FIFO, or buffer memory. The link may be short or long, wide or thin, synchronous or
asynchronous. The key point is that as a result of circumstances at the destination node, storage at
the input port may not be available to accept the transfer, so the data must be retained at the
source until the destination is ready. This may cause the buffers at the source to fill, and it in turn
may exert “back pressure” on its sources. 

The implementation of link-level flow control differs depending on the design of the link, but the
main idea is the same. The destination node provides feedback to the source indicating whether it
is able to receive additional data on the link. The source holds onto the data until the destination
indicates that it is able. Before we examine how this feedback is incorporated into the switch
operation, we look at how the flow control is implemented on different kinds of links.

Figure  10-32  Link level flow-control

As a result of circumstances at the destination node, the storage at the input port may not be available to
accept the data transfer, so the data must be retained at the source until the destination is ready
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With short-wide links, the transfer across the link is essentially like a register transfer within a
machine, extended with a couple of control signals. One may view the source and destination
registers as being extended with a full/empty bit, as illustrated in Figure 10-33. If the source is
full and the destination is empty, the transfer occurs, the destination become full, and the source
becomes empty (unless it is refilled from its source). With synchronous operation (e.g., in the
Cray T3D, IBM SP-2, TMC CM-5 and MIT J-machine) the flow control determines whether a
transfer occurs for the clock cycle. It is easy to see how this is realized with edge-triggered or
multi-phase level-sensitive designs. If the switches operate asynchronously, the behavior is much
like a register transfer in a self-timed design. The source asserts the request signal when it is full
and ready to transfer, the destination uses this signal to accept the value (when the input port is
available) and asserts ack when it has accepted the data. With short-thin links the behavior is sim-
ilar, excepts that series of phits is transferred for each req/ack handshake. .

The req/ack handshake can be viewed as the transfer of a single token or credit between the
source and destination. When the destination frees the input buffer, it passes the token to the
source (i.e., increases its credit). The source uses this credit when it sends the next flit and must
wait until its account is refilled. For long links, this credit scheme is expanded so that the entire
pipeline associated with the link propagation delay can be filled. Suppose that the link is suffi-
ciently long that several flits are in transit simultaneously. As indicated by Figure 10-34, it will
also take several cycles for acks to propagate in the reverse direction, so a number of acks (cred-
its) may be in transit as well. The obvious credit-based flow control is for the source to keep
account of the available slots in the destination input buffer. The counter is initialized to the
buffer size. It is decemented when a flit is sent and the output is blocked if the counter reaches
zero. When the destination removes a flit from the input buffer, it returns a credit to the source,
which increments the counter. The input buffer will never overflow; there is always room to drain
the link into the buffer. This approach is most attractive with wide links, which have dedicated
control lines for the reverse ack. For thin link, which multiplex ack symbols onto the opposite
going channel, the ack per flit can be reduced by transferring bigger chunks of credit. However,
there is still the problem that the approach is not very robust to loss of credit tokens.

Ideally, when the flows are moving forward smoothly there is no need for flow-control. The flow-
control mechanism should be a governor which gently nudges the input rate to match the output
rate. The propagation delays on the links give the system momentum. An alternative approach to
link level flow control is to view the destination input buffer as a staging tank with a low water
mark and a high water mark. When the fill level drops below the low mark, a GO symbol is sent

Figure  10-33  Simple Link level handshake

The source asserts its request when it has a flit to transmit, the destination acknowledges the receipt of a
flit when it is ready to accept the next one. Until that time, the source repeatedly transmits the flit.
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to the source, and when it goes over the high mark a STOP symbol is generated. There needs to
be enough room below the low mark to withstand a full round-trip delay (the GO propagating to
the source, being processed, and the first of a stream of flits propagating to the destination). Also,
there must be enough headroom above the high mark to absorb the round-trip worth of flits that
may be in-flight. A nice property of this approach is that redundant GO symbols may be sent any-
where below the high mark and STOP symbols may be sent anywhere above the low mark with
no harmful effect. The fraction of the link bandwidth used by flow control symbols can be
reduced by increasing the amount of storage between the low and high marks in the input buffer.
This approach is used for example in Cal Tech routers[SeSu93] and the Myrinet commercial fol-
low-on[Bod*95]. 

It is worth noting that the link-level flow-control is used on host-switch links, as well as switch-
switch links. In fact, it is generally carried over to the processor-NI interface as well. However,
the techniques may vary for these different kinds of interfaces. For example, in the Intel Paragon
the (175 MB/s) network links are all short with very small flit buffers. However, the NIs have

Figure  10-34  Transient Flits and Acks with long links. 

With longer links the flow control scheme needs to allow more slack in order to keep the link full. Sev-
eral flits can be driven onto the wire before waiting for acks to come back.

Figure  10-35  Slack Buffer Operation
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Low
Mark

High
Mark

Empty

Full

Stop

Go

Incoming Phits

Outgoing Phits

Flow-control Symbols



Interconnection Network Design

736 DRAFT: Parallel Computer Architecture 9/4/97

large input and output FIFOs. The communication assist includes a pair for DMA engines that
can burst at 300 MB/s between memory and the network FIFOs. It is essential that the output
(input) buffer not hit full (empty) in the middle of a burst, because holding the bus transaction
would hurt performance and potential lead to deadlock. Thus, the burst is matched to the size of
the middle region of the buffer and the high/low marks to the control turn-around between the NI
and the DMA controller.

10.7.3 End-to-end flow control

Link-level flow-control exerts a certain amount of end-to-end control, because if congestion per-
sists buffer will fill up and the flow will be controlled all the way back to the source host nodes.
This is generally called back-pressure. For example, if  nodes are sending data to a single desti-
nation, they must eventually all slow to an average bandwidth of -th the output bandwidth. If
the switch scheduling is fair and all the routes through the network are symmetric, back-pressure
will be enough to effect this. The problem is that by the time the sources feel the back-pressure
and regulate their output flow, all the buffers in the tree from the hot spot to the sources are full.
This will cause all traffic that crosses this tree to be slowed as well.

Hot-spots

This problem received quite a bit of attention as the technology reached a point where machines
of several hundred to a thousand processors became reasonable.[PfNo85] If a thousand proces-
sors deliver on average any more than 0.1% of their traffic to any one destination, that destination
becomes saturated. If this situation persists, as it might if frequent accesses are made to an impor-
tant shared variable, a saturation tree forms in front of this destination that will eventually reach
all the way to the sources. At this point, all the remaining traffic in the system is severely
impeded. The problem is particularly pernicious in Butterflies, since there is only one route to
each destination and there is a great deal of sharing among routes from one destination. Adaptive
routing proves to make the hot spot problem even worse because traffic destined for the hot spot
is sure to run into contention and be directed to alternate routes. Eventually the entire network
clogs up. Large network buffers do not solve the problem, they just delay the onset. The time for
the hot spot to clear is proportional to the total amount of hot spot traffic buffered in the network,
so adaptivity and large buffers increase the time required for the hot spot to clear after the load is
removed.

Various mechanisms have been developed to mitigate the causes of hot spots, such as all nodes
incrementing a shared variable to perform a reduction or synchronization event. We examine
these below, however, they only address situations where the problematic traffic is logically
related. The more fundamental problem is that link-level flow control is like stopping on the free-
way. Once the traffic jam forms, you are stuck. The better solution is not to get on the freeway at
such times. With fewer packets inside the network, the normal mechanisms can do a better job of
getting traffic to its destinations.

Global communication operations

Problems with simple back-pressure have been observed with completely balanced communica-
tion patterns, such as each node sending  packets to every other node. This occurs in many situ-
ations, including transposing a global matrix, converting between blocked and cyclic layouts, or
the decimation step of an FFT [BrKu94,Dus*96]. Even if the topology is robust enough to avoid
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serious internal bottlenecks on these operations (this is true of a fat-tree, but not a low-degree
dimension-order mesh[Lei92]) a temporary backlog can have a cascading effect. When one desti-
nation falls behind in receiving packets from the network, a backlog begins to form. If priority is
given to draining the network, this node will fall behind in sending to the other nodes. They in
turn will send more than they receive and the backlog will tend to grow. 

Simple end-to-end protocols in the global communication routines have been shown to mitigate
this problem in practice. For example, a node may wait after sending a certain amount of data
until it has also received this amount, or it may wait for chunks of its data to be acknowledged.
These precautions keep the processors more closely in step and introduce small gaps in the traffic
flow which decouples the processor-to-processor interaction through the network. (Interestingly,
this technique is employed with the metering lights on the Oakland Bay bridge. Periodically, a
wavefront of cars is injected into the bridge, separated by small gaps. This reduces the stochastic
temporary blocking and avoids cascading blockage.)

Admission control

With shallow, cut-through networks the latency is low below saturation. Indeed in most modern
parallel machine networks a single small message, or perhaps a few messages, will occupy an
entire path from source to destination. If the remote network interface is not ready to accept the
message, it is better to keep it within the source NI, rather than blocking traffic within the net-
work. One approach to achieving this is to perform NI-to-NI credit-based flow-control. One
study examining such techniques for a range of networks [CaGo95] indicates that allowing a sin-
gle outstanding message per pair of NIs gives good throughput and maintains low latency.

10.8 Case Studies

Networks are a fascinating area of study from a practical design and engineering viewpoint
because they do one simple operation – move information from one place to another – and yet
there is a huge space of design alternatives. Although the most apparent characteristics of a net-
work are its topology, link bandwidth, switching strategy, and routing algorithm, however, sev-
eral more characteristics must be specified to completely describe the design. These include the
cycle time, link width, switch buffer capacity and allocation strategy, routing mechanism, switch
output selection algorithm, and the flow-control mechanism. Each component of the design can
be understood and optimized in isolation, but they all interact in interesting ways to determine the
global network performance and any particular traffic pattern, in the context of node architecture
and the dependencies embedded in the programs running on the platform.

In this section, we summarize a set of concrete network design points in important commercial
and research parallel architectures. Using the framework established above in this chapter, we
systematically describe the key design parameters. 

10.8.1 Cray T3D Network

The Cray T3D network consists of a 3-dimensional bidirectional torus of up to 1024 switch
nodes, each connected directly to a pair of processors1, with a data rate of 300 MB/s per channel.
Each node is on a single board, along with two processors and memory. There are up to 128
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nodes (256 processors) per cabinet; larger configurations are constructed by cabling together cab-
inets. Dimension-order, cut-through packet switched routing is used. The design of the network is
very strongly influenced by the higher level design the rest of the system. Logically independent
request and response networks are supported, with two virtual channels each to avoid deadlock,
over a single set of physical links. Packets are variable length in multiples of 16 bits, as illustrated
by Figure 10-36, and network transactions include various reads and writes, plus the ability to
start a remote block-transfer engine (BLT), which is basically a DMA device. The first phit
always contains the route, followed by the destination address, and the packet type or command
code. The remainder of the payload depends on the packet type, consisting of relative addresses
and data. All of the packet is parity protected, except the routing phit. If the route is corrupted it
will be misrouted and the error will be detected at the destination because the destination address
will not match the value in the packet.1

T3D links are short, wide, and synchronous. Each unidirectional link is 16 data and 8 control bits
wide, operating under a single 150 MHz clock. Flits and phits are 16 bits. Two of the control bits
identify the phit type (00 No info, 01 Routing tag, 10 packet, 11 last). The routing tag phit and the
last-packet phit provide packet framing. Two additional control bits identify the virtual channel

1.  Special I/O Gateway nodes attached to the boundary of the cube include two processors each
attached to a 2-dimensional switch node connected into the X and Z dimensions. We will leave
that aspect of the design and return to it in the I/O chapter.

1.  This approach to error detection reveals a subtle aspect of networks. If the route is corrupted, there is a
very small probability that it will take a wrong turn at just the wrong time and collide with another packet in
a manner that causes deadlock within the network, in which case the end node error detection will not be
engaged.

Figure  10-36  Cray T3D Packet Formats

All packets consist of a series of 16 bit phits, with the first three being the route and tag, the destination
PE number, and the command. Parsing and processing of the rest of the packet is determined by the tag
and command.
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(req-hi, req-lo, resp-hi, resp-lo). The remaining four control lines are acknowledgments in the
opposite direction, one per virtual channel. Thus, flow control per virtual channel and phits can
be interleaved between virtual channels on a cycle by cycle basis.

The switch is constructed as three independent dimension routers, in six 10k gate arrays. There is
modest amount of buffering in each switch, (8 16-bit parcels for each of four virtual channels in
each of three dimensions), so packets compress into the switches when blocked. There is enough
buffering in a switch to store small packets. The input port determines the desired output port by
a simple arithmetic operation. The routing distance is decremented and if the result is non-zero
the packet continues in its current direction on the current dimension, otherwise it is routed into
the next dimension. Each output port uses a rotating priority among input ports requesting that
output. For each input port, there is a rotating priority for virtual channels requesting that output.

The network interface contains eight packet buffers, two per virtual channel. The entire packet is
buffered in the source NI before being transmitted into the network. It is buffered in the destina-
tion NI before being delivered to the processor or memory system. In addition to the main data
communication network, separate tree-like networks for logical-AND (Barrier) and logical OR
(Eureka) are provided. 

The presence of bidirectional links provides two possible options in each dimension. A table
lookup is performed in the source network interface to select the (deterministic) route consisting
of the direction and distance in each of the three dimensions. An individual program occupies a
partition of the machine consisting of a logically contiguous sub-array of arbitrary shape (under
operating system configuration). A shift and mask logic within the communication assist maps
the partition-relative virtual node address into a machine-wide logical <X,Y,Z> coordinate
address. The machine can be configured with spare nodes, which can be brought in to replace a
failed node. The <X,Y,Z> is used as an index for the route look-up, so the NI routing tables pro-
vides the final level of translation, identifying the physical node by its < >
route from the source. This routing lookup also identifies which of the four virtual channels is
used. To avoid deadlock within either the request or response (virtual) network the high channel
is used for packets that cross the dateline, and the low channel otherwise.

10.8.2 IBM SP-1, SP-2 Network

The network used in the IBM SP-1 and SP-2[Abay94, Stu*94] parallel machines is in some ways
more versatile than that in the Cray T3D, but of lower performance and without support for two
phase, request-response operation. It is packet switched, with cut-through, source-based routing
and no virtual channels. The switch has eight bidirectional 40 MB/s ports and can support a wide
variety of topologies. However, in the SP machines a collection of switches are packaged on a
board as a 4-ary 2-dimensional butterfly with sixteen internal connections to hosts in the same
rack as the switch board and sixteen external connections to other racks, as illustrated in
Figure 10-37. The rack-level topology varies from machine to machine, but is typically a variant
of a butterfly. Figure 1-23 of Chapter 1 shows the large IBM SP-2 configuration at the Maui High
Performance Computing Center. Individual cabinets have the first level of routing at the bottom
connecting the 16 internal nodes to 16 external links. Additional cabinets provide connectivity
between collections of cabinets. The wiring for these additional levels is located beneath the
machine room floor. Since the physical toplogy is not fixed in hardware, the network interface
inserts the route for each outgoing message via a table lookup.

x± ∆x y± ∆y z± ∆z, , , , ,
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Packets consist of a sequence of up to 255 bytes, the first byte is the packet length, followed by
one or more routing bytes and then the data bytes. Each routing byte contains two 3-bit output
specifiers, with an additional selector bit. The links are synchronous, wide, and long. A single 40
MHz clock is distributed to all the switches, with each link tuned so that its delay is an integral
number of cycles. (Interboard signals are 100K ECL differential pairs. On-board clock trees are
also 100K ECL.) The links consist of ten wires: eight data bits, a framing “tag” control bit, and a
reverse flow-control bit. Thus, the phit is one byte. The tag bit identifies the length and routing
phits. The flit is two bytes; two cycles are used to signal the availability of two bytes of storage in
the receiver buffer. At any time, a stream of data/tag flits can be propagating down the link, while
a stream of credit tokens propagate in the other direction.

The switch provides 31 bytes of FIFO buffering on each input port, allowing links to be 16 phits
long. In addition, there are 7 bytes of FIFO buffering on each output and a shared central queue
holding 128 8-byte chunks. As illustrated in Figure 10-38, the switch contains both an unbuffered
byte-serial cross-bar and a 128 x 64-bit dual port RAM as interconnect between input and output
port. After two bytes of the packet have arrived in the input port, the input port control logic can
request the desired output. If this output is available, the packet cuts through via the cross-bar to
the output port, with a minimum routing delay of 5 cycles per switch. If the output port is not
available, the packet fills into the input FIFO. If the output port remains blocked, the packet is
spooled into the central queue in 8-byte “chunks.” Since the central queue accepts one 8-byte
input and one 8-byte output per cycle, its bandwidth matches that of the eight byte serial input
and output ports of the switch. Internally, the central queue is organized as eight FIFO linked
lists, one per output port, using and auxiliary 128x7-bit RAM for the links. One 8-byte chunk
reserved for each output port. Thus, the switch operates in byte serial mode when the load is low,

Figure  10-37  SP Switch Packaging

The collection of switches within a rack provide bidirectional connection between 16 internal ports and
16 external ports.
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but when contention forms it time-multiplexes 8-byte chunks through the central queue, with the
inputs acting as a deserializer and the outputs as a serializer. 

Each output port arbitrates among requests on an LRU basis, with chunks in the central queue
having priority over bytes in input FIFOs. Output ports are served by the central queue in LRU
order. The central queue gives priority to inputs which chunks destined for unblocked output
ports.

The SP network has three unusual aspects. First, since the operation is globally synchronous,
instead of including CRC information in the envelop of each packet, time is divided into 64-cycle
“frames.” The last two phits of each frame carry CRC. The input port checks the CRC and the
output port generates it (after stripping of used routing phits). Secondly, the switch is a single
chip and every switch chip is shadowed by an identical switch. The pins are bidirectional I/O
pins, so one of the chips merely checks the operation of the other. (This will detect switch errors,
but not link errors.) Finally, the switch supports a circuit switched “service mode” for various
diagnostic purposes. The network is drained free of packets before changing modes.

10.8.3 Scalable Coherent Interconnect

The Scalable Coherent Interface provides a well specified case study in high performance inter-
connects, because it emerged through a standards process, rather than as a proprietary design or
academic proposal. It was a standard long time in coming, but has gained popularity as imple-
mentations have got underway. It has been adopted by several vendors, although in many cases
only a portion of the specification is followed. Essentially the full SCI specification is used in the

Figure  10-38  IBM SP (Vulcan) switch design

The IBM SP switch uses a cross-bar for unbuffered packets passed directly from input port to output port, but all
buffered packets are shunted into a common memory pool.
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interconnect of the HP/Convex Exemplar and in the Sequent NUMA-Q. The Cray SCX I/O net-
work is based heavily on SCI.

A key element of the SCI design is that it builds around the concept of unidirectional rings, called
ringlets, rather than bidirectional links. Ringlets are connected together by switches to form large
networks. The specification defines three layers. A physical layer, a packet layer, and a transac-
tion layer. The physical layer is specified in two 1 GB/s forms, as explained in Example . Packets
consist of a sequence of 16 bit units, much like the Cray T3D packets. As illustrated in Figure 10-
39, all packets consists of a TargetId, Command, and SourceId, followed by zero or more com-
mand specific units, and finally a 32-bit CRC. One unusual aspect, is that source and target Ids
are arbitrary 16 bit node addresses. The packet does not contain a route. In this sense, the design
is like a bus. The source puts the target address on the interconnect and the interconnect deter-
mines how to get the information to the right place. Within a ring this is simple, because the
packet circulates the ring and the target extracts the packet. In the general case, switches use table
driven routing to move packets from ring to ring.

An SCI transaction, such as read or write, consists of two network transactions (request and
response), each of which has two phases on each ringlet. Let’s take this step by step. The source
node issues a request packet for a target. The request packet circulates on the source ringlet. If the
target is on the same ring as the source, the target extracts the request from the ring and replaces
it with a echo packet, which continues around the ring back to the source, whereupon it is
removed from the ring. The echo packet serves to inform the source that the original packet was
either accepted by the target, or rejected, in which the echo contains a NAK. It may be rejected

Figure  10-39  SCI Packet formats

SCI operations involve a pair transactions, a request and a response. Owing to its ring-based underpin-
nings, each transaction involves conveying a packet from the source to the target and an echo (going the
rest of the way around the ring) from the target back to the source. All packets are a sequence of 16-bit
units, with the first three being the destination node, command, and source node, and the final being the
CRC. Requests contain a 6 byte address, optional extension, and optional data. Responses have a similar
format, but the address bytes carry status information. Both kinds of echo packets contain only the min-
imal four units. The command unit identifies the packet type through the phase and ech fields. It also
describes the operation to be performed (request cmd) or matched (trans id). The remaining fields and
the control unit address lowel level issues of how packet queuing and retry are handled at the packet
layer.
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either because of a buffer full condition or because the packet was corrupted. The source main-
tains a timer on outstanding packets, to it can detect if the echo gets corrupts. If the target is not
on the source ring, a switch node on the ring serves as a proxy for the target. It accepts the packet
and provides the echo, once it has successfully buffered the packet. Thus, the echo only tells the
source that the packet successfully left the ringlet. The switch will then initiate the packet onto
another ring along the route to the target. Upon receiving a request, the target node will initiate a
response transaction. It too will have a packet phase and an echo phase on each ringlet on the
route back to the original source. The request echo packet informs the source of the transaction
ide assigned to the target; this is used to match the eventual response, much as on a split-phase
bus.

Rather then have a clean envelop for each of the layers, in SCI they blur together a bit in the
packet format where several fields control queue management and retry mechanisms. The control
tpr (transaction priority), command mpr (maximum ring priority) and command spr (send prior-
ity) together determine one of four priority levels for the packet. The transaction priority is ini-
tiallly set by the requestor, but the actual send priority is established by nodes along the route
based on what other blocked transactions they have in their queues. The phase and busy fields are
used as part of the flow control negotiation between the source and target nodes.

In the Sequent NUMA-Q, the 18-bit wide SCI ring is driven directly by the DataPump in a Quad
at 1GB/sec node-to-network bandwidth. The transport layer follows a strict request-reply proto-
col. When the DataPump puts a packet on the ring, it keeps a copy of the packet in its outgoing
buffer until an acknowledgment (called an echo) is returned. When a DataPump removes an
incoming packet from the ring it replaces it by a positive echo that is returned to the sender along
the ring. If a DataPump detects a packet destined for it but does not have space to remove that
packet from the ring, it sends a negative echo (like a NACK), which causes the sender to retry its
transmission (still holding the space in its outgoing buffer). 

Since the latency of communication on a ring increases linearly with the number of nodes on it,
large high-performance SCI systems are expected to be built out of smaller rings interconnected
in arbitrary network topologies. For example, a performance study indicates that a single ring can
effectively support about 4-8 high-performance processing nodes [SVG92]. The interconnections
among rings are expected to be either multiple small bridges, each connecting together a small
number of rings, or centralized switches each connecting a large number of rings.

10.8.4 SGI Origin Network

The SGI Origin network is based on a flexible switch, called SPIDER, that supports six pairs of
unidirectional links, each pair providing over 1.56 GB/s of total bandwidth in the two directions.
Two nodes (four processors) are connected to each router, so there are four pairs of links to con-
nect to other routers. This building block is configured in a family of topologies related to hyper-
cunes, as illustrated in Figure 10-40. The links are flexible (long, wide) cables that can be up to 3
meters long. The peak bisection bandwidth of a maximum configuration is over 16GB/s. Mes-
sages are pipelined through the network, and the latency through the router itself is 41ns from pin
to pin. Routing is table driven, so as part of the network initialization the routing tables are set up
in each switch. This allows routing to be programmable, so it is possible to support a range of
configurations, to have a partially populated network (i.e., not all ports are used), and route
around faulty components. Availability is also aided by the fact that the routers are separately
powered, and provide per-link error protection with hardware retry upon error. The switch pro-
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vides separate virtual channels for requests and replies, and supports 256 levels of message prior-
ity, with packet aging. 

10.8.5 Myricom Network

As final case study, we briefly examine the Myricom network [Bod95] used in several cluster
systems. The communication assist within the network interface card was described in
Section 7.8. Here we are concerned with the switch that is used to construct a scalable intercon-
nection network. Perhaps the most interesting aspect of its design is it simplicity. The basic build-
ing block is a switch with eight bidirectional ports of 160 MB/s each. The physical link in a 9 bit
wide, long wire. It can be up to 25 m and 23 phits can be in transit simultaneously. The encoding
allows control flow, framing symbols, and ‘gap’ (or idle) symbols to be interleaved with data
symbols. Symbols are constantly transmitted between switches across the links, so the switch can
determine which of its ports are connected. A packet is simply a sequence of routing bytes fol-
lowed by a sequence of payload bytes and a CRC byte. The end of a packet is delimited by the
presence of a gap symbol. The start of a packet is indicated by the presence of a non-gap symbol. 

The operation of the switch is extremely simple, it removes the first byte from an incoming
packet, computes the output port by adding the contents of the route byte to the input port num-
ber and spools the rest of the packet to that port. The switch uses wormhole routing with a small
amount of buffering for each input and each output. The routing delay through a switch is less

Figure  10-40  Network topology and router connections in the Origin multiprocessor.

Figures (d) and (e) show only the routers and omit the two nodes connected to each for simplicity. Figure (e) also shows only a few
of the fat-cube connections across hypercubes; The routers that connect 16-node subcubes are called meta-routers. For a 512-node
(1024-processor) configuration, each meta-router itself would be replaced by a 5-d router hypercube. 
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than 500 ns. The switches can be wired together in an arbitrary topology. It is the responsibility
of the host communication software to construct routes that are valid for the physical intercon-
nection of the network. If a packet attempts to exit a switch on an invalid or unconnected port, it
is discarded. When all the routing bytes are used up, the packet should have arrived at a NIC and
the first byte of the message has a bit to indicate that it is not a routing byte and the remaing bits
indicate the packet type. All higher level packet formating and transactions are realized by the
NIC and the host, the interconnection network only moves the bits.

10.9 Concluding Remarks

Parallel computer networks present a rich and diverse design space that brings together several
levels of design. The physical layer, link level issues represent some of the most interesting elec-
trical engineering aspects of computer design. In a constant effort to keep pace with the increas-
ing rate of processors, link rates are constantly improving. Currently we are seeing multigigabit
rates on copper pairs and parallel fiber technologies offer the possibility of multigigabyte rates
per link in the near future. One of the major issues at these rates is dealing with errors. If bit error
rates of the physical medium are in the order of  per bit and data is being transmitted at a
rate of  bytes per second, then an error is likely to occur on a link roughly every 10 minutes.
With thousands of links in the machine, errors occur every second. These must be detected and
corrected rapidly.

The switch to switch layer of design also offers a rich set of trade-offs, including how aspects of
the problem are pushed down into the physical layer, and how they are pushed up into the packet
layer. For example, flow control can be built in to the exchange of digital symbols across a link,
or it can be addressed at the next layer in terms of packets thar cross the link, or even one layer
higher, in terms of messages sent from end to end. There is a huge space of alternatives for the
design of the switch itself, and these are again driven by engineering constraints from below and
design requirements from above.

Even the basic topology, switching strategy, and routing algorithm reflects a compromise of engi-
neering requirements and design requirements from below and above. We have seen, for exam-
ple, how a basic question like the degree of the switch depends heavily on the cost model
associated with the target technology and the characteristics of the communication pattern in the
target workload. Finally, as with many other aspects of architecture, there is significant room for
debate as to how much of the higher level semantics of the node-to-node communication abstrac-
tion should be embedded in the hardware design of the network itself. The entire area of network
design for parallel computers is bound to be exciting for many years to come. In particular, there
is a strong flow of ideas and technology between parallel computer networks and advancing,
scalable networks for local area and system area communication.

10.10 References

[AbAy94] B. Abali and C. Aykanat, Routing Algorithms for IBM SP1, Lecture Notes in Comp. Sci, Spring-
er-Verlag, vol. 853, 1994 pp. 161-175.

[Aga91] A. Agarwal, Limit on Interconnection Performance, IEEE Transactions on Parallel and Distribut-
ed Systems, V. 2, No. 4, Oct. 1991, pp. 398-412.

10 19–

109



Interconnection Network Design

746 DRAFT: Parallel Computer Architecture 9/4/97

[And*92] T. E. Anderson, S. S. Owicki, J. P. Saxe, C. P. Thacker, High Speed Switch Scheduling for Local
Area Networks, Proc. of ASPLOS V, pp. 98-110, oct. 1992.

[Arn*89] E. A. Arnold, F. J. Bitz, E. C. Cooper, H. T. Kung, R. D. Sansom, and P. Steenkiste, The Design
of Nectar: A Network Backplane for Heterogeneous Multicomputers, Proc. of ASPLOS III, Apr.
1989, pp. 205-216.

[Bak90] H. B. Bakoglu, Circuits, Interconnection, and Packaging for VLSI, Addison-Wesley Publishing
Co., 1990.

[Bak*95] W. E. Baker, R. W. Horst, D. P. Sonnier, and W. J. Watson, A Flexible ServerNet-based Fault-
Tolerant Architecture, 25th Annual Symposium on Fault-Tolerant Computing, Jun. 1995.

[Ben65] V. Benes. Mathematical Theory of Connecting Networks and Telephone Traffic, Academic
Press,. New York, NY, 1965.

[BhLe84] S. Bhatt and C. L. Leiserson, How to Assemble Tree Machines, Advances in Computing Re-
search, vol. 2, pp95-114, JAI Press Inc, 1984.

[Bod*95] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W. Su, Myrinet: A Gi-
gabit-per-Second Local Area Network, IEEE Micro, Feb. 1995, vol.15, (no.1), pp. 29-38.

[Bor*90] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M. Levine, B. Moore, W. Moore, C.
Peterson, J. Susman, J. Sutton, J. Urbanski, and J. Webb. Supporting systolic and memory com-
munication in iwarp.In Proc. 17th Intl. Symposium on Computer Architecture, pages 70-81.
ACM, May 1990. Revised version appears as technical report CMU-CS-90-197.

[Bre*94] E. A. Brewer, F. T. Chong, F. T. Leighton, Scalable Expanders: Exploiting Hierarchical Random
Wiring, Proc. of the 1994 Symp. on the Theory of Computing, Montreal Canada, May, 1994.

[BrKu94] Eric A. Brewer and Bradley C. Kuszmaul, How to Get Good Performance from the CM-5 Data
Network, Proceedings of the 1994 International Parallel Processing Symposium, Cancun, Mexico,
April 1994.

[CaGo95] T. Callahan and S. C. Goldstein, NIFDY: A Low Overhead, High Throughput Network Interface,
Proc. of the 22nd Annual Symp. on Computer Architecture, June 1995.

[ChKi92] A. A. Chien and J. H. Kim, Planar-Adaptive Routing: Low-cost Adaptive Networks for Multipro-
cessors, Proc. of ISCA, 1992.

[Coh*93] D. Cohen, G. Finn, R. Felderman, and A. DeSchon, ATOMIC: A Low-Cost, Very High-Speed,
Local Communication Architecture, Proc. of the 1993 Int. Conf. on Parallel Processing, 1993.

[Dal90a] William J. Dally, Virtual-Channel Flow Control, Proc. of ISCA 1990, Seattle WA.

[Dal90b] William J. Dally, Performance Analysis of k-ary n-cube Interconnection Networks, IEEE-TOC,
V. 39, No. 6, June 1990, pp. 775-85.

[DaSe87] W. Dally and C. Seitz, Deadlock-Free Message Routing in Multiprocessor Interconnections Net-
works, IEEE-TOC, vol c-36, no. 5, may 1987.

[Dus*96] Andrea C. Dusseau, David E. Culler, Klaus E. Schauser, and Richard P. Martin. Fast Parallel Sort-
ing Under LogP: Experience with the CM-5. IEEE Transactions on Parallel and Distributed Sys-
tems, 7(8):791-805, August 1996. 

[Fel94] R. Felderman, et al, “Atomic: A High Speed Local Communication Architecture”, J. of High
Speed Networks, Vol. 3, No. 1, pp.1-29, 1994.

[GlNi92] C. J. Glass, L. M. Ni, The Turn Model for Adaptive Routing, Proc. of ISCA 1992. pp. 278-287.

[GrLe89] R. I. Greenberg and C. E. Leiserson, Randomized Routing on Fat-Trees, Advances in Computing
Research, vol. 5, pp. 345-374, JAI Press, 1989.

[Gro92] W. Groscup, The Intel Paragon XP/S supercomputer. Proceedings of the Fifth ECMWF Work-
shop on the Use of Parallel Processors in Meteorology. Nov 1992, pp. 262--273.



References

9/4/97 DRAFT: Parallel Computer Architecture 747

[Gun81] K. D. Gunther, Prevention of Deadlocks in Packet-Switched Data Transport Systems, IEEE
Transactions on Communication, vol. com-29, no. 4, Apr. 1981, pp. 512-24.

[HiTu93] W. D. Hillis and L. W. Tucker, The CM-5 Connection Machine: A Scalable Supercomputer, Com-
munications of the ACM, vol. 36, no. 11, nov. 1993, pp. 31-40.

[HoMc93] Mark Homewood and Moray McLaren, Meiko CS-2 Interconnect Elan - Elite Design, Hot Inter-
connects, Aug. 1993.

[Hor95] R. Horst, TNet: A Reliable System Area Network, IEEE Micro, Feb. 1995, vol.15, (no.1), pp. 37-
45.

[Joe94] C. F. Joerg, Design and Implementation of a Packet Switched Routing Chip, Technical Report,
MIT Laboratory for Computer Science, MIT/LCS/TR-482, Aug. 1994.

[JoBo91] Christopher F. Joerg and Andy Boughton, The Monsoon Interconnection Network, Proc. of IC-
CD, Oct. 1991.

[Kar*87] M. Karol, M. Hluchyj, S. Morgan, Input versus Output Queueing on a Space Division Packet
Switch, IEEE Transactions on Communications, v. 35, no. 12, pp. 1347-56, Dec. 1987.

[Kar*90] R. Karp, U. Vazirani, V. Vazirani, An Optimal Algorithm for on-line Bipartite Matching, Proc. of
the 22dn ACM Symposium on the Theory of Computing, pp. 352-58, May, 1990.

[KeSc93] R. E. Kessler and J. L. Schwarzmeier, Cray T3D: a new dimension for Cray Research, Proc. of
Papers. COMPCON Spring '93, pp 176-82, San Francisco, CA, Feb. 1993.

[KeKl79] P. Kermani and L. Kleinrock, Virtual Cut-through: A New Computer Communication Switching
Technique, Computer Networks, vol. 3., pp. 267-286, sep. 1979.

[Koe*94] R. Kent Koeninger, Mark Furtney, and Martin Walker. A Shared Memory MPP from Cray Re-
search, Digital Technical Journal 6(2):8-21, Spring 1994.

[KoSn] S. Kostantantindou and L. Snyder, Chaos Router: architecture and performance, Proc. of the 18th
Annual Symp. on Computer Architecture, pp. 212-23, 1991.

[KrSn83] C. P. Kruskal and M. Snir, The Perormance of Multistage Interconnection Networks for Multi-
procvessors, IEEE Transactions on Computers, vol. c-32, no. 12, dec. 1983, pp. 1091-1098.

[Kun*91] Kung, H.T, et al, Network-based multicomputers: an emerging parallel architecture, Proceedings
Supercomputing ‘91, Albuquerque, NM, USA, 18-22 Nov. 1991 p. 664-73

[Leis85] C. E. Leiserson, Fat-trees: Universal Networks for Hardware-Efficient Supercomputing, IEEE
Transactions on Computers, Vol. c-34, no. 10, Oct. 1985, pp. 892-901

[Lei92] F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures, Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 1992.

[Lei*92] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill,
W. D. Hillis, B. C. Kuszmau, M. A. St. Pierre, D. S. Wells, M. C. Wong, S. Yang, R. Zak. The
Network Architecture of the CM-5. Symposium on Parallel and Distributed Algorithms '92" Jun
1992, pp. 272-285.

[Li88] Li, S-Y, Theory of Periodic Contention and Its Application to Packet Switching, Proc. of INFO-
COM ‘88, pp. 320-5, mar. 1988.

[LiHa91] D. Linder and J. Harden, An Adaptive Fault Tolerant Wormhole strategy for k-ary n-cubes, IEEE
Transactions on Computer, C-40(1):2-12, Jan., 1991.

[Mai*97] A. Mainwaring, B. Chun, S. Schleimer, D. Wilkerson, System Area Network Mapping, Proc. of
the 9th Annual ACM Symp. on Parallel Algorithms and Architecture, Newport, RI, June 1997,
pp.116-126.

[NuDa92] P. Nuth and W. J. Dally, The J-Machine Network, Proc. of International Conference on Computer
Design: VLSI in computers and processors, Oct. 1992.



Interconnection Network Design

748 DRAFT: Parallel Computer Architecture 9/4/97

[NgSe89] J. Ngai and C. Seitz, A Framework for Adaptive Routing in Multicomputer Networks, Proc. of the
1989 Symp. on Parallel Algorithms and Architectures, 1989.

[PeDa96] L. Peterson and B. Davie, Computer Networks, Morgan Kaufmann Publishers, Inc., 1996.

[Pfi*85] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliff, E.
A. Melton, V. A. Norton, and J. Weiss, The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture, International Conference on Parallel Processing, 1985.

[PfNo85] G. F. Pfister and V. A. Norton, “Hot Spot” COntention and Combining Multistage Interconnection
Networks, IEEE Transactions on Computers, vol. c-34, no. 10, oct. 1985.

[Rat85] J. Ratner, Concurrent Processing: a new direction in scientific computing, Conf. Proc. of the 1985
Natinal Computing Conference, p. 835, 1985.

[Ret*90] R. Rettberg, W. Crowther, P. Carvey, and R. Tomlinson, The Monarch Parallel Processor Hard-
ware Design, IEEE Computer, April 1990, pp. 18-30.

[ReTh96] R. Rettberg and R. Thomas, Contention is no Obstacle to Shared-Memory Multiprocessing, Com-
munications of the ACM, 29:12, pp. 1202-1212, Dec. 1986.

[ScGo94] S. L. Scott and J. R. Goodman, The Impact of Pipelined Channels on k-ary n-Cube Networks,
IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 1, jan. 1994, pp. 2-16.

[Sch*90] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Needham, T. L. Rodeheffer, E. H.
Satterthwaite, C. P. Thacker, Autonet: a High-speed, Self-configuring Local Area Network Using
Point-to-point Links, IEEE Journal on Selected Areas in Communications, vol. 9, no. 8. pp. 1318-
35, oct. 1991.

[ScJa95] L. Schwiebert and D. N. Jayasimha, A Universal Proof Technique for Deadlock-Free Routing in
Interconnection Networks, SPAA, Jul 1995, pp. 175-84.

[Sei85] Charles L. Seitz, The Cosmic Cube, Communications of the ACM, 28(1):22-33, Jan 1985.

[SeSu93] Charles L/ Seitz and Wen-King Su, A Family of Routing and Communication Chips Based on
Mosaic, Proc of Univ. of Washington Symposium on Integrated Systems, MIT PRess, pp. 320-
337.

[SP2] C. B. Stunkel et al. The SP2 Communication Subsystem. On-line as http://
ibm.tc.cornell.edu/ibm/pps/doc/css/css.ps.

[Stu*94] C. B. Stunkel, D. G. Shea, D. G. Grice, P. H. Hochschild, and M. Tsao, The SP-1 High Perfor-
mance Switch, Proc. of the Scalable High Performance Computing Conference, Knoxville, TN
pp. 150-57, May 1994.

[SVG92] Steven Scott, Mary Vernon and James Goodman. Performance of the SCI Ring. In Proceedings
of the 19th International Symposium on Computer Architecture, pp. 403-414, May 1992. 

[TaFr88] Y. Tamir and G. L. Frazier, High-performance Multi-queue Buffers for VLSI Communication
Switches, 15th Annual International Symposium on Computer Architecture, 1988, pp. 343-354.

[TrDu92] R. Traylor and D. Dunning. Routing Chip Set for Intel Paragon Parallel Supercomputer. Proc. of
Hot Chips ‘92 Symposium, August 1992.

[Tur88] J. S. Turner, Design of a Broadcast Packet Switching Network, IEEE Transactions on Communi-
cation, vol 36, no. 6, pp. 734-43, June, 1988.

[vEi*92] von Eicken, T.; Culler, D.E.; Goldstein, S.C.; Schauser, K.E., Active messages: a mechanism for
integrated communication and computation, Proc. of 19th Annual International Symposium on
Computer Architecture, old Coast, Qld., Australia, 19-21 May 1992, pp. 256-66



Exercises

9/4/97 DRAFT: Parallel Computer Architecture 749

10.11 Exercises

10.1  Consider a packet format with 10 bytes of routing and control information and 6 bytes of
CRC and other trailer information. The payload contains a 64 byte cache block, along with 8
bytes of command and address information. If the raw link bandwidth is 500 MB/s, what is
the effective data bandwidth on cache block transfers using this format? How would this
change with 32 byte cache blocks? 128 byte blocks? 4 KB page transfers?

10.2  Suppose the links are 1 byte wide and operating at 300 MHz in a network where the average
routing distance between nodes is  for  nodes. Compare the unloaded latency for 80
byte packets under store-and-forward and cut-through routing, assuming 4 cycles of delay per
hop to make the routing decision and  ranging from 16 to 1024 nodes. 

10.3  Perform the comparison in Exercise 10.2 for 32 KB transfers fragmented into 1 KB packets.

10.4  Find an optimal fragmentation strategy for a 8KB page sized message under the following
assumptions. There is a fixed overhead of  cycles per fragment, there is a store-and-forward
delay through the source and the destination NI, packets cut-through the network with a rout-
ing delay of  cycles, and the limiting data transfer rate is  bytes per cycle.

10.5  Suppose an  matrix of double precision numbers is laid out over  nodes by rows, and
in order to compute on the columns you desire to transpose it to have a column layout. How
much data will cross the bisection during this operation?

10.6  Consider a 2D torus direct network of  nodes with a link bandwidth of  bytes per second.
Calculate the bisection bandwidth and the average routing distance. Compare the estimate of
aggregate communication bandwidth using Equation 10.6 with the estimate based on bisec-
tion. In addition, suppose that every node communicates only with nodes 2 hops away. Then
what bandwidth is available? What is each node communicates only with nodes in its row?

10.7  Show how an  node torus is embedded in an  node hypercube such that neighbors in the
torus, i.e., nodes of distance one, are neighbors in the hypercube. (Hint: observe what hap-
pens when the addresses are ordered in a greycode sequence.) Generalize this embedding for
higher dimensional meshes.

10.8  Perform the analysis of Equation 10.6 for a hypercube network. In the last step, treat the row
as being defined by the greycode mapping of the grid into the hypercube.

10.9  Calculate the average distance for a linear array of  nodes (assume N is even) and for a 2D
mesh and 2D torus of  nodes.

10.10  A more accurate estimate of the communication time can be obtained by determining the
average number of channels traversed per packet, , for the workload of interest and the
particular network topology. The effective aggregate bandwidth is at most . Suppose
the orchestration of a program treats the processors as a  logical mesh where each
node communicates  bytes of data with its eight neighbors in the four directions and on the
diagonal. Give an estimate of the communication time on a grid and a hypercube.

10.11  show how an  node tree can be embedded in an  node hypercube by stretching one of
the tree edges across two hypercube edges.

10.12  Use a spread sheet to construct the comparison in Figure 10-12 for three distinct design
points: 10 cycle routing delays, 1024 byte messages, and 16-bit wide links. What conclusions
can you draw?

10.13  Verify that the minimum latency is achieved under equal pin scaling in Figure 10-14 when
the routing delay is equal to the channel time.
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10.14  Derive a formula for dimension that achieves the minimum latency is achieved under equal
bisection scaling based on Equation 10.7.

10.15  Under the equal bisection scaling rule, how wide are the links of a 2D mesh with 1 million
nodes?

10.16  Compare the behavior under load of 2D and 3D cubes of roughly equal size, as in
Figure 10-17, for equal pin and equal bisection scaling.

10.17  Specify the boolean logic used to compute the routing function in the switch with 
routing on 2D mesh.

10.18  If  routing is used, what effect does decrementing the count in the header have on the
CRC in the trailor? How can this issue be addressed in the switch design?

10.19  Specify the boolean logic used to compute the routing function in the switch dimension
order routing on a hypercube.

