Parallel Computer Architecture
A Hardware/ Software Approach

David Culler
University of California, Berkeley

Jaswinder Pal Singh
Princeton University

with Anoop Gupta
Stanford University

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel
Computer Architecture; thematerial is(c) Copyright 1997 M organ Kaufmann Publishers. This
material may not be used or distributed for any commercial purpose without the express
written consent of Morgan Kaufmann Publishers. Please note that this material isa draft of
forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changesor alterationsin thefinal edition.

8/28/97 DRAFT: Parallel Computer Architecture

DRAFT: Parallel Computer Architecture 8/28/97

Preface

Morgan Kaufmann ispleased to present material from a preliminary draft of Parallel Computer Architecture; the
material is(c) Copyright 1997 M organ Kaufmann Publishers. Thismaterial may not be used or distributed for any
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this
material isadraft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changes or alterationsin thefinal edition.

Moativation for the Book

Parallel computing isacritical component of the computing technology of the 90s, and it islikely
to have as much impact over the next twenty years as microprocessors have had over the past
twenty. Indeed, the two technologies are closely linked, as the evolution of highly integrated
microprocessors and memory chips is making multiprocessor systems increasingly attractive.
Already multiprocessors represent the high performance end of aimost every segment of the
computing market, from the fastest supercomputers, to departmental compute servers, to theindi-
vidual desktop. In the past, computer vendors employed a range of technologies to provide
increasing performance across their product line. Today, the same state-of-the-art microprocessor
is used throughout. To obtain a significant range of performance, the simplest approach is to
increase the number of processors, and the economies of scale makes this extremely attractive.
Very soon, several processors will fit on asingle chip.

8/29/97

DRAFT: Parallel Computer Architecture 3

Although parallel computing has along and rich academic history, the close coupling with com-
modity technology has fundamentally changed the discipline. The emphasis on radical architec-
tures and exotic technology has given way to quantitative analysis and careful engineering trade-
offs. Our goal in writing this book is to equip designers of the emerging class of multiprocessor
systems, from modestly parallel personal computers to massively parallel supercomputers, with
an understanding of the fundamental architectural issues and the available techniques for
addressing design trade-offs. At the same time, we hope to provide designers of software systems
for these machines with an understanding of the likely directions of architectural evolution and
the forces that will determine the specific path that hardware designs will follow.

The most exciting recent development in parallel computer architecture is the convergence of tra-
ditionally disparate approaches, namely shared-memory, message-passing, SIMD, and dataflow,
on a common machine structure. This is driven partly by common technologica and economic
forces, and partly by a better understanding of parallel software. This convergence allows us to
focus on the overriding architectural issues and to develop a common framework in which to
understand and evaluate architectural trade-offs. Moreover, parallel software has matured to the
point where the popular parallel programming models are available on a wide range of machines
and meaningful benchmarks exists. This maturing of the field makes it possible to undertake a
quantitative, as well as qualitative study of hardware/software interactions. In fact, it demands
such an approach. The book follows a set of issues that are critical to all parallel architectures —
communication latency, communication bandwidth, and coordination of cooperative work -
across the full range of modern designs. It describes the set of techniques available in hardware
and in software to address each issue and explores how the various techniques interact. Case
studies provide a concrete illustration of the general principles and demonstrate specific interac-
tions between mechanisms.

Our final motivation comes from the current lack of an adequate text book for our own courses at
Stanford, Berkeley, and Princeton. Many existing text books cover the material in a cursory fash-
ion, summarizing various architectures and research results, but not analyzing them in depth.
Others focus on specific projects, but fail to recognize the principles that carry over to alternative
approaches. The research reports in the area provide sizable body of empirical data, but it has not
yet been distilled into a coherent picture. By focusing on the salient issues in the context of the
technological convergence, rather than the rich and varied history that brought us to this point,
we hope to provide a deeper and more coherent understanding of the field.

Intended Audience

We believe the subject matter of this book is core material and should be relevant to graduate stu-
dents and practicing engineersin the fields of computer architecture, systems software, and appli-
cations. The relevance for computer architects is obvious, given the growing importance of
multiprocessors. Chip designers must understand what constitutes a viable building block for
multiprocessor systems, while computer system designers must understand how best to utilize
modern microprocessor and memory technology in building multiprocessors.

Systems software, including operating systems, compilers, programming languages, run-time
systems, performance debugging tools, will need to address new issues and will provide new
opportunitiesin parallel computers. Thus, an understanding of the evolution and the forces guid-
ing that evolution is critical. Researchers in compilers and programming languages have

DRAFT: Parallel Computer Architecture 8/29/97

addressed aspects of parallel computing for some time. However, the new convergence with com-
modity technology suggests that these aspects may need to be reexamined and perhaps addressed
in very general terms. The traditional boundaries between