10.20  Prove the e-cube routing in a hypercube is deadlock free.

10.21  Construct the table-based equivalent of  routing in an 2D mesh.

10.22  Show that permitting the pair of turns not allowed in Figure 10-24 leaves complex cycles.
hint: They look like a figure 8.

10.23  Show that with two virtual channels, arbitrary routing in a bidirectional network can be
made deadlock free.

10.24  (Pick any flow control scheme in the chapter and compute fraction of bandwidth used by
flow control symbols.

10.25  Revise latency estimates of Figure 10-14 for stacked dimension switches.

10.26  Table 10-1 provides the topologies and an estimate of the basic communication perfor-
mance characteristics for several important designs. For each, calculate the network latency
for 40 byte and 160 byte messages on 16 and 1024 node configurations. What fraction of this
is routing delay and what fraction is occupancy?

Table 10-1  Link width and routing delay for various parallel machine networks

Machine                Topology 

Cycle 
Time
(ns)

Channel 
Width
(bits)

Routing
Delay
(cycles)

FLIT
(data 
bits)

nCUBE/2 Hypercube  25  1 40 32

TMC CM-5 Fat tree  25  4 10 4

IBM SP-2  Banyan  25  8 

Intel Paragon 2d Mesh 11.5  16 2 16

Meiko CS-2 Fat tree  20  8 

Cray T3D               3D torus  6.67  16 16

Dash       Torus     30  16 

J-Machine 3d Mesh  31  8 1 8

Monsoon   Butterfly  20  16 
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CHAPTER 11

 

Latency Tolerance

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1997 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

11.1 Introduction

 

In Chapter 1, we saw that while the speed of microprocessors increases by more than a factor of
ten per decade, the speed of commodity memories (DRAMs) only doubles, i.e., access time is
halved. Thus, the latency of memory access in terms of processor clock cycles grows by a factor
of six in ten years! Multiprocessors greatly exacerbate the problem. In bus-based systems, the
imposition of a high-bandwidth bus between processor and memory tends to increase the latency
of obtaining data from memory: Recall that in both the SGI Challenge and the Sun Enterprise
about a third of the read miss penalty was spent in the bus protocol. When memory is physically
distributed, the latency of the network and the network interface is added to that of accessing the
local memory on the node. Caches help reduce the frequency of high-latency accesses, but they
are not a panacea: They do not reduce inherent communication, and programs have significant
miss rates from other sources as well. Latency usually grows with the size of the machine, since
more nodes implies more communication relative to computation, more hops in the network for
general communication, and likely more contention.

The goal of the protocols developed in the previous chapters has been to reduce the frequency of
long-latency events and the bandwidth demands imposed on the communication media while
providing a convenient programming model. The primary goal of hardware design has been to
reduce the latency of data access while maintaining high, scalable bandwidth. Usually, we can
improve bandwidth by throwing hardware at the problem, but latency is a more fundamental lim-
itation. With careful design one can try not to exceed the inherent latency of the technology too
much, but data access nonetheless takes time. So far, we have seen three ways to reduce the
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latency of data access in a multiprocessor system, the first two the responsibility of the system
and the third of the application. 

 

•

 

Reduce the access time to each level of the storage hierarchy

 

. This requires careful atten-
tion to detail in making each step in the access path efficient. The processor-to-cache interface
can be made very tight. The cache controller needs to act quickly on a miss to reduce the pen-
alty in going to the next level. The network interface can be closely coupled with the node and
designed to format, deliver, and handle network transactions quickly. The network itself can
be designed to reduce routing delays, transfer time, and congestion delays. All of these efforts
reduce the cost when access to a given level of the hierarchy is required. Nonetheless, the
costs add up.

 

•

 

Reduce the likelihood that data accesses will incur high latency

 

: This is the basic job of
automatic replication such as in caches, which take advantage of spatial and temporal locality
in the program access pattern to keep the most important data close to the processor that
accesses it. We can make replication more effective by tailoring the machine structure, for
example, by providing a substantial amount of storage in each node. 

 

•

 

Reduce the frequency of potential high-latency events in the application

 

. This involves
decomposing and assigning computation to processors to reduce inherent communication,
and structuring access patterns to increase spatial and temporal locality. 

These system and application efforts to reduce latency help greatly, but often they do not suffice.
There are also other potentially high-latency events than data access and communication, such as
synchronization. This chapter discusses another approach to dealing with the latency that
remains: 

 

•

 

Tolerate the remaining latency

 

. That is, hide the latency from the processor’s critical path
by overlapping it with computation or other high-latency events. The processor is allowed to
perform other useful work or even data access/communication while the high-latency event is
in progress. The key to latency tolerance is in fact parallelism, since the overlapped activities
must be independent of one another. The basic idea is very simple, and we use it all the time
in our daily lives: If you are waiting for one thing, e.g. a load of clothes to finish in the wash-
ing machine, do something else, e.g. run an errand, while you wait (fortunately, data accesses
do not get stolen if you don’t keep an eye on them). 

Latency tolerance cuts across all of the issues we have discussed in the book, and has implica-
tions for hardware as well as software, so it serves a useful role in ‘putting it all together’. As we
shall see, the success of latency tolerance techniques depends on both the characteristics of the
application as well as on the efficiency of the mechanisms provided and the communication
architecture.

Latency tolerance is already familiar to us from multiprogramming in uniprocessors. Recall what
happens on a disk access, which is a truly long latency event. Since the access takes a long time,
the processor does not stall waiting for it to complete. Rather, the operating system blocks the
process that made the disk access and switches in another one, typically from another applica-
tion, thus overlapping the latency of the access with useful work done on the other process. The
blocked process is resumed later, hopefully after that access completes. This is latency tolerance:
While the disk access itself does not complete any more quickly, and in this case the process that
made the disk access sees its entire latency or even more since it may be blocked for even longer,
the underlying resource (e.g. the processor) is not stalled and accomplishes other useful work in
the meantime. While switching from one process to another via the operating system takes a lot
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of instructions, the latency of disk access is high enough that this is very worthwhile. In this mul-
tiprogramming example, we do not succeed in reducing the execution time of any one process—
in fact we might increase it—but we improve the system’s throughput and utilization. More over-
all work gets done and more processes complete per unit time. 

The latency tolerance that is our primary focus in this chapter is different from the above example
in two important ways. First, we shall focus mostly on trying to overlap the latency with work
from the 

 

same

 

 application; i.e. our goal will indeed be to use latency tolerance to reduce the exe-
cution time of a given application. Second, we are trying to tolerate not disk latencies but those of
the memory and communication systems. These latencies are much smaller, and the events that
cause them are usually not visible to the operating system. Thus, the time-consuming switching
of applications or processes via the operating system is not a viable solution. 

Before we go further, let us define a few terms that will be used throughout the chapter, including
latency itself. The 

 

latency

 

 of a memory access or communication operation includes all compo-
nents of the time from issue by the processor till completion. For communication, this includes
the processor overhead, assist occupancy, transit latency, bandwidth-related costs, and conten-
tion. The latency may be for one-way transfer of communication or round-trip transfers, which
will usually be clear from the context, and it may include the cost of protocol transactions like
invalidations and acknowledgments in addition to the cost of data transfer. In addition to local
memory latency and communication latency, there are two other types of latency for which a pro-
cessor may stall. 

 

Synchronization latency

 

 is the time from when a processor issues a synchroniza-
tion operation (e.g. lock or barrier) to the time that it gets past that operation; this includes
accessing the synchronization variable as well as the time spent waiting for an event that it
depends on to occur. Finally, 

 

instruction latency

 

 is the time from when an instruction is issued to
the time that it completes in the processor pipeline, assuming no memory, communication or syn-
chronization latency. Much of instruction latency is already hidden by pipelining, but some may
remain due to long instructions (e.g. floating point divides) or bubbles in the pipeline. Different
latency tolerance techniques are capable of tolerating some subset of these different types of
latencies. Our primary focus will be on tolerating communication latencies, whether for explicit
or implicit communication, but some of the techniques discussed are applicable to local memory,
synchronization and instruction latencies, and hence to uniprocessors as well. 

A communication from one node to another that is triggered by a single user operation is called a

 

message

 

, regardless of its size. For example, a 

 

send

 

 in the explicit message-passing abstraction
constitutes a message, as does the transfer of a cache block triggered by a cache miss that is not
satisfied locally in a shared address space (if the miss is satisfied locally its latency is called 

 

mem-
ory latency

 

, if remotely then 

 

communication latency

 

). Finally, an important aspect of communi-
cation for the applicability of latency tolerance techniques is whether it is initiated by the sender
(source or producer) or receiver (destination or consumer) of the data. Communication is said to
be 

 

sender-initiated

 

 if the operation that causes the data to be transferred is initiated by the process
that has produced or currently holds the data, without solicitation from the receiver; for example,
an unsolicited send operation in message passing. It is said to be 

 

receiver-initiated

 

 if the data
transfer is caused or solicited by an operation issued by the process that needs the data, for exam-
ple a read miss to nonlocal data in a shared address space. Sender- and receiver-initiated commu-
nication will be discussed in more detail later in the context of specific programming models. 

Section 11.2 identifies the problems that result from memory and communication latency as seen
from different perspectives, and provides an overview of the four major types of approaches to
latency tolerance: block data transfer, precommunication, proceeding past an outstanding com-
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munication event in the same thread, and multithreading or finding independent work to overlap
in other threads of execution. These approaches are manifested as different specific techniques in
different communication abstractions. This section also discusses the basic system and applica-
tion requirements that apply to any latency tolerance technique, and the potential benefits and
fundamental limitations of exploiting latency tolerance in real systems. Having covered the basic
principles, the rest of the chapter examines how the four approaches are applied in the two major
communication abstractions. Section 11.3 briefly discusses how they may be used in an explicit
message-passing communication abstraction. This is followed by a detailed discussion of latency
tolerance techniques in the context of a shared address space abstraction. The discussion for a
shared address space is more detailed since latency is likely to be a more significant bottleneck
when communication is performed through individual loads and stores than through flexibly
sized transfers. Also, latency tolerance exposes interesting interactions with the architectural sup-
port already provided for a shared address space, and many of the techniques for hiding read and
write latency in a shared address space are applicable to uniprocessors as well. Section 11.4 pro-
vides an overview of latency tolerance in this abstraction, and the next four sections each focus
on one of the four approaches, describing the implementation requirements, the performance
benefits, the tradeoffs and synergies among techniques, and the implications for hardware and
software. One of the requirements across all techniques we will discuss is that caches be non-
blocking or lockup-free, so Section 11.9discusses techniques for implementing lockup-free
caches. Finally, Section 11.10 concludes the chapter. 

 

11.2 Overview of Latency Tolerance

 

To begin our discussion of tolerating communication latency, let us look at a very simple example
computation that will serve as an example throughout the chapter.

The example is a simple producer-consumer computation. A process 

 

P

 

A

 

 computes and writes the

 

n

 

 elements of an array 

 

A

 

, and another process 

 

P

 

B

 

 reads them. Each process performs some unre-
lated computation during the loop in which it writes or reads the data in 

 

A

 

, and 

 

A

 

 is allocated in
the local memory of the processor that 

 

P

 

A

 

 runs on. With no latency tolerance, the process generat-
ing the communication would simply issue a word of communication at a time—explicitly or
implicitly as per the communication abstraction—and would wait till the communication mes-
sage completes before doing anything else. This will be referred to as the baseline communica-
tion structure. The computation might look like that shown in Figure 11-1(a) with explicit
message passing, and like that shown in Figure 11-1(b) with implicit, read-write communication
in a shared address space.   In the former, it is the send operation issued by 

 

P

 

A

 

 that generates the
actual communication of the data, while in the latter it is the read of 

 

A[i] 

 

by 

 

P

 

B

 

.

 

1

 

 We assume that
the read stalls the processor until it completes, and that a synchronous send is used (as was
described in Section 2.4.6). The resulting time-lines for the processes that initiate the communi-

 

1.  The examples are in fact not exactly symmetric in their baseline communication structure, since in the
message passing version the communication happens after each array entry is produced while in the shared
address space version it happens after the entire array has been produced. However, implementing the fine-
grained synchronization necessary for the shared address space version would require synchronization for
each array entry, and the communication needed for this synchronization would complicate the discussion.
The asymmetry does not affect the discussion of latency tolerance. 
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cation are shown in Figure 11-2. A process spends most of its time stalled waiting for communi-
cation. 

Process PA

for i←0to n-1 do

compute A[i];

write A[i];

send (A[i] to PB);

compute f(B[i]);

/* unrelated */

end for

Process PB

for i←1 to n-1 do 

receive (myA[i]);

use myA[i];

compute g(C[i]);

/* unrelated */

end for

Figure  11-1  Pseudocode for the example computation. 

Pseudocode is shown for both explicit message passing and with implicit read-write communication in a shared address space, with
no latency hiding in either case. The boxes highlight the operations that generate the data transfer. 

Process PA

for i←0to n-1 do

compute A[i];

write A[i];

compute f(B[i]); 

end for

flag ← 1;

Process PB

while flag = 0 {};

for i←1 to n-1 do 

read A[i];

use A[i];

compute g(C[i]); 

end for

(b) Shared Address Space(a) Message Passing

Time in processor’s critical path

ccca
iteration i iteration i+1 iteration i+2

Process PA in message passing:

ca+cb
iteration i iteration i+1 iteration i+2

Process PB in shared address space:

round-trip comm. time
(send + ack)

round-trip comm. time
(read request + reply)

Figure  11-2  Time-lines for the processes that initiate communication, with no latency hiding. 

The black part of the time-line is local processing time (which in fact includes the time spent stalled to access local data), and the blank
part is time spent stalled on communication. ca, cb, cc are the times taken to compute an A[i] and to perform the unrelated computa-
tions f(B[i]) and g[C[i]), respectively. 
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11.2.1 Latency Tolerance and the Communication Pipeline

Approaches to latency tolerance are best understood by looking at the resources in the machine
and how they are utilized. From the viewpoint of a processor, the communication architecture
from one node to another can be viewed as a pipeline. The stages of the pipeline clearly include
the network interfaces at the source and destination, as well as the network links and switches
along the way (see Figure 11-3). There may also be stages in the communication assist, the local

memory/cache system, and even the main processor, depending on how the architecture manages
communication. It is important to recall that the end-point overhead incurred on the processor
itself cannot be hidden from the processor, though all the other components potentially can. Sys-
tems with high end-point overhead per message therefore have a difficult time tolerating latency.
Unless otherwise mentioned, this overview will ignore the processor overhead; the focus at the
end-points will be the assist occupancy incurred in processing, since this has a chance of being
hidden too. We will also assume that this message initiation and reception cost is incurred as a
fixed cost once per message (i.e. it is not proportional to message size). 

Figure 11-4 shows the utilization problem in the baseline communication structure: Either the
processor or the communication architecture is busy at a given time, and in the communication
pipeline only one stage is busy at a time as the single word being transmitted makes its way from
source to destination.1 The goal in latency tolerance is therefore to overlap the use of these
resources as much as possible. From a processor’s perspective, there are three major types of
overlap that can be exploited. The first is the communication pipeline between two nodes, which
allows us to pipeline the transmission of multiple words through the network resources along the
way, just like instruction pipelining overlaps the use of different resources (instruction fetch unit,
register files, execute unit, etc.) in the processor. These words may be from the same message, if
messages are larger than a single word, or from different messages. The second is the overlap in
different portions of the network (including destination nodes) exploited by having communica-
tion messages outstanding with different nodes at once. In both cases, the communication of one
word is overlapped with that of other words, so we call this overlapping communication with
communication. The third major kind of overlap is that of computation with communication; i.e.

1.  For simplicity, we ignore the fact that the width of the network link is often less than a word, so even a
single word may occupy multiple stages of the network part of the pipeline. 

P P

NI NI

Pipeline stages

S S S S

Figure  11-3  The network viewed as a pipeline for a communication sent from one processor to another. 

The stages of the pipeline include the network interface (NI) and the hops between successive switches (S) on the route between the
two processors (P). 
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a processor can continue to do useful local work while a communication operation it has initiated
is in progress. 

11.2.2 Approaches

There are four major approaches to actually exploiting the above types of overlap in hardware
resources and thus tolerating latency. The first, which is called block data transfer, is to make
individual messages larger so they communicate more than a word and can be pipelined through
the network. The other three approaches are precommunication, proceeding past communication
in the same thread, and multithreading. These are complementary to block data transfer, and their
goal is to overlap the latency of a message, large or small, with computation or with other mes-
sages. Each of the four approaches can be used in both the shared address space and message
passing abstractions, although the specific techniques and the support required are different in the
two cases. Let us briefly familiarize ourselves with the four approaches. 

o

l

o

Time in processor’s critical path

o

l

o

ccca
iteration i iteration i+1 iteration i+2

Figure  11-4  Time-lines for the message passing and shared address space programs with no latency hiding. 

Time for a process is divided into that spent on the processor (P) including the local memory system, on the communication assist
(CA) and in the network (N). The numbers under the network category indicate different hops or links in the network on the path of
the message. The end-point overheads o in the message passing case are shown to be larger than in the shared address space, which
we assume to be hardware-supported. l is the network latency, which is the time spent that does not involve the processing node
itself. 

Process PA in message passing:

o

l

o o

l

o

ca+cb
iteration i iteration i+1 iteration i+2

Process PB in shared address space:

P:

P:

CA:

N: 1:

CA:

N: 1:

2:
3:
4:

2:
3:
4:



Latency Tolerance

758 DRAFT: Parallel Computer Architecture 9/4/97

Block data transfer 

Making messages larger has several advantages. First, it allows us to exploit the communication
pipeline between the two nodes, thus overlapping communication with communication (of differ-
ent words). The processor sees the latency of the first word in the message, but subsequent words
arrive every network cycle or so, limited only by the rate of the pipeline. Second, it serves the
important purpose of amortizing the per-message overhead at the end-points over the large
amount of data being sent, rather than incurring these overheads once per word (while message
overhead may have a component that is proportional to the length of the message, there is invari-
ably a large fixed cost as well). Third, depending on how packets are structured, this may also
amortize the per-packet routing and header information. And finally, a large message requires
only a single acknowledgment rather than one per word; this can mean a large reduction in
latency if the processor waits for acknowledgments before proceeding past communication
events, as well as a large reduction in traffic, end-point overhead and possible contention at the
other end. Many of these advantages are similar to those obtained by using long cache blocks to
transfer data from memory to cache in a uniprocessor, but on a different scale. Figure 11-5 shows
the effect on the time-line of the example computation bunching up all the communication in a
single large message in the explicit message passing case, while still using synchronous mes-
sages and without overlapping computation. For simplicity of illustration, the network stages
have been collapsed into one (pipelined) stage. 

o

l o

Time in processor’s critical path

o l

o

ccca

iteration 0 iteration 1 iteration 2

data 
ack.

bandwidth-related time

3*ca 3*cc

local computation (ca, cb, cc)

end point overhead

network latency

bandwidth-related time

comm.
Key:

P:

CA:

N:

P:

CA:

N:

Figure  11-5  Effect of making messages larger on the time-line for the message passing program.

The figure assumes that three iterations of the loop are executed. The sender process (PA) first computes the three values A[0..2] to be
sent, then sends them in one message (the computation ca), and then performs all three pieces of unrelated computation f(B[0..2]), i.e.
the computation cb. The overhead of the data communication is amortized, and only a single acknowledgment is needed. A bandwidth-
related cost is added to the data communication, for the time taken to get the remaining words into the destination word after the first
arrives, but this is tiny compared to the savings in latency and overhead. This is not required for the acknowledgment, which is small.
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While making messages larger helps keep the pipeline between two nodes busy, it does not in
itself keep the processor or communication assist busy while a message is in progress or keep
other portion of the network busy. The other three approaches can address these problems as
well. They are complementary to block data transfer, in that they are applicable whether mes-
sages are large or small. Let us examine them one by one. 

Precommunication

This means generating the communication operation before the point where it naturally appears
in the program, so that the operations are completed before data are actually needed1. This can be
done either in software, by inserting a precommunication operation earlier in the code, or by hav-
ing hardware detect the possibility of precommunication and generate it without an explicit soft-
ware instruction. The operations that actually use the data typically remain where they are. Of
course, the precommunication transaction itself should not cause the processor to stall until it
completes. Many forms of precommunication require that long-latency events be predictable, so
that hardware or software can anticipate them and issue them early.

Consider the interactions with sender- and receiver-initiated communication. Sender-initiated
communication is naturally initiated soon after the sender produces the data. This has two impli-
cations. On one hand, the data may reach the receiver before actually needed, resulting in a form
of precommunication for free for the receiver. On the other hand, it may be difficult for the sender
to pull up the communication any earlier, making it difficult for the sender itself to hide the
latency it sees through precommunication. Actual precommunication, by generating the commu-
nication operation earlier, is therefore more common in receiver-initiated communication. Here,
communication is otherwise naturally initiated when the data are needed, which may be long
after they have been produced. 

Proceeding past communication in the same process/thread 

The idea here is to let the communication operations be generated where they naturally occur in
the program, but allow the processor to proceed past them and find other independent computa-
tion or communication that would come later in the same process to overlap with them. Thus,
while precommunication causes the communication to be overlapped with other instructions
from that thread that are before the point where the communication-generating operation appears
in the original program, this technique causes it to be overlapped with instructions from later in
the process. As we might imagine, this latency tolerance method is usually easier to use effec-
tively with sender-initiated communication, since the work following the communication often
does not depend on the communication. In receiver-initiated communication, a receiver naturally
tries to access data only just before they are actually needed, so there is not much independent
work to be found in between the communication and the use. It is, of course, possible to delay the
actual use of the data by trying to push it further down in the instruction stream relative to other
independent instructions, and compilers and processor hardware can exploit some overlap in this
way. In either case, either hardware or software must check that the data transfer has completed
before executing an instruction that depends on it. 

1.  Recall that several of the techniques, including this one, are applicable to hiding local memory access
latency as well, even though we are speaking in terms of communication. We can think of that as communi-
cation with the memory system. 
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Multithreading

The idea here is similar to the previous case, except that the independent work is found not in the
same process or thread but by switching to another thread that is mapped to run on the same pro-
cessor (as discussed in Chapter 2, process and thread are used interchangeably in this book to
mean a locus of execution with its own program counter and stack). This makes the latency of
receiver-initiated communication easier to hide than the previous case and so this method lends
itself easily to hiding latency from either a sender or a receiver. Multithreading implies that a
given processor must have multiple threads that are concurrently executable or “ready” to have
their next instruction executed, so it can switch from one thread to another when a long latency
event is encountered. The multiple threads may be from the same parallel program, or from com-
pletely different programs as in our earlier multiprogramming example. A multithreaded program
is usually no different from an ordinary parallel program; it is simply decomposed and assigned
among P processors, where P is usually a multiple of the actual number of physical processors p,
and P/p threads are mapped to the same physical processor. 

11.2.3 Fundamental Requirements, Benefits and Limitations

Most of the chapter will focus on specific techniques and how they are exploited in the major pro-
gramming models. We will pick this topic up again in Section 11.3. But first, it is useful to
abstract away from specific techniques and understand the fundamental requirements, benefits
and limitations of latency tolerance, regardless of the technique used. The basic analysis of bene-
fits and limitations allows us to understand the extent of the performance improvements we can
expect, and can be done based only on the goal of overlapping the use of resources and the occu-
pancies of these resources. 

Requirements

Tolerating latency has some fundamental requirements, regardless of approach or technique.
These include extra parallelism, increased bandwidth, and in many cases more sophisticated
hardware and protocols. 

Extra parallelism, or slackness. Since the overlapped activities (computation or communication)
must be independent of one another, the parallelism in the application must be greater than the
number of processors used. The additional parallelism may be explicit in the form of additional
threads, as in multithreading, but even in the other cases it must exist within a thread. Even two
words being communicated in parallel from a process implies a lack of total serialization
between them and hence extra parallelism. 

Increased bandwidth. While tolerating latency hopefully reduces the execution time during
which the communication is performed, it does not reduce the amount of communication per-
formed. The same communication performed in less time means a higher rate of communication
per unit time, and hence a larger bandwidth requirement imposed on the communication architec-
ture. In fact, if the bandwidth requirements increase much beyond the bandwidth afforded by the
machine, the resulting resource contention may slow down other unrelated transactions and may
even cause latency tolerance to hurt performance rather than help it. 
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More sophisticated hardware and protocols. Especially if we want to exploit other forms of over-
lap than making messages larger, we have the following additional requirements of the hardware
or the protocols used:

• the processor must be allowed to proceed past a long-latency operation before the operation
completes; i.e. it should not stall upon a long-latency operation.

• a processor must be allowed to have multiple outstanding long-latency operations (e.g. send
or read misses), if they are to be overlapped with one another.

These requirements imply that all latency tolerance techniques have significant costs. We should
therefore try to use algorithmic techniques to reduce the frequency of high latency events before
relying on techniques to tolerate latency. The fewer the long-latency events, the less aggressively
we need to hide latency. 

Potential Benefits

A simple analysis can give us good upper bounds on the performance benefits we might expect
from latency tolerance, thus establishing realistic expectations. Let us focus on tolerating the
latency of communication, and assume that the latency of local references is not hidden. Suppose
a process has the following profile when running without any latency tolerance: It spends Tc

cycles computing locally, Tov cycles processing message overhead on the processor, Tocc (occu-
pancy) cycles on the communication assist, and Tl cycles waiting for message transmission in the
network. If we can assume that other resources can be perfectly overlapped with the activity on
the main processor, then the potential speedup can be determined by a simple application of
Amdahl’s Law. The processor must be occupied for Tc+Tov cycles; the maximum latency that we
can hide from the processor is Tl + Tocc (assuming Tc+Tov > Tl + Tocc), so the maximum speedup

due to latency hiding is , or ( ). This limit is an upper bound,

since it assumes perfect overlap of resources and that there is no extra cost imposed by latency
tolerance. However, it gives us a useful perspective. For example, if the process originally spends
at least as much time computing locally as stalled on the communication system, then the maxi-
mum speedup that can be obtained from tolerating communication latency is a factor of 2 even if
there is no overhead incurred on the main processor. And if the original communication stall time
is overlapped only with processor activity, not with other communication, then the maximum
speedup is also a factor of 2 regardless of how much latency there was to hide. This is illustrated
in Figure 11-6. 

How much latency can actually be hidden depends on many factors involving the application and
the architecture. Relevant application characteristics include the structure of the communication
and how much other work is available to be overlapped with it. Architectural issues are the kind
and costs of overlap allowed: how much of the end-point processing is performed on the main
processor versus on the assist; can communication be overlapped with computation, other com-
munication, or both; how many messages involving a given processor may be outstanding (in
progress) at a time; to what extent can overhead processing can be overlapped with data transmis-
sion in the network for the same message; and what are the occupancies of the assist and the
stages of the network pipeline.

Tc Tov Tocc Tl+ + +

Tc Tov+
------------------------------------------------- 1

Tocc T+
l

Tc To+
----------------------+
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Figure 11-7 illustrates the effects on the time-line for a few different kinds of message structuring
and overlap. The figure is merely illustrative. For example, it assumes that overhead per message
is quite high relative to transit latency, and does not consider contention anywhere. Under these
assumptions, larger messages are often more attractive than many small overlapped messages for
two reasons: first, they amortize overhead; and second, with small messages the pipeline rate
might be limited by the end-point processing of each message rather than the network link speed.
Other assumptions may lead to different results. Exercise b looks more quantitatively at an exam-
ple of overlapping communication only with other communication. 

Clearly, some components of communication latency are clearly easier to hide than others. For
example, overhead incurred on the processor cannot be hidden from that processor, and latency
incurred off-node—either in the network or at the other end—is generally easier to hide by over-
lapping with other messages than occupancy incurred on the assist or elsewhere within the node.
Let us examine some of the key limitations that may prevent us from achieving the upper bounds
on latency tolerance discussed above. 

Limitations

The major limitations that keep the speedup from latency tolerance below the above optimistic
limits can be divided into three classes: application limitations, limitations of the communication
architecture, and processor limitations. 

Application limitations: The amount of independent computation time that is available to over-
lap with the latency may be limited, so all the latency may not be hidden and the processor will
have to stall for some of the time.Even if the program has enough work and extra parallelism, the
structure of the program may make it difficult for the system or programmer to identify the con-
current operations and orchestrate the overlap, as we shall see when we discuss specific latency
tolerance mechanisms. 

(a) Comp = Comm (b) Comp > Comm (c) Comp < Comm,
overlap only with comp.

(d) Comp < Comm,
overlap with comm as well

Figure  11-6  Bounds on the benefits from latency tolerance. 

Each figure shows a different scenario. The gray portions represent computation time and the white portions communication time. The
bar on the left is the time breakdown without latency hiding, while the bars on the right show the situation with latency hiding. When
computation time (Comp.) equals communication time (Comm.), the upper bound on speedup is 2. When computation exceeds com-
munication, the upper bound is less than 2, since we are limited by computation time (b). The same is true of the case where commu-
nication exceeds computation, but can be overlapped only with computation (c). The way to obtain a better speedup than a factor of
two is to have communication time originally exceed computation time, but let communication be overlapped with communication as
well (d).
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Time in processor’s critical path
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(b) Single large message, no overlap with computation

(c) Single large message, overlap with computation

(e) Word-size overlapped messages, overlap with computation

(d) Word-size overlapped messages, no overlap with computation

(a) Baseline communication; no latency tolerance

(f) Word-size overlapped messages, overlap with computation,
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Figure  11-7  Time-lines for different forms of latency tolerance. ‘

P indicates time spent on the main processor, ‘A on the local communication assist, and ‘N nonlocal (in network or on other nodes).
Stipple patterns correspond to components of time as per legend in Figure 11-4.
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Communication architecture limitations: Limitations of the communication architecture may
be of two types: first, there may be restrictions on the number of messages or the number of
words that can be outstanding from a node at a time, and second, the performance parameters of
the communication architecture may limit the latency that can be hidden. 

Number of outstanding messages or words. With only one message outstanding, computation can
be overlapped with both assist processing and network transmission. However, assist processing
may or may not be overlapped with network transmission for that message, and the network pipe-
line itself can be kept busy only if the message is large. With multiple outstanding messages, all
three of processor time, assist occupancy and network transmission can be overlapped even with-
out any incoming messages. The network pipeline itself can be kept well utilized even when mes-
sages are very small, since several may be in progress simultaneously. Thus, for messages of a
given size, more latency can be tolerated if each node allows multiple messages to be outstanding
at a time. If L is the cost per message to be hidden, and r cycles of independent computation are

available to be overlapped with each message, in the best case we need  messages to be out-

standing for maximal latency hiding. More outstanding messages do not help, since whatever
latency could be hidden already has been. Similarly, the number or words outstanding is impor-
tant. If k words can be outstanding from a processor at a time, from one or multiple messages,
then in the best case the network transit time as seen by the processor can be reduced by almost a
factor of k. More precisely, for one-way messages to the same destination it is reduced from k*l
cycles to l + k/B, where l is the network transit time for a bit and B is the bandwidth or rate of the
communication pipeline (network and perhaps assist) in words per cycle. 

Assuming that enough messages and words are allowed to be outstanding, the performance
parameters of the communication architecture can become limitations as well. Let us examine
some of these, assuming that the per-message latency of communication we want to hide is L
cycles. For simplicity, we shall consider one-way data messages without acknowledgments. 

Overhead. The message-processing overhead incurred on the processor cannot be hidden. 

Assist occupancy: The occupancy of the assist can be hidden by overlapping with computation.
Whether assist occupancy can be overlapped with other communication (in the same message or
in different messages) depends on whether the assist is internally pipelined and whether assist
processing can be overlapped with network transmission of the message data. 

An end-point message processing time of o cycles per message (overhead or occupancy) estab-
lishes an upper bound on the frequency with which we can issue messages to the network (at best
every o cycles). If we assume that on average a processor receives as many messages as it sends,
and that the overhead of sending and receiving is the same, then the time spent in end-point pro-
cessing per message sent is 2o, so the largest number of messages that we can have outstanding

from a processor in a period of L cycles is . If 2o is greater than the r cycles of computation

we can overlap with each message, then we cannot have the  messages outstanding that we

would need to hide all the latency. 

Point-to-point Bandwidth: Even if overhead is not an issue, the rate of initiating words into the
network may be limited by the slowest link in the entire network pipeline from source to destina-

L
r
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L
2o
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r
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tion; i.e. the stages of the network itself, the node-to-network interface, or even the assist occu-
pancy or processor overhead incurred per word. Just as an end-point overhead of o cycles
between messages (or words) limits the number of outstanding messages (or words) in an L cycle

period to , a pipeline stage time of s cycles in the network limits the number of outstanding

words to .

Network Capacity: Finally, the number of messages a processor can have outstanding is also lim-
ited by the total bandwidth or data carrying capacity of the network, since different processors
compete for this finite capacity. If each link is a word wide, a message of M words traveling h
hops in the network may occupy up to M*h links in the network at a given time. If each processor
has k such messages outstanding, then each processor may require up to M*h*k links at a given
time. However, if there are D links in the network in all and all processors are transmitting in this
way, then each processor on average can only occupy D/p links at a given time. Thus, the number

of outstanding messages per processor k is limited by the relation , or . 

Processor limitations: Spatial locality through long cache lines already allows more than one
word of communication to be outstanding at a time. To hide latency beyond this in a shared
address space with communication only through cache misses, a processor and its cache sub-
system must allow multiple cache misses to be outstanding simultaneously. This is costly, as we
shall see, so processor-cache systems have relatively small limits on this number of outstanding
misses (and these include local misses that don’t cause communication). Explicit communication
has more flexibility in this regard, though the system may limit the number of messages that can
be outstanding at a time. 

It is clear from the above discussion that the communication architecture efficient (high band-
width, low end point overhead or occupancy) is very important for tolerating latency effectively.
We have seen the properties of some real machines in terms of network bandwidth, node-to-net-
work bandwidth, and end-point overhead, as well as where the end-point overhead is incurred, in
the last few chapters. From the data for overhead, communication latency, and gap we can com-
pute two useful numbers in understanding the potential for latency hiding. The first is the ratio L/
o for the limit imposed by communication performance on the number of messages that can be
outstanding at a time in a period of L cycles, assuming that other processors are not sending mes-
sages to this one at the same time. The second is the inverse of the gap, which is the rate at which
messages can be pipelined into the network. If L/o is not large enough to overlap the outstanding
messages with computation, then the only way to hide latency beyond this is to make messages
larger. The values of L/o for remote reads in a shared address space and for explicit message

L
o
---

L
s
---

M h× k× D
p
----< k

D
p M× h×
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passing using message passing libraries can be computed from Figures 7-31 and 7-32, and from
the data in Chapter 8 as shown in Table 11-1. 

For the message passing systems, it is clear that the number of messages that can be outstanding
to overlap the cost of another message is quite small, due to the high per-message overhead. In
the message-passing machines (e.g. nCube/2, CM-5, Paragon), hiding latency with small mes-
sages is clearly limited by the end-point processing overheads. Making messages larger is there-
fore likely to be more successful at hiding latency than trying to overlap multiple small messages.
The hardware supported shared address space machines are limited much less by performance
parameters of the communication architecture in their ability to hide the latency of small mes-
sages. Here, the major limitations tend to be the number of outstanding requests supported by the
processor or cache system, and the fact that a given memory operation may generate several pro-
tocol transactions (messages), stressing assist occupancy. 

Having understood the basics, we are now ready to look at individual techniques in the context of
the two major communication abstractions. Since the treatment of latency tolerance for explicit
message passing communication is simpler, the next section discusses all four general techniques
in its context. 

11.3 Latency Tolerance in Explicit Message Passing

To understand which latency tolerance techniques are most useful and how they might be
employed, it is useful to first consider the structure of communication in an abstraction; in partic-
ular, how sender- and receiver-initiated communication are orchestrated, and whether messages
are of fixed (small or large) or variable size. 

11.3.1 Structure of Communication

The actual transfer of data in explicit message-passing is typically sender-initiated, using a send
operation. Recall that a receive operation does not in itself cause data to be communicated, but
rather copies data from an incoming buffer into the application address space. Receiver-initiated
communication is performed by issuing a request message (itself a send) to the process that is

Table 11-1  Number of messages outstanding at a time as limited by L/o ratio, and rate at which messages can be issued to the
network. L here is the total cost of a message, including overhead. For a remote read, o is the overhead on the initiating processor,
which cannot be hidden. For message passing, we assume symmetry in messages and therefore count o to be the sum of the send
and receive overhead. (*) For the machines that have hardware support for a shared address space, there is very little time incurred
on the main processor on a remote read, so most of the latency can be hidden if the processor and controller allow enough
outstanding references. The gap here is determined by the occupancy of the communication assist. 

Machine

Network 
Transaction Remote Read

Machine

Network 
Transaction Remote Read

L/2o 
 Msgs/
msec L/o

Msgs/
msec L/2o 

Msgs/
msec L/o

 Msgs/
msec

TMC CM-5 2.12 250 1.75 161 NOW-Ultra 1,79 172 1.77 127

Intel Paragon 2.72 131 5.63 133 Cray T3D 1.00 345 1.13 2500*

Meiko CS-2 3.28 74 8.35 63.3 SGI Origin * 5000*
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the source of the data. That process then sends the data back via another send.1 The baseline
example in Figure 11-1 uses synchronous sends and receives, with sender-initiated communica-
tion. A synchronous send operation has a communication latency equal to the time it takes to
communicate all the data in the message to the destination, plus the time for receive processing,
plus the time for an acknowledgment to be returned. The latency of a synchronous receive opera-
tion is its processing overhead, including copying the data into the application, plus the addi-
tional latency if the data have not yet arrived. We would like to hide these latencies, including
overheads if possible, at both ends. Let us continue to assume that the overheads are incurred on
a communication assist and not on the main processor, and see how the four classes of latency
tolerance techniques might be applied in classical sender-initiated send-receive message passing.

11.3.2 Block Data Transfer

With the high end-point overheads of message passing, making messages large is important both
for amortizing overhead and to enable a communication pipeline whose rate is not limited by the
end-point overhead of message-processing. These two benefits can be obtained even with syn-
chronous messages. However, if we also want to overlap the communication with computation or
other messages, then we must use one or more of the techniques below (instead of or in addition
to making messages larger). We have already seen how block transfer is implemented in mes-
sage-passing machines in Chapter 7. 

The other three classes of techniques, described below, try to overlap messages with computation
or other messages, and must therefore use asynchronous messages so the processor does not stall
waiting for each message to complete before proceeding. While they can be used with either
small or large (block transfer) messages, and are in this sense complementary to block transfer,
we shall illustrate them with the small messages that are in our baseline communication struc-
ture. 

11.3.3 Precommunication

In our example of Figure 11-1, we can actually pull the sends up earlier than they actually occur,
as shown in Figure 11-8. We would also like to pull the receives on PB up early enough before the
data are needed by PB, so that we can overlap the receive overhead incurred on the assist with
other work on the main processor. Figure 11-8 shows a possible precommunicating version of the
message passing program. The loop on PA is split in two. All the sends are pulled up and com-
bined in one loop, and the computations of the function f(B[]) are postponed to a separate loop.
The sends are asynchronous, so the processor does not stall at them. Here, as in all cases, the use
of asynchronous communication operations means that probes must be used as appropriate to
ensure the data have been transferred or received.

Is this a good idea? The advantage is that messages are sent to the receiver as early as possible;
the disadvantages are that no useful work is done on the sender between messages, and the pres-

1.  In other abstractions built on message passing machines and discussed inChapter 7, like remote proce-
dure call or active messages, the receiver sends a request message, and a handler that processes the request
at the data source sends the data back without involving the application process there. However, we shall
focus on classical send-receive message passing which dominates at the programming model layer.
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sure on the buffers at the receiver is higher since messages may arrive much before they are
needed. Whether the net result is beneficial depends on the overhead incurred per message, the
number of messages that a process is allowed to have outstanding at a time, and how much later
than the sends the receives occur anyway. For example, if only one or two messages may be out-
standing, then we are better off interspersing computation (of f(B[])) between asynchronous
sends, thus building a pipeline of communication and computation in software instead of waiting
for those two messages to complete before doing anything else. The same is true if the overhead
incurred on the assist is high, so we can keep the processor busy while the assist is incurring this
high per-message overhead. The ideal case would be if we could build a balanced software pipe-
line in which we pull sends up but do just the right amount of computation between message
sends. 

Now consider the receiver PB. To hide the latency of the receives through precommunication, we
try to pull them up earlier in the code and we use asynchronous receives. The a_receive call
simply posts the specification of the receive in a place where the assist can see it, and allows the
processor to proceed. When the data come in, the assist is notified and it moves them to the appli-
cation data structures. The application must check that the data have arrived (using the
recv_probe() call) before it can use them reliably. If the data have already arrived when the
a_receive is posted (pre-issued), then what we can hope to hide by pre-issuing is the over-
head of the receive processing; otherwise, we might hide both transit time and receive overhead. 

Receive overhead is usually larger than send overhead, as we saw in Chapter 7, so if many asyn-
chronous receives are to be issued (or pre-issued) it is usually beneficial to intersperse computa-
tion between them rather than issue them back to back. One way to do this is to build a software
pipeline of communication and computation, as shown in Figure 11-8. Each iteration of the loop
issues an a_receive for the data needed for the next iteration, and then does the processing for
the current iteration (using a recv_probe to ensure that the message for the current iteration has
arrived before using it). The hope is that by the time the next iteration is reached, the message for

Process PA

for i←0to n-1 do

compute A[i];

write A[i];

a_send (A[i] to proc.PB);

end for

for i←0to n-1 do

compute f(B[i]);

Process PB

a_receive (myA[0] from PA);

for i←0 to n-2 do 

a_receive (myA[i+1] from PA);

while (!recv_probe(myA[i]) {};

use myA[i];

compute g(C[i]);

end for

while (!received(myA[n-1]) {};

use myA[n-1];

compute g(C[n-1])

Figure  11-8  Hiding latency through precommunication in the message-passing example. 

In the pseudocode, a_send and a_receive are asynchronous send and receive operations, respectively. 
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which the a_receive was posted in the current iteration will have arrived and incurred its
overhead on the assist, and the data will be ready to use. If the receive overhead is high relative to
the computation per iteration, the a_receive can be several iterations ahead instead of just
one issued.

The software pipeline has three parts. What was described above is the steady-state loop. In addi-
tion to this loop, some work must be done to start the pipeline and some to wind it down. In this
example, the prologue must post a receive for the data needed in the first iteration of the steady-
state loop, and the epilogue must process the code for the last iteration of the original loop (this
last interaction is left out of the steady-state loop since we do not want to post an asynchronous
receive for a nonexistent next iteration). A similar software pipeline strategy could be used if
communication were truly receiver-initiated, for example if there were no send but the
a_receive sent a request to the node running PA and an handler there reacted to the request by
supplying the data. In that case, the precommunication strategy is known as prefetching the data,
since the receive (or get) truly causes the data to be fetched across the network. We shall see
prefetching in more detail in the context of a shared address space in Section 11.7, since there the
communication is very often truly receiver-initiated. 

11.3.4 Proceeding Past Communication and Multithreading

Now suppose we do not want to pull communication up in the code but leave it where it is. One
way to hide latency in this case is to simply make the communication messages asynchronous,
and proceed past them to either computation or other asynchronous communication messages.
We can continue doing this until we come to a point where we depend on a communication mes-
sage completing or run into a limit on the number of messages we may have outstanding at a
time. Of course, as with prefetching the use of asynchronous receives means that we must add
probes or synchronization to ensure that data have reached their destinations before we try to use
them (or on the sender side that the application data we were sending has been copied or sent out
before we reuse the corresponding storage). 

To exploit multithreading, as soon as a process issues a send or receive operation, it suspends
itself and another ready-to-run process or thread from the application is scheduled to run on the
processor. If this thread issues a send or receive, then it too is suspended and another thread
switched in. The hope is that by the time we run out of threads and the first thread is rescheduled,
the communication operation that thread issued will have completed. The switching and manage-
ment of threads can be managed by the message passing library using calls to the operating sys-
tem to change the program counter and perform other protected thread-management functions.
For example, the implementation of the send primitive might automatically cause a thread switch
after initiating the send (of course, if there is no other ready thread on that processing node, then
the same thread will be switched back in). 

Switching a thread requires that we save the processor state needed to restart it that will other-
wise be wiped out by the new thread. This includes the processor registers, the program counter,
the stack pointer, and various processor status words. The state must be restored when the thread
is switched back in. Saving and restoring state in software is expensive, and can undermine the
benefits obtained from multithreading. Some message-passing architectures therefore provide
hardware support for multithreading, for example by providing multiple sets of registers and pro-
gram counters in hardware. Note that architectures that provide asynchronous message handlers
that are separate from the application process but run on the main processor are essentially multi-
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threaded between the application process and the handler. This form of multithreading between
applications and message handlers can be supported in software, though some research architec-
tures also provide hardware support to make it more efficient (e.g. the message-driven processor
of the J-Machine [DFK+92,NWD93]). We shall discuss these issues of hardware support in more
detail when we discuss multithreading in a shared address space in Section 11.8. 

11.4 Latency Tolerance in a Shared Address Space

The rest of this chapter focuses on latency tolerance in the context of hardware-supported shared
address space. This discussion will be a lot more detailed for several reasons. First, the existing
hardware support for communication brings the techniques and requirements much closer to the
architecture and the hardware-software interface. Second, the implicit nature of long-latency
events (such as communication) makes it almost necessary that much of the latency tolerance be
orchestrated by the system rather than the user program. Third, the granularity of communication
and efficiency of the underlying fine-grained communication mechanisms require that the tech-
niques be hardware-supported if they are to be effective. And finally, since much of the latency
being hidden is that of reads (read latency), writes (write latency) and perhaps instructions—not
explicit communication operations like sends and receives—most of the techniques are applica-
ble to the wide market of uniprocessors as well. In fact, since we don’t know ahead of time which
read and write operations will generate communication, latency hiding is treated in much the
same way for local accesses and communication in shared address space multiprocessors. The
difference is in the magnitude of the latencies to be hidden, and potentially in the interactions
with a cache coherence protocol.

As with message passing, let us begin by briefly examining the structure of communication in
this abstraction before we look at the actual techniques. Much of our discussion will apply to
both cache-coherent systems as well as those that do not cache shared data, but some of it,
including the experimental results presented, will be specific to cache-coherent systems. For the
most part, we assume that the shared address space (and cache coherence) is supported in hard-
ware, and the default communication and coherence are at the small granularity of individual
words or cache blocks. The experimental results presented in the following sections will be taken
from the literature. These results use several of the same applications that we have used earlier in
this book, but they typically use different versions with different communication to computation
ratios and other behavioral characteristics, and they do not always follow the methodology out-
lined in Chapter 4. The system parameters used also vary, so the results are presented purely for
illustrative purposes, and cannot be compared even among different latency hiding techniques in
this chapter. 

11.4.1 Structure of Communication

The baseline communication is through reads and writes in a shared address space, and is called
read-write communication for convenience. Receiver-initiated communication is performed with
read operations that result in data from another processor’s memory or cache being accessed.
This is a natural extension of data access in the uniprocessor program model: Obtain words of
memory when you need to use them. 
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If there is no caching of shared data, sender-initiated communication may be performed through
writes to data that are allocated in remote memories.1 With cache coherence, the effect of writes
is more complex: Whether writes lead to sender or receiver initiated communication depends on
the cache coherence protocol. For example, suppose processor PA writes a word that is allocated
in PB’s memory. In the most common case of an invalidation-based cache coherence protocol
with writeback caches, the write will only generate a read exclusive or upgrade request and per-
haps some invalidations, and it may bring data to itself if it does not already have the valid block
in its cache, but it will not actually cause the newly written data to be transferred to PB. While
requests and invalidations constitute communication too, the actual communication of the new
value from PA to PB will be generated by the later read of the data by PB. In this sense, it is
receiver-initiated. Or the data transfer may be generated by an asynchronous replacement of the
data from PA’s cache, which will cause it to go back to its “home” in PB’s memory. In an update
protocol, on the other hand, the write itself will communicate the data from PA to PB if PB had a
cached copy. 

Whether receiver-initiated or sender-initiated, the communication in a hardware-supported read-
write shared address space is naturally fine-grained, which makes tolerance latency particularly
important. The different approaches to latency tolerance are better suited to different types and
magnitudes of latency, and have achieved different levels of acceptance in commercial products.
Other than block data transfer, the other three approaches that try to overlap load and store
accesses with computation or other accesses require support in the microprocessor architecture
itself. Let us examine these approaches in some detail in the next four sections. 

11.5 Block Data Transfer in a Shared Address Space

In a shared address space, the coalescing of data and the initiation of block transfers can be done
either explicitly in the user program or transparently by the system, either by hardware or soft-
ware. For example, the prevalent use of long cache blocks on modern systems can itself be seen
as a means of transparent small block transfers in cache-block sized messages, used effectively
when a program has good spatial locality on communicated data. Relaxed memory consistency
models further allow us to buffer words or cache blocks and send them in coalesced messages
only at synchronization points, a fact utilized particularly by software shared address space sys-
tems as seen in Chapter 9. However, let us focus here on explicit initiation of block transfers. 

11.5.1 Techniques and Mechanisms

Explicit block transfers are initiated by issuing a command similar to a send in the user pro-
gram, as shown for the simple example in Figure 11-9. The send command is interpreted by the
communication assist, which transfers the data in a pipelined manner from the source node to the
destination. At the destination, the communication assist pulls the data words in from the network
interface and stores them in the specified locations. The path is shown in Figure 11-10. There are
two major differences from send-receive message passing, both of which arise from the fact that

1.  An interesting case is the one in which a processor writes a word that is allocated in a different proces-
sor’s memory, and a third processor reads the word. In this case, we have two communication events, one
“sender-initiated” and one “receiver-initiated”. 
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the sending process can directly specify the program data structures (virtual addresses) where the
data are to be placed at the destination, since these locations are in the shared address space. On
one hand, this removes the need for receive operations in the programming model, since the
incoming message specifies where the data should be put in the program address space. It may
also remove the need for system buffering in main memory at the destination, if the destination
assist is available to put the data directly from the network interface into the program data struc-
tures in memory. On the other hand, another form of synchronization (like spinning on a flag or
blocking) must be used to ensure that data arrive before they are used by the destination process,
but not before they are welcome. It is also possible to use receiver-initiated block transfer, in
which case the request for the transfer is issued by the receiver and transmitted to the sender’s
commnication assist.

The communication assist on a node that performs the block transfer could be the same one that
processes coherence protocol transactions, or a separate DMA engine dedicated to block transfer.
The assist or DMA engine can be designed with varying degrees of aggressiveness in its func-
tionality; for example, it may allow or disallow transfers of data that are not contiguous in mem-
ory at the source or destination ends, such as transfers with uniform stride or more general
scatter-gather operations discussed in Chapter 2. The block transfer may leverage off the support
already provided for efficient transfer of cache blocks, or it may be a completely separate mecha-
nism. Particularly since block transfers may need to interact with the coherence protocol in a
coherent shared address space, we shall assume that the block transfer uses pipelined transfers of
cache blocks; i.e. the block transfer engine is a part of the source that reads cache blocks out of
memory and transfers them into the network. Figure 11-10 shows the steps in a possible imple-
mentation of block transfer in a cache-coherent shared address space. 

11.5.2 Policy Issues and Tradeoffs

Two policy issues are of particular interest in block transfer: those that arise from interactions
with the underlying shared address space and cache coherence protocol, and the question of
where the block transferred data should be placed in the destination node. 

Process PA

for i←0to n-1 do

A[i]←...;

end for

send (A[0..n-1] to tmp[0..n-1]);

flag ← 1;

for i←0to n-1 do

compute f(B[i]);

end for

Process PB

while (!flag) {}; /*spin-wait*/

for i←1 to n-1 do 

use tmp[i];

compute g(C[i]);

end for

Figure  11-9  Using block transfer in a shared address space for the example of Figure 11-1. 

The array A is allocated in processor PA’s local memory, and tmp in processor PB’s local memory.
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Interactions with the Cache Coherent Shared Address Space

The first interesting interaction is with the shared address space itself, regardless of whether it
includes automatic coherent caching or not. The shared data that a processor “sends” in a block
transfer may not be allocated in its local memory, but in another processing node’s memory or
even scattered among other node’s memories. The main policy choices here are to (a) disallow
such transfers, (b) have the initiating node retrieve the data from the other memories and forward
them one cache block at a time in a pipelined manner, or (c) have the initiating node send mes-
sages to the owning nodes’ assists asking them to initiate and handle the relevant transfers. 

The second interaction is specific to a coherent shared address space, since now the same data
structures may be communicated using two different protocols: block transfer and cache coher-
ence. Regardless of which main memory the data are allocated in, they may be cached in (i) the
sender’s cache in dirty state, (ii) the receiver’s cache in shared state, or (iii) another processor’s
cache (including the receiver’s) in dirty state. The first two cases create what is called the local
coherence problem, i.e. ensuring that the data sent are the latest values for those variables on the
sending node, and that copies of those data on the receiving node are left in coherent state after
the transfer. The third case is called the global coherence problem, i.e ensuring that the values
transferred are the latest values for those variables anywhere in the system (according to the con-
sistency model), and that the data involved in the transfer are left in coherent state in the whole
system. Once again, the choices are to provide no guarantees in any of these three cases, to pro-
vide only local but not global coherence, or to provide full global coherence. Each successive
step makes the programmer’s job easier, but imposes more requirements on the communication
assist. This is because the assist is now responsible for checking the state of every block being
transferred, retrieving data from the appropriate caches, and invalidating data in the appropriate
caches. The data being transferred may not be properly aligned with cache blocks, which makes
interactions with the block-level coherence protocol even more complicated, as does the fact that
the directory information for the blocks being transferred may not be present at the sending node
More details on implementing block transfer in cache coherent machines can be found in the lit-
erature [KuA93,HGD+94,HBG+97]. Programs that use explicit message passing are simpler in
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Figure  11-10  Path of a block transfer from a source node to a destination node in a shared address space machine. 

The transfer is done in terms of cache blocks, since that is the granularity of communication for which the machine is optimized. 
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this regard: they require local coherence but not global coherence, since any data that they can
access—and hence transfer—are allocated in their private address space and cannot be cached by
any other processors. 

For block transfer to maintain even local coherence, the assist has some work to do for every
cache block and becomes an integral part of the transfer pipeline. The occupancy of the assist can
therefore easily become the bottleneck in transfer bandwidth, affecting even those blocks for
which no interaction with caches is required. Global coherence may require the assist to send net-
work transactions around before sending each block, reducing bandwidth dramatically. It is
therefore important that a block transfer system have a “pay for use” property; i.e. providing
coherent transfers should not significantly hurt the performance of transfers that do not need
coherence, particularly if the latter are a common case. For example, if block transfer is used in
the system only to support explicit message passing programs, and not to accelerate coarse-
grained communication in an otherwise read-write shared address space program, then it may
make sense to provide only local coherence but not global coherence. But in the former case, glo-
bal coherence may in fact be important if we want to provide true integration of block transfer
with a coherent read-write shared address space, and not make the programming model restric-
tive. As a simple example of why global coherence may be needed, consider false sharing. The
data that processor P1 wants to send P2 may be allocated in P1’s local memory and produced by
P1, but another processor P3 may have written other words on those cache blocks more recently.
The cache blocks will therefore be in invalid state in P1’s cache, and the latest copies must be
retrieved from P3 in order to be sent to P2. False sharing is only an example: It is not difficult to
see that in a true shared address space program the words that P1 sends to P2 might themselves
have been written most recently by another processor. 

Where to Place the Transferred Data?

The other interesting policy issue is whether the data that are block transferred should be placed
in the main memory of the destination node, in the cache, or in both. Since the destination node
will read the data, having the data come into the cache is useful. However, it has some disadvan-
tages. First, it requires intervening in the processor cache, which is expensive on modern systems
and may prevent the processor from accessing the cache at the same time. Second, unless the
block transferred data are used soon they may be replaced before they are used, so we should
transfer data into main memory as well. And third and most dangerous, the transferred data might
replace other useful data from the cache, perhaps even data that are currently in the processor’s
active working set. For these reasons, large block transfer into a small first-level cache are likely
to not be a good idea, while transfers into a large or second-level cache may be more useful. 

11.5.3 Performance Benefits

In a shared address space, there are some new advantages for using large explicit transfer com-
pared to communicating implicitly in cache block sized messages. However, some of the advan-
tages discussed earlier are compromised and there are disadvantages as well. Let us first discuss
the advantages and disadvantages qualitatively, and then look at some performance data on real
programs from the literature and some analytical observations. 
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Potential Advantages and Disadvantages

The major sources of performance advantage are outlined below. The first two were discussed in
the context of message passing, so we only point out the differences here.

• Amortized per-message overhead. This advantage may be less important in a hardware-
supported shared address space, since the end-point overhead is already quite small. In
fact, explicit, flexibly sized transfers have higher end-point overhead than small fixed-
size transfers, as discussed in Chapter 7, so the per-communication overhead is likely to
be substantially larger for block transfer than for read-write communication. This turns
out to be a major stumbling block for block transfer on modern cache-coherent
machines, which currently use the facility more for operating system operations like
page migration than for application activity. However, in less efficient communication
architectures, such as those that use commodity parts, the overhead per message can be
large even for cache block communication and the amortization due to block transfer
can be very important. 

• Pipelined transfer of large chunks of data.

• Less wasted bandwidth: In general, the larger the message, the less the relative overhead
of headers and routing information, and the higher the payload (the fraction of data
transferred that is useful to the end application). This advantage may be lost when the
block transfer is built on top of the existing cache line transfer mechanism, in which
case again the header information may be nonetheless sent once per cache block. When
used properly, block transfer can also reduce the number of protocol messages (e.g.
invalidations, acknowledgments) that may have otherwise been sent around in an invali-
dation-based protocol. 

• Replication of transferred data in main memory at the destination, since the block trans-
fer is usually done into main memory. This reduces the number of capacity misses at the
destination that have to be satisfied remotely, as in COMA machines. However, without
a COMA architecture it implies that the user must manage the coherence and replace-
ment of the data that have been block transferred and hence replicated in main memory.

• Bundling of synchronization with data transfer. Synchronization notifications can be
piggybacked on the same message that transfers data, rather than having to send sepa-
rate messages for data and synchronization. This reduces the number of messages
needed, though the absence of an explicit receive operation implies that functionally
synchronization has still to be managed separately from data transfer (i.e. there is no
send-receive match that provides synchronization) just as in asynchronous send-receive
message passing.

The sources of potential performance disadvantage are:

• Higher overhead per transfer, as discussed in the first point above. 

• Increased contention. Long messages tend to incur higher contention, both at the end
points and in the network. This is because longer messages tend to occupy more
resources in the network at a time, and because the latency tolerance they provide places
greater bandwidth demands on the communication architecture. 

• Extra work. Programs may have to do extra work to organize themselves so communi-
cation can be performed in large transfers (if this can be done effectively at all). This
extra work may turn out to have a higher cost than the benefits achieved from block
transfer (see Section 3.7 in Chapter 3). 
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The following simple example illustrate the performance improvements that can be obtained by
using block transfers rather than reads and writes, particularly from reduced overhead and pipe-
lined data transfer. 

Example  11-1 Suppose we want to communicate 4KB of data from a source node to a destination
node in a cache-coherent shared address space machine with a cache block size of
64 bytes. Assume that the data are contiguous in memory, so spatial locality is
exploited perfectly (Exercise 11.4 discusses the issues that arise when spatial
locality is not good). It takes the source assist 40 processor cycles to read a cache
block out of memory, 50 cycles to push a cache block out through the network
interface, and the same numbers of cycles for the complementary operations at the
receiver. Assume that the local read miss latency is 60 cycles, the remote read miss
latency 180 cycles, and the time to start up a block transfer 200 cycles. What is the
potential performance advantage of using block transfer rather than communication
through cache misses, assuming that the processor blocks on memory operations
until they complete?

Answer The cost of getting the data through read misses, as seen by the processor, is
180*(4096/64) = 11520 cycles. With block transfer, the rate of the transfer pipeline
is limited by max(40,50,50) or 50 cycles per block. This brings the data to the local
memory at the destination, from where they will be read by the processor through
local misses, each of which costs 60 cycles. Thus, the cost of getting the data to the
destination processor with block transfer is 200 + (4096/64)*(50+60) or 7240
cycles. Using block transfer therefore gives us a speedup of 11520/7240 or 1.6. 

Another way to achieve block transfers is with vector operations, e.g. a vector read from remote
memory. In this case, a single instruction causes the data to appear in the (vector) registers, so
individual loads and stores are not required even locally and there is a savings in instruction
bandwidth. Vector registers are typically managed by software, which has the disadvantages of
aliasing and tying up register names but the advantage of not suffering from cache conflicts.
However, many high-performance systems today do not include vector operations, and we shall
focus on block transfers that still need individual load and store operations to access and use the
data.

Performance Benefits and Limitations in Real Programs

Whether block transfer can be used effectively in real programs depends on both program and
system characteristics. Consider a simple example amenable to block transfer, a near-neighbor
grid computation, to see how the performance issues play out. Let us ignore the complications
discussed above by assuming that the transfers are done from the source main memory to the des-
tination main memory and that the data are not cached anywhere. We assume a four-dimensional
array representation of the two-dimensional grid, and that a processor’s partition of the grid is
allocated in its local memory. 

Instead of communicating elements at partition boundaries through individual reads and writes, a
process can simply send a single message containing all the appropriate boundary elements to its
neighbor, as shown in Figure 11-11. The communication to computation ratio is proportional to
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. Since block transfer is intended to improve communication performance, this in itself

would tend to increase the relative effectiveness of block transfer as the number of processors

increases. However, the size of an individual block transfer is  elements and therefore

decreases with p. Smaller transfers make the additional overhead of initiating a block transfer rel-
atively more significant, reducing the effectiveness of block transfer. These two factors combine
to yield a sweet-spot in the number of processors for which block transfer is most effective for a
given grid size, yielding a performance improvement curve for block transfer that might look like
that in Figure 11-12. The sweet-spot moves to larger numbers of processors as the grid size
increases. 

Figure 11-13 illustrates this effect for a real program, namely a Fast Fourier Transform (FFT), on
a simulated architecture that models the Stanford FLASH multiprocessor and is quite close to the
SGI Origin2000 (though much more aggressive in its block transfer capabilities and perfor-
mance). We can see that the relative benefit of block transfer over ordinary cache-coherent com-
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Figure  11-11   The use of block transfer in a near-neighbor grid program. 

A process can send and entire boundary subrow or subcolumn of its partition to the process that owns the neighboring partition in a
single large message. The size of each message is  elements. 
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Figure  11-12  Relative performance improvement with block transfer. 

The figure shows the execution time using block transfer normalized to that using loads and stores. The sweet spot occurs when com-
munication is high enough that block transfer matters, and the transfers are also large enough that overhead doesn’t dominate. 
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munication diminishes with increasing cache block size, since the excellent spatial locality in this
program causes long cache blocks to themselves behave like little block transfers. For the largest
block size of 128 bytes, which is in fact the block size used in the SGI Origin2000, the benefits of
using block transfer on such an efficient cache-coherent machine are small, even though the
block transfer engine simulated is very optimistic. The sweet-spot effect is clearly visible, and the
sweet spot moves with increasing problem size. Results for Ocean, a more complete, regular
application whose communication is a more complex variant of the nearest-neighbor communi-
cation, are shown are shown in Figure 11-14. Block transfers at row-oriented partition boundaries

transfer contiguous data, but this communication also has very good spatial locality; at column-
oriented partition boundaries spatial locality in communicated data is poor, but it is also difficult
to exploit block transfer well. The relative benefits of block transfer therefore don’t depend so

Figure  11-13  The benefits of block data transfer in a Fast Fourier Transform program. 

The architectural model and parameters used resemble those of the Stanford Flash multiprocessor [KOH+94], and are similar to
those of the SGI Origin2000. Each curve is for a different cache block size. For each curve, the Y axis shows the execution time nor-
malized to that of an execution without block transfer using the same cache block size. Thus, the different curves are normalized dif-
ferently, and different points for the same X-axis value are not normalized to the same number. The closer a point is to the value 1
(the horizontal line), the less the improvement obtained by using block transfer over regular read-write communication for that cache
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Figure  11-14  The benefits of block transfer in the Ocean application. 

The platform and data interpretation are exactly the same as in Figure 11-13. 
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greatly on cache block size. Overall, the communication to computation ratio in Ocean is much
smaller than in FFT. While the communication to computation ratio increases at higher levels of
the grid hierarchy in the multigrid solver—as processor partitions become smaller—block trans-
fers also become smaller at these levels and are less effective at amortizing overhead. The result
is that block transfer is a lot less helpful for this application. Quantitative data for other applica-
tions can be found in [WSH94]. 

As we saw in the Barnes-Hut galaxy simulation in Chapter 3, irregular computations can also be
structured to communicate in coarse-grained messages, but this often requires major changes in
the algorithm and its orchestration. Often, additional work has to be done to gather the data
together for large messages and orient the parallel algorithm that way. Whether this is useful
depends on how the extra computation costs compare with the benefits obtained from block
transfer. In addition to data needed by the computation directly, block transfer may also be useful
for some aspects of parallelism management. For example, in a task stealing scenario if the task
descriptors for a stolen task are large they can be sent using a block transfer, as can the associated
data, and the necessary synchronization for task queues can be piggybacked on these transfers.

One situation when block transfer will clearly be beneficial is when the overhead to initiate
remote read-write accesses is very high, unlike in the architecture simulated above; for example,
when the shared address space is implemented in software. To see the effects of other parameters
of the communication architecture, such as network transit time and point-to-point bandwidth, let
us look at the potential benefits more analytically. In general, the time to communicate a large
block of data through remote read misses is (#of read misses * remote read miss time), and the
time to get the data to the destination processor through block transfer is (start-up overhead + #of
cache blocks transferred * pipeline stage time per line + #of read misses * local read miss time).
The simplest case to analyze is a large enough contiguous chunk of data, so that we can ignore
the block transfer start-up cost and also assume perfect spatial locality. In this case, the speedup
due to block transfer is limited by the ratio: 

(EQ 11.1)

where the block transfer pipeline stage time is the maximum of the time spent in any of the stage
of the pipeline that was shown in Figure 11-10. 

A longer network transit time implies that the remote read miss time is increased. If the network
bandwidth doesn’t decrease with increasing latency, then the other terms are unaffected and
longer latencies favor block transfer. Alternatively, network bandwidth may decrease proportion-
ally to the increase in latency e.g. if latency is increased by decreasing the clock speed of the net-
work. In this case, at some point the rate at which data can be pushed into the network becomes
smaller than the rate at which the assist can retrieve data from main memory. Up to this point, the
memory access time dominates the block transfer pipeline stage time and increases in network
latency favor block transfer. After this point the numerator and denominator in the ratio increase
at the same rate so the relative advantage of block transfer is unchanged.

Finally, suppose latency and overhead stay fixed but bandwidth changes, (e.g. more wires are
added to each network link). We might think that load-based communication is latency bound
while block transfer is bandwidth-bound, so increasing bandwidth should favor block transfer.
However, past a point increasing bandwidth means that the pipeline stage time becomes domi-

remote read miss time

block transfer pipeline stage time + local read miss time
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nated by the memory access time, as above, so increasing bandwidth further does not improve the
performance of block transfer. Reducing bandwidth increases the block transfer pipeline stage
time proportionally, once it starts to dominate the end-point effects, and the extent to which this
hurts block transfer depends on how it impacts the end-to-end read miss latency of a cache block.
Thus, if the other variables are kept constant in each case, block transfer is helped by increased
per-message overhead, helped by increased latency, hurt by decreased latency, helped by
increased bandwidth up to a point, and hurt by decreased bandwidth. 

In summary, then, the performance improvement obtained from block transfer over read-write
cache coherent communication depends on the following factors:

• What fraction of the execution time is spent in communication that is amenable to block
transfer. 

• How much extra work must be done to structure this communication in block transfers.

• The problem size and number of processors, which affect the first point above as well as the
sizes of the transfers and thus how well they amortize block transfer overhead.

• The overhead itself, and the different latencies and bandwidths in the system.

• The spatial locality obtained with read-write communication and how it interacts with the
granularity of data transfer (cache block size, see Exercise 11.4). 

If we can really make all messages large enough, then the latency of communication may not be
the problem anymore; bandwidth may become a more significant constraint. But if not, we still
need to hide the latency of individual data accesses by overlapping them with computation or
with other accesses. The next three sections examine the techniques for doing this in a shared
address space. As mentioned earlier, the focus is mostly on the case where communication is per-
formed through reads and writes at the granularity of individual cache blocks or words. However,
we shall also discuss how the techniques might be used in conjunction with block transfer. Let us
begin with techniques to move past long-latency accesses in the same thread of computation. 

11.6 Proceeding Past Long-latency Events in a Shared Address Space

A processor can proceed past a memory operation to other instructions if the memory operation
is made non-blocking. For writes, this is usually quite easy to implement: The write is put in a
write buffer, and the processor goes on while the buffer takes care of issuing the write to the
memory system and tracking its completion as necessary. A similar approach can be taken with
reads if the processor supports non-blocking reads. However, due to the nature of programs, this
requires greater support from software and/or hardware than simply a buffer and the ability to
check dependences. The difference is that unlike a write, a read is usually followed very soon by
an instruction that needs the value returned by the read (called a dependent instruction). This
means that even if the processor proceeds past the read, it will stall very soon since it will reach a
dependent instruction. If the read misses in the cache, very little of the miss latency is likely to be
hidden in this manner. Hiding read latency effectively, using non-blocking reads, requires that we
“look ahead” in the instruction stream past the dependent instruction to find other instructions
that are independent of the read. This requires support in the compiler (instruction scheduler) or
the hardware or both. Hiding write latency does not usually require instruction lookahead: We
can allow the processor to stall when it encounters a dependent instruction, since it is not likely to
encounter one soon. 
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Proceeding past operations before they complete can provide benefits from both buffering and
pipelining. Buffering of memory operations allows the processor to proceed with other activity,
to delay the propagation and application of requests like invalidations, and to merge operations to
the same word or cache block in the buffer before sending them out further into the memory sys-
tem. Pipelining means that multiple memory operations (cache misses) are issued into the
extended memory hierarchy at a time, so their latencies are overlapped and they can complete
earlier. These advantages are true for uniprocessors as well as multiprocessors.

Whether or not proceeding past the issuing of memory operations violates sequential consistency
in multiprocessors depends on whether the operations are allowed to perform with respect to
(become visible to) other processors out of program order. By requiring that memory operations
from the same thread should not appear to perform with respect to other processors out of pro-
gram order, sequential consistency (SC) restricts—but by no means eliminates—the amount of
buffering and overlap that can be exploited. More relaxed consistency models allow greater over-
lap, including allowing some types of memory operations to even complete out of order as dis-
cussed in Chapter 9. The extent of overlap possible is thus determined by both the mechanisms
provided and the consistency model: Relaxed models may not be useful if the mechanisms
needed to support their reorderings (for example, write buffers, compiler support or dynamic
scheduling) are not provided, and the success of some types of aggressive implementations for
overlap may be restricted by the consistency model. 

Since our focus here is latency tolerance, the discussion is organized around increasingly aggres-
sive mechanisms needed for overlapping the latency of read and write operations. Each of these
mechanisms is naturally associated with a particular class of consistency models—the class that
allows those operations to even complete out of order—but can also be exploited in more limited
ways with stricter consistency models, by allowing overlap but not out of order completion.
Since hiding read latency requires more elaborate support—albeit provided in many modern
microprocessors—to simplify the discussion let us begin by examining mechanisms to hide only
write latency. Reads are initially assumed to be blocking, so the processor cannot proceed past
them; later, hiding read latency will be examined as well. In each case, we examine the sources of
performance gains and the implementation complexity, assuming the most aggressive consis-
tency model needed to fully exploit that overlap, and in some cases also look at the extent to
which sequential consistency can exploit the overlap mechanisms. The focus is always on hard-
ware cache-coherent systems, though many of the issues apply quite naturally to systems that
don’t cache shared data or are software coherent as well. 

11.6.1 Proceeding Past Writes

Starting with a simple, statically-scheduled processor with blocking reads, to proceed past write
misses the only support we need in the processor is a buffer, for example a write buffer. Writes,
such as those that miss in the first-level cache, are simply placed in the buffer and the processor
proceeds to other work in the same thread. The processor stalls upon a write only if the write
buffer is full. 

The write buffer is responsible for controlling the visibility and completion of writes relative to
other operations from that processor, so the processor’s execution units do not have to worry
about this. Similarly, the rest of the extended memory hierarchy can reorder transactions (at least
to different locations) as it pleases, since the machinery close to the processor takes care of pre-
serving the necessary orders. Consider overlap with reads. For correct uniprocessor operation, a
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read may be allowed to bypass the write buffer and be issued to the memory system, as long as
there is not a write to the same location pending in the write buffer. If there is, the value from the
write buffer may be forwarded to the read even before the write completes. The latter mechanism
will certainly allow reads to complete out of order with respect to earlier writes in program order,
thus violating SC, unless the write buffer is flushed upon a match and the read reissued to the
memory system thereafter. Reads bypassing the write buffer will also violate SC, unless the read
is not allowed to complete (bind its value) before those writes. Thus, SC can take advantage of
write buffers, but the benefits are limited. We know from Chapter 9 that allowing reads to com-
plete before previous writes leads to models like processor consistency (PC) and total store order-
ing (TSO). 

Now consider the overlap among writes themselves. Multiple writes may be placed in the write
buffer, and the order in which they are made visible or they complete is also determined by the
buffer. If writes are allowed to complete out of order, a great deal of flexibility and overlap
among writes can be exploited by the buffer. First, a write to a location or cache block that is cur-
rently anywhere in the buffer can be merged (coalesced) into that cache block and only a single
ownership request sent out for it by the buffer, thus reducing traffic as well. Especially if the
merging is not into the last entry of the buffer, this clearly leads to writes becoming visible out of
program order. Second, buffered writes can be retired from the buffer as soon as possible, before
they complete, making it possible for other writes behind them to get through. This allows the
ownership requests of the writes to be pipelined through the extended memory hierarchy. 

Allowing writes to complete out of order requires partial store order (PSO) or a more relaxed
consistency model. Stricter models like SC, TSO and PC essentially require that merging into the
write buffer not be allowed except into the last block in the buffer, and even then in restricted cir-
cumstances since other processors must not be able to see the writes to different words in the
block in a different order. Retiring writes early to let others pass through is possible under the
stricter models as long as the order of visibility and completion among these writes is preserved
in the rest of the system. This is relatively easy in a bus-based machine, but very difficult in a dis-
tributed-memory machine with different home memories and independent network paths. On the
latter systems, guaranteeing program order among writes, as needed for SC, TSO and PC, essen-
tially requires that a write not be retired from the head of the (FIFO) buffer until it has committed
with respect to all processors. 

Overall, a strict model like SC can utilize write buffers to overlap write latency with reads and
other writes, but only to a limited extent. Under relaxed models, when exactly write operations
are sent out to the extended memory hierarchy and made visible to other processors depends on
implementation and performance considerations as well. For example, under a relaxed model
invalidations may be sent out as soon as the writes are able to get through the write buffer, or the
writes may be delayed in the buffer until the next synchronization point. The latter may allow
substantial merging of writes, as well as reduction of invalidations and misses due to false shar-
ing. However, it implies more traffic in bursts at synchronization points, rather than pipelined
traffic throughout the computation.

Performance Impact

Simulation results are available in the literature [GGH91a,Gha95] that measure the benefits of
allowing the processor to proceed past writes on the parallel applications in the original SPLASH
application suite [SWG92]. They do not try to maintain SC, but exploit the maximum overlap
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that is possible without too much extra hardware. They are separated into techniques that allow
the program order between a write and a following read (write->read order) to be violated, satis-
fying TSO or PC, and those that also allow the order between two writes (write->write order) to
be violated, satisfying PSO. The latter is also essentially the best that more relaxed models like
RMO, WO or RC can accomplish given that reads are blocking. Let us look at these results in the
rest of this subsection. 

Figure 11-15 shows the reduction in execution time, divided into different components, for two
representative applications when the write->read and write->write orders order is allowed to be
violated. The applications are older versions of Ocean and Barnes-Hut applications, running with
small problem sizes on 16-processor, simulated, directory-based cache-coherent systems. The
baseline for comparison is the straightforward implementation of sequential consistency, in
which the processor issuing a read or write reference stalls until that reference completes (mea-
surements for using the write buffer but preserving SC—by stalling a read until the write buffer is
empty—showed only a very small performance improvement over stalling the processor on all
writes themselves). Details of the simulated system, which assumes considerably less aggressive
processors than modern systems, and an analysis of the results can be found in
[GGH91a,Gha95]; here, we simply present a few of the results to illustrate the effects. 

The figure shows that simply allowing write->read reordering is usually enough to hide most of
the write latency from the processor (see the first two bars for each application). All the applica-
tions in the study had their write latency almost entirely hidden by this deep write buffer, except
Ocean which has the highest frequency of write misses to begin with. There are also some inter-
esting secondary effects. One of these is that while we might not expect the read stall time to
change much from the base SC case, in some cases it increases slightly. This is because the addi-

Figure  11-15  Performance benefits from proceeding past writes by taking advantage of relaxed consistency models.

The results assume a statically scheduled processor model. For each application, Base is the case with no latency hiding, W-R indi-
cates that reads can bypass writes (i.e. the write->read order can be violated, and W-W indicates that both writes and reads can bypass
writes. The execution time for the Base case is normalized to 100 units. The system simulated is a cache-coherent multiprocessor
using a flat, memory-based directory protocol much like that of the Stanford DASH multiprocessor [LLJ+92]. The simulator assumes
a write-through first-level and write-back second-level caches, with a deep, 16-entry write buffer between the two. The processor is
single-issue and statically scheduled, with no special scheduling in the compiler targeted toward latency tolerance. The write buffer is
aggressive, with read bypassing of it and read forwarding from it enabled. To preserve the write-write order (initially), writes are not
merged in the write buffer, and the write at the head of the FIFO write buffer is not retired until it has been completed. The data access
parameters assumed for a read miss are one cycle for an L1 hit, 15 cycles for an L2 hit, 29 cycles if satisfied in local memory, 101
cycles for a two-message remote miss, and 132 cycles for a three-message remote miss. Write latencies are somewhat smaller in each
case. The system therefore assumes a much slower processor relative to a memory system than modern systems.
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tional bandwidth demands of hiding write latency contend with read misses, making them cost
more. This is a relatively small effect with these simple processors, though it may be more signif-
icant with modern, dynamically scheduled processors that also hide read latency. The other, ben-
eficial effect is that synchronization wait time is sometimes also reduced. This happens for two
reasons. First some of the original load imbalance is caused by imbalances in memory stall time;
as stall time is reduced, imbalances are reduced as well. Second, if a write is performed inside a
critical section and its latency is hidden, then the critical section completes more quickly and the
lock protecting it can be passed more quickly to another processor, which therefore incurs less
wait time for that lock. 

The third bar for each application in the figure shows the results for the case when the write-write
order is allowed to be violated as well. Now write merging is enabled to any block in the same
16-entry write buffer, and a write is allowed to retire from the write buffer as soon as it reaches
the head, even before it is completed. Thus, pipelining of writes through the memory and inter-
connect is given priority over buffering them for more time, which might have enabled greater
merging in the write buffer and reduction of false sharing misses by delaying invalidations. Of
course, having multiple writes outstanding in the memory system requires that the caches allow
multiple outstanding misses, i.e. that they are lockup-free. The implementation of lockup-free
caches will be discussed in Section 11.9.

The figure shows that the write-write overlap hides whatever write latency remained with only
write-read overlap, even in Ocean. Since writes retire from the write buffer at a faster rate, the
write buffer does not fill up and stall the processor as easily. Synchronization wait time is reduced
further in some cases, since a sequence of writes before a release completes more quickly caus-
ing faster transfer of synchronization between processors. In most applications, however, write-
write overlap doesn’t help too much since almost all the write latency was already hidden by
allowing reads to bypass previous writes. This is especially true because the processor model
assumes that reads are blocking, so write-write overlap cannot be exploited past read operations.
For reordering by hardware on cache-coherent systems, differences between models like weak
ordering and release consistency—as well as subtle differences among models that allow the
same reorderings, such as TSO which preserves write atomicity and processor consistency which
does not—do not seem to affect performance substantially. 

Since performance is highly dependent on implementation and on problem and cache sizes, the
study examined the impact of using less aggressive write buffers and second-level cache architec-
tures, as well as of scaling down the cache size to capture the case where an important working
set does not fit in the cache (see Chapter 4). For the first part, four different combinations were
examined: an L2 cache that blocks on a miss versus a lockup-free L2 cache, and a write buffer
that allows reads to bypass it if they are not to an address in the buffer and one that does not. The
results indicate that having a lockup-free cache is very important to obtaining good performance
improvements, as we might expect. As for bypassable write-buffers, they are very important for
the system that allows write->read reordering, particularly when the L2 cache is lockup-free, but
less important for the system that allows write->write reordering as well. The reason is that in the
former case writes retire from the buffer only after completion, so it is quite likely that when a
read misses in the first-level cache it will find a write still in the write buffer, and stalling the read
till the write buffer empties will hurt performance; in the latter case, writes retire much faster so
the likelihood of finding a write in the buffer to bypass is smaller. For the same reason, it is easier
to use smaller write buffers effectively when write->write reordering is allowed so writes are
allowed to retire early. Without lockup-free caches, the ability for reads to bypass writes in the
buffer is much less advantageous. 
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The results with smaller L1/L2 caches are shown in Figure 11-16, as are results for varying the

cache block size. Consider cache size first. With smaller caches, write latency is still hidden
effectively by allowing write->read and write->write reordering. (As discussed in Chapter 4, for
Barnes-Hut the smallest caches do not represent a realistic scenario.) Somewhat unexpectedly,
the impact of hiding write latency is often larger with larger caches, even though the write latency
to be hidden is smaller. This is because larger caches are more effective in reducing read latency
than write latency, so the latter is relatively more important. All the above results assumed a
cache block size of only 16 bytes, which is quite unrealistic today. Larger cache blocks tend to
reduce the miss rates for these applications and hence reduce the impact of these reorderings on
execution time a little, as seen for Ocean in Figure 11-16(b). 

11.6.2 Proceeding Past Reads

As discussed earlier, to hide read latency effectively we need not only non-blocking reads but
also a mechanism to look ahead beyond dependent instructions. The later independent instruc-
tions may be found by the compiler or by hardware. In either case, implementation is compli-
cated by the fact that the dependent instructions may be followed soon by branches. Predicting
future paths through the code to find useful instructions to overlap requires effective branch pre-
diction, as well as speculative execution of instructions past predicted branches. And given spec-
ulative execution, we need hardware support to cancel the effects of speculatively executed
instructions upon detecting misprediction or poor speculation. 

The trend in the microprocessor industry today is toward increasingly sophisticated processors
that provide all these features in hardware. For example, they are included by processor families
such as the Intel Pentium Pro [Int96], the Silicon Graphics R10000 [MIP96], the SUN Ultrasparc
[LKB91], and the HP-PA8000 [Hun96]. The reason is that latency hiding and overlapped opera-

Figure  11-16  Effects of cache size and cache block size on the benefits of proceeding past writes. 

The block size assumed in the graph for varying cache size is the default 16B used in the study. The cache sizes assumed in the graph
for varying block size are the default 64KB first level and 256KB second level caches.
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tion of the memory system and functional units are increasingly important even in uniprocessors.
These mechanisms have a high design and hardware cost, but since they are already present in the
microprocessors they can be used to hide latency in multiprocessors as well. And once they are
present, they can be used to hide both write latency as well as read latency. 

Dynamic Scheduling and Speculative Execution

To understand how memory latency can be hidden by using dynamic scheduling and speculative
execution, and especially how the techniques interact with memory consistency models, let us
briefly recall from uniprocessor architecture how the methods work. More details can be found in
the literature, including [HeP95]. Dynamic scheduling means that instructions are decoded in the
order presented by the compiler, but they are executed by their functional units in the order in
which their operands become available at runtime (thus potentially in a different order than pro-
gram order). One way to orchestrate this is through reservation stations and Tomasulo’s algo-
rithm [HeP95]. This does not necessarily mean that they will become visible or complete out of
program order, as we will see. Speculative execution means allowing the processor to look at and
schedule for execution instructions that are not necessarily going to be useful to the program’s
execution, for example instructions past a future uncertain branch instruction. The functional
units can execute these instructions assuming that they will indeed be useful, but the results are
not committed to registers or made visible to the rest of the system until the validity of the specu-
lation has been determined (e.g. the branch has been resolved). 

The key mechanism used for speculative execution is an instruction lookahead or reorder buffer.
As instructions are decoded by the decode unit, whether in-line or speculatively past predicted
branches, they are placed in the reorder buffer, which therefore holds instructions in program
order. Among these, any instructions that are not dependent on a yet incomplete instruction can
be chosen from the reorder buffer for execution. It is quite possible that independent long latency
instructions (e.g. reads) that are before them in the buffer have not yet been executed or com-
pleted, so in this way the processor thus proceeds past incomplete memory operations and other
instructions. The reorder buffer implements register renaming, so instructions in the buffer
become ready for execution as soon as their operands are produced by other instructions, not nec-
essarily waiting till the operands are available in the register file. The results of an instruction are
maintained with it in the reorder buffer, and not yet committed to the register file. An instruction
is retired from the reorder buffer only when it reaches the head of the reorder buffer, i.e. in pro-
gram order. It is at this point that the result of a read may be put in the register and the value pro-
duced by a write is free to be made visible to the memory system. 

Retiring in program (decode) order makes it easy to perform speculation: if a branch is found to
be mispredicted, then no instruction that was after it in the buffer (hence in program order) can
have left the reorder buffer and committed its effects: No read has updated a register, and no write
has become visible to the memory system. All instructions after the branch are then invalidated
from the reorder buffer and the reservations stations, and decoding is resumed from the correct
(resolved) branch target. In-order retirement also makes it easy to implement precise exceptions,
so the processor can restart quickly after an exception or interrupt. However, in-order retirement
does mean that if a read miss reaches the head of the buffer before its data value has come back,
the reorder buffer (not the processor) stalls since later instructions cannot be retired. This FIFO
nature and stalling implies that the extent of overlap and latency tolerance may be limited by the
size of the reorder buffer. 
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Hiding Latency under Sequential and Release Consistency

The difference between retiring and completion is important. A read completes when its value is
bound, which may be before it reaches the head of the reorder buffer and can retire (modifying
the processor register). On the other hand, a write is not complete when it reaches the head of the
buffer and retires to the memory system; it completes only when it has actually become visible to
all processors. Understand this difference helps us understand how out-of-order, speculative pro-
cessors can hide latency under both SC and more relaxed models like release consistency (RC). 

Under RC, a write may indeed be retired from the buffer before it completes, allowing operations
behind it to retire more quickly. A read may be issued and complete anytime once it is in the reor-
der buffer, unless there is an acquire operation before it that has not completed. Under SC, a write
is retired from the buffer only when it has completed (or at least committed with respect to all
processors, see Chapter 6), so it may hold up the reorder buffer for longer once it reaches the
head and is sent out to the memory system. And while a read may still be issued to the memory
system and complete before it reaches the head of the buffer, it is not issued before all previous
memory operations in the reorder buffer have completed. Thus, SC again exploits less overlap
than RC. 

Additional Techniques to Enhance Latency Tolerance

Additional techniques—like a form of hardware prefetching, speculative reads, and write buff-
ers— can be used with these dynamically scheduled processors to hide latency further under SC
as well as RC [KGH91b], as mentioned in Chapter 9 (Section 9.2). In the hardware prefetching
technique, hardware issues prefetches for any memory operations that are in the reorder buffer
but are not yet permitted by the consistency model to actually issue to the memory system. For
example, the processor might prefetch a read that is preceded by another incomplete memory
operation in SC, or by an incomplete acquire operation in RC, thus overlapping them. For writes,
prefetching allows the data and ownership to be brought to the cache before the write actually
gets to the head of the buffer and can be issued to the memory system. These prefetches are non-
binding, which means that the data are brought into the cache, not into a register or the reorder
buffer, and are still visible to the coherence protocol, so they do not violate the consistency
model. (Prefetching will be discussed in more detail in Section 11.7.)

Hardware prefetching is not sufficient when the address to be prefetched is not known, and deter-
mining the address requires the completion of a long-latency operation. For example, if a read
miss to an array entry A[I] is preceded by a read miss to I, then the two cannot be overlapped
because the processor does not know the address of A[I] until the read of I completes. The best
we could do is prefetch I, and then issue the read of A[I] before the actual read of I completes.
However, suppose now there is a cache miss to a different location X between the reads of I and
A[I]. Even if we prefetched I, under sequential consistency we cannot execute and complete the
read of A[I] before the read of X has completed, so we have to wait for the long-latency miss to
X. To increase the overlap, the second technique that a processor can use is speculative read
operations. These read operations use the results of previous operations (often prefetches) that
have not yet completed as the addresses to read from, speculating that the value used as the
address will not change between now and the time when all previous operations have completed.
In the above example, we can use the value prefetched or read for I and issue, execute and com-
plete the read of A[I] before the read of X completes. 



Latency Tolerance

788 DRAFT: Parallel Computer Architecture 9/4/97

What we need to be sure of is that we used the correct value for I and hence read the correct value
for A[I], i.e. that they are not modified between the time of the speculative read and the time
when it is possible to perform the actual read according to the consistency model. For this reason,
speculative reads are loaded into not the registers themselves but a buffer called the speculative
read buffer. This buffer “watches” the cache and hence is apprised of cache actions to those
blocks. If an invalidation, update or even cache replacement occurs on a block whose address is
in the speculative read buffer before the speculatively executed read has reached the front of the
reorder buffer and retired, then the speculative read and all instructions following it in the reorder
buffer must be cancelled and the execution rolled back just as on a mispredicted branch. Such
hardware prefetching and speculative read support are present in processors such as the Pentium
Pro [Int96], the MIPS R10000 [MIP96] and the HP-PA8000 [Hun96]. Note that under SC, every
read issued before previous memory operations have completed is a speculative read and goes
into the speculative read buffer, whereas under RC reads are speculative (and have to watch the
cache) only if they are issued before a previous acquire has completed. 

A final optimization that is used to increase overlap is the use of a write buffer even in a dynami-
cally scheduled processor. Instead of writes having to wait at the head of the reorder buffer until
they complete, holding up the reorder buffer, they are removed from the reorder buffer and placed
in the write buffer. The write buffer allows them to become visible to the extended memory hier-
archy and keeps track of their completion as required by the consistency model. Write buffers are
clearly useful with relaxed models like RC and PC, in which reads are allowed to bypass writes:
The reads will now reach the head of the write buffer and retire more quickly. Under SC, we can
put writes in the write buffer, but a read stalls when it reaches the head of the reorder buffer any-
way until the write completes. Thus, it may be that much of the latency that the store would have
seen is not hidden but is instead seen by the next read to reach the head of the reorder buffer. 

Performance Impact

Simulation studies in the literature have examined the extent to which these techniques can hide
latency under different consistency models and different combinations of techniques. The studies
do not use sophisticated compiler technology to schedule instructions in a way that can obtain
increased benefits from dynamic scheduling and speculative execution, for example by placing
more independent instructions close after a memory operation or miss so smaller reorder buffers
will suffice. A study assuming an RC model finds that a substantial portion of read latency can
indeed be hidden using a dynamically scheduled processor with speculative execution (let’s call
this a DS processor), and that the amount of read latency that can be hidden increases with the
size of the reorder buffer even up to buffers as large as 64 to 128 entries (the longer the latency to
be hidden, the greater the lookahead needed and hence the larger the reorder buffer) [KGH92]. A
more detailed study has compared the performance of the SC and RC consistency models with
aggressive, four-issue DS processors [PRA+96]. It has also examined the benefits obtained indi-
vidually from hardware prefetching and speculative loads in each case. Because a write takes
longer to complete even on an L1 hit when the L1 cache is write-through rather than write-back,
the study examined both types of L1 caches, always assuming a write-back L2 cache. While the
study uses very small problem sizes and scaled down caches, the results shed light on the interac-
tions between mechanisms and models. 

The most interesting question is whether with all these optimizations in DS processors, RC still
buys substantial performance gains over SC. If not, the programming burden of relaxed consis-
tency models may not be justified with modern DS processors (relaxed models are still important
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at the programmer’s interface to allow compiler optimizations, but the contract and the program-
ming burden may be lighter if it is only the compiler that may reorder operations). The results of
the study, shown for two programs in Figures 11-17 and 11-18, indicate that RC is still beneficial,
even though the gap is closed substantially. The figures show the results for SC without any of the
more sophisticated optimizations (hardware prefetching, speculative reads, and write buffering),
and then with those applied cumulatively one after the other. Results are also shown for processor
consistency (PC) and for RC. These cases always assume write buffering, and are shown both
without the other two optimizations and then with those applied cumulatively. 

Clearly, the results show that RC has substantial advantages over SC even with a DS processor
when hardware prefetching and speculative reads are not used. The main reason is that RC is able
to hide write latency much more successfully than SC, as with simple non-DS processors, since it
allows writes to be retired faster and allows later accesses like reads to be issued and complete

Figure  11-17  Performance of an FFT kernel with different consistency models, assuming a dynamically scheduled processor with
speculative execution. 

The bars on the left assume write-through first-level caches, and the bars on the right assume write-back first-level caches. Second-
level caches are always write-back. SC, PC and RC are sequential, processor, and release consistency, respectively. For SC, there are
two sets of bars: the first assuming no write buffer and the second including a write buffer. For each set of three bars, the first bar
excludes hardware prefetching and speculative loads, the second bar (PF) includes the use of hardware prefetching, and the third bar
(SR) includes the use of speculative read operations as well. The processor model assumed resembles the MIPS R10000 [MIP96].
The processor is clocked at 300MHz and capable of issuing 4 instructions per cycle. It used a reorder buffer of size 64 entries, a
merging write buffer with 8 entries, a 4KB direct-mapped first-level cache and a 64 KB, 4-way set associative second level cache.
Small caches are chosen since the data sets are small, and they may exaggerate the effect of latency hiding. More detailed parameters
can be found in [PRA+96].
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Figure  11-18  Performance of Radix with different consistency models, assuming a dynamically scheduled processor with
speculative execution.

The system assumptions and organization of the figure are the same as in Figure 11-17.
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before previous writes. The improvement due to RC is particularly true with write-through
caches, since under SC a write that reaches the head of the buffer issues to the memory system
but has to wait until the write performs in the second-level cache, holding up later operations,
while under RC it can retire when it issues and before it completes. While read latency is hidden
with some success even under SC, RC allows for much earlier issue, completion and hence retire-
ment of reads. The effects of hardware prefetching and speculative reads are much greater for SC
than for RC, as expected from the discussion above (since in RC operations are already allowed
to issue and complete out of order, so the techniques only help those operations that follow
closely after acquires). However, a significant gap still remains compared to RC, especially in
write latency. Write buffering is not very useful under SC for the reason discussed above. 

The figure also confirms that write latency is a much more significant problem with write-
through first-level caches under SC than with write-back caches, but is hidden equally well under
RC with both types of caches. The difference in write latency between write-through and write-
back caches under SC is much larger for FFT than for Radix. This is because while in FFT the
writes are to locally allocated data and hit in the write-back cache for this problem size, in Radix
they are to nonlocal data and miss in both cases. Overall, PC is in between SC and RC, with hard-
ware prefetching helping but speculative reads not helping so much as in SC.

The graphs also appear to reveal an anomaly: The processor busy time is different in different
scheme, even for the same application, problem size and memory system configuration. The rea-
son is an interesting methodological point for superscalar processors: since several (here four)
instructions can be issued every cycle, how do we decide whether to attribute a cycle to busy time
or a particular type of stall time. The decision made in most studies in the literature, and in these
results, is to attribute a cycle to busy time only if all instruction slots issue in that cycle. If not,
then the cycle is attributed to whatever form of stall is seen by the first instruction (starting from
the head of the reorder buffer) that should have issued in that cycle but didn’t. Since this pattern
changes with consistency models and implementations, the busy time is not the same across
schemes. 

While the main results have already been discussed, it is interesting to examine the interactions
with hardware prefetching and speculative reads in a little more detail, particularly in how they
interact with application characteristics. The benefits from this form of hardware prefetching are
limited by several effects. First, prefetches are issued only for operations that are in the reorder
buffer, so they cannot be issued very far in advance. Prefetching works much more successfully
when a number of operations that will otherwise miss are bunched up together in the code, so
they can all be issued together from the reorder buffer. This happens naturally in the matrix trans-
position phase of an FFT, so the gains from prefetching are substantial, but it can be aided in
other programs by appropriate scheduling of operations by the compiler. Another limitation is the
one that motivated speculative loads in the first place: The address to be prefetched may not be
known, and the read that returns it may be blocked by other operations. This effect is encountered
in the Radix sorting application, shown in Figure 11-18. Radix also encounters misses close to
each other in time, but the misses (both write misses to the output array in the permutation phase
and read misses in building the global histograms) are to array entries indexed by histogram val-
ues that have to be read as well. 

Speculative loads help the performance of Radix tremendously, as expected, improving both read
and write miss stall times in this case. An interesting effect in both programs is that the processor
busy time is reduced as well. This is because the ability to consume the values of reads specula-
tively makes a lot more otherwise dependent instructions available to execute, greatly increasing
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the utilization of the 4-way superscalar processor. We see that speculative loads help reduce read
latency in FFT as well (albeit less), even though it does not have indirect array accesses. The rea-
son is that conflict misses in the cache are reduced due to greater combining of accesses to an
outstanding cache block (accesses to blocks that conflict in the cache and would otherwise have
caused conflict misses are overlapped and hence combined in the mechanism used to keep track
of outstanding misses). This illustrates that sometimes important observed effects are not directly
due to the feature being studied. While speculative reads, and speculative execution in general,
can be hurt by mis-speculation and consequent rollbacks, this hardly occurs at all in these pro-
grams, which take quite predictable and straightforward paths through the code. The results may
be different for programs with highly unpredictable control flow and access patterns. (Rollbacks
are even fewer under RC, where there is less need for speculative loads.)

11.6.3 Implementation Issues

To proceed past writes, the only support we need in the processor is a write buffer and nonblock-
ing writes. Increasing sophistication in the write buffer (merging to arbitrary blocks, early retire-
ment before obtaining ownership) allows both reads and writes to effectively bypass previous
writes. To proceed effectively past reads, we need not just nonblocking reads but also support for
instruction lookahead and speculative execution. At the memory system level, supporting multi-
ple outstanding references (particularly cache misses) requires that caches be lockup-free.
Lockup-free caches also find it easier to support multiple outstanding write misses (they are sim-
ply buffered in a write buffer) than to support multiple outstanding read misses: For reads they
also need to keep track of where the returned data is to be placed back in the processor environ-
ment (see the discussion of lockup-free cache design in Section 11.9). In general, once this
machinery close to the processor takes care of tracking memory operations and preserving the
necessary orders of the consistency model, the rest of the memory and interconnection system
can reorder transactions related to different locations as it pleases. 

In previous chapters we have discussed implementation issues for sequential consistency on both
bus-based and scalable multiprocessors. Let us briefly look here at what other mechanisms we
need to support relaxed consistency models; in particular, what additional support is needed close
to the processor to constrain reorderings and satisfy the consistency model, beyond the unipro-
cessor mechanisms and lockup-free caches. Recall from Chapter 9 that the types of reorderings
allowed by the processor have affected the development of consistency models; for example,
models like processor consistency, TSO and PSO were attractive when processors did not support
non-blocking reads. However, compiler optimizations call for more relaxed models at the pro-
grammer’s interface regardless of what the processor supports, and particularly with more
sophisticated processors today the major choice seems to be between SC and models that allow
all forms of reordering between reads and writes between synchronizations (weak ordering,
release consistency, SUN RMO, DEC Alpha, IBM PowerPC). 

The basic mechanism we need is to keep track of the completion of memory operations. But this
was needed in SC as well, even for the case of a single outstanding memory operation. Thus, we
need explicit acknowledgment transactions for invalidations/updates that are sent out, and a
mechanism to determine when all necessary acknowledgments have been received. For SC, we
need to determine when the acknowledgments for each individual write have arrived; for RC, we
need only determine at a release point that all acknowledgments for previous writes have arrived.
For different types of memory barriers or fences, we need to ensure that all relevant operations
before the barrier or fence have completed. As was discussed for SC in the context of the SGI



Latency Tolerance

792 DRAFT: Parallel Computer Architecture 9/4/97

Origin2000 case study in Chapter 8, a processor usually expects only a single response to its
write requests, so coordinating the receipt of data replies and acknowledgments is usually left to
an external interface. 

For example, to implement a memory barrier or a release, we need a mechanism to determine
when all previously issued writes and/or reads have completed. Conceptually, each processor
(interface) needs a counter that keeps track of the number of uncompleted reads and writes issued
by that processor. The memory barrier or release operation can then check whether or not the
appropriate counters are zero before allowing further memory references to be issued by that pro-
cessor. For some models like processor consistency, in which writes are non-atomic, implement-
ing memory barrier or fence instructions can become quite complicated (see [GLL+90, Gha95]
for details).

Knowledge of FIFO orderings in the system buffers can allow us to optimize the implementation
of some types of fences or barriers. An example is the write-write memory barriers (also called
store barriers) used to enforce write-to-write order in the PSO model when using a write buffer
that otherwise allows writes to be reordered. On encountering such a MEMBAR, it is not neces-
sary to stall the processor immediately to wait for previous writes to complete. The MEMBAR
instruction can simply be inserted into the write-buffer (like any other write), and the processor
can continue on and even execute subsequent write operations. These writes are inserted behind
the MEMBAR in the write buffer. When the MEMBAR reaches the head of the write buffer, it is
at this time that the write buffer stalls (not necessarily the processor itself) to wait for all previous
stores to complete before allowing any other stores to become visible to the external memory sys-
tem. A similar technique can be used with reorder buffers in speculative processors. 

Of course, one mechanism that is needed in the relaxed models is support for the order-preserv-
ing instructions like memory barriers, fences, and instructions labeled as synchronization,
acquire or release. Finally, for most of the relaxed models we need mechanisms to ensure write
atomicity. This, too was needed for SC, and we simply need to ensure that the contents of a mem-
ory block for which invalidation acknowledgments are pending are not given to any new proces-
sor requesting them until the acknowledgments are received. Thus, given the support to proceed
past writes and/or reads provided by the processor and caches, most of the mechanisms needed
for relaxed models are already needed to satisfy the sufficient conditions for SC itself. 

While the implementation requirements are quite simple, they inevitably lead to tradeoffs. For
example, for counting acknowledgments the location of the counters can be quite critical to per-
formance. Two reasonable options are: (i) close to the memory controller, and (ii) close to the
first-level cache controller. In the former case, updates to the counters upon returning acknowl-
edgments do not need to propagate up the cache hierarchy to the processor chip; however, the
time to execute a memory barrier itself becomes quite large because we have to traverse the hier-
archy cross the memory bus to query the counters. The latter option has the reverse effect, with
greater overhead for updating counter values but lower overhead for fence instructions. The cor-
rect decision can be made on the basis of the frequency with which fences will be used relative to
the occurrence of cache misses. For example, if we use fences to implement a strict model like
SC on a machine which does not preserve orders (like the DEC Alpha), we expect fences to be
very frequent and the option of placing the counters near the memory controller to perform
poorly.1
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11.6.4 Summary

The extent to which latency can be tolerated by proceeding past reads and writes in a multipro-
cessor depends on both the aggressiveness of the implementation and the memory consistency
model. Tolerating write latency is relatively easy in cache-coherent multiprocessors, as long as
the memory consistency model is relaxed. Both read and write latency can be hidden in sophisti-
cated modern processors, but still not entirely. The instruction lookahead window (reorder buffer)
sizes needed to hide read latency can be substantial, and grow with the latency to be hidden. For-
tunately, latency is increasingly hidden as window size increases, rather than needing a very large
threshold size before any significant latency hiding takes place. In fact, with these sophisticated
mechanisms that are widely available in modern multiprocessors, read latency can be hidden
quite well even under sequential consistency. In general, conservative design choices—such as
blocking reads or blocking caches—make preserving orders easier, but at the cost of perfor-
mance. For example, delaying writes until all previous instructions are complete in dynamically
scheduled processors to avoid rolling back on writes (e.g. for precise exceptions) makes it easier
to preserve SC, but it makes write latency more difficult to hide under SC. 

Compiler scheduling of instructions can help dynamically scheduled processors hide read latency
even better. Sophisticated compiler scheduling can also help statically scheduled processors
(without hardware lookahead) to hide read latency by increasing the distance between a read and
its dependent instructions. The implementation requirements for relaxed consistency models are
not large, beyond the requirements already needed (and provided) to hide write and read latency
in uniprocessors. 

The approach of hiding latency by proceeding past operations has two significant drawbacks. The
first is that it may very well require relaxing the consistency model to be very effective, espe-
cially with simple statically scheduled processors but also with dynamically scheduled ones. This
places a greater burden on the programmer to label synchronization (competing) operations or
insert memory barriers, although relaxing the consistency model is to a large extent needed to
allow compilers to perform many of their optimizations anyway. The second drawback is the dif-
ficulty of hiding read latency effectively with processors that are not dynamically scheduled, and
the resource requirements of hiding multiprocessor read latencies with dynamically scheduled
processors. In these situations, other methods like precommunication and multithreading might
be more successful at hiding read latency. 

11.7 Precommunication in a Shared Address Space

Precommunication, especially prefetching, is a technique that has already been widely adopted in
commercial microprocessors, and its importance is likely to increase in the future. To understand

1.  There are many other options too. For example, we might have a special signal pin on the processor chip
that is connected to the external counter and indicates whether or not the counter is zero (to implement the
memory barrier we only need to know if the counter is zero; not its actual value.) However, this can get quite
tricky. For example, how does one ensure that there are no memory accesses issued before the memory bar-
rier that are still propagating from the processor to the memory and that the counter does not yet even know
about. When querying the external counter directly this can be taken care of by FIFO ordering of transac-
tions to and from the memory; with a shortcut pin, it becomes difficult. 
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the techniques for pre-communication, let us first consider a shared address space with no cach-
ing of shared data, so all data accesses go to the relevant main memory. This will introduce some
basic concepts, after which we shall examine prefetching in a cache-coherent shared address
space, including performance benefits and implementation issues. 

11.7.1 Shared Address Space With No Caching of Shared Data

In this case, receiver-initiated communication is triggered either by reads of nonlocally allocated
data, and sender-initiated by writes to nonlocally allocated data. In our example code in
Figure 11-1 on page 755, the communication is sender initiated, if we assume that the array A is
allocated in the local memory of process PB, not PA. As with the sends in the message-passing
case, the most precommunication we can do is perform all the writes to A before we compute any
of the f(B[]), by splitting into two loops (see the left hand side of Figure 11-19). By making the
writes non blocking, some of the write latency may be overlapped with the (B[]) computations;
however, much of the write latency would probably have been hidden anyway if writes were
made non blocking and left where they were. The more important effect is to have the writes and
the overall computation on PA complete earlier, hence allowing the reader PB, to emerge from its
while loop more quickly.

If the array A is allocated in the local memory of PA, the communication is receiver-initiated. The
writes by the producer PA are now local, and the reads by the consumer PB are remote. Precom-
munication in this case means prefetching the elements of A before they are actually needed, just
as we issued a_receive’s before they were needed in the message-passing case. The differ-
ence is that the prefetch is not just posted locally, like the receive, but rather causes a prefetch
request to be sent across the network to the remote node (PA) where the controller responds to the
request by actually transferring the data back. There are many ways to implement prefetching, as
we shall see. One is to issue a special prefetch instruction, and build a software pipeline as in the
message passing case. The shared address space code with prefetching is shown in Figure 11-19.
The software pipeline has a prologue that issues a prefetch for the first iteration, a steady-state

Process PA

for i←0to n-1 do

compute A[i];

write A[i];

end for

flag ← 1; 

for i←0to n-1 do

compute f(B[i]);

Process PB
while flag = 0 {};

prefetch(A[0]);

for i←0 to n-2 do 

prefetch (A[i+1]);

read A[i] from prefetch_buffer;

use A[i];

compute g(C[i]);

end for

read A[n-1] from prefetch_buffer;

use A[n-1];

compute g(C[n-1])

Figure  11-19  Prefetching in the shared address space example.
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period of n-1 iterations in which a prefetch is issued for the next iteration and the current iteration
is executed, and an epilogue consisting of the work for the last iteration. Note that a prefetch
instruction does not replace the actual read of the data item, and that the prefetch instruction itself
must be nonblocking (must not stall the processor) if it is to achieve its goal of hiding latency
through overlap. 

Since shared data are not cached in this case, the prefetched data are brought into a special hard-
ware structure called a prefetch buffer. When the word is actually read into a register in the next
iteration, it is read from the head of the prefetch buffer rather than from memory. If the latency to
hide were much larger than the time to compute a single loop iteration, we would prefetch several
iterations ahead and there would potentially be several words in the prefetch buffer at a time.
However, if we can assume that the network delivers messages from one point to another in the
order in which they were transmitted from the source, and that all the prefetches from a given
processor in this loop are directed to the same source, then we can still simply read from the head
of the prefetch buffer every time. The Cray T3D multiprocessor and the DEC Alpha processor it
uses provide this form of prefetching. 

Even if data cannot be prefetched early enough that they have arrived by the time the actual refer-
ence is made, prefetching may have several benefits. First, if the actual reference finds that the
address it is accessing has an outstanding prefetch associated with it, then it can simply wait for
the remaining time until the prefetched data returns. Also, depending on the number of prefetches
allowed to be outstanding at a time, prefetches can be issued back to back to overlap their laten-
cies. This can provide the benefits of pipelined data movement, although the pipeline rate may be
limited by the overhead of issuing prefetches. 

11.7.2 Cache-coherent Shared Address Space

In fact, precommunication is much more interesting in a cache-coherent shared address space:
Shared nonlocal data may now be precommunicated directly into a processor’s cache rather than
a special buffer, and precommunication interacts with the cache coherence protocol. We shall
therefore discuss the techniques in more detail in this context. 

Consider an invalidation-based coherence protocol. A read miss fetches the data locally from
wherever it is. A write that generates a read-exclusive fetches both data and ownership (by
informing the home, perhaps invalidating other caches, and receiving acknowledgments), and a
write that generates an upgrade fetches only ownership. All of these “fetches” have latency asso-
ciated with them, so all are candidates for prefetching (we can prefetch data or ownership or
both).

Update-based coherence protocols generate sender-initiated communication, and like other
sender-initiated communication techniques they provide a form of precommunication from the
viewpoint of the destinations of the updates. While update protocols are not very prevalent, tech-
niques to selectively update copies can be used for sender-initiated precommunication even with
an underlying invalidation-based protocol. One possibility is to insert software instructions that
generate updates only on certain writes, to contain unnecessary traffic due to useless updates and
hybrid update-invalidate. Some such techniques will be discussed later.
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Prefetching Concepts

There are two broad categories of prefetching applicable to multiprocessors and uniprocessors:
hardware-controlled and software-controlled prefetching. In hardware-controlled prefetching, no
special instructions are added to the code: special hardware is used to try to predict future
accesses from observed behavior, and prefetch data based on these predictions. In software-con-
trolled prefetching, the decisions of what and when to prefetch are made by the programmer or
compiler (hopefully the compiler!) by static analysis of the code, and prefetch are instructions
inserted in the code based on this analysis. Tradeoffs between hardware- and software-controlled
prefetching will be discussed later in this section. Prefetching can also be combined with block
data transfer in block prefetch (receiver-initiated prefetch of a large block of data) and block put
(sender-initiated) techniques.Let us begin by discussing some important concepts in prefetching
in a cache-coherent shared address space.

In a multiprocessor, a key issue that dictates how early a prefetch can be issued in both software-
and hardware-controlled prefetching in a multiprocessor is whether prefetches are binding or
non-binding. A binding prefetch means that the value of the prefetched datum is bound at the
time of the prefetch; i.e. when the process later reads the variable through a regular read, it will
see the value that the variable had when it was prefetched, even if the value has been modified by
another processor and become visible to the reader’s cache in between the prefetch and the actual
read. The prefetch we discussed in the non-cache-coherent case (prefetching into a prefetch
buffer, see Figure 11-19) is typically a binding prefetch, as is prefetching directly into processor
registers. A non-binding prefetch means that the value brought by a prefetch instruction remains
subject to modification or invalidation until the actual operation that needs the data is executed.
For example, in a cache-coherent system, the prefetched data are still visible to the coherence
protocol; prefetched data are brought into the cache rather than into a register or prefetch buffer
(which are typically not under control of the coherence protocol), and a modification by another
processor that occurs between the time of the prefetch and the time of the use will update or
invalidate the prefetched block according to the protocol. This means that non-binding prefetches
can be issued at any time in a parallel program without affecting program semantics. Binding
prefetches, on the other hand, affect program semantics, so we have to be careful about when we
issue them. Since non-binding prefetches can to be generated as early as desired, they have per-
formance advantages as well. 

The other important concepts have to do with the questions of what data to prefetch, and when to
initiate prefetches. Determining what to prefetch is called analysis, and determine when to ini-
tiate prefetches is called scheduling. The concepts that we need to understand for these two
aspects of prefetching are those of prefetches being possible, obtaining good coverage, being
unnecessary, and being effective [Mow94]. 

Prefetching a given reference is considered possible only if the address of the reference can be
determined ahead of time. For example, if the address can be computed only just before the word
is referenced, then it may not be possible to prefetch. This is an important consideration for appli-
cations with irregular and dynamic data structures implemented using pointers, such as linked
lists and trees. 

The coverage of a prefetching technique is the percentage of the original cache misses (without
any prefetching) that the technique is able to prefetch. “Able to prefetch” can be defined in differ-
ent ways; for example, able to prefetch early enough that the actual reference hits and all the
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latency is hidden, or able to issue a prefetch earlier than just before the reference itself so that at
least a part of the latency is hidden. 

Achieving high coverage is not the only goal, however. In addition to not issuing prefetches for
data that will not be accessed by the processor, we should not issue prefetches for data that are
already in the cache to which data are prefetched, since these prefetches will just consume over-
head and cache access bandwidth (interfering with regular accesses) without doing anything use-
ful. More is not necessarily better for prefetching. Both these types of prefetches are called
unnecessary prefetches. Avoiding them requires that we analyze the data locality in the applica-
tion’s access patterns and how it interacts with the cache size and organization, so that prefetches
are issued only for data that are not likely to be present in the cache. 

Finally, timing and luck play important roles in prefetching. A prefetch may be possible and not
unnecessary, but it may be initiated too late to hide the latency from the actual reference. Or it
may be initiated too early, so it arrives in the cache but is then either replaced (due to capacity or
mapping conflicts) or invalidated before the actual reference. Thus, a prefetch should be effective:
early enough to hide the latency, and late enough so the chances of replacement or invalidation
are small. 

As important as what and when to prefetch, then, are the questions of what not to prefetch and
when not to issue prefetches. The goal of prefetching analysis is to maximize coverage while
minimizing unnecessary prefetches, and the goal of scheduling to maximize effectiveness. Let us
now consider hardware-controlled and software-controlled prefetching in some detail, and see
how successfully they address these important aspects. 

Hardware-controlled Prefetching

The goal in hardware-controlled prefetching is to provide hardware that can detect patterns in
data accesses at runtime. Hardware-controlled prefetching assumes that accesses in the near
future will follow these detected patterns. Under this assumption, the cache blocks containing
those data can be prefetched and brought into the processor cache so the later accesses may hit in
the cache. The following discussion assumes nonbinding prefetches. 

Both analysis and scheduling are the responsibility of hardware, with no special software sup-
port, and both are performed dynamically as the program executes. Analysis and scheduling are
also very closely coupled, since the prefetch for a cache block is initiated as soon as it is deter-
mined that the block should be prefetched: It is difficult for hardware to make separate decisions
about these. Besides coverage, effectiveness and minimizing unnecessary prefetches, the hard-
ware has two other important goals:

• it should be simple, inexpensive, and not take up too much area

• it should not be in the critical path of the processor cycle time as far as possible

Many simple hardware prefetching schemes have been proposed. At the most basic level, the use
of long cache blocks itself is a form of hardware prefetching, exploited well by programs with
good spatial locality. Essentially no analysis is used to restrict unnecessary prefetches, the cover-
age depends on the degree of spatial locality in the program, and the effectiveness depends on
how much time elapses between when the processor access the first word (which issues the cache
miss) and when it accesses the other words on the block. For example, if a process simply
traverses a large array with unit stride, the coverage of the prefetching with long cache blocks
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will be quite good (75% for a cache block of four words) and there will be no unnecessary
prefetches, but the effectiveness is likely to not be great since the prefetches are issued too late.
Extending the idea of long cache blocks or blocks are one-block lookahead or OBL schemes, in
which a reference to cache block i may trigger a prefetch of block i+1. There are several variants
for the analysis and scheduling that may be used in this technique; for example, prefetching i+1
whenever a reference to i is detected, only if a cache miss to i is detected, or when i is referenced
for the first time after it is prefetched. Extensions may include prefetching several blocks ahead
(e.g. blocks i+1, i+2, and i+3) instead of just one [DDS95], an adaptation of the idea of stream
buffers in uniprocessors where several subsequent blocks are prefetched into a separate buffer
rather than the cache when a miss occurs [Jou90]. Such techniques are useful when accesses are
mostly unit-stride (the stride is the gap between data addresses accessed by consecutive memory
operations). 

The next step is to detect and prefetch accesses with non-unit or large stride. A simple way to do
this is to keep the address of the previously accessed data item for a given instruction (i.e a given
program counter value) in a history table indexed by program counter (PC). When the same
instruction is issued again (e.g. in the next iteration of a loop) if it is found in the table the stride
is computed as the difference between the current data address and the one in the history table for
that instruction, and a prefetch issued for the data address ahead of the current one by that stride
[FuP91,FPJ92]. The history table is thus managed much like a branch history table. This scheme
is likely to work well when the stride of access is fixed but is not one; however, most other
prefetching schemes that we shall discuss, hardware or software, are likely to work well in this
case. 

The schemes so far find ways to detect simple regular patterns, but do not guard against unneces-
sary prefetches when references do not follow a regular pattern. For example, if the same stride is
not maintained between three successive accesses by the same instruction, then the previous
scheme will prefetch useless data that the processor does not need. The traffic generated by these
unnecessary prefetches can be very detrimental to performance, particularly in multiprocessors,
since it consumes valuable resources thus causing contention and getting in the way of useful
regular accesses. 

In more sophisticated hardware prefetching schemes, the history table stores not only the data
address accessed the last time by an instruction but also the stride between the previous two
addresses accessed by it [BaC91,ChB92]. If the next data address accessed by that instruction is
separated from the previous address by the same stride, then a regular-stride pattern is detected
and a prefetch may be issued. If not, then a break in the pattern is detected and a prefetch is not
issued, thus reducing unnecessary prefetches. In addition to the address and stride, the table entry
also contains some state bits that keep track of whether the accesses by this instruction have
recently been in a regular-stride pattern, have been in an irregular pattern, or are transitioning into
or out of a regular-stride pattern. A set of simple rules is used to determine based on the stride
match and the current state whether to potentially issue a prefetch or not. If the result is to poten-
tially prefetch, the cache is looked up to see if the block is already there, and if not then the
prefetch is issued. 

While this scheme improves the analysis, it does not yet do a great job of scheduling prefetches.
In a loop, it will prefetch only one loop iteration ahead. If the amount of work to do in a loop iter-
ation is small compared to the latency that needs to be hidden, this will not be sufficient to toler-
ate the latency. The prefetched data will arrive too late and the processor will have to stall. On the
other hand, if the work in a loop iteration is too much, the prefetched data will arrive too early
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and may replace other useful blocks before being used. The goal of scheduling is to achieve just-
in-time prefetching, that is, to have a prefetch issued about l cycles before the instruction that
needs the data, where l is the latency we want to hide, so that a prefetched datum arrives just
before the actual instruction that needs it is executed and the prefetch is likely to be effective (see

Section 11.7.1). This means that the prefetch should be issued  loop iterations (or times the

instruction is encountered) ahead of the actual instruction that needs the data, where b is the pre-
dicted execution time of an iteration of the loop body. 

One way to implement such scheduling in hardware is to use a “lookahead program counter”
(LA-PC) that tries to remain l cycles ahead of the actual current PC, and that is used to access the
history table and generate prefetches instead of (but in conjunction with) the actual PC. The LA-
PC starts out a single cycle ahead of the regular PC, but keeps being incremented even when the
processor (and PC) stalls on a cache miss, thus letting it get ahead of the PC. The LA-PC also
looks up the branch history table, so the branch prediction mechanism can be used to modify it
when necessary and try to keep it on the right track. When a mispredicted branch is detected, the
LA-PC is set back to being equal to PC+1. A limit register controls how much farther the LA-PC
can get ahead of the PC. The LA-PC stalls when this limit is exceeded, or when the buffer of out-
standing references is full (i.e. it cannot issue any prefetches). 

Both the LA-PC and the PC look up the prefetch history table every cycle (they are likely to
access different entries). The lookup by the PC updates the “previous address” and the state fields
in accordance with the rules, but does not generate prefetches. A new “times” field is added to the
history table entries, which keeps track of the number of iterations (or encounters of the same
instruction) that the LA-PC is ahead of the PC. The lookup by the LA-PC increments this field
for the entry that it hits (if any), and generates an address for potential prefetching according to
the rules. The address generated is the “times” field times the stride stored in the entry, plus the
previous address field. The times field is decremented when the PC encounters that instruction in
its lookup of the prefetch history table. More details on these hardware schemes can be found in
[ChB92, Sin97]. 

Prefetches in these hardware schemes are treated as hints, since they are nonbinding, so actual
cache misses get priority over them. Also, if a prefetch raises an exception (for example, a page
fault or other violation), the prefetch is simply dropped rather than handling the exception. More
elaborate hardware-controlled prefetching schemes have been proposed to try to prefetch refer-
ences with irregular stride, requiring even more hardware support [ZhT95]. However, even the
techniques described above have not found their way into microprocessors or multiprocessors.
Instead, several microprocessors are preferring to provide prefetch instructions for use by soft-
ware-controlled prefetching schemes. Let us examine software-controlled prefetching, before we
examine its relative advantages and disadvantages with respect to hardware-controlled schemes.

Software-controlled Prefetching

In software-controlled prefetching, the analysis of what to prefetch and the scheduling of when to
issue prefetches are not done dynamically by hardware, but rather statically by software. The
compiler (or programmer) inserts special prefetch instructions into the code at points where it
deems appropriate. As we saw in Figure 11-19, this may require restructuring the loops in the
program to some extent as well. The hardware support needed is the provision of these non-
blocking instructions, a cache that allows multiple outstanding accesses, and some mechanism

l
b
---
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for keeping track of outstanding accesses (this is often combined with the write buffer in the form
of an outstanding transactions buffer). The latter two mechanisms are in fact required for all
forms of latency tolerance in a read-write based system. 

Let us first consider software-controlled prefetching from the viewpoint of a given processor try-
ing to hide latency in its reference stream, without complications due to interactions with other
processors. This problem is equivalent to prefetching in uniprocessors, except with a wider range
of latencies. Then, we shall discuss the complications introduced by multiprocessing. 

Prefetching With a Single Processor

Consider a simple loop, such as our example from Figure 11-1. A simple approach would be to
always issue a prefetch instruction one iteration ahead on array references within loops. This
would lead to a software pipeline like the one in Figure 11-19 on page 794, with two differences:
The data are brought into the cache rather than into a prefetch buffer, and the later load of the data
will be from the address of the data rather than from the prefetch buffer (i.e. read(A[i]) and
use(A[i])). This can easily be extended to approximate “just-in-time” prefetching above by
issuing prefetches multiple iterations ahead as discussed above. You will be asked to write the
code for just-in-time prefetching for a loop like this in Exercise 11.9. 

To minimize unnecessary prefetches, it is important to analyze and predict the temporal and spa-
tial locality in the program as well as trying to predict the addresses of future references. For
example, blocked matrix factorization reuses the data in the current block many times in the
cache, so it does not make sense to prefetch references to the block even if they can be predicted
early. In the software case, unnecessary prefetches have an additional disadvantage beyond use-
less traffic and cache bandwidth (even when traffic is not generated): They introduce useless
prefetch instructions in the code, which add execution overhead. The prefetch instructions are
often placed within conditional expressions, and with irregular data structures extra instructions
are often needed to compute the address to be prefetched, both of which increase the instruction
overhead. 

How easy is it to analyze what references to prefetch in software? In particular, can a compiler do
it, or must it be left to the programmer? The answer depends on the program’s reference patterns.
References are most predictable when they correspond to traversing an array in some regular
way. For example, a simple case to predict is when an array is referenced inside a loop or loop
nest, and the array index is an affine function of the loop indices in the loop nest; i.e. a linear
combination of loop index values. The following code shows an example:

for i <- 1 to n
for j <- 1 to n

sum = sum + A[3i+5j+7];
end for

end for.

Given knowledge of the amount of latency we wish to hide for a reference, we can try to issue the
prefetch that many iterations ahead in the relevant loop. Also, the amount of array data accessed
and the spatial locality in the traversal are easy to predict, which makes locality analysis easy.
The major complication in analyzing data locality is predicting cache misses due to mapping
conflicts. 
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A slightly more difficult class of references to analyze is indirect array references. e.g. 

for i <- 1 to n
sum = sum + A[index[i]];

end for.

While we can easily predict the values of i and hence the elements of the index array that will
be accessed, we cannot predict the value in index[i] and hence the elements of A that we shall
access. What we must do in order to predict the accesses to A is to first prefetch index[i] well
enough in advance, and then use the prefetched value to determine the element of array A to
prefetch. The latter requires additional instructions to be inserted. Consider scheduling. If the
number of iterations that we would normally prefetch ahead is k, we should prefetch index[i]
2k iterations ahead so it returns k iterations before we need A[index[i]], at which point we
can use the value of index[i] to prefetch A[index[i]] (see Exercise a). Analyzing tempo-
ral and spatial locality in these cases is more difficult than predicting addresses. It is impossible
to perform accurate analysis statically, since we do not know ahead of time how many different
locations of A will be accessed (different entries in the index array may have the same value) or
what the spatial relationships among the references to A are. Our choices are therefore to either
prefetch all references A[index[i]] or none at all, to obtain profile information about access
patterns gathered at runtime and use it to make decisions, or to use higher-level programmer
knowledge. 

Compiler technology has advanced to the point where it can handle the above types of array ref-
erences in loops quite well [Mow94], within the constraints described above. Locality analysis
[WoL91] is first used to predict when array references are expected to miss in a given cache (typ-
ically the first-level cache). This results in a prefetch predicate, which can be thought of as a con-
ditional expression inside which a prefetch should be issued for a given iteration. Scheduling
based on latency is then used to decide how many iterations ahead to issue the prefetches. Since
the compiler may not be able to determine which level of the extended memory hierarchy the
miss will be satisfied in, it may be conservative and assume the worst-case latency. 

Predicting conflict misses is particularly difficult. Locality analysis may tell us that a word should
still be in the cache so a prefetch should not be issued, but the word may be replaced due to con-
flict misses and therefore would benefit from a prefetch. A possible approach is to assume that a
small-associativity cache of C bytes effectively behaves like a fully-associative cache that is
smaller by some factor, but this is not reliable. Multiprogramming also throws off the predictabil-
ity of misses across process switches, since one process might pollute the cache state of another
that is prefetching, although the time-scales are such that locality analysis often doesn’t assume
state to stay in the cache that long anyway. Despite these problems, limited experiments have
shown quite good potential for success with compiler-generated prefetching when most of the
cache misses are to affine or indirect array references in loops [Mow94], as we shall see in
Section 11.7.3. These include programs on regular grids or dense matrices, as well as sparse
matrix computations (in which the sparse matrices use indirect array references, but most of the
data are often stored in dense form anyway for efficiency). These experiments are performed
through simulation, since real machines are only just beginning to provide effective underlying
hardware support for software-controlled prefetching. 

Accesses that are truly difficult for a compiler to predict are those that involve pointers or recur-
sive data structures (such as linked lists and trees). Unlike array indexing, traversing these data
structures requires dereferencing pointers along the way; the address contained in the pointer
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within a list or tree element is not known until that element is reached in the traversal, so it cannot
be easily prefetched. Predicting locality for such data structures is also very difficult, since their
traversals are usually highly irregular in memory. Prefetching in these cases currently must be
done by the programmer, exploiting higher-level semantic knowledge of the program and its data
structures as shown in the following example. Compiler analysis for prefetching recursive data
structures is currently the subject of research [LuM96], and will also be helped by progress in
alias analysis for pointers. 

Example  11-2 Consider the tree traversal to compute the force on a particle in the Barnes-Hut
application described in Chapter 3. The traversal is repeated for each particle
assigned to the process, and consecutive particles reuse much of the tree data,
which is likely to stay in the cache across particles. How should prefetches be
inserted in this tree traversal code?

Answer The traversal of the octree proceeds in depth first manner. However, if it is
determined that a tree cell needs to be opened then all its eight children will be
examined as long they are present in the tree. Thus, we can insert prefetches for all
the children of a cell as soon as we determine that the cell will be opened (or we can
speculatively issue prefetches as soon as we touch a cell and can therefore
dereference the pointers to its children). Since we expect the working set to fit in
the cache (which a compiler is highly unlikely to be able to determine), to avoid
unnecessary prefetches it is likely that we should need to prefetch a cell only the
first time that we access it (i.e. for the first particle that accesses it), not for
subsequent particles. Cache conflicts may occur which cause unpredictable misses,
but there is likely little we can do about that statically. Note that we need to do
some work to generate prefetches (determine if this is the first time we are visiting
the cell, access and dereference the child pointers etc.), so the overhead of a
prefetch is likely to be several instructions. If the overhead is incurred a lot more
often than successful prefetches are generated, it may overcome the benefits of
prefetching. One problem with this scheme is that we may not be prefetching early
enough when memory latencies are high. Since we prefetch all the children at a
time, in most cases the depth first work done for the first child (or two) should be
enough to hide the latency of the rest of the children, but this may not be the case.
The only way to improve this is to speculatively prefetch multiple levels down the
tree when we encounter a cell, hoping that we will touch all the cells we prefetch
and they will still be in the cache when we reach them. Other applications that use
linked lists in unstructured ways may be even more difficult for a compiler or even
programmer to prefetch successfully. 

Finally, sometimes a compiler may fail to determine what to prefetch because other aspects of the
compiler technology are not up to their task. For example, the key references in a loop may be
within a procedure call, and the compiler’s interprocedural analysis may not be sophisticated
enough to detect that the references in the procedure are indeed affine functions of the indices of
the loop indices. If the called procedure is in a different file, the compiler would have to perform
interprocedural analysis or inlining across files. These sorts of situations are easy for the pro-
grammer, who has higher-level semantic knowledge of what is being accessed. 
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Additional Complications in Multiprocessors

Two additional issues that we must consider when prefetching in parallel programs are prefetch-
ing communication misses, and prefetching with ownership. Both arise from the fact that other
processors might also be accessing and modifying the data that a process references. 

In an invalidation-based cache-coherent multiprocessor, data may be removed from a processor’s
cache—and misses therefore incurred— not only due to replacements but also due to invalida-
tions. A similar locality analysis is needed for prefetching in light of communication misses: We
should not prefetch data so early that they might be invalidated in the cache before they are used,
and we should ideally recognize when data might have been invalidated so that we can prefetch
them again before actually using them. Of course, because we are using nonbinding prefetching,
these are all performance issues rather than correctness issues. We could insert prefetches into a
process’s reference stream as if there were not other processes in the program, and the program
would still run correctly.

It is difficult for the compiler to predict incoming invalidations and perform this analysis, because
the communication in the application cannot be easily deduced from an explicitly parallel pro-
gram in a shared address space. The one case where the compiler has a good chance is when the
compiler itself parallelized the program, and therefore knows all the necessary interactions of
when different processes read and modify data. But even then, dynamic task assignment and false
sharing of data greatly complicate the analysis. 

A programmer has the semantic information about interprocess communication, so it is easier for
the programmer to insert and schedule prefetches as necessary in the presence of invalidations.
The one kind of information that a compiler does have is that conveyed by explicit synchroniza-
tion statements in the parallel program. Since synchronization usually implies that data are being
shared (for example, in a “properly labeled” program, see Chapter 9, the modification of a datum
by one process and its use by another process is separated by a synchronization), the compiler
analysis can assume that communication is taking place and that all the shared data in the cache
have been invalidated whenever it sees a synchronization event. Of course, this is very conserva-
tive, and it may lead to a lot of unnecessary prefetches especially when synchronization is fre-
quent and little data is actually invalidated between synchronization events. It would be nice if a
synchronization event conveyed some information about which data might be modified, but this
is usually not the case. 

As a second enhancement, since a processor often wants to fetch a cache block with exclusive
ownership (i.e. in exclusive mode, in preparation for a write), or to simply obtain exclusivity by
invalidating other cached copies, it makes sense to prefetch data with exclusivity or simply to
prefetch exclusivity. This can have two benefits when used judiciously. First, it reduces the
latency of the actual write operations that follow, since the write does not have to invalidate other
blocks and wait to obtain ownership (that was already done by the prefetch). Whether or not this
in itself has an impact on performance depends on whether write latency is already hidden by
other methods like using a relaxed consistency model. The second advantage is in the common
case where a process first reads a variable and then shortly thereafter writes it. Prefetching with
ownership even before the read in this case halves the traffic, as seen in Figure 11-20, and hence
improve the performance of other references as well by reducing contention and bandwidth
needs. Quantitative benefits of prefetching in exclusive more are discussed in [Mow94].
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Hardware-controlled versus Software-controlled Prefetching

Having seen how hardware-controlled and software-controlled prefetching work, let us discuss
some of their relative advantages and disadvantages. The most important advantages of hard-
ware-controlled prefetching are (i) it does not require any software support from the programmer
or compiler, (ii) it does not require recompiling code (which may be very important in practice
when the source code is not available), and (iii) it does not incur any instruction overhead or code
expansion since no extra instructions are issued by the processor. On the other hand, its most
obvious disadvantages are that it requires substantial hardware overhead and the prefetching
“algorithms” are hard-wired into the machine. However, there are many other differences and
tradeoffs, having to do with coverage, minimizing unnecessary prefetches and maximizing effec-
tiveness. Let us examine these tradeoffs, focusing on compiler-generated rather than program-
mer-generated prefetches in the software case. 

Coverage: The hardware and software schemes take very different approaches to analyzing what
to prefetch. Software schemes can examine all the references in the code, while hardware simply
observes a window of dynamic access patterns and predicts future references based on current
patterns. In this sense, software schemes have greater potential for achieving coverage of com-
plex access patterns. Software may be limited in its analysis (e.g. by the limitations of pointer
and interprocedural analysis) while hardware may be limited by the cost of maintaining sophisti-
cated history and the accuracy of needed techniques like branch prediction. The compiler (or
even programmer) also cannot react to some forms of truly dynamic information that are not pre-
dicted by its static analysis, such as the occurrence of replacements due to cache conflicts, while
hardware can. Progress is being made in improving the coverage of both approaches in prefetch-
ing more types of access patterns [ZhT95, LuM96], but the costs in the hardware case appear
high. It is possible to use some runtime feedback from hardware (for example conflict miss pat-

Figure  11-20  Benefits from prefetching with ownership. 

Suppose the latest copy of A is not available locally to begin with, but is present in other caches. Normal hardware cache coherence
would fetch the corresponding block in shared state for the read, and then communicate again to obtain ownership upon the write.
With prefetching, if we recognize this read-write pattern we can issue a single prefetch with ownership before the read itself, and not
have to incur any further communication at the write. By the time the write occurs, the block is already there in exclusive state.
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terns) to improve software prefetching coverage, but there has not been much progress in this
direction. 

Reducing unnecessary prefetches: Hardware prefetching is driven by increasing coverage, and
does not perform any locality analysis to reduce unnecessary prefetches. The lack of locality or
reuse analysis may generate prefetches for data that are already in the cache, and the limitations
of the analysis may generate prefetches to data that the processor does not access. As we have
seen, these prefetches waste cache access bandwidth even if they find the data in the cache and
are not propagated past it. If they do actually prefetch the data, they waste memory or network
bandwidth as well, and can displace useful data from the processor’s working set in the cache.
Especially on a bus-based machine, wasting too much interconnect bandwidth on prefetches has
at least the potential to saturate the bus and reduce instead of enhancing performance [Tue93]. 

Maximizing effectiveness: In software prefetching, scheduling is based on prediction. However,
it is often difficult to predict how long a prefetch will take to complete, for example where in the
extended memory hierarchy it will be satisfied and how much contention it will encounter. Hard-
ware can in theory automatically adapt to how far ahead to prefetch at runtime, since it lets the
lookahead-PC get only as far ahead as it needs to. But hiding long latencies becomes difficult due
to branch prediction, and every mispredicted branch causes the lookahead-PC to be reset leading
to a few ineffective prefetches until it gets far enough ahead of the PC again. Thus, both the soft-
ware and hardware schemes have potential problems with effectiveness or just-in-time prefetch-
ing. 

Hardware prefetching is used in dynamically scheduled microprocessors to prefetch data for
operations that are waiting in the reorder buffer but cannot yet be issued, as discussed earlier.
However, in that case, hardware does not have to detect patterns and analyze what to prefetch. So
far, the on-chip hardware support needed for more general hardware analysis and prefetching of
non-unit stride accesses has not been considered worthwhile. On the other hand, microprocessors
are increasingly providing prefetching instructions to be used by software (even in uniprocessor
systems). Compiler technology is progressing as well. We shall therefore focus on software-con-
trolled prefetching in our quantitative evaluations of prefetching in the next section. After this
evaluation, we shall examine more closely some of the architectural support needed by and
tradeoffs encountered in the implementation of software-controlled prefetching. 

Policy Issues and Tradeoffs

Two major issues that a prefetching scheme must take a position on are when to drop prefetches
that are issued, i.e. not propagate them any further, and where to place the prefetched data. 

Since they are hints, prefetches can be dropped by hardware when their costs seem to outweigh
their benefits. Two interesting questions are whether to drop a prefetch when the prefetch instruc-
tion incurs a TLB miss in address translation, and whether to drop it when the buffer of outstand-
ing prefetches or transactions is already full. TLB misses are expensive, but if they would occur
anyway at the actual reference to the address then it is probably worthwhile to incur the latency at
prefetch time rather than at reference time. However, the prefetch may be to an invalid address
and would not be accessed later, but this is not known until the translation is complete. One pos-
sible solution is to guess: to have two flavors of prefetches, one that gets dropped on TLB misses
and the other that does not, and insert the appropriate one based on the expected nature of the
TLB miss if any. Whether dropping prefetches when the buffer that tracks outstanding accesses is
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full is a good idea depends on the extent to which we expect contention for the buffer with ordi-
nary reads and writes, and the extent to which we expect prefetches to be useless. If both these
extents are high, we would be inclined to drop prefetches in this case. 

Prefetched data can be placed in the primary cache, in the secondary cache, or in a separate
prefetch buffer. A separate buffer has the advantage that prefetched data do not conflict with use-
ful data in a cache, but it requires additional hardware and must be kept coherent if prefetches are
to be non-binding. While ordinary misses replicate data at every level of the cache hierarchy, on
prefetches we may not want to bring the data very close to the processor since they may replace
useful data in the small cache and may compete with processor loads and stores for cache band-
width. However, the closer to the processor we prefetch, the more the latency we hide if the
prefetches are successful. The correct answer depends on the size of the cache and the important
working sets, the latencies to obtain data from different levels, and the time for which the primary
cache is tied up when prefetched data are being put in it, among other factors (see Exercise f).
Results in the literature suggest that the benefits of prefetching into the primary cache usually
outweigh the drawbacks [Mow94]. 

Sender-initiated Precommunication 

In addition to hardware update-based protocols, support for software-controlled “update”,
“deliver”, or “producer prefetch” instructions has been implemented and proposed. An example
is the “poststore” instruction in the KSR-1 multiprocessor from Kendall Square Research, which
pushes the contents of the whole cache block into the caches that currently contain a (presumably
old) copy of the block; other instructions push only the specified word into other caches that con-
tain a copy of the block. A reasonable place to insert these update instructions is at the last write
to a shared cache block before a release synchronization operation, since it is likely that those
data will be needed by consumers. The destination nodes of the updates are the sharers in the
directory entry. As with update protocols, the assumption is that past sharing patterns are a good
predictor of future behavior. (Alternatively, the destinations may be specified in software by the
instruction itself, or the data my be pushed only to the home main memory rather than other
caches, i.e. a write-through rather than an update, which hides some but not all of the latency
from the destination processors.) These software-based update techniques have some of the same
problems as hardware update protocols, but to a lesser extent since not every write generates a
bus transaction. As with update protocols, competitive hybrid schemes are also possible [Oha96,
GrS96]. 

Compared to prefetching, the software-controlled sender-initiated communication has the advan-
tage that communication happens just when the data are produced. However, it has several disad-
vantages. First, the data may be communicated too early, and may be replaced from the
consumer’s cache before use, particularly if they are placed in the primary cache. Second, unlike
prefetching this scheme precommunicates only communication (coherence) misses, not capacity
or conflict misses. Third, while a consumer knows what data it will reference, a producer may
deliver unnecessary data into processor caches if past sharing patterns are not a perfect predictor
of future patterns, which they often aren’t, or may even deliver the same data value multiple
times. Fourth, a prefetch checks the cache and is dropped if the data are found in the cache,
reducing unnecessary network traffic. The software update performs no such checks and can
increase traffic and contention, though it reduces traffic when it is successful since it deposits the
data in the right places without requiring multiple protocol transactions. And finally, since the
receiver does not control how many precommunicated messages it receives, buffer overflow and
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the resulting complications at the receiver may easily occur. The wisdom from simulation results
so far is that prefetching schemes work better than deliver or update schemes for most applica-
tions [Oha96], though the two can complement each other if both are provided [AHA+97]. 

Finally, both prefetch and deliver can be extended with the capability to transfer larger blocks of
data (e.g. multiple cache blocks, a whole object, or an arbitrarily defined range of addresses)
rather than a single cache block. These are called block prefetch and block put mechanisms
(block put differs from block transfer in that the data are deposited in the cache and not in main
memory). The issues here are similar to those encountered by prefetch and software update
except for differences due to their size. For example, it may not be a good idea to prefetch or
deliver a large block to the primary cache. 

Since software-controlled prefetching is generally more popular than hardware-controlled
prefetching or sender-initiated precommunication, let us briefly examine some results from the
literature that illustrate the performance improvements it can achieve. 

11.7.3 Performance Benefits

Performance results from prefetching so far have mostly been examined through simulation. To
illustrate the potential, let us examine results from hand-inserted prefetches in some of the exam-
ple applications used in this book [WSH95]. Hand-inserted prefetches are used since they can be
more aggressive then the best available compiler algorithms. Results from state-of-the-art com-
piler algorithms will also be discussed. 

Benefits with Single-issue, Statically Scheduled Processors

Section 11.5.3 illustrated the performance benefits for block transfer on the FFT and Ocean
applications for a particular simulated platform. Let us first look at how prefetching performs for
the same programs and platform. This experiment focuses on prefetching only remote accesses
(misses that cause communication). Figure 11-21 shows the results for FFT. Comparing the
prefetching results with the original non-prefetched results, we see in the first graph that
prefetching remote data helps performance substantially in this predictable application. As with
block transfer, the benefits are less for large cache blocks than for small ones, since there is a lot
of spatial locality in the applications so large cache blocks already achieve prefetching in them-
selves. The second graph compares the performance of block transfer with that of the prefetched
version, and shows that the results are quite similar: prefetching is able to deliver most of the
benefits of even the very aggressive block transfer in this application, as long as enough
prefetches are allowed to be outstanding at a time (this experiment allows a total of 16 simulta-
neous outstanding operations from a processor). Figure 11-22 shows the same results for the
Ocean application. Like block transfer, prefetching helps less here since less time is spent in
communication and since not all of the prefetched data are useful (due to poor spatial locality on
communicated data along column-oriented partition boundaries). 

These results are only for prefetching remote accesses. Prefetching is often much more success-
ful on local accesses (like uniprocessor prefetching). For example, in the nearest-neighbor grid
computations in the Ocean application, with barriers between sweeps it is difficult to issue
prefetches well enough ahead of time for boundary elements from a neighbor partition. This is
another reason for the benefits from prefetching remote data not being very large. However, a
process can very easily issue prefetches early enough for grid points within its assigned partition,
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which are not touched by any other process. Results from a state-of-the-art compiler algorithm
show that the compiler can be quite successful in prefetching regular computations on dense
arrays, where the access patterns are very predictable [Mow94]. These results, shown for two
applications in Figure 11-23, include both local and remote accesses for 16-processor executions.
The problems in these cases typically are being able to prefetch far enough ahead of time (for
example when the misses occur at the beginning of a loop nest or just after a synchronization
point), and being able to analyze and predict conflict misses. 
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Figure  11-21  Performance benefits of prefetching remote data in a Fast Fourier Transform.

The graph on the left shows the performance of the prefetched version relative to that of the original version. The graph can be inter-
preted just as described in Figure 11-13 on page 778: Each curve shows the execution time of the prefetched version relative to that of
the non-prefetched version for the same cache block size (for each number of processors). Graph (b) shows the performance of the
version with block transfer (but no prefetching), described earlier, relative to the version with prefetching (but no block transfer)
rather than relative to the original version. It enables us to compare the benefits from block transfer with those from prefetching
remote data. 

(a) Prefetching relative to original (a) Block transfer relative to prefetching

Figure  11-22  Performance benefits of prefetching remote data in Ocean.

The graphs are interpreted in exactly the same way as in Figure 11-21
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Some success has also been achieved on sparse array or matrix computations that use indirect
addressing, but more irregular, pointer-based applications have not seen much success through
compiler-generated prefetching. For example, the compiler algorithm is not able to successfully
prefetch the data in the tree traversals in the Barnes-Hut application, both because temporal local-
ity on these accesses is high but difficult to analyze, and because it is difficult to dereference the
pointers and issue the prefetches well enough ahead of time. Another problem is that many appli-
cations with such irregular access patterns exhibit a high degree of temporal locality; this locality
is very difficult to analyze, so even when the prefetching analysis is successful it can lead to a lot
of unnecessary prefetches. Programmers can often do a better job in these cases, as discussed ear-
lier, and runtime profile data may be useful to identify the data accesses that generate the most
misses. 

For the cases where prefetching is successful overall, compiler algorithms that use locality analy-
sis to reduce unnecessary prefetch instructions have been found to reduce the number of
prefetches issued substantially without losing much in coverage, and hence to perform much bet-
ter (see Figure 11-24). Prefetching with ownership is found to hide write latency substantially in
an architecture in which the processor implements sequential consistency by stalling on writes,
but is less important when write latency is already being hidden through a relaxed memory con-
sistency model. It does reduce traffic substantially in any case. 

Quantitative evaluations in the literature [Mow94, ChB94] also show that as long as caches are
reasonably large, cache intereference effects due to prefetching are negligible. They also illus-
trate that by being more selective, software prefetching indeed tends to induce less unnecessary

Figure  11-23  Performance benefits from compiler-generated prefetching.

The results are for an older version of the Ocean simulation program (which partitions in chunks of complete rows and hence has a
higher inherent communication to computation ratio) and for an unblocked and hence lower-performance dense LU factorization.
There are three sets of bars, for different combinations of L1/L2 cache sizes. The bars for each combination are the execution times for
no prefetching (N) and selective prefetching(S). For the intermediate combination (8K L1 cache and 64K L2 cache), results are also
shown for the case where prefetches are issued indiscriminately (I), without locality analysis. All execution times are normalized to the
time without prefetching for the 8K/64K cache size combination. The processor, memory, and communication architecture parameters
are chosen to approximate those of the Stanford DASH multiprocessor, which is a relatively old multiprocessor, and can be found in
[Mow94]. Latencies on modern systems are much larger relative to processor speed than on DASH. We can see that prefetching helps
performance, and that the choice of cache sizes makes a substantial difference to the impact of prefetching. The increase in “busy” time
with prefetching (especially indiscriminate prefetching) is due to the fact that prefetch instructions are included in busy time. 
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extra traffic and cache conflict misses than hardware prefetching. However, the overhead due to
extra instructions and associated address calculations can sometimes be substantial in software
schemes. 

Benefits with Multiple-issue, Dynamically Scheduled Processors

While the above results were obtained through simulations that assumed simple, statically sched-
uled processors, the effectiveness of software-controlled prefetching has also been measured
(through simulation) on multiple-issue, dynamically scheduled processors [LuM96, BeF96a,
BeF96b] and compared with the effectiveness on simple, statically scheduled processors
[RPA+97]. Despite the latency tolerance already provided by dynamically scheduled processors
(including some through hardware prefetching of operations in the reorder buffer, as discussed
earlier), software-controlled prefetching is found to be effective in further reducing execution
time. The reduction in memory stall time is somewhat smaller in dynamically scheduled proces-
sors than it is in statically scheduled processors. However, since memory stall time is a greater
fraction of execution time in the former than in the latter (dynamically scheduled superscalar pro-
cessors reduce instruction processing time much more effectively than they can reduce memory
stall time), the percentage improvement in overall execution time due to prefetching is often
comparable in the two cases. 

There are two main reasons for prefetching being less effective in reducing memory stall time
with dynamically scheduled superscalar processors than with simple processors. First, since
dynamically scheduled superscalar processors increase the rate of instruction processing quite
rapidly, there is not so much computation time to overlap with prefetches and prefetches often
end up being late. The second reason is that dynamically scheduled processors tend to cause
more resource contention for processor resources (outstanding request tables, functional units,
tracking buffers, etc.) that are encountered by a memory operation even before the L1 cache. This
is because they cause more memory operations to be outstanding at a time, and they do not block
on read misses. Prefetching tends to further increase the contention for these resources, thus
increasing the latency of non-prefetch accesses. Since this latency occurs before the L1 cache, it
is not hidden effectively by prefetching. Resource contention of this sort is also the reason that

Figure  11-24  The benefits of selective prefetching through locality analysis. 

The fraction of prefetches that are unnecessary is reduced substantially, while the coverage is not compromised. MP3D is an applica-
tion for simulating rarefied hydrodynamics, Cholesky is a sparse matrix factorization kernel, and LocusRoute is a wire-routing appli-
cation from VLSI CAD. MP3D and Cholesky use indirect array accesses, and LocusRoute uses pointers to implement linked lists so is
more difficult for coverage. 
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simply issuing prefetches earlier does not solve the late prefetches problem: Early prefetches not
only are often wasted, but also tie up these processor resources for an even longer time since they
tend to keep more prefetches outstanding at a time. The study in [RPA+97] was unable to
improve performance significantly by varying how early prefetches are issued. One advantage of
dynamically scheduled superscalar processors compared to single-issue statically scheduled pro-
cessors from the viewpoint of prefetching is that the instruction overhead of prefetching is usu-
ally much smaller, since the prefetch instructions can occupy empty slots in the processor and are
hence overlapped with other instructions. 

Comparison with Relaxed Memory Consistency

Studies that compare prefetching with relaxed consistency models have found that on statically
scheduled processors with blocking reads, the two techniques are quite complementary
[GHG+91]. Relaxed models tend to greatly reduce write stall time but do not do much for read
stall time in these blocking-read processors, while prefetching helps to reduce read stall time.
Even after adding prefetching, however, there is a substantial difference in performance between
sequential and relaxed consistency, since prefetching is not able to hide write latency as effec-
tively as relaxed consistency. On dynamically scheduled processors with nonblocking reads,
relaxed models are helpful in reducing read stall time as well as write stall time. Prefetching also
helps reduce both, so it is interesting to examine whether starting from sequential consistency
performance is helped more by prefetching or by using a relaxed consistency model. Even when
all optimizations to improve the performance of sequential consistency are applied (like hard-
ware prefetching, speculative reads, and write-buffering), it is found to be more advantageous to
use a relaxed model without prefetching than to use a sequentially consistent model with
prefetching on dynamically scheduled processors [RPA+97]. The reason is that although
prefetching can help reduce read stall time somewhat better than relaxed consistency, it does not
help sequential consistency hide write latency nearly as well as can be done with relaxed consis-
tency. 

11.7.4 Implementation Issues

In addition to extra bandwidth and lockup-free caches that allow multiple outstanding accesses
(prefetches and ordinary misses), there are two types of architectural support needed for soft-
ware-controlled prefetching: instruction set enhancements, and keeping track of prefetches. Let
us look at each briefly.

Instruction Set Enhancements

Prefetch instructions differ from normal load instructions in several ways. First, there is no desti-
nation register with non-binding prefetches. Other differences are that prefetches are non-block-
ing and non-excepting instructions. The non-blocking property allows the processor to proceed
past them. Since prefetches are hints and since no instructions depend on the data they return,
unlike nonblocking loads they do not need support for dynamic scheduling, instruction looka-
head and speculative execution to be effective. Prefetches do not generate exceptions when the
address being prefetched is invalid; rather, they are simply ignored since they are only hints. This
allows us to be aggressive in generating prefetches without analysis for exceptions (e.g. prefetch-
ing past array bounds in a software pipeline, or prefetching a data-dependent address before the
dependence is resolved). 
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Prefetches can be implemented either as a special flavor of a load instruction, using some extra
bits in the instruction, or using an unused opcode. Prefetches themselves can have several flavors,
such as prefetching with or without ownership, prefetching multiple cache blocks rather than
one, prefetching data in uncached mode rather than into the cache (in which case the prefetches
are binding since the data are no longer visible to the coherence protocol), and flavors that deter-
mine whether prefetches should be dropped under certain circumstances. The issues involved in
choosing an instruction format will be discussed in Exercise d. 

Keeping Track of Outstanding Prefetches

To support multiple outstanding reads or writes, a processor must maintain state for each out-
standing transaction: in the case of a write, the data written to must be merged with the rest of the
cache block when it returns, while in the case of a read the register being load into must be kept
track of and interlocks with this register handled. Since prefetches are just hints, it is not neces-
sary to maintain processor state for outstanding prefetches, as long as the cache can receive
prefetch responses from other nodes while the local processor might be issuing more requests.
All we really need is lockup-free caches. Nonetheless, having a record of outstanding prefetches
in the processor may be useful for performance reasons. First, it allows the processor to proceed
past a prefetch even when the prefetch cannot be serviced immediately by the lockup-free cache,
by buffering the prefetch request till cache can accept it. Second, it allows subsequent prefetches
to the same cache block to be merged by simply dropping them. Finally, a later load miss to a
cache block that has an outstanding prefetch can be merged with that prefetch and simply wait
for it to return, thus partially hiding the latency of the miss. This is particularly important when
the prefetch cannot be issued far enough before the actual miss: If there were no record of out-
standing prefetches, the load miss would simply be issued and would incur its entire latency. 

The outstanding prefetch buffer may simply be merged with an existing outstanding access buffer
(such as the processor’s write buffer), or separate structures may be maintained. The disadvan-
tage of a combined outstanding transaction buffer is that prefetches may be delayed behind writes
or vice versa; the advantage is that a single structure may be simpler to build and manage. In
terms of performance, the difference between the two alternatives diminishes as more entries are
used in the buffer(s), and may be significant for small buffers. 

11.7.5 Summary

To summarize our discussion of precommunication in a cache-coherent shared address space, the
most popular method so far is for microprocessors to provide support for prefetch instructions to
be used by software-controlled prefetches, whether inserted by a compiler or a programmer. The
same instructions are used for either uniprocessor or multiprocessor systems. In fact, prefetching
turns out to be quite successful in competing with block data transfer even in cases where the lat-
ter technique works well, even though prefetching involves the processor on every cache block
transfer. For general computations, prefetching has been found to be quite successful in hiding
latency in predictable applications with relatively regular data access patterns, and successful
compiler algorithms have been developed for this case. Programmer-inserted prefetching still
tends to outperform compiler-generated prefetching, since the programmer has knowledge of
access patterns across computations that enable earlier or better scheduling of prefetches. How-
ever, prefetching irregular computations, particularly those that use pointers heavily, has a long
way to go. Hardware prefetching is used in limited forms as in dynamically scheduled proces-
sors; while it has important advantages in not requiring that programs be re-compiled, it’s future
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in microprocessors is not clear. Support for sender-initiated precommunication instructions is
also not so popular as support for prefetching. 

11.8 Multithreading in a Shared Address Space

Hardware-supported multithreading is perhaps the most versatile technique in terms of hiding
different types of latency and in different circumstances. It has the following conceptual advan-
tages over other approaches:

• it requires no special software analysis or support (other than having more explicit threads or
processes in the parallel program than the number of processors),

• because it is invoked dynamically, it can handle unpredictable situations like cache conflicts
etc. just as well as predictable ones. 

• while the previous techniques are targeted at hiding memory access latency, multithreading
can potentially hide the latency of any long-latency event just as easily, as long as the event
can be detected at runtime. This includes synchronization and instruction latency as well. 

• like prefetching, it does not change the memory consistency model since it does not reorder
accesses within a thread. 

Despite these potential advantages, multithreading is currently the least popular latency tolerat-
ing technique in commercial systems, for two reasons. First, it requires substantial changes to the
microprocessor architecture. Second, its utility has so far not been adequately proven for unipro-
cessor or desktop systems, which constitute the vast majority of the marketplace. We shall see
why in the course of this discussion. However, with latencies becoming increasingly longer rela-
tive to processor speeds, with more sophisticated microprocessors that already provide mecha-
nisms that can be extended for multithreading, and with new multithreading techniques being
developed to combine multithreading with instruction-level parallelism (by exploiting instruc-
tion-level parallelism both within and across threads, as discussed later in Section 11.8.5), this
trend may change in the future. 

Let us begin with the simple form of multithreading that we considered in message passing, in
which instructions are executed from one thread until that thread encounters a long-latency event,
at which point it is switched out and another thread switched in. The state of a thread —which
includes the processor registers, the program counter (which holds the address of the next
instruction to be executed in that process) the stack pointer, and some per-process parts of the
processor status words (e.g. the condition codes)—is called the context of that thread, so multi-
threading is also called multiple-context processing. If the latency that we are trying to tolerate is
large enough, then we can save the state to memory in software when the thread is switched out
and then load it back into the appropriate registers when the thread is switched back in (note that
restoring the processor status word requires operating system involvement). This is how multi-
threading is typically orchestrated on message-passing machines, so a standard single-threaded
microprocessor can be used in that case. In a hardware-supported shared address space, and even
more so on a uniprocessor, the latencies we are trying to tolerate are not that high. The overhead
of saving and restoring state in software may be too high to be worthwhile, and we are likely to
require hardware support. The cost of a context switch may also involve flushing or squashing
instructions already in the processor pipeline, as we shall see. Let us examine this relationship
between switch overhead and latency a little more quantitatively. 
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Consider processor utilization, i.e. the fraction of time that a processor spends executing useful
instructions rather than stalled for some reason. The time threads spends executing before they
encounter a long-latency event is called the busy time. The total amount of time spent switching
among threads is called the switching time. If no other thread is ready, the processor is stalled
until one becomes ready or the long-latency event it stalled on completes. The total amount of
time spent stalled for any reason is called the idle time. The utilization of the processor can then
be expressed as: 

. (EQ 11.2)

It is clearly important to keep the switching cost low. Even if we are able to tolerate all the
latency through multithreading, thus removing idle time completely, utilization and hence perfor-
mance is limited by the time spent context switching. (Of course, processor utilization is used
here just for illustrative purposes; as discussed in Chapter 4 it is not in itself a very good perfor-
mance metric). 

11.8.1 Techniques and Mechanisms

For processors that issue instructions from only a single thread in a given cycle, hardware-sup-
ported multithreading falls broadly into two categories, determined by the decision about when to
switch threads. The approach assumed so far—in message passing, in multiprogramming to tol-
erate disk latency, and at the beginning of this section—is to let a thread run until it encounters a
long-latency event (e.g. a cache miss, a synchronization event, or a high-latency instruction such
as a divide), and then switch to another ready thread. This has been called the blocked approach,
since a context switch happens only when a thread is blocked or stalled for some reason. Among
shared address space systems, it is used in the MIT Alewife prototype [ABC+95]. The other
major hardware-supported approach is to simply switch threads every processor cycle, effectively
interleaving the processor resource among a pool of ready threads at a one-cycle granularity.
When a thread encounters a long-latency event, it is marked as not being ready, and does not par-
ticipate in the switching game until that event completes and the thread joins the ready pool
again. Quite naturally, this is called the interleaved approach. Let us examine both approaches in
some detail, looking both at their qualitative features and tradeoffs as well as their quantitative
evaluation and implementation details. After covering blocked and interleaved multithreading for
processors that issue instructions from only a single thread in a cycle, we will examine the inte-
gration of multithreading with instruction-level (superscalar) parallelism, which has the potential
to overcome the limitations of the traditional approaches (see Section 11.8.5). Let us begin with
the blocked approach. 

Blocked Multithreading 

The hardware support for blocked multithreading usually involves maintaining multiple hard-
ware register files and program counters, for use by different threads. An active thread, or a con-
text, is a thread that is currently assigned one of these hardware copies. The number of active
threads may be smaller than the number of ready threads (threads that are not stalled but are
ready to run), and is limited by the number of hardware copies of the resources. Let us first take a
high-level look at the relationship among the latency to be tolerated, the thread switching over-
head and the number of active threads, by analyzing an average-case scenario.

utilization
busy

busy switching idle+ +
------------------------------------------------------------=
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Suppose a processor can support N active threads at a time (N-way multithreading). And suppose
that each thread operates by repeating the following cycle:

• execute useful instructions without stalling for R cycles (R is called the run length)

• encounter a high-latency event and switch to another thread.

Suppose that the latency we are trying to tolerate each time is L cycles, and the overhead of a
thread switch is C cycles. Given a fixed set of values for R, L and C, a graph of processor utiliza-
tion versus the number of threads N will look like that shown in Figure 11-25. We can see that

there are two distinct regimes of operation. The utilization increases linearly with the number of
threads up to a threshold, at which point it saturates. Let us see why.

Initially, increasing the number of threads allows more useful work to be done in the interval L
that a thread is stalled, and latency continues to be hidden. Once N is sufficiently large, by the
time we cycle through all the other threads—each with its run length of R cycles and switch cost
of C cycles—and return to the original thread we may have tolerated all L cycles of latency.
Beyond this, there is no benefit to having more threads since the latency is already hidden. The

value of N for which this saturation occurs is given by (N-1) R + NC = L, or Nsat = .

Beyond this point, the processor is always either busy executing a run or incurring switch over-
head, so the utilization according to Equation 11.2 is:

. (EQ 11.3)

If N is not large enough relative to L, then the runs of all N-1 other threads will complete before
the latency L passes. A processor therefore does useful work for R+(N-1)*R cycles out of every
R+L and is idle for the rest of the time. That is, it is busy for R+(N-1)*R or NR cycles, switching
for N*C cycles and idle for L-[(N-1)R+N*C] cycles, i.e. busy for NR out of every R+L cycles,
leading to a utilization of

. (EQ 11.4)

Figure  11-25  Processor Utilization versus number of threads in multithreading. 

The figure shows the two regimes of operation: the linear regime, and saturation. It assumes R=40, L=200 and C=10 cycles.
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This analysis is clearly simplistic, since it uses an average run length of R cycles and ignores the
burstiness of misses and other long-latency events. Average-case analysis may lead us to assume
that less threads suffice than are necessary to handle the bursty situations where latency tolerance
may be most crucial. However, the analysis suffices to make the key points. Since the best utiliza-
tion we can get with any number of threads, usat, decreases with increasing switch cost C (see
Equation 11.3), it is very important that we keep switch cost low. Switch cost also affects the
types of latency that we can hide; for example, pipeline latencies or the latencies of misses that
are satisfied in the second-level cache may be difficult to hide unless the switch cost is very low. 

Switch cost can be kept low if we provide hardware support for several active threads; that is,
have a hardware copy of the register file and other processor resources needed to hold thread state
for enough threads to hide the latency. Given the appropriate hardware logic, then, we can simply
switch from one set of hardware state to another upon a context switch. This is the approach
taken in most hardware multithreading proposals. Typically, a large register file is either statically
divided into as many equally sized register frames as the active threads supported (called a seg-
mented register file), or the register file may be managed as a sort of dynamically managed cache
that holds the registers of active contexts (see Section 11.8.3). While replicating context state in
hardware can bring the cost of this aspect of switching among active threads down to a single
cycle—it’s like changing a pointer instead of copying a large data structure—there is another
time cost for context switching that we have not discussed so far. This cost arises from the use of
pipelining in instruction execution. 

When a long-latency event occurs, we want to switch the current thread out. Suppose the long
latency event is a cache miss. The cache access is made only in the data fetch stage of the instruc-
tion pipeline, which is quite late in the pipeline. Typically, the hit/miss result is only known in the
writeback stage, which is at the end of the pipeline. This means that by the time we know that a
cache miss has occurred and the thread should be switched out, several other instructions from
that thread (potentially k, where k is the pipeline depth) have already been fetched and are in the
pipeline (see Figure 11-26). We are faced with three possibilities:

• Allow these subsequent instructions to complete, and start to fetch instructions from the
new thread at the same time.

• Allow the instructions to complete before starting to fetch instructions from the new
thread.

• Squash the instructions from the pipeline and then start fetching from the new thread. 

IF1 IF2 RF EX DF1 DF2 WB

AiAi+1Ai+2Ai+3Ai+4Ai+5Ai+6

Figure  11-26  Impact of late miss detection in a pipeline. 

Thread A is the current thread running on the processor. A cache miss occurring on instruction Ai from this thread is only detected
after the second data fetch stage (DF2) of the pipeline, i.e. in the writeback (WB) cycle of Ai’s traversal through the pipeline. At this
point, the following six instructions from thread A (Ai+1 through Ai+6) are already in the different stages of the assumed seven-stage
pipeline. If all the instructions are squashed when the miss is detected (dashed x’s), we lose at least seven cycles of work. 
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The first case is complex to implement, for two reasons. First, instructions from different threads
will be in the pipeline at the same time. This means that the standard uniprocessor pipeline regis-
ters and dependence resolution mechanisms (interlocks) do not suffice. Every instruction must be
tagged with its context as it proceeds through the pipeline, and/or multiple sets of pipeline regis-
ters must be used to distinguish results from different contexts. In addition to the increase in area
(the pipeline registers are a substantial component of the data path) and the fact that the processor
has to be changed much more substantially, the use of multiple pipeline registers at the pipeline
stages means that the registers must be multiplexed onto the latches for the next stage, which may
increase the processor cycle time. Since part of the motivation for the blocked scheme is its
design simplicity and ability to use commodity processors with as little design effort and modifi-
cation as possible, this may not be a very appropriate choice. The second problem with this
choice is that the instructions in the pipeline following the one that incurs the cache miss may
stall the pipeline because they may depend on the data returned by the miss. 

The second case avoids having instructions from multiple threads simultaneously in the pipeline.
However, it does not do anything about the second problem above. The third case avoids both
problems: Instructions from the new thread do not interact with those from the old one since the
latter are squashed, and the instructions being squashed means they will not miss and hold up the
pipeline. This third choice is the simplest to implement, since the standard uniprocessor pipeline
suffices and already has the ability to squash instructions, and is the favored choice for the
blocked scheme. 

How does a context switch get triggered in the blocked approach to hide the different kinds of
latency. On a cache miss, the switch can be triggered by the detection of the miss in hardware.
For synchronization latency, we can simply ensure that an explicit context switch instruction fol-
lows every synchronization event that is expected to incur latency (or even all synchronization
events). Since the synchronization event may be satisfied by another thread on the same proces-
sor, an explicit switch is necessary in this case to avoid deadlock. Long pipeline stalls can also be
handled by inserting a switch instruction following a long-latency instruction such as a divide.
Finally, short pipeline stalls like data hazards are likely to be very difficult to hide with the
blocked approach. 

To summarize, the blocked approach has the following positive qualities:

• relatively low implementation cost (as we shall see in more detail later)

• good single-thread performance: If only a single thread is used per processor, there are no
context switches and this scheme performs just like a standard uniprocessor would. 

The disadvantage is that the context switch overhead is high: approximately the depth of the
pipeline, even when registers and other processor state do not have to be saved to or restored
from memory. This overhead limits the types of latencies that can be hidden. Let us examine the
performance impact through an example, taken from [LGH94]. 

Example  11-3 Suppose four threads, A, B, C, and D, run on a processor. The threads have the
following activity:

A issues two instructions, with the second instruction incurring a cache miss, then issues 
four more.
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B issues one instruction, followed by a two-cycle pipeline dependency, followed by two 
more instructions, the last of which incurs a cache miss, followed by two more. 

C issues four instructions, with the fourth instruction incurring a cache miss, followed 
by three more.

D issues six instructions, with the sixth instruction causing a cache miss, followed by 
one more. 

Show how successive pipeline slots are either occupied by threads or wasted in a blocked
multithreaded execution. Assume a simple four-deep pipeline and hence four-cycle con-
text-switch time, and a cache miss latency of ten cycles (small numbers are used here for
ease of illustration).

Answer The solution is shown in Figure 11-27, assuming that threads are chosen round-
robin starting from thread A. We can see that while most of the memory latency is
hidden, this is at the cost of context switch overhead. Assuming the pipeline is in
steady state at the beginning of this sequence, we can count cycles starting from the
time the first instruction reaches the WB stage (i.e. the first cycle shown for the
multithreaded execution in the bottom part of the figure). Of the 51 cycles taken in
the multithreaded execution, 21 are useful busy cycles, two are pipeline stalls, there
are no idle cycles stalled on memory, and 28 are context switch cycles, leading to a

Memory latency

Pipeline latency

Figure  11-27  Latency tolerance in the blocked multithreading approach.

The top part of the figure shows how the four active threads on a processor would behave if each was the only thread running on the
processor. For example, the first thread issues one instruction, then issues a second one which incurs a cache miss, then issues some
more. The bottom part shows how the processor switches among threads when they incur a cache miss. In all cases, the instruction
shown in each slot is the one that is (or would be) in the last, WB stage of the pipeline in that cycle. Thus, if the second instruction
from the first thread had not missed, it would have been in the WB state in the second cycle shown at the bottom. However, since it
misses, that cycle is wasted and the three other instructions that have already been fetched into the 4-deep pipeline (from the same
thread) have to be squashed in order to switch contexts. Note that the two-cycle pipeline latency does not generate a thread switch,
since the switch overhead of four cycles is larger than this latency. 

Thread A

Thread B

Thread C

Thread D

= busy cycles from
threads A-D, respectively.

= context switch overhead

= idle (stall) cycle

Four context switch cycles

= abbreviation for four 
context switch cycles
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processor utilization of (21/51) * 100 or only 41% despite the extremely low cache
miss penalty assumed. 

Interleaved Multithreading 

In the interleaved approach, in every processor clock cycle a new instruction is chosen from a
different thread that is ready and active (assigned a hardware context) so that threads are
switched every cycle rather than only on long-latency events. When a thread incurs a long-
latency event, it is simply disabled or removed from the pool of ready threads until that event
completes and the thread is labeled ready again. The key advantage of the interleaved scheme is
that there is no context switch overhead. No event needs to be detected in order to trigger a con-
text switch, since this is done every cycle anyway. Segmented or replicated register files are used
here as well to avoid the need to save and restore registers. Thus, if there are enough concurrent
threads, in the best case all latency will be hidden without any switch cost, and every cycle of the
processor will perform useful work. An example of this ideal scenario is shown in Figure 11-28,

where we assume six active threads for illustration. The typical disadvantage of the interleaved
approach is the higher hardware cost and complexity, though the specifics of this and other poten-
tial disadvantages depend on the particular type of interleaved approach used. 

Interleaved schemes have undergone a fair amount of evolution. The early schemes severely
restricted the number and type of instructions from a given thread that could be in the processor’s
pipeline at a time. This reduced the need for hardware interlocks and simplifying processor

Memory latency Pipeline latency

Memory latency

Memory latency Memory latency

Pipeline latency

Figure  11-28  Latency tolerance in an ideal setting the interleaved multithreading approach. 

The top part of the figure shows how the six active threads on a processor would behave if each was the only thread running on the
processor. The bottom part shows how the processor switches among threads round-robin every cycle, leaving out those threads
whose last instruction caused a stall that has not been satisfied yet. For example, the first (solid) thread is not chosen again until its
high-latency memory reference is satisfied and its turn comes again in the round-robin scheme. 
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design, but had severe implications for the performance of single-threaded programs. More
recent interleaved schemes greatly reduce these restrictions (blocked schemes of course do not
have them, since the same thread runs until it encounters a long-latency event). In practice,
another distinguishing feature among interleaved schemes is whether they use caches to reduce
latency before trying to hide it. Machines built so far using the interleaved technique do not use
caches at all, but rely completely on latency tolerance through multithreading [Smi81, ACC+90].
More recent proposals advocate the use of interleaved techniques and full pipeline interlocks
with caches. [LGH94] (recall that blocked multithreaded systems use caching since they want to
keep a thread running efficiently for as long as possible). Let us look at some interesting points in
this development. 

The Basic Interleaved Scheme 

The first interleaved multithreading scheme was that used in the Denelcor HEP (Heterogeneous
Element Processor) multiprocessor, developed between 1978 and 1985 [Smi81]. Each processor
had up to 128 active contexts, 64 user-level and 64 privileged, though only about 50 of them were
available to the user. The large number of active contexts was needed even though the memory
latency was small—about 20-40 cycles without contention—since the machine had no caches so
the latency was incurred on every memory reference (memory modules were all on the other side
of a multistage interconnection network, but the processor had an additional direct connection to
one of these modules which it could consider its “local” module). The 128 active contexts were
supported by replicating the register file and other critical state 128 times. The pipeline on the
HEP was 8 cycles deep. The pipeline supported interlocks among non-memory instructions, but
did not allow more than one memory, branch or divide operation to be in the pipeline at a given
time. This meant that several threads had to be active on each processor at a time just to utilize
the pipeline effectively, even without any memory or other stalls. For parallel programs, for
which HEP was designed, this meant that the degree of explicit concurrency in the program had
to be much larger than the number of processors, especially in the absence of caches to reduce
latency, greatly restricting the range of applications that would perform well. 

Better Use of the Pipeline

Recognizing the drawbacks or poor single-thread performance and very large number of needed
threads in allowing only a single memory operation from a thread in the pipeline at a time, sys-
tems descended from the HEP have alleviated this restriction. These systems include the Horizon
[KuS88] and the Tera [ACC+90] multiprocessors. They still do not use caches to reduce latency,
relying completely on latency tolerance for all memory references. 

The first of these designs, the Horizon, was never actually built. The design allows multiple
memory operations from a thread to be in the pipeline, but does this without hardware pipeline
interlocks even for non-memory instructions. Rather, the analysis of dependences is left to the
compiler. The idea is quite simple. Based on the compiler analysis every instruction is tagged
with a three-bit “lookahead” field, which specifies the number of immediately following instruc-
tions in that thread that are independent of that instruction. Suppose the lookahead field for an
instruction is five. This means that the next five instructions (memory or otherwise) are indepen-
dent of the current instruction, and so can be in the pipeline with the current instruction even
though there are no hardware interlocks to resolve dependences. Thus, when a long latency event
is encountered, the thread does not immediately become unready but can issue five more instruc-
tions before it becomes unready. The maximum value of the lookahead field is seven, so if more



Multithreading in a Shared Address Space

9/4/97 DRAFT: Parallel Computer Architecture 821

than seven following instructions are independent, the machine cannot know this and will pro-
hibit more than seven from entering the pipeline until the current one leaves. 

Each “instruction” or cycle in Horizon can in fact issue up to three operations, one of which may
be a memory operation. This means that twenty-one independent operations must be found to
achieve the maximum lookahead, so sophisticated instruction scheduling by the compiler is
clearly very important in this machine. It also means that for a typical program it is very likely
that a memory operation is issued every instruction or two. Since the maximum lookahead size is
larger than the average distance between memory operations, allowing multiple memory opera-
tions in the pipe is very important to hiding latency. However, in the absence of caches every
memory operation is a long-latency event, now occurring almost once per instruction, so a large
number of ready threads is still needed to hide latency. In particular, single-thread performance—
the performance of programs that are not multithreaded—is not helped much by a small amount
of lookahead without caches. The small number of lookahead bits provided is influenced by the
high premium on bits in the instruction word and particularly by the register pressure introduced
by having three results per instruction times the number of lookahead instructions; more looka-
head and greater register pressure might have been counter-productive for instruction scheduling.
Effective use of large lookahead also requires more sophistication in the compiler. 

The Tera architecture is the latest in the series of interleaved mutithreaded architectures without
caches. It is actually being built by Tera Computer Company. Tera manages instruction depen-
dences differently than Horizon and HEP: It provides hardware interlocks for instructions that
don’t access memory (like HEP), and Horizon-like lookahead for memory instructions. Let us
see how this works. 

The Tera machine separates operations into memory operations, “arithmetic” operations, and
control operations (e.g. branches). The unusual, custom-designed processor can issue three oper-
ations per instruction, much like Horizon, either one from each category or two arithmetic and
one memory operation. Arithmetic and control operations go into one pipeline, which unlike
Horizon has hardware interlocks to allow multiple operations from the same thread. The pipeline
is very deep, and there is a sizeable minimum issue delay between consecutive instructions from
a thread (about 16 cycles, with the pipeline being deeper than this), even if there are no depen-
dences between consecutive instructions. Thus, while more than one instruction can be in this
pipeline at the same time, several interleaved threads (say 16) are required to hide the instruction
latency. Even without memory references, a single thread would at best complete one instruction
every 16 cycles. 

Memory operations pose a bigger problem, since they incur substantially larger latency. Although
Tera uses very aggressive memory and network technology, the average latency of a memory ref-
erence without contention is about 70 cycles (a processor cycle is 2.8ns). Tera therefore uses
compiler-generated lookahead fields for memory operations. Every instruction that includes a
memory operation (called a memory instruction) has a 3-bit lookahead field which tells how
many immediately following instructions (memory or otherwise) are independent of that memory
operation. Those instructions do not have to be independent of one another (those dependences
are taken care of by the hardware interlocks in that pipeline), just of that memory operation. The
thread can then issue that many instructions past the memory instruction before it has to render
itself unready. This change in the meaning of lookahead makes it easier for the compiler to
schedule instructions to have larger lookahead values, and also eases register pressure. To make
this concrete, let us look at an example. 
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Example  11-4 Suppose that the minimum issue delay between consecutive instructions from a
thread in Tera is 16, and the average memory latency to hide is 70 cycles. What is
the smallest number of threads that would be needed to hide latency completely in
the best case, and how much lookahead would we need per memory instruction in
this case? 

Answer A minimum issue delay of 16 means that we need about 16 threads to keep the
pipeline full. If 16 threads were to suffice to hide 70 cycles of memory latency, and
since memory operations are almost one per instruction in each thread, we would
like each of the sixteen threads to issue about 4 independent instructions before it is
made unready after a memory operation, i.e. to have a lookahead of about 4. Since
latencies are in fact often larger than the average uncontended 70 cycles, a higher
lookahead of at most seven (three bits) is provided. Longer latencies would ask for
larger lookahead values and sophisticated compilers. So would a desire for fewer
threads, though this would require reducing the minimum issue delay in the non-
memory pipeline as well. 

While it seems from the above that supporting a few tens of active threads should be enough,
Tera like HEP supports 128 active threads in hardware. For this, it replicates all processor state
(program counter, status word and registers) 128 times, resulting in a total of 4096 64-bit general
registers (32 per thread) and 1024 branch target registers (8 per thread). The large number of
threads is supported for several reasons, and reflects the fundamental reliance of the machine on
latency tolerance rather than reduction. First, some instructions may not have much lookahead at
all, particularly read instructions and particularly when there are three operations per instruction.
Second, with most memory references going into the network they may incur contention, in
which case the latency to be tolerated may be much longer than 70 cycles. Third, the goal is not
only to hide instruction and memory latency but also tolerate synchronization wait time, which is
caused by load imbalance or contention for critical resources, and which is usually much larger
than remote memory references. 

The designers of the Tera system and its predecessors take a much more radical view to the rede-
sign of the multiprocessor building block than advocated by the other latency tolerating tech-
niques we have seen so far. The belief here is that the commodity microprocessor building block,
with its reliance on caches and support for only one or a small number of hardware contexts, is
inappropriate for general-purpose multiprocessing. Because of the high latencies and physically
distributed memory in modern convergence architectures, the use of relatively “latency-intoler-
ant” commodity microprocessors as the building block implies that much attention must be paid
to data locality in both the caches and in data distribution. This makes the task of programming
for performance too complicated, since compilers have not yet succeeded in managing locality
automatically in any but the simplest cases and their potential is unclear. The Tera approach
argues that the only way to make multiprocessing truly general purpose is to take this burden of
locality management off software and place it on the architecture in the form of much greater
latency tolerance support in the processor. Unlike the approach we have followed so far—reduce
latency first, then hide the rest—this approach does not pay much attention to reducing latency at
all; the processor is redesigned with a primary focus on tolerating the latency of fine-grained
accesses through interleaved multithreading. If this technique is successful, the programmer’s
view of the machine can indeed be a PRAM (i.e. memory references cost a single cycle regard-
less of where they are satisfied, see Chapter 3) and the programmer can concentrate on concur-
rency rather than latency management. Of course, this approach sacrifices the tremendous
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leverage obtained by using commodity microprocessors and caches, and faces head-on the chal-
lenge of the enormous effort that must be invested in the design of a modern high-performance
processor. It is also likely to result in poor single-thread performance, which means that even uni-
processor applications must be heavily multithreaded to achieve good performance. 

Full Single-thread Pipeline Support and Caching

While the HEP and the blocked multithreading approaches are in some ways at opposite ends of
a multithreading spectrum, both have several limitations. The Tera approach improves matters
from the basic HEP approach, but it still does not provide full single-thread support and requires
many concurrent threads for good utilization. Since it does not use caches, every memory opera-
tion is a long-latency operation, which increases the number of threads needed and the difficulty
of hiding the latency. This also means that every memory reference consumes memory and per-
haps communication bandwidth, so the machine must provide tremendous bandwidth as well. 

The blocked multithreading approach, on the other hand, requires less modification to a com-
modity microprocessor. It utilizes caches and does not switch threads on cache hits, thus provid-
ing good single-thread performance and needing a smaller number of threads. However, it has
high context switch overhead and cannot hide short latencies. The high switch overhead also
makes it less suited to tolerating the not-so-large latencies on uniprocessors than the latencies on
multiprocessors. It is therefore difficult to justify either of these schemes for uniprocessors and
hence for the high-volume marketplace.

It is possible to use an interleaved approach with both caching and full single-thread pipeline
support, thus requiring a smaller number of threads to hide memory latency, providing better sup-
port for uniprocessors, and incurring lower overheads. One such scheme has been studied in
detail, and has in fact been termed the “interleaved” scheme [LGH94]. We shall describe it next. 

From the HEP and Tera approaches, this interleaved approach takes the idea of maintaining a set
of active threads, each with its own set of registers and status words, and having the processor
select an instruction from one of the ready threads every cycle. The selection is usually simple,
such as round-robin among the ready threads. A thread that incurs a long latency event makes
itself unready until the event completes, as before. The difference is that the pipeline is a standard
microprocessor pipeline, and has full bypassing and forwarding support so that instructions from
the same thread can be issued in consecutive cycles; there is no minimum issue delay as in Tera.
In the best case, with no pipeline bubbles due to dependences, a k-deep pipeline may contain k
instructions from the same thread. In addition, the use of caches to reduce latency implies that
most memory operations are not long latency events; a given thread is ready a much larger frac-
tion of the time, so the number of threads needed to hide latency is kept small. For example, if
each thread incurs a cache miss every 30 cycles, and a miss takes 120 cycles to complete, then
only five threads (the one that misses and four others) are needed to achieve full processor utiliza-
tion. 

The overhead in this interleaved scheme arises from the same source as in the blocked scheme,
which is the other scheme that uses caches. A cache miss is detected late in the pipeline, and if
there are only a few threads then the thread that incurs the miss may have fetched other instruc-
tions into the pipeline. Unlike in the Tera, where the compiler guarantees through lookahead that
any instruction entering the pipeline after a memory instruction is independent of the memory
instruction, we must do something about these instructions. For the same reason as in the blocked
scheme, the proposed approach chooses to squash these instructions, i.e. to mark them as not
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being allowed to modify any processor state. Note that due to the cycle-by-cycle interleaving
there are instructions from other threads interleaved in the pipeline, so unlike the blocked scheme
not all instructions need to be squashed, only those from the thread that incurred the miss. The
cost of making a thread unready is therefore typically much smaller than that of a context switch
in the blocked scheme, in which case all instructions in the pipeline must be squashed. In fact, if
enough ready threads are supported and available, which requires a larger degree of state replica-
tion that is advocated by this approach, then there may not be multiple instructions in the pipeline
from the missing thread and no instructions will need to be squashed. The comparison with the
blocked approach is shown in Figure 11-29.

The result of the lower cost of making a thread unready is that shorter latencies such as local
memory access latencies can be tolerated more easily than in the blocked case, making this inter-
leaved scheme more appropriate for uniprocessors. Very short latencies that cannot be hidden by
the blocked scheme, such as those of short pipeline hazards, are usually hidden naturally by the
interleaving of contexts without even needing to make a context unready. The effect of the differ-
ences on the simple four-thread, four-deep pipeline example that we have been using so far is
illustrated in Figure 11-30. In this simple example, assuming the pipeline is in steady state at the
beginning of this sequence, the processor utilization is 21 cycles out of the 30 cycles taken in all,
or 70% (compared to 41% for the blocked scheme example). While this example is contrived and
uses unrealistic parameters for ease of graphical illustration, the fact remains that on modern
superscalar processors that issue a memory operation in almost every cycle, the context switch
overhead of switching on every cache miss may become quite expensive. The disadvantage of
this scheme compared to the blocked scheme is greater implementation complexity. 

The blocked scheme and this last interleaved scheme (henceforth called the interleaved scheme)
start with simple, commodity processors with full pipeline interlocks and caches, and modify
them to make them multithreaded. As stated earlier, even if they are used with superscalar proces-
sors, they only issue instructions from within a single thread in a given cycle. A more sophisti-
cated multithreading approach exists for superscalar processors, but for simplicity let us examine
the performance and implementation issues for these simpler, more directly comparable
approaches first. 

IF1 IF2 RF EX DF1 DF2 WB

AiBiCiAi+1Bi+1Ci+1Ai+2

AiAi+1Ai+2Ai+3Ai+4Ai+5Ai+6

Interleaved:

Blocked:

Figure  11-29  “Switch cost” in the interleaved scheme with full single-thread support. 

The figure shows the assumed seven-stage pipeline, followed by the impact of late miss detection in the blocked scheme (taken from
Figure 11-26) in which all instructions in the pipeline are from thread A and have to be squashed, followed by the situation for the
interleaved scheme. In the interleaved scheme, instructions from three different threads are in the pipeline, and only those from thread
A need to be squashed. The “switch cost” or overhead incurred on a miss is three cycles rather than seven in this case.
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11.8.2 Performance Benefits

Studies have shown that both the blocked scheme and the interleaved scheme with full pipeline
interlocks and caching can hide read and write latency quite effectively [LGH94, KCA91]. The
number of active contexts needed is found to be quite small, usually in the vicinity of four to
eight, although this may change as the latencies become longer relative to processor cycle time.

Let us examine some results from the literature for parallel programs [Lau94]. The architectural
model is again a cache-coherent multiprocessor with 16 processors using a memory-based proto-
col. The processor model is single issue and modeled after the MIPS R4000 for the integer pipe-
line and the DEC Alpha 21064 for the floating-point pipeline. The cache hierarchy used is a small
(64 KB) single-level cache, and the latencies for different types of accesses are modeled after the
Stanford DASH prototype [LLJ+92]. Overall, both the blocked and interleaved schemes were
found to improve performance substantially. Of the seven applications studied, the speedup from
multithreading ranged from 2.0 to nearly 3.5 for three applications, from 1.2 to 1.6 for three oth-
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Figure  11-30  Latency tolerance in the interleaved scheme. 

The top part of the figure shows how the four active threads on a processor would behave if each was the only thread running on the
processor. The bottom part shows how the processor switches among threads. Again, the instruction in a slot (cycle) is the one that
retires (or would retire) from the pipeline that cycle. In the first four cycles shown, an instruction from each thread retires. In the fifth
cycle, A would have retired but discovers that it has missed and needs to become unready. The three other instructions in the pipeline at
that time are from the three other threads, so there is no switch cost except for the one cycle due to instruction that missed. When B’s
next instruction reaches the WB stage (cycle 9 in the figure) it detects a miss and has to become unready. At this time, since A is
already unready an instruction each from C and D have entered the pipeline as has one more from B (this one is now in its IF stage, and
would have retired in cycle 12). Thus, the instruction from B that misses wastes a cycle, and one instruction from B has to be squashed.
Similarly, C’s instruction that would have retired in cycle 13 misses and causes another instruction from C to be squashed, and so on.
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ers, and was negligible for the last application because it had very little extra parallelism to begin
with (see Figure 11-31). The interleaved scheme was found to outperform the blocked scheme, as

expected from the discussion above, with a geometric mean speedup of 2.75 compared to 1.9.

The advantages of the interleaved scheme are found to be greatest for applications that incur a lot
of latency due to short pipeline stalls, such as those for result dependences in floating point add,
subtract and multiply instructions. Longer pipeline latencies, such as the tens of cycle latencies of
divide operations, can be tolerated quite well by both schemes, though the interleaved scheme
still performs better due to its lower switch cost. The advantages of the interleaved scheme are
retained even when the organizational and performance parameters of the extended memory hier-
archy were changed (for example, longer latencies and multilevel caches). They are in fact likely
to be even greater with modern processors that issue multiple operations per cycle, since the fre-
quency of cache misses and hence context switches is likely to increase. A potential disadvantage
of multithreading is that multiple threads of execution share the same cache, TLB and branch
prediction unit, raising the possibility of negative intereference between them (e.g. mapping con-
flicts across threads in a low-associativity cache). These negative effects have been found to be
quite small in published studies. 

Figure 11-32 shows more detailed breakdowns of execution time, averaged over all processors,
for two applications that illustrate interesting effects. With a single context, Barnes shows signif-
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Figure  11-31  Speedups for blocked and interleaved multithreading. 

The bars show speedups for different numbers of contexts (4 and 8) relative to a single-context per processor execution for seven
applications. All results are for sixteen processor executions. Some of the applications were introduced in Figure 11-24 on page 810.
Water is a molecular dynamics simulation of water molecules in liquid state. The simulation model assumes a single-level, 64KB,
direct-mapped writeback cache per processor. The memory system latencies assumed are 1 cycle for a hit in the cache, 24-45 cycles
with a uniform distribution for a miss satisfied in local memory, 75-135 cycles for a miss satisfied at a remote home, and 96-156
cycles for a miss satisfied in a dirty node that is not the home. These latencies are clearly low by modern standards. The R4000-like
integer unit has a seven-cycle pipeline, and the floating point unit has a 9-stage pipeline (5 execute stages). The divide instruction has
a 61 cycle latency, and unlike other functional units the divide unit is not pipelined. Both schemes switch contexts on a divide instruc-
tion. The blocked scheme uses an explicit switch instruction on synchronization events and divides, which has a cost of 3 cycles (less
than a full 7-cycle context switch, because the decision to switch is known after the decode stage rather than at the writeback stage).
The interleaved scheme uses a backoff instruction in these cases, which has a cost of 1-3 cycles depending on how many instructions
need to be squashed as a result. 
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icant memory stall time due to the single-level direct-mapped cache used (as well as the small
problem size of only 4K bodies). The use of more contexts per processor is able to hide most of
the memory latency, and the lower switch cost of the interleaved scheme is clear from the figure.
The other major form of latency in Barnes (and in Water) is pipeline stalls due to long-latency
floating point instructions, particularly divides. The interleaved scheme is able to hide this
latency more effectively than the blocked scheme. However, both start to taper off in their ability
to hide divide latency at more than four contexts. This is because the divide unit is not pipelined,
so it quickly becomes a resource bottlenecks when divides from different contexts compete.
PTHOR is an example of an application in which the use of more contexts does not help very
much, and even hurts as more contexts are used. Memory latency is hidden quite well as soon as
we go to two contexts, but the major bottleneck is synchronization latency. The application sim-
ply does not have enough extra parallelism (slackness) to exploit multiple contexts effectively.
Note that busy time increases with the number of contexts in PTHOR. This is because the appli-
cation uses a set of distributed task queues, and more time is spent maintaining these queues as
the number of threads increases. These extra instructions cause more cache misses as well. 

Prefetching and multithreading can hide similar types of memory access latency, and one may be
better than the other in certain circumstances. The performance benefits of using the two together
are not well understood. For example, the use of multithreading may cause constructive or
destructive interference in the cache among threads, which is very difficult to predict and so
makes the analysis of what to prefetch more difficult. 

The next two subsections discuss some detailed implementation issues for the blocked and inter-
leaved schemes, examining the additional implementation complexity needed to implement each
scheme beyond that needed for a commodity microprocessor. Readers not interested in imple-
mentation can skip to Section 11.8.5 to see a more sophisticated multithreading scheme for
superscalar processors. Let us begin with the blocked scheme, which is simpler to implement. 
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Figure  11-32  Execution time breakdowns for two applications under multithreading. 

Busy time is the time spent executing application instructions; pipeline stall time is the time spent stalled due to pipeline dependences;
memory time and synchronization time are the time spent stalled on the memory system and at synchronization events, respectively.
Finally, context switch time is the time spent in context switch overhead. 
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11.8.3 Implementation Issues for the Blocked Scheme

Both the blocked and interleaved schemes have two kinds of requirements: state replication, and
control. State replication, essentially involves replicating the register file, program counter and
relevant portions of the processor status word once per active context, as discussed earlier. For
control, logic and registers are needed to manage switching between contexts, making contexts
ready and unready, etc. The PC unit is the portion of the processor that requires significant
changes, so we discuss it separately as well. 

State Replication

Let us look at the register file, the processor status word, and the program counter unit separately.
Simple ways to give every active context its own set of registers are to replicate the register file or
to use a larger, statically segmented register file (see Figure 11-33). While this allows registers to

be accessed quickly, it may not use silicon area efficiently. For example, since only one context
runs at a time until it encounters a long-latency event, only one register file is actively being used
for some time while the others are idle. At the very least, we would like to share the read and
write ports across register files, since these ports often take up a substantial portion of the silicon
area of the files. In addition, some contexts might require more or less registers than others, and
the relative needs may change dynamically. Thus, allowing the contexts to share a large register
file dynamically according to need may provide better register utilization than splitting the regis-
ters statically into equally-sized register files. This results in a cache-like structure, indexed by
context identifier and register offset, with the potential disadvantage that the register file is larger
so has a higher access time. Several proposals have been made to improve register file efficiency
in one or more of the above issues [NuD95,Lau94,Omo94,Smi85], but substantial replication is
needed in all cases. The MIT Alewife machine uses a modified Sun SPARC processor, and uses
its register windows mechanism to provide a replicated register file. 

register
frame
pointer

offset

Figure  11-33  A segmented register file for a multithreaded processor. 

The file is divided into four frames, assuming that four contexts can be active at a given time. The register values for each active con-
text remain in that context’s register frame across context switches, and each context’s frame is managed by the compiler as if it were
itself a register file. A register in a frame is accessed through the current frame pointer and a register offset within the frame, so the
compiler need not be aware of which particular frame a context is in (which is determined at run time). Switching to a different
active context only requires that the current frame pointer be changed. 
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A modern “processor status word” is actually several registers; only some parts of it (such as
floating point status/control, etc.) contain process-specific state rather than global machine state,
and only these parts need to be replicated. In addition, multithreading introduces a new global
status word called the context status word (CSW). This contains an identifier that specifies which
context is currently running, a bit that says whether context switching is enabled (we have seen
that it may be disabled while exceptions are handled), and a bit vector that tells us which of the
currently active contexts (the ones whose state is maintained in hardware) is ready to execute.
Finally, TLB control registers need to be modified to support different address space identifiers
from the different contexts, and to allow a single TLB entry to be used for a page that is shared
among contexts. 

PC Unit

Every active context must also have its program counter (PC) available in hardware. Processors
that support exceptions efficiently provide a mechanism to do this with minimal replication, since
in many ways exceptions behave like context switches. Here’s how this works. In addition to the
PC chain, which holds the PCs for the instructions that are in the different stages of the pipeline,
a register called the exception PC (EPC) is provided in such processors. The exception EPC is
fed by the PC chain, and contains the address of the last instruction retired from the pipeline.
When an exception occurs, the loading of the EPC is stopped with the faulting instruction, all the
incomplete instructions in the pipeline are squashed, and the exception handler address is put in
the PC. When the exception returns, the EPC is loaded into the PC so the faulting instruction is
reexecuted. This is exactly the functionality we need for multiple contexts. We simply need to
replicate the EPC register, providing one per active context. The EPC for a context serves to han-
dle both exceptions as well as context switches. When a given context is operating, the PC chain
feeds into its EPC while the EPCs of other contexts simply retain their values. On an exception,
the current context’s EPC behaves exactly as it did in the single-threaded case. On a context
switch, the current context’s EPC stops being loaded at the faulting (long-latency) instruction and
the incomplete instructions in the pipeline are squashed (as for an exception). The PC is loaded
from the EPC of the selected next context, which then starts executing, and so on. The only draw-
back of this scheme is that now an exception cannot take a context switch (since the value loaded
into the EPC by the context that incurred the exception will be lost), so context switches must be
disabled when an exception occurs and re-enabled when the exception returns. However, the PCs
can still be managed through software saving and restoring even in this case. 

Control

The key functions of the control logic in a blocked implementation are to detect when to switch
contexts, to choose the context to switch to, and to orchestrate and perform the switch. Let us dis-
cuss each briefly. 

A context switch in the blocked scheme may be triggered by three events: (i) a cache miss, (ii) an
explicit context switch instruction, used for synchronization events and very long-latency instruc-
tions, and (iii) a timeout. The timeout is used to ensure that a single context does not run too long
or spin waiting on a flag that will therefore never be written. The decision to switch on a cache
miss can be based on three signals: the cache miss notification, of course; a bit that says that con-
text switching is enabled, and a signal that states that there is a context ready to run. A simple
way to implement an explicit context switch instruction is to have it behave as if the next instruc-
tion generated a cache miss (i.e. to raise the cache miss signal or generate another signal that has
the same effect on the context switch logic); this will cause the context to switch, and to be
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restarted from that following instruction. Finally, the timeout signal can be generated via a reset-
table threshold counter. 

Of the many policies that can be used to select the next context upon a switch, in practice simply
switching to the next active context in a round-robin fashion—without concern for special rela-
tionships among contexts or the history of the contexts’ executions—seems to work quite well.
The signals this requires are the current context identifier, the vector of ready contexts, and the
signal that detected the need to switch. 

Finally, orchestrating a context switch in the blocked scheme requires the following actions.
They are required to complete by different stages in the processor pipeline, so the control logic
must enable the corresponding signals in the appropriate time windows. 

• Save the address of the first uncompleted instruction from the current thread.

• Squash all incomplete instructions in the pipeline.

• Start executing from the (saved) PC of the selected context.

• Load the appropriate address space identifier in the TLB bound registers.

• Load various control/status registers from the (saved) processor status words of the new
context, including the floating point control/status register and the context identifier. 

• Switch the register file control to the register file for the new context, if applicable. 

In summary, the major costs of implementing blocked context switching come from replicating
and managing the register file, which increases both area and register file access time. If the latter
is in the critical path of the processor cycle time, it may cause the pipeline depth to be increased
to maintain a high clock rate, which can increase the time lost on branch mispredictions. The rep-
lication needed in the PC unit is small and easy to manage, focused mainly on replicating a single
register for the exception PC. The number of process- or context-specific registers in the proces-
sor status words is also small, as is the number of signals needed to manage context switch con-
trol. Let us examine the interleaved scheme. 

11.8.4 Implementation Issues for the Interleaved Scheme

A key reason that the blocked scheme is relatively easy to implement is that most of the time the
processor behaves like a single-threaded processor, and invokes additional complexity and pro-
cessor state changes only at context switches. The interleaved scheme needs a little more support,
since it switches among threads every cycle. This potentially requires the processor state to be
changed every cycle, and implies that the instruction issue unit must be capable of issuing from
multiple active streams. A mechanism is also needed to make contexts active and inactive, and
feed the active/inactive status into the instruction unit every cycle. Let us again look at the state
replication and control needs separately.

State Replication

The register file must be replicated or managed dynamically, but the pressure on fast access to
different parts of the entire register file is greater due to the fact that successive cycles may access
the registers of different contexts. We cannot rely on the more gradually changing access patterns
of the blocked scheme (the Tera processor uses a banked or interleaved register file, and a thread
may be rendered unready due to a busy register bank as well). The parts of the process status
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word that must be replicated are similar to those in the blocked scheme, though again the proces-
sor must be able to switch status words every cycle. 

PC Unit

The greatest difference in changes is to the PC unit. Instructions from different threads are in the
pipeline at the same time, and the processor must be able to issue instructions from different
threads every cycle. Contexts become active and inactive dynamically, and this status must feed
into the PC unit to prevent instructions being selected from an inactive context. The processor
pipeline is also impacted, since to implement bypassing and forwarding correctly the processor’s
PC chain must now carry a context identifier for each pipeline stage. In the PC unit itself, new
mechanisms are needed for handling context availability and for squashing instructions, for keep-
ing track of the next instruction to issue, for handling branches, and for handling exceptions. Let
us examine some of these issues briefly. A fuller treatment can be found in the literature [Lau94].

Consider context availability. Contexts become unavailable due to either cache misses or explicit
backoff instructions that make the context unavailable for a specified number of cycles. The
backoff instructions are issued for example at synchronization events. The issuing of further
instructions from that context is stopped by clearing a “context available” signal. To squash the
instructions already in the pipeline from that context, we must broadcast a squash signal as well
as the context identifier to all stages, since we don’t know which stages contain instructions from
that context. On a cache miss, the address of the instruction that caused the miss is loaded into the
EPC. Once the cache miss is satisfied and the context becomes available again, the PC bus is
loaded from the EPC when that context is selected next. Explicit backoff instructions are handled
similarly, except that we do not want the context to resume from the backoff instruction itself but
rather from the instruction that follows it. To orchestrate this, a next bit can be included in the
EPC. 

There are three sources that can determine the next instruction to be executed from a given
thread: the next sequential instruction, the predicted branch from the branch target buffer (BTB),
and the computed branch if the prediction is detected to be wrong. When only a single context is
in the pipeline at a time, the appropriate next instruction address can be driven onto the PC bus
from the “next PC” (NPC) register as soon as it is determined. In the interleaved case, however,
in the cycle when the next instruction address for a given context is determined and ready to be
put on the PC bus, it may not be the context scheduled for that cycle. Further, since the NPC for a
context may be determined in different pipeline stages for different instructions—for example, it
is determined much later for a mispredicted branch than for a correctly predicted branch or a non-
branch instruction—different contexts could produce their NPC value during the same cycle.
Thus, the NPC value for each context must be held in a holding register until it is time to execute
the next instruction from that context, at which point it will be driven onto the PC bus (see
Figure 11-34). 

Branches too require some additional mechanisms. First, the context identifier must be broadcast
to the pipeline stages when squashing instructions past a mispredicted branch, but this is the
same functionality needed when making contexts unavailable. Second, by the time the actual
branch target is computed, the predicted instruction that was fetched speculatively could be any-
where in the pipeline or may not even have been issued yet (since other contexts will have inter-
vened unpredictably). To find this instruction address to determine the correctness of the branch,
it may be necessary for branch instructions to carry along with them their predicted address as
they proceed along the pipeline stages. One way to do this is to provide a predicted PC register
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chain that runs along parallel to the PC chain, and is loaded and checked as the branch reaches
the appropriate pipeline stages. 

A final area of enhancement in the PC unit over a conventional processor is exception handling.
Consider what happens when an exception occurs in one context. One choice is to have that con-
text be rendered unready to make way for the exception handler, and let that handler be inter-
leaved with the other user contexts (the Tera takes an approach similar to this). In this case,
another user thread may also take an exception while the first exception handler is running, so the
exception handlers must be able to cope with multiple concurrent handler executions. Another
option is to render all the contexts unready when an exception occurs in any context, squash all
the instructions in the pipeline, and reenable all contexts when the exception handler returns. This
can cause a loss of performance if exceptions are frequent. It also means that the exception PCs
(EPCs) of all active contexts need to be loaded with the first uncompleted instruction address
from their respective threads when an exception occurs. This is more complicated than in the
blocked case, where only the single EPC of the currently running and excepting context needs to
be saved (see Exercise a). 

Control 

Two interesting issues related to control outside of the PC unit are tracking context availability
information and feeding it to the PC unit, and choosing and switching to the next context every
cycle. The context available signal is modified on a cache miss, when the miss returns, and on
backoff instructions and expiration. Availability status for cache misses can be tracked by main-
taining pending miss registers per context, which are loaded upon a miss and checked upon miss
return to reenable the appropriate context. For explicit backoff instructions, we can maintain a
counter per context, initialized to the backoff value when the backoff instruction is encountered
(and the context availability signal cleared). The counter is decremented every cycle until it
reaches zero, at which point the availability signal for that context is set again. 

Backoff instructions can be used to tolerate instruction latency as well, but with the interleaving
of contexts it may be difficult to choose a good number of backoff cycles. This is further compli-
cated by the fact that the compiler may rearrange instructions transparently. Backoff values are
implementation-specific, and may have to be changed for subsequent generations of processors.

PC Bus

Next Seq. Instr.

Predicted Br. Addr.

Computed Br. Addr.

PC Bus

Next PC 0 Next PC 1

(a) Blocked Approach (b) Interleaved, with two contexts

Figure  11-34  Driving the PC bus in the blocked and interleaved multithreading approaches, with two contexts. 

If more contexts were used, the interleaved scheme would require more replication, while the blocked scheme would not. 

Holding 
registers
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Fortunately, short instruction latencies are often handled naturally by the interleaving of other
contexts without any backoff instructions, as we saw in Figure 11-30. Robust solutions for long
instruction latencies may require more complex hardware support such as scoreboarding. 

As for choosing the next context, a reasonable approach once again is to choose round-robin
qualified by context availability. 

11.8.5 Integrating Multithreading with Multiple-Issue Processors

So far, our discussion of multithreading has been orthogonal to the number of operations issued
per cycle. We saw that the Tera system issues three operations per cycle, but the packing of oper-
ations into wider instructions is done by the compiler, and the hardware chooses a three-opera-
tion instruction from a single thread in every cycle. A single thread usually does not have enough
instruction-level parallelism to fill all the available slots in every cycle, especially if processors
begin to issue many more operations per instruction. With many threads available anyway, an
alternative is to let available operations from different threads be scheduled in the same cycle,
thus filling instruction slots more effectively. This approach has been called simultaneous multi-
threading, and there have been many proposals for it [HKN+92, TEL95]. Another way of looking
at it is that it is like interleaved multithreading, but operations from the different available threads
compete for the functional units in every cycle. 

Simultaneous multithreading seeks to overcome the drawbacks of both multiple-instruction issue
and traditional (interleaved) multithreading by exploiting the simultaneous availability of opera-
tions from multiple threads. Simple multiple-issue processors suffer from two inefficiencies.
First, not all slots in a given cycle are filled, due to limited ability to find instruction-level paral-
lelism. Second, many cycles have nothing scheduled due to long-latency instructions. Simple
multithreading addresses the second problem but not the first, while simultaneous multithreading
tries to address both (see Figure 11-35). 

Figure  11-35  Simultaneous Multithreading. 

The potential improvements are illustrated for both simple interleaved multithreading and simultaneous multithreading for a four-
issue processor. 

(a) Single-threaded (a) Multi-threaded
(Interleaved)
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Choosing operations from different threads to schedule in the same cycle may be difficult for a
compiler, but many of the mechanisms for it are already present in dynamically scheduled micro-
processors. The instruction fetch unit must be extended to fetch operations from different hard-
ware contexts in every cycle, but once operations from different threads are fetched and placed in
the reorder buffer the issue logic can choose operations from this buffer regardless of which
thread they are from. Studies of single-threaded dynamically scheduled processors have shown
that the causes of empty cycles or empty slots are quite well distributed among instruction laten-
cies, cache misses, TLB misses and load delay slots, with the first two often being particularly
important. The variety of both the sources of wasted time and of their latencies indicates that
fine-grained multithreading may be a good solution. 

In addition to the issues for interleaved multiprocessors, several new issues arise in implementing
simultaneously multithreaded processors [TEE+96]. First, in addition to the fundamental prop-
erty of issuing instructions flexibly from different threads, the instruction fetch unit must be
designed in a way that fetches instructions effectively from multiple active contexts as well. The
more the flexibility allowed in fetching—compared to say fetching from only one context in a
cycle or fetching at most two operations from each thread in a cycle—the more the complexity in
the fetching logic and instruction cache design. However, more flexibility reduces the frequency
of fetch slots being left empty because the thread that is allowed to fetch into those slots does not
have enough ready instructions. Interesting questions also arise in choosing which context or
contexts to fetch instructions from in the next cycle. We could choose contexts in a fixed order of
priority (say try to fill from context 0 first, then fill the rest from context 1 and so on) or we could
choose based on execution characteristics of the contexts (for example give priority to the context
that has the fewest instructions currently in the fetch unit or the reorder buffer, or the context that
has the fewest outstanding cache misses). Finally, we have to decide which operations to choose
from the reorder buffer among the ones that are ready in each cycle. The standard practice in
dynamically scheduled processors is to choose the oldest operation that is ready, but other
choices may be more appropriate based on the thread the operations are from and how it is
behaving. 

There is little or no performance data on simultaneous multithreading in the context of multipro-
cessors. For uniprocessors, a performance study examines the potential performance benefits
well as the impact of some of the tradeoffs discussed above [TEE+96]. That study finds, for
example, that speculative execution is less important with simultaneous multithreading than with
single-threaded dynamically scheduled processors, because there are more available threads and
hence non-speculative instructions to choose from. 

Overall, as data access and synchronization latencies become larger relative to processor speed,
multithreading promises to become increasingly successful in hiding latency. Whether or not it
will actually be incorporated in microprocessors depends on a host of other factors, such as what
other latency tolerance techniques are employed (such as prefetching, dynamic scheduling, and
relaxed consistency models) and how multithreading interacts with them. Since multithreading
requires extra explicit threads and significant replication of state, an interesting alternative to it is
to place multiple simpler processors on a chip and placing the multiple threads on different pro-
cessors. How this compares with multithreading (e.g. simultaneous multithreading) in cost and
performance is not yet well understood, for desktop systems or as a node for a larger multipro-
cessor. 
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This concludes our discussion of latency tolerance in a shared address space. Table 11-2 summa-

rizes and compares some key features of the four major techniques used. The techniques can be
and often are combined. For example, processors with blocking reads can use relaxed consis-
tency models to hide write latency and prefetching or multithreading to hide read latency. And we
have seen that dynamically scheduled processors can benefit from all of prefetching, relaxed con-
sistency models and multithreading individually. How these different techniques interact in
dynamically scheduled processors, and in fact how well prefetching might complement multi-
threading even in blocking-read processors, is likely to be better understood in the future. 

11.9 Lockup-free Cache Design

Throughout this chapter, we have seen that in addition to the support needed in the processor—
and the additional bandwidth and low occupancies needed in the memory and communication
systems—several latency tolerance techniques in a shared address space require that the cache
allow multiple outstanding misses if they are to be effective. Before we conclude this chapter, let
us examine how such a lockup-free cache might be designed. 

There are several key design questions for a cache subsystem that allows multiple outstanding
misses: 

• How many and what kinds of misses can be outstanding at the same time. Two distinct points
in design complexity are: (i) a single read and multiple writes, and (ii) multiples reads and
writes. Like the processor, it is easier for the cache to support multiple outstanding writes
than reads. 

• How do we keep track of the outstanding misses. For reads, we need to keep track of (i) the
address of the word requested, (ii) the type of read request (i.e. read, read-exclusive, or
prefetch, and single-word or double-word read), (iii) the place to return data when it comes
into the cache (e.g. to which register within a processor, or to which processor if multiple pro-
cessors are sharing a cache), and (iv) current status of the outstanding request. For writes, we
do not need to track where to return the data, but the new data being returned must be merged
with the data block returned by the next level of the memory hierarchy. A key issue here is
whether to store most of this information within the cache blocks themselves or whether to

Table 11-2  Key properties of the three read-write latency hiding techniques in a shared address space.

Property Relaxed Models Prefetching Multithreading Block Data Transfer

Types of latency 
hidden

Write (blocking-read 
processors)

Read (dynamically 
scheduled processors)

Write
Read

Write
Read

Synchronization
Instruction

Write
Read

Requirements of 
software 

Labeling synch. opera-
tions Predictability Explicit extra concur-

rency
Identifying and orches-
trating block transfers

Hardware support Little Little Substantial
Not in processor, but 

block transfer engine in 
memory system

Support in com-
mercial micros? Yes Yes Currently no Not needed
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have a separate set of transaction buffers. Of course, while fulfilling the above requirements,
we need to ensure that the design is deadlock/livelock free.

• How do we deal with conflicts among multiple outstanding references to the same memory
block? What kinds of conflicting misses to a block should we allow and disallow (e.g., by
stalling the processor)? For example, should we allow writes to words within a block to
which a read miss is outstanding? 

• How do we deal with conflicts between multiple outstanding requests that map to the same
block in the cache, even though they refer to different memory blocks? 

To illustrate the options, let us examine two different designs. They differ primarily in where they
store the information that keeps track of outstanding misses. The first design uses a separate set
of transaction buffers for tracking requests. The second design, to the extent possible, keeps track
of outstanding requests in the cache blocks themselves.

The first design is a somewhat simplified version of that used in Control Data Corporation’s
Cyber 835 mainframe, introduced in 1979 [Kro81]. It adds a number of miss state holding regis-
ters (MSHRs) to the cache, together with some associated logic. Each MSHR handles one or
more misses to a single memory block. This design allows considerable flexibility in the kinds of
requests that can be simultaneously outstanding to a block, so a significant amount of state is
stored in each MSHR as shown in Table 11-3.

The MSHRs are accessed in parallel to the regular cache. If the access hits in the cache, the nor-
mal cache hit actions take place. If the access misses in the cache, the actions depend on the con-
tent of the MSHRs:

• If no MSHR is allocated for that block, a new one is allocated and initialized. If none is free,
or if all cache lines within a set have pending requests, then the processor stalls. If the allo-
cated block contains dirty data, a writeback is initiated. If the processor request is a write, the
data is written at the proper offset into the cache block, and the corresponding partial write
code bits are set in the MSHR. A request to fetch the block from the main memory subsystem
(e.g., BusRd, BusrdX) is also initiated.

• If an MSHR is already allocated for the block, the new request is merged with the previously
pending requests for the same block. For example, a new write request can be merged by
writing the data into the allocated cache block and by setting the corresponding partial write
bits. A read request to a word that has completely been written in the cache (by earlier writes)
can simply read the data from the cache memory. A read request to a word that has not been
requested before is handled by setting the proper unit identification tags. If it is to a word that

Table 11-3  MSHR State Entries and their Roles. 

State Description Purpose

Cache block pointer Pointer to cache block allocated to this request
Which cache line within a set 
in set-associative cache?

Request address Address of pending request Allows merging of requests

Unit identification tags (one per word) Identifies requesting processor unit Where to return this word?

Send-to-cpu status (one per word) Valid bits for unit identification tags Is unit id tag valid?

Partial write codes (one per word) Bit vector for tracking partial writes to a word
Which words returning from 
memory to overwrite

Valid indicator Valid MSHR contents Are contents valid?
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has already been requested, then either a new MSHR must be allocated (since there is only
one unit identification tag per word) or the processor must be stalled. Since a write does not
need a unit identification tag, a write request for a word to which a read is already pending is
handled easily: the data returned by main memory can simply be forwarded to the processor.
Of course, the first such write to a block will have to generate a request that asks for exclusive
ownership. 

Finally, when the data for the block returns to the cache, the cache block pointer in the MSHR
indicates where to put the contents. The partial write codes are used to avoid writing stale data
into the cache, and the send-to-cpu bits and unit-identification-tags are used to forward replies to
waiting functional units.

This design requires an associative lookup of MSHRs, but allows the cache to have all kinds of
memory references outstanding at the same time. Fortunately, since the MSHRs do the complex
task of merging requests and tearing apart replies for a given block, to the extended memory hier-
archy below it appears simply as if there are multiple requests to distinct blocks coming from the
processor. The coherence protocols we have discussed in the previous chapters are already
designed to multiple outstanding requests to different blocks without deadlock.

The alternative to this design is to store most of the relevant state in the cache blocks themselves,
and not use separate MSHRs. In addition to the standard MESI states for a writeback cache, we
add three transient or pending states: invalid-pending (IP), shared-pending (SP), and exclusive-
pending (EP), corresponding to what the state of the block was when the write was issued. In
each of these three states, the cache tag is valid and the cache block is awaiting data from the
memory system. Each cache block also has subblock write bits (SWBs), which is a bit-vector
with one bit per word. In IP state, all SWBs must be OFF and all words are considered invalid. In
both EP and SP states, the bits that are turned ON indicate the words in the block that have been
written by the processor since the block was requested from memory, and which the data returned
from memory should not overwrite. However, in the EP state, words for which the bits are OFF
are considered invalid, while in the SP state, those words are considered valid (not stale). Finally,
there is a set of pending-read registers; these contain the address and type of pending read
requests.

The key benefit of keeping this extra state information with each cache block is that no additional
storage is needed to keep track of pending write requests. On a write that does not find the block
in modified state, the block simply goes into the appropriate pending state (depending on what
state it was in before), initiates the appropriate bus transaction, and sets the SWB bits to indicate
which words the current write has modified so the subsequent merge will happen correctly.
Writes that find the block already in pending state only require that the word is written into the
line and the corresponding SWB is set (this is true except if the state was invalid-pending—i.e. a
request for a shared block is outstanding—in which case the state is changed to EP and a read-
exclusive request is generated). 

Reads may use the pending-read registers. If a read finds the desired word in a valid state in the
block (including a pending state with the SWB on), then it simply returns it. Otherwise, it is
placed in a pending-read register which keeps track of it. Of course, if the block accessed on a
read or write is not in the cache (no tag match) then a writeback may be generated, the block is
set to the invalid-pending state, all SWBs are turned off (except of the word being written if it is a
write) and the appropriate transaction is placed on the bus. If the tag does not match and the exist-
ing block is already in pending state, then the processor stalls. Finally, when a response to an out-
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standing request arrives, the corresponding cache block is updated except for the words that have
their SWBs on. The cache block moves out of the pending state. All pending read-registers are
checked to see if any were waiting for this cache block; if so, data is returned for those requests
and those pending-read registers freed. Details of the actual state changes, actions and race con-
ditions can be found in [Lau94]. One key observation that makes race conditions relatively easy
to deal with is that even though words are written into cache blocks before ownership is obtained
for the block, those words are not visible to requests from other processors until ownership is
obtained. 

Overall, the two designs described above are not that different conceptually. The latter solution
keeps the state for writes in the cache blocks and does not use separate tracking registers for
writes. This reduces the number of pending registers needed and the complexity of the associa-
tive lookups, but it is more memory intensive since extra state is stored with all lines in the cache
even though only a few of them will have an outstanding request at a time. The correctness inter-
actions with the rest of the protocol are similar and modest in the two cases. 

11.10 Concluding Remarks

With the increasing gap between processor speeds and memory access and communication times,
latency tolerance is likely to be critical in future multiprocessors. Many latency tolerance tech-
niques have been proposed and are used, and each has its own relative advantages and disadvan-
tages. They all rely on excess concurrency in the application program beyond the number of
processors used, and they all tend to increase the bandwidth demands placed on the communica-
tion architecture. This greater stress makes it all the more important that the different perfor-
mance aspects of the communication architecture (the processor overhead, the assist occupancy
and the network bandwidth) be both efficient and also well balanced. 

For cache-coherent multiprocessors, latency tolerance techniques are supported in hardware by
both the processor and the memory system, leading to a rich space of design alternatives. Most of
these hardware-supported latency tolerance techniques are also applicable to uniprocessors, and
in fact their commercial success depends on their viability in the high-volume uniprocessor mar-
ket where the latencies to be hidden are smaller. Techniques like dynamic scheduling, relaxed
memory consistency models and prefetching are commonly encountered in microprocessor
architectures today. The most general latency hiding technique, multithreading, is not yet popular
commercially, although recent directions in integrating multithreading with dynamically sched-
uled superscalar processors appear promising. 

Despite the rich space of issues in hardware support, much of the latency tolerance problem
today is a software problem. To what extent can a compiler automate prefetching so a user does
not have to worry about it? And if not, then how can the user naturally convey information about
what and when to prefetch to the compiler? If block transfer is indeed useful on cache-coherent
machines, how will users program to this mixed model of implicit communication through reads
and writes and explicit transfers? Relaxed consistency models carry with them the software prob-
lem of specifying the appropriate constraints on reordering. And will programs be decomposed
and assigned with enough extra explicit parallelism that multithreading will be successful? Auto-
mating and simplifying the software support required for latency tolerance is a task that is far
form fully accomplished. In fact, how latency tolerance techniques will play out in the future and
what software support they will use is an interesting open question in parallel architecture. 
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11.12 Exercises

11.1  General.

a. Why is latency reduction generally a better idea than latency tolerance?

b. Suppose a processor communicates k words in m messages of equal size, the assist occu-
pancy for processing a message is o, and there is no overhead on the processor. What is 
the best case latency as seen by the processor if only communication, not computation, 
can be overlapped with communication? First, assume that acknowledgments are free; i.e. 
are propagated instantaneously and don’t incur overhead; and then include acknowledg-
ments. Draw timelines, and state any important assumptions. 

c. You have learned about a variety of different techniques to tolerate and hide latency in 
shared-memory multiprocessors. These techniques include blocking, prefetching, multi-
ple context processors, and relaxed consistency models. For each of the following scenar-
ios, discuss why each technique will or will not be an effective means of reducing/hiding 
latency. List any assumptions that you make. 

(i) A complex graph algorithm with abundant concurrency using linked pointer structures. 

(ii) A parallel sorting algorithm where communication is producer initiated and is 
achieved through long latency write operations. Receiver-initiated communication is not 
possible. 

(iii) An iterative system-of-equation solver. The inner loop consists of a matrix-matrix 
multiply. Assume both matrices are huge and don’t fit into the cache.

11.2  You are charged with implementing message passing on a new parallel supercomputer. The
architecture of the machine is still unsettled, and your boss says the decision of whether to
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provide hardware cache coherence will depend on the message passing performance of the
two systems under consideration, since you want to be able to run message passing applica-
tions from the previous-generation architecture. 

In the system without cache coherence (the “D” system), the engineers on your team tell 
you that message passing should be implemented as successive transfers of 1KB. To avoid 
problems with buffering at the receiver side, you’re required to acknowledge each individ-
ual 1KB transfer before the transmission of the next one can begin (so, only one block can 
be in flight at a time). Each 1KB line requires 200 cycles of setup time, after which it 
begins flowing into the network. This overhead accounts for time to determine where to 
read the buffer from in memory and to set up the DMA engine which performs the trans-
fer. Assume that from the time that the 1KB chunk reaches the destination, it takes 20 
cycles for the destination node to generate a response, and it takes 50 cycles on the send-
ing node to accept the ACK and proceed to next 1KB transfer. 

In the system with cache coherence (the “CC” system), messages are sent as a series of 
128 byte cache line transfers. In this case, however, acknowledgments only need to be 
sent at the end of every 4KB page. Here, each transfer requires 50 cycles of setup time, 
during which time the line can be extracted from the cache, if necessary, to maintain 
cache coherence. This line is then injected into the network, and only when the line is 
completely injected into the network can processing on the next line begin. 

The following are the system parameters: Clock rate = 10 ns (100 MHz), Network latency 
= 30 cycles, Network bandwidth = 400 MB/s. State any other assumptions that you make. 

a. What is the latency (until the last byte of the message is received at the destination) and 
sustainable bandwidth for a 4KB message in the D system? 

b. What is the corresponding latency and bandwidth in the CC system? 

c. A designer on the team shows you that you can easily change the CC system so that the 
processing for the next line occurs while the previous one is being injected into the net-
work. Calculate the 4KB message latency for the CC system with this modification.

11.3  Consider the example of transposing a matrix of data in parallel, as is used in computations
such as high-performance Fast Fourier Transforms. Figure 11-36 shows the transpose pictori-
ally. Every processor tranposes one “patch” of its assigned rows to every other processor,
including one to itself. Performing the tranpose through reads and writes was discussed in the
exercises at the end of Chapter 8. Since it is completely predictable which data a processor
has to send to which other processors, a processor can send an entire patch at a time in a sin-
gle message rather than communicate the patches through individual read or write cache
misses. 

a. What would you expect the curve of block transfer performance relative to read-write per-
formance to look like? 

b. What special features would the block transfer engine benefit most from? 

c. Write pseudocode for the block transfer version of the code. 

d. Suppose you wanted to use block data transfer in the Raytrace application. For what pur-
poses would you use it, and how? Do you think you would gain significant performance 
benefits? 

11.4  An interesting performance issue in block data transfer in a cache-coherent shared address
space has to do with the impact of long cache blocks. Assume that the data movement in the
block transfer leverages the cache coherence mechanisms. Consider the simple equation
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solver on a regular grid, with its near neighbor communication. Suppose the n-by-n grid is
partitioned into square subblocks among p processors. 

a. Compared to the results shown for FFT in the chapter, how would you expect the curves 
for this application to differ when each row or column boundary is sent directly in a single 
block transfer and why? 

b. How might you structure the block transfer to only send useful data, and how would you 
expect performance in this case to compare with the previous one? 

c. What parameters of the architecture would most affect the tradeoffs in b.?

d. If you indeed wanted to use block transfer, what deeper changes might you make to the 
parallel program? 

11.5  Memory Consistency Models

a. To maintain all program orders as in SC, we can optimize in the following way. In our 
baseline implementation, the processor stalls immediately upon a write until the write 
completes. The alternative is to place the write in the write buffer without stalling the pro-
cessor. To preserve the program order among writes, what the write buffer does is retire a 
write (i.e. pass it further along the memory hierarchy and make it visible to other proces-
sors) only after the write is complete. The order from writes to reads is maintained by 
flushing the write buffer upon a read miss. 

(i) What overlap does this optimization provide? 

(ii) Would you expect it to yield a large performance improvement? Why or why not?

b. If the second-level cache is blocking in the performance study of proceeding past writes 
with blocking reads, is there any advantage to allowing write->write reordering over not 
allowing it? If so, under what conditions?

Owned by
Proc 0

Owned by
Proc 1

Owned by
Proc 2

Owned by
Proc 3

Destination MatrixSource Matrix

Patch

Long cache block 
follows traversal order

Figure  11-36  Sender-initiated matrix transposition. 

The source and destination matrices are partitioning among processes in groups of contiguous rows. Each process divides its set of n/
p rows into p patches of size n/p * n/p. Consider process P2 as a representative example: It sends one patch to every other process,
and transposes one patch (third from left, in this case) locally. Every patch may be transferred as a single block transfer message,
rather than through individual remote writes or remote reads (if receiver-initiated).
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c. Write buffers can allow several optimizations, such as buffering itself, merging writes to 
the same cache line that is in the buffer, and forwarding values from the buffer to read 
operations that find a match in the buffer. What constraints must be imposed on these opti-
mizations to maintaining program order under SC? Is there a danger with the merging 
optimizations for the processor consistency model?  

11.6  Give a bunch of code sequences and a architecture latency model, calculate completion time
under various memory consistency models. Plenty of questions in cs315a exams of this sort.

11.7  Prefetching 

a. How early can you issue a binding prefetch in a cache-coherent system?

b. We have talked about the advantages of nonbinding prefetches in multiprocessors. Do 
nonbinding prefetches have any advantages in uniprocessors as well. Assume that the 
alternative is to prefetch directly into the register file, not into a prefetch buffer. 

c. Sometimes a predicate must be evaluated to determine whether or not to issue a prefetch. 
This introduces a conditional (if) expression around the prefetch inside the loop contain-
ing the prefetches. Construct an example, with pseudocode, and describe what is the per-
formance problem? How would you fix the problem?

d. Describe situations in which a producer-initiated deliver operation might be more appro-
priate than prefetching or an update protocol. Would you implement a deliver instruction 
if you were designing a machine?

11.8  Prefetching Irregular Accesses

a. Consider the loop

for i <- 1 to 200
sum = sum + A[index[i]];

end for.
Write a version of the code with non-binding software-controlled prefetches inserted. 
Include the prologue, the steady state of the software pipeline, and the epilogue. Assume 
the memory latency is such that it takes five iterations of the loop for a data item to return, 
and that data are prefetched into the primary cache. 

b. When prefetching indirect references such as in the example above, extra instructions are 
needed for address generation. One possibility is to save the computed address in a regis-
ter at the time of the prefetch and then reuse it later for the load? Are there any problems 
with or disadvantages to this?

c. What if an exception occurs when prefetching down multiple levels of indirection in 
accesses. What complications are caused and how might they be addressed?

d. Describe some hardware mechansisms (at a high level) that might be able to prefetch ireg-
ular accesses, such as records or lists. 

11.9  More prefetching

a. Show how the following loop would be rewritten with prefetching so as to hide latency:

for i=0 to 128 {
for j=1 to 32 

A[i,j] = B[i] * C[j]
}

Try to reduce overhead by prefetching only those references that you expect to miss in the 
cache. Assume that a read prefetch is expressed as “PREFETCH(&variable)”, and it 
fetches the entire cache line in which variable resides in shared mode. A read-exclu-
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sive prefetch operation which is expressed as “RE_PREFETCH(&variable)” which 
fetches the line in “exclusive” mode. The machine has a cache miss latency of 32 cycles. 
Explicitly prefetch each needed variable (don’t take into account the cache block size). 
Assume that the cache is large (so you don’t have to worry about interference), but not so 
large that you can prefetch everything at the start. In other words, we are looking for just-
in-time prefetching. The matrix A[i,j] is stored in memory with A[i,j] and A[i,j+1] contig-
uous. Assume that the main computation of the loop takes 8 cycles to complete. 

b. Construct an example in which a prefetching compiler’s decision to assume everything in 
the cache is invalidated when it sees a synchronization operation is very conservative, and 
show how a programmer can do better. It might be useful to think of the case study appli-
cations used in the book. 

c. One alternative to prefetching is to use nonblocking load operations, and issue these oper-
ations significantly before the data are needed for computation. What are the tradeoffs 
between prefetching and using nonblocking loads in this way?

d. There are many options for the format that a prefetch instruction can take. For example, 
some architectures allow a load instruction to have multiple flavors, one of which can be 
reserved for a prefetch. Or in architectures that reserve a register to always have the value 
zero (e.g. the MIPS and SPARC architectures); a load with that register as the destination 
can be interpreted as a prefetch since such a load does not change the contents of the reg-
ister. A third option is to have a separate prefetch instruction in the instruction set, with a 
different opcode than a load. 

(i) Which do you think is the best alternative and why?

(ii) What addressing mode would you use for a prefetch instruction and why?

e. Suppose we issue prefetches when we expect the corresponding references to miss in the 
primary (first-level) cache. A question that arises is which levels of the memory hierarchy 
beyond the first-level cache should we probe to see if the prefetch can be satisfied there. 
Since the compiler algorithm usually schedules prefetches by conservatively assuming 
that the latency to be hidden is the largest latency (uncontended, say) in the machine, one 
possibility is to not even check intermediate levels of the cache hierarchy but always get 
the data from main memory or from another processor’s cache if the block is dirty. What 
are the problems with this method and which one do you think is most important?

f. We have discussed some qualitative tradeoffs between prefetching into the primary cache 
and prefetching only into the second-level cache. Using only the following parameters, 
construct an analytical expression for the circumstances under which prefetching into the 
primary cache is beneficial. What about the analysis or what it leaves out strikes you as 
making it most difficult to rely on it in practice? pt is the number of prefetches that bring 
data into the primary cache early enough, pd is the number of cases in which the 
prefetched data are displaced from the cache before they are used, pc is the number of 
cache conflicts in which prefetches replace useful data, pf is the number of prefetch fills 
(i.e. the number of times a prefetch tries to put data into the primary cache), ls is the 
access latency to the second-level cache (beyond that to the primary cache) and lf is the 
average number of cycles that a prefetch fill stalls the processor. After generating the full-
blown general expression, your goal is to find a condition on lf that makes prefetching into 
the first level cache worthwhile. To do this, you can make the following simplifying 
assumptions: ps = pt - pd, and pc = pd. 

11.10  Multithreading. Consider a “blocked” context-switching processor. (i.e. a processor that
switches contexts only on long-latency events.) Assume that there are arbitrarily many
threads available and clearly state any other assumptions that you make in answering the fol-
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lowing questions. The threads of a given application have been analyzed to show the follow-
ing execution profile: 

40% of cycles are spent on instruction execution (busy cycles) 

30% of cycles spent stalled on L1 cache misses but L2 hits (10 cycle miss penalty)

30% of cycles spent stalled on L2 cache misses (30 cycle miss penalty) 

a. What will be the busy time if the context switch latency (cost) is 5 cycles?

b. What is the maximum context switch latency that will ensure that busy time is greater 
than or equal to 50%?

11.11  Blocked multithreading

a. In blocked, multiple-context processors with caches, a context switch occurs whenever a 
reference misses in the cache. The blocking context at this point goes into “stalled” state, 
and it remains there until the requested data arrives back at the cache. At that point it 
returns to “active” state, and it will be allowed to run when the active contexts ahead of it 
block. When an active context first starts to run, it reissues the reference it had blocked on. 
In the scheme just described, the interaction between the multiple contexts can potentially 
lead to deadlock. Concretely describe an example where none of the contexts make for-
ward process.

b. What do you think would happen to the idealized curve for processor utilization versus 
degree of multithreading in Figure 11-25 if cache misses were taken into account. Draw 
this more realistic curve on the same figure as the idealized curve. 

c. Write the logic equation that decides whether to generate a context switch in the blocked 
scheme, given the following input signals: Cache Miss, MissSwitchEnable (enable 
switching on a cache miss), CE (signal that allows processor to enable context switching), 
OneCount(CValid) (number of ready contexts), ES (explicit context switch instruction), 
and TO (timeout). Write another equation to decide when the processor should stall rather 
than switch. 

d. In discussing the implementation of the PC unit for the blocked multithreading approach, 
we said that the use of the exception PC for exceptions as well as context switches meant 
that context switching must be disabled upon an exception. Does this indicate that the ker-
nel cannot use the hardware-provided multithreading at all? If so, why? If not, how would 
you arrange for the kernel to use the multiple hardware contexts. 

11.12  Interleaved Multithreading

a. Why is exception handling more complex in the interleaved scheme than in the blocked 
scheme? [Hint: think about how the exception PC (EPC) is used.] How would you handle 
the issues that arise? : 

b. How do you think the Tera processor might do lookahead across branches? The jprocessor 
provides JUMP_OFTEN and JUMP_SELDOM branch operations. Why do you think it 
does this? 

c. Consider a simple, HEP-like multithreaded machine with no caches. Assume that the 
average memory latency is 100 clock cycles. Each context has blocking loads and the 
machine enforces sequential consistency. 

(i) Given that 20% of a typical workload’s instructions are loads and 10% are stores, how 
many active contexts are needed to hide the latency of the memory operations?

(ii) How many contexts would be required if the machine supported release consistency 
(still with blocking loads)? State any assumptions that you make. 
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(iii) How many contexts would be needed for parts (i) and (ii) if we assumed a blocked 
multiple-context processor instead of the cycle-by-cycle interleaved HEP processor. 
Assume cache hit rates of 90% for both loads and stores. 

(iv) For part (iii), what is the peak processor utilization assuming a context switch over-
head of 10 cycles. 

11.13  Studies of applications have shown that combining release consistency and prefetching
always results in better performance than when either technique is used alone. This is not the
case when multiple-contexts and prefetching techniques are combined; the combined perfor-
mance can sometimes be worse. Explain the latter observation, using an example situation to
illustrate. 
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In the course of writing this book the single factor that stood out most among the many interest-
ing facets of parallel computer architecture was the tremendous pace of change. Critically impor-
tant designs became “old news” as they were replace by newer designs. Major open questions
were answered, while new ones took their place. Start-up companies left the marketplace as
established companies made bold strides into parallel computing and powerful competitors
joined forces. The first teraflops performance was achieved and workshops had already been
formed to understand how to accelerate progress towards petaflops. The movie industry produced
its first full-length computer animated motion picture on a large cluster and for the first time a
parallel chess program defeated a grand master. Meanwhile, multiprocessors emerged in huge
volume with the Intel Pentium Pro and its glueless cache coherence memory bus. Parallel algo-
rithms were put to work to improve uniprocessor performance by better utilizing the storage hier-
archy. Networking technology, memory technology, and even processor design were all thrown
“up for grabs” as we began looking seriously at what to do with a billion transistors on a chip. 
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Looking forward to the future of parallel computer architecture, the one prediction that can be
made with certainty is continued change. The incredible pace of change makes parallel computer
architecture an exciting field to study and in which to conduct research. One needs to continually
revisit basic questions, such as what are the proper building blocks for parallel machines? What
are the essential requirements on the processor design, the communication assist and how it inte-
grates with the processor, the memory and the interconnect? Will these continue to utilize com-
modity desktop components, or will there be a new divergence as parallel computing matures and
the great volume of computers shifts into everyday appliances? The pace of change makes for
rich opportunities in industry, but also for great challenges as one tries to stay ahead. 

Although it is impossible to predict precisely where the field will go, this final chapter seeks to
outline some of the key areas of development in parallel computer architecture and the related
technologies. Whatever directions the market takes and whatever technological breakthroughs
occur, the fundamental issues addressed throughout this book will still apply. The realization of
parallel programming models will still rest upon the support for naming, ordering, and synchro-
nization. Designers will still battle with latency, bandwidth, and cost. The core techniques for
addressing these issue will remain valid, however, the way that they are employed will surely
change as the critical coefficients of performance, cost, capacity, and scale continue to change.
New algorithms will be invented, changing the fundamental application workload requirements,
but the basic analysis techniques will remain. 

Given the approach taken throughout the book, it only makes sense of structure the discussion of
potential future directions around hardware and software. For each, we need to ask what trends
are likely to continue, thus providing a basis for evolutionary development, and which are likely
stop abruptly, either because a fundamental limit is struck or because a breakthrough changes the
direction. Section 12.1 examines trends in technology and architecture, while Section 12.2 looks
at how changing software requirements may influence the direction of system design and consid-
ers how the application base is likely to broaden and change.

 

12.1 Technology and Architecture

 

Technological forces shaping the future of parallel computer architecture can be placed into three
categories: evolutionary forces, as indicated by past and current trends, fundamental limits that
wall off further progress along a trend, and breakthroughs that create a discontinuity and estab-
lish new trends. Of course, only time will tell how these actually play out. This section examines
all three scenarios and the architectural changes that might arise. 

To help sharpen the discussion, let us consider two questions. At the high end, how will the next
factor of 1000 increase in performance be achieved? At the more moderate scale, how will cost
effective parallel systems evolve? In 1997 computer systems form a parallelism pyramid roughly
as in Figure 12-1. Overall shipments of uniprocessor PCs, workstations, and servers is on the
order of tens of millions. The 2-4 processor end of the parallel computer market is on the scale of
100K to 1 M. These are almost exclusively servers, with some growth toward the desktop. This
segment of the market grew at a moderate pace throughout the 80s and early 90’s and then shot
up with the introduction of Intel based SMPs manufactured by leading PC vendors, as well as the
traditional workstation and server vendors are pushing down to expand volume. The next level is
occupied by machines of 5 to 30 processors. These are exclusively high-end servers. The volume
is in the tens of thousands of units and has been growing steadily; this segment dominates the
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high-end server market, including the Enterprise market, which used to be called the mainframe
market. At the scale of several tens to a hundred processors, the volume is on order a thousand
systems. These tend to be dedicated engines supporting massive data bases, large scientific appli-
cations, or major engineering investigations, such as oil exploration, structural modeling, or fluid
dynamics. Volume shrinks rapidly beyond a hundred processors, with order tens of systems at the
thousand processor scale. Machines at the very top end have been on the scale of a thousand to
two thousand processors since 1990. In 1996-7 this stepped up toward ten thousand processors.
The most visible machines at the very top end being dedicated to advanced scientific computing,
including the U.S. Department of Energy “ASCI” teraflops machines and the Hitachi SR2201
funded by the Japanese Ministry of Technology and Industry.

 

12.1.1 Evolutionary Scenario

 

If current technology trends hold, parallel computer architecture can be expected to follow an
evolutionary path, in which economic and market forces play a crucial role. Let’s expand this
evolutionary forecast, then we can consider how the advance of the field may diverge from this
path. Currently, we see processor performance increasing by about a factor of 100 per decade (or
200 per decade if the basis is Linpack or SpecFP). DRAM capacity also increases by about a fac-
tor of 100 per decade (quadrupling every three years). Thus, current trends would suggest that the
basic balance of computing performance to storage capacity (MFlops/MB) of the nodes in paral-
lel machines could remain roughly constant. This ratio varies considerably in current machines,
depending on application target and cost point, but under the evolutionary scenario the family of
options would be expected continue into the future with dramatic increases in both capacity and
performance. Simply riding the commodity growth curve, we could look toward achieving peta-
flops scale performance by 2010, or perhaps a couple of years earlier if the scale of parallelism is
increased, but such systems would be in excess of 100 million dollars to construct. It is less clear
what communication performance these machines will provide, for reasons that are discussed
below. To achieve this scale of performance a lot earlier in a general purpose system, would

Figure  12-1  Market Pyramid for Parallel Computers

Tens to Hundreds of Millions of Uniprocessor PCs, Workstations, and Devices
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involve an investment and a scale of engineering that is probably not practical, although special
purpose designs may push up the time frame for a limited set of applications.

To understand what architectural directions may be adopted, the VLSI technology trends under-
lying the performance and capacity trends of the components are important. Microprocessor
clock rates are increasing by a factor of 10-15 per decade, while transistors per microprocessor
increase by more than a factor of 30 per decade. DRAM cycles times, on the other hand, improve
much more slowly, roughly a factor of two per decade. Thus, the gap between processor speed
and memory speed is likely to continue to widen. In order to stay on the processor performance
growth trend, the increase in the ratio of memory access time to processor cycle time will require
that processors employ better latency avoidance and latency tolerance techniques. Also, the
increase in processor instruction rates, due to the combination of cycle time and parallelism, will
demand that the bandwidth delivered by the memory increase.

 

1

 

 

Both of these factors, the need for latency avoidance and for high memory bandwidth, as well as
the increase in on-chip storage capacity, will cause the storage hierarchy to continue to become
deeper and more complex. Recall, caches reduce the sensitivity to memory latency by avoiding
memory references and they reduce the bandwidth required of the lower level of the storage hier-
archy. These two factors will also cause the degree dynamic scheduling of instruction level paral-
lelism to increase. Latency tolerance fundamentally involves allowing a large number of
instructions, including several memory operations, to be in progress concurrently. Providing the
memory system with multiple operations to work on at a time allows pipelining and interleaving
to be used to increase bandwidth. Thus, the VLSI technology trends are likely to encourage the
design of processors that are both more insulated from the memory system and more flexible, so
that they can adapt to the behavior of the memory system. This bodes well for parallel computer
architecture, because the processor component is likely to become increasingly robust to infre-
quent long latency operations.

Unfortunately, neither caches nor dynamic instruction scheduling reduce the actual latency on an
operation that crosses the processor chip boundary. Historically, each level of cache added to the
storage hierarchy increases the cost of access to memory. (For example, we saw that the Cray
T3D and T3E designers eliminated a level of cache in the workstation design to decrease the
memory latency, and the presence of a second level on-chip cache in the T3E increased the com-
munication latency.) This phenomenon of increasing latency with hierarchy depth is natural
because designers rely on the hit being the frequent case; increasing the hit rate and reducing the
hit cost do more for processor performance than decreasing the miss cost. The trend toward
deeper hierarchies presents a problem for parallel architecture, since communication, by its very
nature, involves crossing out of the lowest level of the memory hierarchy on the node. The miss
penalty contributes to the communication overhead, regardless of whether the communication
abstraction is shared address access or messages. Good architecture and clever programming can
reduce the unnecessary communication to a minimum, but still each algorithm has some level of
inherent communication. It is an open question whether designers will be able to achieve the low
miss penalties required for efficient communication while attempting to maximize processor per-
formance through deep hierarchies. There are some positive indication in this direction. Many

 

1.  Often in observing the widening processor-memory speed gap, comparisons are made
between processor rates with memory access times, by taking the reciprocal of the access time.
Comparing between throughput and latency in this way makes the gap appear artificially wider.
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scientific applications have relatively poor cache behavior because they sweep through large data
sets. Beginning with the IBM Power2 architecture and continuing in the SGI Power Challenge
and Sun Ultrasparc, attention has been paid to improving the out of cache memory bandwidth, at
least for sequential access. These efforts proved very valuable for database applications. So, we
may be able to look forward to node memory structures that can sustain high bandwidth, even in
the evolutionary scenario.

There are strong indications that multithreading will be utilized in future processor generations to
hide the latency of local memory access. By introducing logical, thread-level parallelism on a
single processor, this direction further reduces the cost of the transition from one processor to
multiple processors, thus making small scale SMPs even more attractive on a broad scale. It also
establishes an architectural direction that may yield much greater latency tolerance in the long
term.

Link and switch bandwidths are increasing, although this phenomenon does not have the smooth
evolution of CMOS under improving lithography and fabrication techniques. Links tend to
advance through discrete technological changes. For example, copper links have transitioned
through a series of driver circuits: unterminated lines carrying a single bit at a time were replaced
by terminated lines with multiple bits pipelined on the wire, and these may be replaced by active
equalization techniques. At the same time, links have gotten wider as connector technology has
improved, allowing finer pitched, better matched connections, and cable manufacturing has
advanced, providing better control over signal skew. For several years, it has seemed that fiber
would soon take over as the technology of choice for high speed links. However, the cost of
transceivers and connectors has impeded its progress. This may change in the future, as the effi-
cient LED arrays that have been available in Gallium Arsinide (GAs) technologies become effec-
tive in CMOS. The real driver of cost reducer, of course, is volume. The arrival of gigabit
ethernet, which uses the FiberChannel physical link, may finally drive the volume of fiber trans-
ceivers up enough to cause a dramatic cost reduction. In addition, high quality parallel fiber has
been demonstrated. Thus, flexible high performance links with small physical cross section may
provide an excellent link technology for some time to come.

The bandwidths that are being required even for a uniprocessor design, and the number of simul-
taneous outstanding memory transactions needed to obtain this bandwidth, are stretching the lim-
its of what can be achieved on a shared bus. Many system designs have already streamlined the
bus design by requiring all components to transfer entire cache lines. Adapters for I/O devices are
constructed with one block caches that support the cache coherency protocol. Thus, essentially
all systems will be constructed as SMPs, even if only one processor is attached. Increasingly, the
bus is being replaced by a switch and the snooping protocols are being replaced by directories.
For example the HP/Convex Exemplar uses a cross-bar, rather than a bus, with the PA8000 pro-
cessor, the Sun Ultrasparc UPA has a switched interconnect within the 2-4 processor node,
although these are connected by a packet switched bus in the Enterprise 6000. The IBM Pow-
erPC-based G30 uses a switch for the data path, but still uses a shared bus for address and snoop.
Where busses are still used, they are packet-switched (split-phase). Thus, even in the evolution-
ary scenario, we can expect to see high performance network integrated ever more deeply into
high volume designs. This trend makes the transition from high volume, moderate scale parallel
systems to large scale, moderate volume parallel system more attractive, because the new tech-
nology required is less.

Higher speed networks are a dominant concern for current I/O subsystems, as well. There has
been a great deal of attention paid to improved I/O support, with PCI replacing traditional vendor
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I/O busses. There is a very strong desire to support faster local area networks, such as gigabit eth-
ernet, OC12 ATM (622 Mb/s), SCI, FiberChannels and P1394.2. A standard PCI bus can provide
roughly one Gb/s of bandwidth. Extended PCI with 64 bit, 66 MHz operation exists and promises
to become more widespread in the future, offering multi-gigabit performance on commodity
machines. Several vendors a looking at ways of providing direct memory bus access for high per-
formance interconnects or distributed shared memory extensions. 

These trends will ensure that small scale SMPs continue to be very attractive, and that clusters
and more tightly packaged collections of commodity nodes will remain a viable option for the
large scale. It is very likely that these designs will continue to improve as high-speed network
interfaces become more mature. We already seeing a trend toward better integration of NICs with
the cache coherence protocols so that control registers can be cached and DMA can be performed
directly on user level data structures. For many reasons, large scale designs are likely to use
SMPs nodes, so clusters of SMPs are likely to be a very important vehicle for parallel computing.
With the recent introduction of the CC-NUMA based designs, such as the HP/Convex SPP, the
SGI Origin, and especially the PentiumPro-based machines, large scale cache-coherent designs
look increasingly attractive. The core question is whether a truly composable SMP-based node
will emerge, so that large clusters of SMPs can essentially be snapped together as easily as one
adds memory or I/O devices to a single node.

 

12.1.2 Hitting a Wall

 

So, if current trends hold the evolution of parallel computer architecture looks bright. Why might
this not happen? Might we hit a wall instead? There are three basic possibilities, a latency wall,
an overhead wall, and a cost or power wall. 

The latency wall fundamentally is the speed of light, or rather of the propagation of electrical sig-
nals. We will soon see processors operating at clock rates in excess of 1 GHz, or a clock period of
less that one nanosecond. Signals travel about a foot per nanosecond. In the evolutionary view,
the physical size of the node does not get much smaller; it gets faster with more storage, but it is
still several chips with connectors and PC board traces. Indeed, from 1987 to 97, the footprint of
a basic processor and memory module did not shrink much. There was an improvement from two
nodes per board to about four when first level caches moved on-chip and DRAM chips were
turned on their side as SIMMs, but most designs maintained one level of cache off-chip. Even if
the off-chip caches are eliminated (as in the Cray T3D and T3E), the processor chip consumes
more an more power with each generation and a substantial amount of surface area is needed to
dissipate the heat. Thus, thousand processor machines will still be meters across, not inches.

While the latency wall is real, there are several reasons why it will probably not impede the prac-
tical evolution of parallel architectures in the foreseeable future. One reason is that latency toler-
ance techniques at the processor level are quite effective on the scale of tens of cycles. There have
been studies suggesting that caches are losing their effectiveness even on uniprocessors due to
memory access latency[Bur*96]. However, these studies assume memory operations that are not
pipelined and a processor typical of mid-90s designs. Other studies suggest that if memory oper-
ations are pipelined and if the processor is allowed to issue several instructions from a large
instruction window, then branch prediction accuracy is a far more significant limit on perfor-
mance than latency[JoPa97]. With perfect prediction, such an aggressive design can tolerate
memory access times in the neighborhood of 100 cycles for many applications. Multithreading
techniques provide an alternative source of instruction level parallelism that can be used to hide
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latency, even with imperfect branch prediction. But, such latency tolerance techniques fundamen-
tally demand bandwidth and bandwidth comes at a cost. The cost arises either through higher sig-
nalling rates, more wires, more pins, more real estate, or some combination of these. Also, the
degree of pipelining that a component can support is limited by its occupancy. To hide latency
requires careful attention to the occupancy of every stage along the path of access or communica-
tion. Where the occupancy cannot be reduced, interleaving techniques must be used to reduce the
effective occupancy. 

Following the evolutionary path, speed of light effects are likely to be dominated by bandwidth
effects on latency. Currently, a single cache-line sized transfer is several hundred bits in length
and, since links are relatively narrow, a single network transaction reaches entirely across the
machine with fast cut-through routing. As links get wider, the effective length of a network trans-
action, i.e., the number of phits, will shrink, but there is quite a bit of room for growth before it
takes more than a couple of concurrent transactions per processor to cover the physical latency.
Moreover, cache block sizes are increasing just to amortize the cost of a DRAM access, so the
length of a network transaction, and hence the number of outstanding transactions required to
hide latency, may be nearly constant as machines evolve. Explicit message sizes are likely to fol-
low a similar trend, since processors tend to be inefficient in manipulating objects smaller than a
cache block.

Much of the communication latency today is in the network interface, in particular that store-and-
forward delay at the source and at the destination, rather than in the network itself. The network
interface latency is likely to be reduced as designs mature and as it becomes a larger fraction of
the network latency. Consider, for example, what would be required to cut-through one or both of
the network interfaces. On the source side, there is no difficulty in translating the destination to a
route and spooling the message onto the wire as it becomes available from the processor. How-
ever, the processor may not be able to provide the data into the NI as fast as the NI spools data
into the network, so as part of the link protocol it may be necessary to hold back the message
(transferring idle phits on the wire). This machinery is already built into most switches. Machines
such as the Intel Paragon, Meiko CS-2, and Cray T3D provide flow-control all the way through
the NI and back to the memory system in order to perform large block transfers without a store-
and-forward delay. Alternatively, it may be possible to design the communication assist such that
once a small message starts onto the wire, e.g., a cache line, it is completely transferred without
delay. 

Avoiding the store-and-forward delay on the destination is a bit more challenging, because, in
general, it is not possible to determine that the data in the message is good until the data has been
received and checked. If it is spooled directly into memory, junk may be deposited. The key
observation is that it is much more important that the address be correct than that the data con-
tents be correct, because we do not want to spool data into the wrong place in memory. A sepa-
rate checksum can be provided on the header. The header is checked before the message is
spooled into the destination node. For a large transfer, there is typically a completion event, so
that data can be spooled into memory and checked before being marked as arrived. Note that this
does mean that the communication abstraction should not allow applications to poll data values
within the bulk transfer to detect completion. For small transfers, a variety of tricks can be played
to move the data into the cache speculatively. Basically, a line is allocated in the cache and the
data is transferred, but if it does not checksum correctly, the valid bit on the line is never set.
Thus, there will need to be greater attention paid to communication events in the design of the
communication assist and memory system, but it is possible to streamline network transactions
much more than the current state-of-the-art to reduce latency.



 

Future Directions

 

856 

 

DRAFT: Parallel Computer Architecture 9/4/97

 

The primary reason that parallel computers will not hit a fundamental latency wall is that overall
communication latency will continue to be dominated by overhead. The latency will be there, but
it will still be a modest fraction of the actual communication time. The reason for this lies deep in
the current industrial design process. Where there are one or more levels of cache on the proces-
sor chip, an off-chip cache, and then the memory system, in designing a cache controller for a
given level of the memory hierarchy, the designer is given a problem which has a fast side toward
the processor and a slow side toward the memory. The design goal is or minimize the expression:

 

(EQ 12.1)

 

for a typical address stream, , delivered to the cache on the processor side. 

This design goal presents an inherent trade-off because improvements in any one component
generally come at the cost of worsening the others. Thus, along each direction in the design space
the optimal design point is a compromise between extremes. The HitTime is generally fixed by
the target rate of the fast component. This establishes a limit against which the rest of the design
is optimized, i.e., the designer will do whatever is required to keep the HitTime within this limit.
For example, one can consider cache organizational improvements to improve HitRate, such
higher associativity, as long as it can be accomplished in the desired HitTime[Prz*88]. The criti-
cal aspect for parallel architecture concerns the MissTime. How hard is the designer likely to
work to drive down the MissTime? The usual rule of thumb is to make the two additive compo-
nents roughly equal. This guarantees that the design is within a factor of two of optimal and tends
to be robust and good in practice. The key point is that since MissRates are small for a uniproces-
sor, the MissTime will be a large multiple of the HitTime. For first level caches with greater than
95% hit rates, it will be twenty times the HitTime and for lower caches it will still be an order of
magnitude. A substantial fraction of the miss time is occupied by the transfer to the lower level of
the storage hierarchy, and small additions to this have only a modest effect on uniprocessor per-
formance. The cache designer will utilize this small degree of freedom in many useful ways. For
example, cache line sizes can be increased to improve the HitRate, at the cost of a longer miss
time. 

In addition, each level of the storage hierarchy adds to the cost of the data transfer because
another interface must be crossed. In order to modularize the design, interfaces tend to decouple
the operations on either side. There is some cost to the handshake between caches on-chip. There
is a larger cost in the interface between an on-chip cache and an off-chip cache, and a much
larger cost to the more elaborate protocol required across the memory bus. In addition, for com-
munication there is the protocol associated with the network itself. The accumulation of these
effects is why the actual communication latency tends to be many times the speed of light bound.
The natural response of the designer responsible for dealing with communication aspects of a
design is invariably to increase the minimum data transfer size, e.g., increasing the cache line size
or the smallest message fragment. This shifts the critical time from latency to occupancy. If each
transfer is large enough to amortize the overhead, the additional speed of light latency is again a
modest addition. 

Wherever the design is partitioned into multiple levels of storage hierarchy with the emphasis
placed on maximizing a level relative to the processor-side reference stream, the natural tendency
of the designers will result in a multiplication of overhead with each level of the hierarchy
between the processor and the communication assist. In order to get close to the speed of light
latency limit, a very different design methodology will need to be established for processor
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design, cache design, and memory design. One of the architectural trends that may bring about
this change is the use of extensive out-of-order execution or multithreading to hide latency, even
in uniprocessor systems. These techniques change the cache designer’s goal. Instead of minimiz-
ing the sum of the two components in Equation 12.1, the goal is essentially to minimize the max-
imum, as in Equation 12.2.

 

(EQ 12.2)

 

When there is a miss, the processor does not wait for it to be serviced, it continues executing and
issues more requests, many of which, hopefully, hit. In the meantime, the cache is busy servicing
the miss. Hopefully, the miss will be complete by the time another miss is generated or the pro-
cessor runs out of things it can do without the miss completing. The miss needs to be detected
and dispatched for service without many cycles of processor overhead, even though it will take
some time to process it. In effect, the miss needs to be handed off for processing essentially
within the HitTime budget. 

Moreover, it may be necessary to sustain multiple outstanding requests to keep the processor
busy, as fully explained in Chapter 11. The MissTime may be too large for a one-to-one balance
in the components of Equation 12.2 to be met, either because of latency or occupancy effects.
Also, misses and communication events tend to cluster, so the interval between operations that
need servicing is frequently much less than the average.

“Little’s Law” suggests that there is another potential wall, a cost wall. If the total latency that
needs to be hidden is  and the rate of long latency requests is , then the number of outstanding
requests per processor when the latency is hidden is , or greater when clustering is considered.
With this number of communication events in-flight, the total bandwidth delivered by the net-
work with  processors needs to be , where  reflects the increase in latency with
machine size. This requirement establishes a lower bound on the cost of the network. To deliver
this bandwidth, the aggregate bandwidth of the network itself will need to be much higher, as dis-
cussed in Chapter 10, since there will be bursts, collisions, and so on. Thus, to stay on the evolu-
tionary path, latency tolerance will need to be considered in many aspects of the system design
and network technology will need to improve in bandwidth and in cost. 

 

12.1.3 Potential Breakthroughs

 

We have seen so far a rosy evolutionary path for the advancement of parallel architecture, with
some dark clouds that might hinder this advance. Is there also a silver lining? Are there aspects of
the technological trends that may create new possibilities for parallel computer design? The
answer is certainly in the affirmative, but the specific directions are uncertain at best. While it is
possible that dramatic technological changes, such as quantum devices, free space optical inter-
connects, molecular computing, or nanomechanical devices are around the corner, there appears
to be substantial room left in the advance of conventional CMOS VLSI devices[Patt95]. The sim-
ple fact of continued increase in the level of integration is likely to bring about a revolution in
parallel computer design. 

From an academic viewpoint, it is easy to underestimate the importance of packaging thresholds
in the process of continued integration, but, history shows that these factors are dramatic indeed.
The general effect of the thresholds of integration is illustrated in Figure 12-2, that shows two
qualitative trends. The straight line reflects the steady increase in the level of systems integration
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with time. Overlaid on this is a curve depicting the amount of innovation in system design. A
given design regime tends to be stable for a considerable period, in spite of technological
advance, but when the level of integration crosses a critical threshold many new design options
are enabled and there is a design renaissance. The figure shows two of the epochs in the history of
computer architecture.

Recall, during the late 70’s and early 80’s computer system design followed a stable evolutionary
path with clear segments: minicomputers, dominated by the DEC Vax in engineering and aca-
demic markets, mainframes, dominated by IBM in the commercial markets, vector supercomput-
ers, dominated by Cray Research in the scientific market. The minicomputer had burst on the
scene as a result of an earlier technology threshold, where MSI and LSI components, especially
semiconductor memories, permitted the design of complex systems with relatively little engi-
neering effort. In particular, this level of integration permitted the use of microprogramming
techniques to support a large virtual address space and complex instruction set. The vector super-
computer niche reflected the end of a transition. Its exquisite ECL circuit design, coupled with
semiconductor memory in a clean load-store register based architecture wiped out the earlier,
more exotic parallel machine designs. These three major segments evolved in a predictable, evo-
lutionary fashion, each with their market segment, while the microprocessor marched forward
from 4-bits, to 8-bits, to 16-bits, bringing forward the personal computer and the graphics work-
station.

In the mid-80s, the microprocessor reached a critical threshold where a full 32-bit processor fit
on a chip. Suddenly the entire picture changed. A complete computer of significant performance

Figure  12-2  Tides of Change

The history on computing oscillates between periods of stable development and rapid innovation. Enabling technol-
ogy generally does not hit “all of a sudden,” it arrives and evolves. The “revolutions” occur when technology
crosses a key threshold. One example is the arrival of the 32-bit microprocessor in the mid-80s which broke the sta-
ble hold of the less integrated minicomputers and mainframes, and enabled a renasaince in computer design,
including low-level parallelism on-chip and high-level parallelism through multiprocessor designs. In the late 90’s
this transition is fully mature and microprocessor-based desktop and server technology dominate all segments of
the market. There is tremendous convergence in parallel machine design. However, the level of integration contin-
ues to rise and soon the single-chip computer will be as natural as the single board computer of the 80’s. The ques-
tion is what new renasaince of design will this enable.
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and capacity fit on a board. Several such boards could be put in a system. Suddenly, bus-based
cache-coherent SMPs appeared from man small companies, including Synapse, Encore, Flex,
and Sequent. Relatively large message passing systems appeared from Intel, nCUBE, Ametek,
Inmos, and Thinking Machines Corp. At the same time, several minisupercomputer vendors
appeared, including Multiflow, FPS, Culler Scientific, Convex, Scientific Computing System, and
Cydrome. Several of these companies failed as the new plateau was established. The workstation
and later the personal computer absorbed the technical computing aspect of the minicomputer
market. SMP servers took over the larger scale data centers, transaction processing, and engineer-
ing analysis, eliminating the minisuper. The vector supercomputers gave way to massively paral-
lel microprocessor-based systems. Since that time, the evolution of designs has again stabilized.
The understanding of cache coherence techniques has advanced, allowing shared address support
at increasingly large scale. The transition of scalable, low latency networks from MPPs to con-
ventional LAN or computer room environments has allowed casually engineered clusters of PCs,
workstations, or SMPs to deliver substantial performance at very low cost, essentially as a per-
sonal supercomputer. Several very large machines are constructed as clusters of shared memory
machines of various sizes. The convergence observed throughout this book is clearly in progress
and the basic design question facing parallel machine designers is “how will the commodity
components be integrated?” not what components will be used.

Meanwhile,

 

 the level of integration in microprocessors and memories is fast approaching a new
critical threshold where a complete computer fit on a chip, not a board

 

. Soon after the turn of the
century the gigabit DRAM chip will arrive. Microprocessors are on the way to 100 Million tran-
sistors by the turn of the century. This new threshold is likely to bring about a new design renais-
sance as profound as that of the 32-bit microprocessor of the mid-80s, the semiconductor
memory of the mid-70s, and the IC of the 60’s. Basically, the strong differentiation between pro-
cessor chips and memory chips will break down, and most chips will have processing logic and
memory.

It is easy to enumerate many reasons why the processor-and-memory level of integration will
take place and is likely to enable dramatic change in computer design, especially parallel com-
puter design. Several research projects are investigating aspects of this new design space, under a
variety of acronyms (PIM, IRAM, C-RAM, etc.). To avoid confusion, we will give processor-
and-memory yet another, PAM. Only history will reveal which old architectural ideas will gain
new life and which completely new ideas will arrive. Let’s look at some of the technological fac-
tors leading toward new design options.

One clear factor is that microprocessors chips are mostly memory. It is SRAM memory used for
caches, but memory none-the-less. Table 12-1 shows the fraction of the transistors and die area
used for caches and memory interface, including store buffers, etc. for four recent microproces-
sors from two vendors.[Pat*97] The actual processor is a small and diminishing component of
the microprocessor chip, even though processors are getting quite complicated. This trend is
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made even more clear by Figure 12-3, which shows the fraction of the transistors devoted to
caches in several microprocessors over the past decade[Burg97]. 

The vast majority of the real estate, and an even larger fraction of the transistors, are used for data
storage and organized as multiple level of on-chip caches. This investment in on-chip storage is
necessary because of the time to access to off-chip memory, i.e., the latency of chip interface, off-
chip caches, memory bus, memory controller, and the actual DRAM. For many applications, the
best way to improve performance is to increase the amount of on-chip storage.

One clear opportunity this technological trend presents is putting multiple processors on-chip.
Since the processor is only a small fraction of the chip real-estate, the potential peak performance
can be increased dramatically at a small incremental cost. The argument for this approach is fur-
ther strengthened by the diminishing returns in performance for processor complexity. For exam-
ple, the real-estate devoted to register ports, instruction prefetch window, and hazard detection,
and bypassing each increase more than linearly with the number of instructions issued per cycle,
while the performance improves little beyond 4-way issue superscalar. Thus, for the same area,
multiple processors of a less aggressive design can be employed[Olu*96]. This motivates re-
examination of sharing issues that have evolved along with technology on SMPs since the mid-
80s. Most of the early machines shared an off-chip first level cache, then there was room for sep-
arate caches, then L1 caches moved on-chip, and L2 caches were sometimes shared and some-
times not. Many of the basic trade-offs remain the same in the board-level and chip-level
multiprocessors: sharing caches closer to the processor allows for finer grained data sharing and
eliminates further levels of coherence support, but increases access time due to the interconnect
on the fast side of the shared cache. Sharing at any level presents the possibility of positive or
negative interference, depending on the application usage pattern. However, the board level
designs were largely determined by the particular properties of the available components. With
multiple processors on-chip, all the design options can be considered within the same homoge-
neous medium. Also, the specific trade-offs are different because of the different costs and per-

Table 12-1  

 

Fraction of Microprocessor Chips devoted to Memory

 

Year
Micro-
processor

On-Chip 
Cache Size

Total 
Transistors

fraction 
devoted to 
memory

Die 
Area 
(mm^2)

fraction 
devoted to 
memory

 

1993
Intel 

Pentium

I: 8 KB,

D: 8 KB
3.1 M 32% ~300 32%

1995

Intel

Pentium 
Pro

I: 8 KB,

D: 8 KB,

L2: 512 KB

P: 5.5 M

+L2: 31 M

P: 18%

+L2: 100%

(Total: 88%)

P: 242

+L2: 282

P: 23%

+L2: 100%

(total: 64%)

1994

Digital

Alpha

21164

I: 8 KB,

D: 8 KB,

L2: 96 KB

9.3 M 77% 298 37%

1996

Digital

Strong-
Arm

SA-110

I: 16 KB

D: 16 KB
2.1 M 95% 50 61%
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formance characteristics. Given the broad emergence of inexpensive SMPs, especially with
“glueless” cache coherence support, multiple processors on a chip is a natural path of evolution
for multiprocessors.

A somewhat more radical change is suggested by the observation that the large volume of storage
next to the processor could be DRAM storage, rather than SRAM. Traditionally, SRAM uses
manufacturing techniques intended for processors and DRAM uses quite different techniques.
The engineering requirements for microprocessors and DRAMs are traditionally very different.
Microprocessor fabrication is intended to provide high clock rates and ample connectivity for
datapaths and control using multiple layers of metal, whereas DRAM fabrication focuses on den-
sity and yield at minimal cost. The packages are very different. Microprocessors use expensive
packages with many pins for bandwidth and materials designed to dissipate large amounts of
heat. DRAM packages have few pins, low cost, and are suited to the low-power characteristics of
DRAM circuits. However, these differences are diminishing. DRAM fabrication processes have
become better suited for processor implementations, with two or three levels of metal, and better
logic speed[Sau*96].

The drive toward integrating logic into the DRAM is driven partly by necessity and partly by
opportunity. The immense increase in capacity (4x every three years) has required that the inter-

Figure  12-3  Fraction of Transistors on Microprocessors devote to Caches.

Since caches migrated on-chip in the mid 80’s, the fraction of the transistors on commercial microprocessors that
are devoted to caches has risen steadily. Although the processors are complex and exploit substantial instruction
level parallelism, only be providing a great deal of local storage and exploiting locality can their bandwidth require-
ments be statisfied at reasonable latency.
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nal organization of the DRAM and its interface change. Early designs consisted of a single,
square array of bits. The address was presented in two pieces, so a row could be read from the
array and then a column selected. As the capacity increased, it was necessary to place several
smaller arrays on the chip and to provide an interconnect from the many arrays and the pins.
Also, with limited pins and a need to increase the bandwidth, there was a desire to run part of the
DRAM chip at a higher rate. Many modern DRAM designs, including Synchronous DRAM,
Enhanced DRAM, and RAMBUS make effective use of the row buffers within the DRAM chip
and provide high bandwidth transfers between the row buffers and the pins. These approaches
required that DRAM processes be capable of supporting logic as well. At the same time, there
were many opportunities to incorporate new logic functions into the DRAM, especially for
graphics support in video RAMs. For example, 3D-RAM places logic for z-buffer operations
directly in the video-RAM chip that provides the frame buffer.

The attractiveness of integrating processor and memory is very much a threshold phenomenon.
While processor design was constrained by chip area there was certainly no motivation to use
fabrication techniques other than those specialized for fast processors, and while memory chips
were small, so many were used in a system, there was no justification for the added cost of incor-
porating a processor. However, the capacity of DRAMs has been increasing more rapidly than the
transistor count or, more importantly, the area used for processors. At the gigabit DRAM or per-
haps the following generation, the incremental cost of the processor is modest, perhaps 20%.
From the processor designer’s viewpoint, the advantage of DRAM over SRAM is that it has more
than an order of magnitude better density. However, the access time is greater, access is more
restrictive, and refresh is required[Sau*96].

Somewhat more subtle threshold phenomena further increase the attractiveness of PAM. The
capacity of DRAM has been growing faster than the demand for storage in most applications.
The rapid increase in capacity has been beneficial at the high end, because it became possible to
run very large problems, which tends to reduce the communication-to-computation ratio and
make parallel processing more effective. At the low end it had the effect of reducing the number
of memory chips sold per system. When there are only a few memory chips, traditional DRAM
interfaces with few pins do not work well, so new DRAM interfaces with high speed logic are
essential. When there is only one memory chip in a typical system, there is a huge cost savings in
bring the processor on-chip and eliminating everything in between. However, this raises a ques-
tion of what the memory organization should be for larger systems.

Augmenting the impact of critical thresholds of evolving technology are new technological fac-
tors and market changes. One is high speed CMOS serial links. ASIC cells are available that will
drive in excess of 1 Gb/s on a serial link and substantially higher rates have been demonstrated in
laboratory experiments. Previously, these rates were only available with expensive ECL circuits
or GAs technology. High speed links using a few pins provides a cost effective means of integrat-
ing PAM chips into a large system, and cab form the basis for the parallel machine interconnec-
tion network. A second factor is the advancement and widespread use of FPGA and other
configurable logic technology. This makes it possible to fabricate a single building block with
processor, memory, and unconfigured logic, which can then be configured to suit a variety of
applications. The final factor is the development of low power microprocessors for the rapidly
growing market of network appliances, sometimes called WebPCs or Java stations, palmtop com-
puters, and other sophisticated electronic devices. For many of these applications, modest single
chip PAMs provide ample processing and storage capacity. The huge volume of these markets
may indeed make PAM the commodity building block, rather than the desktop system.
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The question presented by these technological opportunities is how the organization structure of
the computer node should change. The basic starting point is indicated by Figure 12-4, which
shows that each of the subsystems between the processor and the DRAM bit array present a nar-
row interface because pins and wires are expensive, even though they are relatively wide inter-
nally, and add latency. Within the DRAM chips, the datapath is extremely wide. The bit array
itself is a collection of incredibly tightly packed trench capacitors, so little can be done there.
However, the data buffers between the bit array and the external interface are still wide, less
dense, and are essentially SRAM and logic. Recall, when a DRAM is read, a portion of the
address is used to select a row, which is read into the data buffer, and then another portion of the
address is used to select a few bits from the data buffer. The buffer is written back to the row,
since the read is destructive. On a write, the row is read, a portion is modified in the buffer, and
eventually it is written back. 

Current research investigates three basic possibilities, each of which have substantial history and
can be understood, explored, and evaluated in terms of the fundamental design principles put for-
ward in this book. They are surveyed briefly here, but the reader will surely want to consult the
most recent literature and the web.

The first option is to place simple, dedicated processing elements into the logic associated with
the data buffers of more-or-less conventional DRAM chips, indicated in Figure 12-5. This
approach has been called Processor-in-Memory (PIM)[Gok*95] and Computational-
RAM[Kog94,ElSn90]. It is fundamentally SIMD processing of a restricted class of data parallel
operations. Typically, these will be small bit-serial processors providing basic logic operations,
but they could operate on multiple bits or even a word at a time. As we saw in Chapter 1, the

Figure  12-4  Bandwidths across a computer system

Processor data path is several words wide, but typically has a couple word wide interface to its L1 cache. The L1
cache blocks are 32 or 64 bytes wide, but it is constrained between the processor word-at-a-time operation and the
microprocessor chip interface. The L2 cache blocks are even wider, but it is constrained between the microproces-
sor chip interface and the memory bus interface, both width critical. The SIMMS that form a bank of memory may
have an interface that is wider and slower than the memory bus. Internally, this is a small section of a very wide data
buffer, which is transferred directly to and from the actual bit arrays.
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approach has appeared several times in the history of parallel computer architecture. Usually it
appears at the beginning of a technological transition when a general purpose operations are not
quite feasible, so the specialize operations enjoys a generous performance advantage. Each time
it has proved applicable for a limited class of operations, usually image processing, signal pro-
cessing, or dense linear algebra, and each time it has given way to more general purpose solu-
tions as the underlying technology evolves.

For example, in the early 60’s, there were numerous SIMD machines proposed which would
allow construction of a high performance machine by only replicating the function units and
sharing a single instruction sequencer, including Staran, Pepe, and Illiac. The early effort culmi-
nated in the development of the Illiac IV at the University of Illinois which took many years and
became operational only months before the Cray-1. In the early 80s the approach appeared again
with the ICL DAP, which provided an array of compact processors, and got a big boost in the mid
80s when processor chips got large enough to support 32 bit-serial processors, but not a full 32-
bit processor. The Goodyear MPP, Thinking Machines CM-1, and MasPar grew out of this win-
dow of opportunity. The key recognition that made the latter two machines much more successful
that any previous SIMD approach was the need to provide a general purpose interconnect
between the processing elements, not just a low dimensional grid, which is clearly cheap to build.
Thinking Machines also was able to capture the arrival of the single chip floating point unit and
modify the design in the CM-2 to provide operations on two thousand 32-bit PEs, rather than 64
thousand 1-bit PEs. However, these designs were fundamentally challenged by Amdahl’s law,
since the high performance mode can only be applied on the fraction of the problem that fits the
specialized operations. Within a few years, they yielded to MPP designs with a few thousand
general purpose microprocessors, which could perform SIMD operations and more general oper-
ation, so the parallelism could be utilized more of the time. The PIMs approach was deployed in
the Cray 3/SSS, before the company filed “Chapter 11”, to provide special support for the
National Security Agency. It has also been demonstrated for more conventional technol-
ogy[Aim96,Shi96].

A second option is to enhance the data buffers associated with banks of DRAM so they can be
used as vector registers. There can be high bandwidth transfers between DRAM rows and vector

Figure  12-5  Processor-in-memory Organization

Simple function units (processing elements) are incorporated into the data buffers of fairly conventional DRAM
chips.

DRAM
Block

sense amps

ad
dr

es
s 

de
co

de
r

proc. elements

Col. Select

°°°
°°°

address

Memory Bus

memory
controller



 

Technology and Architecture

 

9/4/97 DRAFT: Parallel Computer Architecture

 

865

 

registers using the width of the bit arrays, but arithmetic is performed on vector registers by
streaming the data through a small collection of conventional function units. This approach also
rests on a good deal of history, including the very successful Cray machines, as well as several
unsuccessful attempts. The Cray-1 success was startling in part because of the contrast with
unsuccessful CDC Star-100 vector processor a year earlier. The Star-100 internally operated on
short segments of data that were streamed out of memory into temporary registers. However, it
provided vector operations only on contiguous (stride 1) vectors and the core memory it
employed had long latency. The success of the Cray-1 was not just a matter of exposing the vec-
tor registers, but a combination of its use of fast semiconductor memory, providing a general
interconnect between the vector registers and many banks of memory so that non-unit stride and
later gather/scatter operations could be performed, and a very efficient coupling of the scalar and
vector operations. In other words, low latency, high bandwidth for general access patterns, and
efficient synchronization. Several later attempts at this style of design in newer technologies have
failed to appreciate these lessons completely, including the FPS-DMAX, which provided linear
combinations of vectors in memory, the Stellar, Ardent, and Stardent vector workstations, the
Star-100 vector extension to the Sparcstation, the vector units in the memory controllers of the
CM-5, and the vector function units on the Meiko CS-2. It is easy to become enamored with the
peak performance and low cost of the special case, but if the start-up costs are large, addressing
capability is limited, or interaction with scalar access is awkward, the fraction of time that the
extension is actually used drops quickly and the approach is vulnerable to the general purpose
solution. 

The third option pursues a general purpose design, but removes the layers of abstraction that have
been associated with the distinct packaging of processors, off-chip caches, and memory systems.
Basically, the data buffers associated with the DRAMs are utilized as the final layer of caches.
This is quite attractive since advanced DRAM designs have essentially been using the data buff-
ers as caches for several years. However, in the past they were restricted by the narrow interface
out of the DRAM chips and the limited protocols of the memory bus. In the more integrated
design, the DRAM-buffer caches can interface directly to the higher level caches of one or more
on-chip processors. This approach changes the basic cache design trade-offs somewhat, but con-
ventional analysis techniques apply. The cost of long lines is reduced, since the transfer between

Figure  12-6  Vector IRAM Organization

DRAM data buffers are enhanced to provide vector registers, which can be streamed through pipelined function
units. On-chip memory system and vector support is interfaced to a scalar processor, possibly with its own caches.
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the data buffer and the bit array is performed in parallel. The current high cost of logic near the
DRAM tends to place a higher cost on associativity. Thus, many approaches use direct mapped
DRAM-buffer caches and employ victim buffers or analogous techniques to reduce the rate of
conflict misses.[Sau*96]. When these integrated designs are used as a building block for parallel
machines, the expect effects are observed of long cache blocks causing increased false sharing
along with improved data prefetching when spatial locality is present. [Nay*97]. 

When the PAM approach moves from the stage of academic, simulation based study to active
commercial development we can expect to see an even more profound effect arising from the
change in the design process. No longer is a cache designer in a position of optimizing one step
in the path, constrained by a fast interface on one side and a slow interface on the other. The
boundaries will have been removed and the design can be optimized as an end-to-end problem.
All of the possibilities we have seen for integrating the communication assist are present: at the
processor, into the cache controller, or into the memory controller, but in PAM then can be
addressed in a uniform framework, rather than within the particular constraint of each component
of the system. 

Howsoever the detailed design of integrated processor and memory components shakes out, these
new components are likely to provide a new, universal building block for larger scale parallel
machines. Clearly, collections of them can be connected together to form distributed memory
machines and the communication assist is likely to be much better integrated with the rest of the
design, since it is all on one chip. Also, the interconnect pins are likely to be the only external
interface, so communication efficiency will be even more critical. It will clearly be possible to
build parallel machines on a scale far beyond what has never been possible. A practical limit
which has stayed roughly constant since the earliest computers is that large scale systems are lim-
ited to about ten thousand components. Larger systems have been built, but tend to be difficult to
maintain. In the early days, its was ten thousand vacuum tubes, then ten thousand gates, then ten
thousand chips. Recently, large machines have had about a thousand processors and each proces-
sor required about ten components, either chips or memory SIMMS. The first of teraflops
machine has almost ten thousand processors, each with multiple chips, so we will see if the pat-
tern has changed. The complete system on a chip may well be the commodity building block of
the future, used in all sorts of intelligent appliances at a volume much greater than the desktop,
and hence at a much lower cost. In any case, we can look forward to much large scale parallelism
as the processors per chip continues to rise.

A very interesting question is what happens when programs need access to more data than fits on
the PAM. One approach is to provide a conventional memory interface for expansion. A more
interesting alternative is to simply provide CC-NUMA access to other PAM chips, as developed
in Chapter 8. The techniques are now very well understood, as is the minimal amount of hard-
ware support required to provide this functionality. If the processor component of the PAM is
indeed small, then even if only one process in the system is ever used, the additional cost of the
other processors sitting near the memories is small. Since parallel software is become more and
more widespread, the extra processing power is there when applications demand it.

 

12.2 Applications and System Software 

 

The future is parallel computer architecture clearly is going to be increasingly a story of parallel
software and of hardware/software interactions. We can view parallel software as falling into five
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different classes: applications, compilers, languages, operating systems, and tools. In parallel
software too, the same basic categories of change apply: evolution, hitting walls, and break-
throughs. 

 

12.2.1 Evolution

 

While data management and information processing are likely to be the dominant applications
that exploit multiprocessors, applications in science and engineering have always been the prov-
ing ground for high end computing. Early parallel scientific computing focused largely on mod-
els of physical phenomena that result in fairly regular computational and communication
characteristics. This allowed simple partitionings of the problems to be successful in harnessing
the power of multiprocessors, just as it led earlier to effective exploitation of vector architectures.
As the understanding of both the application domains and parallel computing grew, early adopt-
ers began to model the more complex, dynamic and adaptive aspects that are integral to most
physical phenomena, leading to applications with irregular, unpredictable characteristics. This
trend is expected to continue, bringing with it the attendant complexity for effective paralleliza-
tion. 

As multiprocessing becomes more and more widespread, the domains of its application will
evolve, as will the applications whose characteristics are most relevant to computer manufactur-
ers. Large optimization problems encountered in finance and logistics—for example, determin-
ing good crew schedules for commercial airlines—are very expensive to solve, have high payoff
for corporations, and are amenable to scalable parallelism. Methods developed under the fabric
of artificial intelligence, including searching techniques and expert systems, are finding practical
use in several domains and can benefit greatly from increased computational power and storage.
In the area of information management, an important trend is toward increased use of extracting
trends and inferences from large volumes of data, using data mining and decision support tech-
niques (in the latter, complex queries are made to determine trends that will provide the basis for
important decisions). These applications are often computationally intensive as well as database-
intensive, and mark an interesting marriage of computation and data storage/retrieval to build
computation-and-information servers. Such problems are increasingly encountered in scientific
research areas as well, for example in manipulating and analyzing the tremendous volumes of
biological sequence information that is rapidly becoming available through the sciences of
genomics and sequencing, and computing on the discovered data to produce estimates of three-
dimensional structure. The rise of wide-scale distributed computing—enabled by the internet and
the world-wide web—and the abundance of information in modern society make this marriage of
computing and information management all the more inevitable as a direction of rapid growth.
Multiprocessors have already become servers for internet search engines and world-wide web
queries. The nature of the queries coming to an information server may also span a broader
range, from a few, very complex mining and decision support queries at a time to a staggeringly
large number of simultaneous queries in the case where the clients are home computers or hand-
held information appliances.

As the communication characteristics of networks improve, and the need for parallelism with
varying degrees of coupling becomes stronger, we are likely to see a coming together of parallel
and distributed computing. Techniques from distributed computing will be applied to parallel
computing to build a greater variety of information servers that can benefit from the better perfor-
mance characteristics “within the box”, and parallel computing techniques will be employed in
the other direction to use distributed systems as platforms for solving a single problem in paral-
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lel. Multiprocessors will continue to play the role of servers—database and transaction servers,
compute servers, and storage servers—though the data types manipulated by these servers are
becoming much richer and more varied. From information records containing text, we are mov-
ing to an era where images, three-dimensional models of physical objects, and segments of audio
and video are increasingly stored, indexed, queried and served out as well. Matches in queries to
these data types are often approximate, and serving them out often uses advanced compression
techniques to conserve bandwidth, both of which require computation as well. 

Finally, the increasing importance of graphics, media and real-time data from sensors—for mili-
tary, civilian, and entertainment applications—will lead to increasing significance of real-time
computing on data as it streams in and out of a multiprocessor. Instead of reading data from a
storage medium, operating on it, and storing it back, this may require operating on data on its
way through the machine between input and output data ports. How processors, memory and net-
work integrate with one another, as well as the role of caches, may have to be revisited in this sce-
nario. As the application space evolves, we will learn what kinds of applications can truly utilize
large-scale parallel computing, and what scales of parallelism are most appropriate for others. We
will also learn whether scaled up general-purpose architectures are appropriate for the highest
end of computing, or whether the characteristics of these applications are so differentiated that
they require substantially different resource requirements and integration to be cost-effective. 

As parallel computing is embraced in more domains, we begin to see portable, pre-packaged par-
allel applications that can be used in multiple application domains. A good example of this is a an
application called Dyna3D that solves systems of partial differential equations on highly irregular
domains, using a method called the finite-element method [cite Hughes book, cite Dyna3D].
Dyna3D was initially developed at government research laboratories for use in modeling weap-
ons systems on exotic, multi-million dollar supercomputers. After the cold war ended, the tech-
nology was transitioned into the commercial sector and it became the mainstay of crash modeling
in the automotive industry and elsewhere on widely available parallel machines. By the time this
book was written, the code was widely used on cost effective parallel servers for performing sim-
ulations on everyday appliances, such as what happens to a cellular phone when it is dropped.

A major enabling factor in the widespread use of parallel applications has been the availability of
portable libraries that implement programming models on a wide range of machines. With the
advent of the Message Passing Interface, this has become a reality for message passing, which is
used in Dyna3D: The application of Dyna3D to different problems is usually done on very differ-
ent platforms, from machines designed for message passing like the Intel Paragon to machines
that support a shared address space in hardware like the Cray T3D to networks of workstations.
Similar portability across a wide range of communication architecture performance characteris-
tics has not yet been achieved for a shared address space programming model, but is likely soon. 

As more applications are coded in both the shared address space and message passing models,
we find a greater separation of the algorithmic aspects of creating a parallel program (decomposi-
tion and assignment) from the more mechanical and architecture-dependent aspects (orchestra-
tion and mapping), with the former being relatively independent of the programming model and
architecture. Galaxy simulations and other hierarchical N-body computations, like Barnes-Hut,
provide an example. The early message passing parallel programs used an orthogonal recursive
bisection method to partition the computational domain across processors, and did not maintain a
global tree data structure. Shared address space implementations on the other hand used a global
tree, and a different partitioning method that led to a very different domain decomposition. With
time, and with the improvement in message passing communication architectures, the message
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passing versions also evolved to use similar partitioning techniques to the shared address space
version, including building and maintaining a logically global tree using hashing techniques.
Similar developments have occurred in ray tracing, where parallelizations that assumed no logi-
cal sharing of data structures gave way to logically shared data structures that were implemented
in the message passing model using hashing. A continuation of this trend will also contribute to
the portability of applications between systems that preferentially support one of the two models. 

Like parallel applications, parallel programming languages are also evolving apace. The most
popular languages for parallel computing continue to be based on the most popular sequential
programming languages (C, C++, and FORTRAN), with extensions for parallelism. The nature
of these extensions is now increasingly driven by the needs observed in real applications. In fact,
it is not uncommon for languages to incorporate features that arise from experience with a partic-
ular class of applications, and then are found to generalize to some other classes of applications
as well. In a similar vein, portable libraries of commonly occurring data structures and algo-
rithms for parallel computing are being developed, and templates for these being defined for pro-
grammers to customize according to the needs of their specific applications. 

Several styles of parallel languages have been developed. The least common denominator is MPI
for message passing programming, which has been adopted across a wide range of platforms, and
a sequential language enhanced with primitives like the ones we discussed in Chapter 2 for a
shared address space. Many of the other language systems try to provide the programmer with a
natural programming model, often based on a shared address space, and hide the properties of the
machine’s communication abstraction through software layers. One major direction has been
explicitly parallel object-oriented languages, with emphasis on appropriate mechanisms to
express concurrency and synchronization in a manner integrated with the underlying support for
data abstraction. Another has been the development of data parallel languages with directives for
partitioning such as High Performance Fortran, which are currently being extended to handle
irregular applications. A third direction has been the development of implicitly parallel lan-
guages. Here, the programmer is not responsible for specifying the assignment, orchestration, or
mapping, but only for the decomposition into tasks and for specifying the data that each task
accesses. Based on these specifications, the runtime system of the language determines the
dependences among tasks and assigns and orchestrates them appropriately for parallel execution
on a platform. The burden on the programmer is decreased, or at least localized, but the burden
on the system is increased. 

With the increasing importance of data access for performance, several of these languages have
proposed language mechanisms and runtime techniques to divide the burden of achieving data
locality and reducing communication between the progammer and the system in a reasonable
way. Finally, the increasing complexity of the applications being written and the phenomena
being modeled by parallel applications has lead to the development of languages to support com-
posability of bigger applications from smaller parts. We can expect much continued evolution in
all these directions—appropriate abstractions for concurrency, data abstraction, synchronization
and data management; libraries and templates, explicit and implicit parallel programming lan-
guages—with the goal of achieving a good balance between ease of programming, performance,
and portability across a wide range of platforms (in both functionality and performance). 

The development of compilers that can automatically parallelize programs has also been evolv-
ing over the last decade or two. With significant developments in the analysis of dependences
among data accesses, compilers are now able to automatically parallelize simple array-based
FORTRAN programs and achieve respectable performance on small-scale multiprocessors [cite].
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Advances have also been made in compiler algorithms for managing data locality in caches and
main memory, and in optimizing the orchestration of communication given the performance
characteristics of an architecture (for example, making communication messages larger for mes-
sage passing machines). However, compilers are still not able to parallelize more complex pro-
grams, especially those that make substantial use of pointers. Since the address stored in a pointer
is not known at compile time, it is very difficult to determine whether a memory operation made
through a pointer is to the same or a different address than another memory operation. In
acknowledging this difficulty, one approach that is increasingly being taken is that of interactive
parallelizing compilers. Here, the compiler discovers the parallelism that it can, and then gives
intelligent feedback to the user about the places where it failed and asks the user questions about
choices it might make in decomposition, assignment and orchestration. Given the directed ques-
tions and information, a user familiar with the program may have or may discover the higher-
level knowledge of the application that the compiler did not have. Another approach in a similar
vein is integrated compile-time and run-time parallelization tools, in which information gathered
at runtime may be used to help the compiler—and perhaps user—parallelize the application suc-
cessfully. or parallelization. Compiler technology will continue to evolve in these areas, as well
as in the simpler area of providing support to deal with relaxed memory consistency models.

Operating systems are making the transition from treating uniprocessors to multiprocessors, and
from treating multiprocessors as batch-oriented compute engines to multiprogrammed servers of
computational and storage resources. In the former category, the evolution has included making
operating systems more scalable by reducing the serialization within the operating system, and
making the scheduling and resource management policies of operating systems take spatial and
temporal locality into account (for example, not moving processes around too much in the
machine, having them be scheduled close to the data they access, and having them be scheduled
as far as possible on the same processor every time). In the latter category, a major challenge is
managing resources and process scheduling in a way that strikes a good balance between fairness
and performance, just as was done in uniprocessor operating systems. Attention is paid to data
locality in scheduling application processes in a multiprogrammed workload, as well as to paral-
lel performance in determining resource allocation: For example, the relative parallel perfor-
mance of applications in a multiprogrammed workload may be used to determine how many
processors and other resources to allocate to it at the cost of other programs. Operating systems
for parallel machines are also increasingly incorporating the characteristics of multiprogrammed
mainframe machines that were the mainstay servers of the past. One challenge in this area is
exporting to the user the image of a single operating system (called single system image), while
still providing the reliability and fault tolerance of a distributed system. Other challenges include
containing faults so only the faulting application or the resources that the faulting application
uses are affected by a fault, and providing the reliability and availability that people expect from
mainframes. This evolution is necessary if scalable microprocessor-based multiprocessors are to
truly replace mainframes as “enterprise” servers for large organizations, running multiple appli-
cations at a time. 

With the increasing complexity of application-system interactions, and the increasing importance
of the memory and communication systems for performance, it is very important to have good
tools for diagnosing performance problems. This is particularly true of a shared address space
programming model, since communication there is implicit and artifactual communication can
often dominate other performance effects. Contention is a particularly prevalent and difficult per-
formance effect for a programmer to diagnose, especially because the point in the program (or
machine) where the effects of contention are felt can be quite different from the point that causes
the contention. Performance tools continue to evolve, providing feedback about where in the pro-
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gram are the largest overhead components of execution time, what data structures might be caus-
ing the data access overheads, etc. We are likely to see progress in techniques to increase the
visibility of performance monitoring tools, which will be helped by the recent increasing willing-
ness of machine designers to add a few registers or counters at key points in a machine solely for
the purpose of performance monitoring. We are also likely to see progress in the quality of the
feedback that is provided to the user, ranging from where in the program code a lot of time is
being spent stalled on data access (available today), to which data structures are responsible for
the majority of this time, to what is the cause of the problem (communication overhead, capacity
misses, conflict misses with another data structure, or contention). The more detailed the infor-
mation and the better it is cast in terms of the concepts the programmer deals with rather than in
machine terms, the more likely that a programmer can respond to the information and improve
performance. Evolution along this path will hopefully bring us to a good balance between soft-
ware and hardware support for performance diagnosis. 

A final aspect of the evolution will be the continued integration of the system software pieces
described above. Languages will be designed to make the compiler’s job easier in discovering
and managing parallelism, and to allow more information to be conveyed to the operating system
to make its scheduling and resource allocation decisions. 

 

12.2.2 Hitting a Wall

 

On the software side, there is a wall that we have been hitting up against for many years now,
which is the wall of programmability. While programming models are becoming more portable,
architectures are converging, and good evolutionary progress is being made in many areas as
described above, it is still the case that parallel programming is much more difficult than sequen-
tial programming. Programming for good performance takes a lot of work, sometimes in deter-
mining a good parallelization, and other times in implementing and orchestrating it. Even
debugging parallel programs for correctness is an art and at best a primitive science. The parallel
debugging task is difficult because of the interactions among multiple processes with their own
program orders, and because of sensitivity to timing. Depending on when events in one process
happen to occur relative to events in another process, a bug in the program may or may not man-
ifest itself at runtime in a particular execution. And if it does, instrumenting the code to monitor
certain events can cause the timing to be perturbed in such a way that the bug no longer appears.
Parallel programming has been up against this wall for some time now; while evolutionary
progress is helpful and has greatly increased the adoption of parallel computing, breaking down
this wall will take a breakthrough that will truly allow parallel computing to realize the potential
afforded to it by technology and architectural trends. It is unclear whether this breakthrough will
be in languages per se, or in programming methodology, or whether it will simply be an evolu-
tionary process. 

 

12.2.3 Potential Breakthroughs

 

Other than breakthroughs in parallel programming languages or methodology and parallel
debugging, we may hope for a breakthrough in performance models for reasoning about parallel
programs. While many models have been quite successful at exposing the essential performance
characteristics of a parallel system [Val90,Cul*96] and some have even provided a methodology
for using these parameters, the more challenging aspect is modeling the properties of complex
parallel applications and their interactions with the system parameters. There is not yet a well
defined methodology for programmers or algorithm designers to use for this purpose, to deter-
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mine how well an algorithm will perform in parallel on a system or which among competing par-
titioning or orchestration approaches will perform better. Another breakthrough may come from
architecture, if we can somehow design machines in a cost-effective way that makes if much less
important for a programmer to worry about data locality and communication; that is, to truly
design a machine that can look to the programmer like a PRAM. An example of this would be if
all latency incurred by the program could be tolerated by the architecture. However, this is likely
to require tremendous bandwidth, which has a high cost, and it is not clear how to exploit the
necessary concurrency from an application that is needed for this degree of latency tolerance, if
the application has it to begin with. 

The ultimate breakthrough, of course, will be the complete success of parallelizing compilers in
taking a wide range of sequential programs and converting them into efficient parallel executions
on a given platform, achieving good performance at a scale close to that inherently afforded by
the application (i.e. close to the best one could do by hand). Besides the problems discussed
above, parallelizing compilers tend to look for and utilize low-level, localized information in the
program, and are not currently good at performing high-level, global analysis transformations.
Compilers also lack semantic information about the application; for example, if a particular
sequential algorithm for a phase of a problem does not parallelize well, there is nothing the com-
piler can do to choose another one. And for a compiler to take data locality and artifactual com-
munication into consideration and manage the extended memory hierarchy of a multiprocessor is
very difficult. However, even effective programmer-assisted compiler parallelization, keeping the
programmer involvement to a minimum, would be perhaps the most significant software break-
through in making parallel computing truly mainstream. 

Whatever the future holds, it is certain that there will be continued evolutionary advance that will
cross critical thresholds, there will be significant walls encountered, but there is likely to be ways
around them, and there will be unexpected breakthroughs. Parallel computing will remain the
place where exciting changes in computer technology and applications are first encountered, and
there be an ever evolving cycle of hardware/software interactions. 
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APPENDIX A

 

Parallel Benchmark Suites

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1997 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

Despite the difficulty of identifying “representative” parallel applications and the immaturity of
parallel software (languages, programming environments), the evaluation of machines and archi-
tectural ideas must go on. To this end, several suites of parallel “benchmarks” have been devel-
oped and distributed. We put benchmarks in quotations because of the difficulty of relying on a
single suite of programs to make definitive performance claims in parallel computing. Bench-
mark suites for multiprocessors vary in the kinds of application domains they cover, whether they
include toy programs, kernels or real applications, the communication abstractions they are tar-
geted for, and their philosophy toward benchmarking or architectural evaluation. Below we dis-
cuss some of the most widely used, publicly available benchmark/application suites for parallel
processing. Table 0.1 on page 878 shows how these suites can currently be obtained. 
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A.1 ScaLapack

 

This suite [DW94] consists of parallel, message-passing implementations of the LAPACK linear
algebra kernels. The Lapack suite consists of many important linear algebra kernels, including
routines to solve linear systems of equations, eigenvalue problems, and singular value problems.
matrix multiplications, factorizations and eigenvalue solvers. It therefore also includes many
types of matrix factorizations (including LU and others) used by these routines. Information
about the ScaLapack suite, and the suite itself, can be obtained from the Netlib repository main-
tained at the Oak Ridge National Laboratories. 

 

A.2 TPC

 

The Transaction Processing Performance Council (TPC), founded in 1988, has created a set of
publicly available benchmarks, called TPC-A, TPC-B and TPC-C, that are representative of dif-
ferent kinds of transaction-processing workloads and database system workloads <<cite>>.
While database and transaction processing workloads are very important in actual usage of paral-
lel machines, source codes for these workloads are almost impossible to obtain because of their
competitive value to their developers. 

TPC has a rigorous policy for reporting results. They use two metrics: (i) throughput in transac-
tions per second, subject to a constraint that over 90% of the transactions have a response time
less than a specified threshold; (ii) cost-performance in price per transaction per second, where
price is the total system price and maintenance cost for five years. In addition to the innovation in
metrics, they also provide benchmarks that scale with the power of the system in order to mea-
sure it realistically. 

The first TPC benchmark was TPC-A, intended to consist of a single, simple, update-intensive
transaction that provides a simple, repeatable unit of work, and is designed to exercise the key
features of an on-line transaction processing (OLTP) system. The chosen transaction is from
banking, and consists of reading 100 bytes from a terminal, updating the account, branch and
teller records, and writing a history record, and finally writing 200 bytes to a terminal. 

TPC-B, the second benchmark, is an industry-standard database (not OLTP) benchmark,
designed to exercise the system components necessary for update-intensive database transac-
tions. It therefore has significant disk I/O, moderate system and application execution time, and
requires transaction integrity. Unlike OLTP, it does not require terminals or networking. 

The third benchmark, TPC-C, was approved in 1992. It is designed to be more realistic than
TPC-A but carry over many of its characteristics. As such, it is likely to displace TPC-A with
time. TPC-C is a multi-user benchmark, and requires a remote terminal emulator to emulate a
population of users with their terminals. It models the activity of a wholesale supplier with a
number of geographically distributed sales districts and supply warehouses, including customers
placing orders, making payments or making inquiries, as well as deliveries and inventory checks.
It uses a database size that scales with the throughput of the system. Unlike TPC-A, which has a
single, simple type of transaction that is repeated and therefore requires a simple database, TPC-
C has a more complex database structure, multiple transaction types of varying complexity,
online and deferred execution modes, higher levels of contention on data access and update, pat-
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terns that simulate hot-spots, access by primary as well as non-primary keys, realistic require-
ments for full-screen terminal I/O and formatting, requirements for full transparency of data
partitioning, and transaction rollbacks. 

<<talk about TPC-D>>

TPC also plans to add some more benchmarks, including a benchmark representative of decision
support systems (in which transactions manipulate large volumes of data in complex queries, and
which provide timely answers to critical business questions), and one enterprise server bench-
mark (which provides concurrent OLTP and batch transactions, as well as heavyweight read-only
OLTP transactions, with tighter response-time constraints). A client-server benchmark is also
under consideration. Information about all these benchmarks can be obtained by contacting the
Transaction Processing Performance Council.

 

A.3 SPLASH

 

The SPLASH (Stanford ParalleL Applications for SHared Memory) suite [SWG92] was devel-
oped at Stanford University to facilitate the evaluation of architectures that support a cache-
coherent shared address space. It was replaced by the SPLASH-2 suite [SW+95], which
enhanced some applications and added more. The SPLASH-2 suite currently contains 7 complete
applications and 5 computational kernels. Some of the applications and kernels are provided in
two versions, with different levels of optimization in the way data structures are designed and
used (see the discussion of levels of optimization in Section 4.3.2). The programs represent vari-
ous computational domains, mostly scientific and engineering applications and computer graph-
ics. They are all written in C, and use the Parmacs macro package from Argonne National
Laboratories [LO+87] for parallelism constructs. All of the parallel programs we use for work-
load-driven evaluation of shared address space machines in this book come from the SPLASH-2
suite. 

 

A.4 NAS Parallel Benchmarks

 

The NAS benchmarks [BB+91] were developed by the Numerical Aerodynamic Simulation
group at the National Aeronautic and Space Administration (NASA). They are a set of eight com-
putations, five kernels and three pseudo-applications (not complete applications but more repre-
sentative of the kinds of data structures, data movement and computation required in real
aerophysics applications than the kernels). These computations are each intended to focus on
some important aspect of the types of highly parallel computations in aerophysics applications.
The kernels include an embarrassingly parallel computation, a multigrid equation solver, a conju-
gate gradient equation solver, a three-dimensional FFT equation solver, and an integer sort. Two
different data sets, one small and one large, are provided for each benchmark. The benchmarks
are intended to evaluate and compare real machines against one another. The performance of a
machine on the benchmarks is normalized to that of a Cray Y-MP (for the smaller data sets) or a
Cray C-90 (for the larger data sets). 

The NAS benchmarks take a different approach to benchmarking than the other suites described
in this section. Those suites provide programs that are already written in a high-level language
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(such as Fortran or C, with constructs for parallelism). The NAS benchmarks, on the other hand,
do not provide parallel implementations, but are so-called “paper-and-pencil” benchmarks. They
specify the problem to be solved in complete detail (the equation system and constraints, for
example) and the high-level method to be used (multigrid or conjugate gradient method, for
example), but do not provide the parallel program to be used. Instead, they leave it up to the user
to use the best parallel implementation for the machine at hand. The user is free to choose lan-
guage constructs (though the language must be an extension of Fortran or C), data structures,
communication abstractions and mechanisms, processor mapping, memory allocation and usage,
and low-level optimizations (with some restrictions on the use of assembly language). The moti-
vation for this approach to benchmarking is that since parallel architectures are so diverse and
there is no established dominant programming language or communication abstraction that is
most efficient on all architectures, a parallel implementation that is best suited to one machine
may not be appropriate for another. If we want to compare two machines using a given computa-
tion or benchmark, we should use the most appropriate implementation for each machine. Thus,
fixing the code to be used is inappropriate, and only the high-level algorithm and the inputs with
which it should be run should be specified. This approach puts a greater burden on the user of the
benchmarks, but is more appropriate for comparing widely disparate machines. Providing the
codes themselves, on the other hand, makes the user’s task easier, and may be a better approach
for exploring architectural tradeoffs among a well-defined class of similar architectures. 

Because the NAS benchmarks, particularly the kernels, are relatively easy to implement and rep-
resent an interesting range of computations for scientific computing, they have been widely
embraced by multiprocessor vendors. 

 

A.5 PARKBENCH

 

The PARKBENCH  (PARallel Kernels and BENCHmarks) effort [PAR94] is a large-scale effort

to develop a suite of microbenchmarks, kernels and applications for benchmarking parallel
machine, with at least an initial focus on explicit message-passing programs using Fortran77 with
the Parallel Virtual Machine (PVM) [BD+91] library for communication. Versions of the pro-
grams in the High Performance Fortran language [HPF93] are also provided, to provide portabil-
ity across message-passing and shared address space platforms.

PARKBENCH provides different the types of benchmarks we have discussed: low-level bench-
marks or microbenchmarks, kernels, compact applications, and compiler benchmarks (the last
two categories yet to be provided <<yes still?>>). The PARKBENCH committee proposes a
methodology for choosing types of benchmarks to evaluate real machines that is similar to the
one advocated here (except for the issue of using different levels of optimization). Among the

Table 0.1  

 

Obtaining Public Benchmark and Application Suites

 

Benchmark Suite Communication Abstraction How to Obtain Code or Information

 

ScaLapack Message-passing E-mail: netlib@ornl.gov

TPC Either (not provided parallel) Transaction Proc. Perf. Council

SPLASH Shared Address Space (CC) ftp/Web: mojave.stanford.edu

NAS Either (paper-and-pencil) Web: www.nas.nasa.gov

PARKBENCH Message-Passing E-mail: netlib@ornl.gov
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low-level benchmarks, the PARKBENCH committee first suggest using some existing bench-
marks to measure per-node performance, and provide some of their own microbenchmarks for
this purpose as well. The purpose of these uniprocessor microbenchmarks is to characterize the
performance of various aspects of the architecture and compiler system, and obtain some param-
eters that can be used to understand the performance of the kernels and compact applications.
The uniprocessor microbenchmarks include timer calls, arithmetic operations and memory band-
width and latency stressing routines. There are also multiprocessor microbenchmarks that test
communication latency and bandwidth—both point-to-point as well as all-to-all—as well as glo-
bal barrier synchronization. Several of these multiprocessor microbenchmarks are taken from the
earlier Genesis benchmark suite. 

The kernel benchmarks are divided into matrix kernels (multiplication, factorization, transposi-
tion and tridiagonalization), Fourier transform kernels (a large 1-d FFT and a large 3-D FFT),
partial differential equation kernels (a 3-d successive-over-relaxation iterative solver, and the
multigrid kernel from the NAS suite), and others including the conjugate gradient, integer sort
and embarrassingly parallel kernels from the NAS suite, and a paper-and-pencil I/O benchmark.

Compact applications (full but perhaps simplified applications) are intended in the areas of cli-
mate an meteorological modeling, computational fluid dynamics, financial modeling and portfo-
lio optimization, molecular dynamics, plasma physics, quantum chemistry, quantum
chromodynamics and reservoir modeling, among others. Finally, the compiler benchmarks are
intended for people developing High Performance Fortran compilers to test their compiler opti-
mizations, not to evaluate architectures. 

 

A.6 Other Ongoing Efforts

 

SPEC/HPCG: The developers of the widely used SPEC (Standard Performance Evaluation Cor-
poration) suite for uniprocessor benchmarking [SPE89] have teamed up with the developers of
the Perfect Club (PERFormance Evaluation for Cost effective Transformations) Benchmarks for
traditional vector supercomputers [BC+89] to form the SPEC: HPCG (High Performance Com-
puting Group) to develop a suite of benchmarks measuring the performance of systems that
“push the limits of computational technology”, notably multiprocessor systems. 

Many other benchmarking efforts exist. As we can see, most of them so far are for message-pass-
ing computing, though some of these are beginning to provide versions in High Performance For-
tran that can be run on any of the major communication abstraction with the appropriate compiler
support. We can expect the development of more shared address space benchmarks in the future.
Many of the existing suites are also targeted toward scientific computing (the PARKBENCH and
NAS efforts being the most large-scale among these), though there is increasing interest in pro-
ducing benchmarks for other classes of workloads (including commercial and general purpose
time-shared) for parallel machines. Developing benchmarks and workloads that are representa-
tive of real-world parallel computing and are also effectively portable to real machines is a very
difficult problem, and the above are all steps in the right direction. 
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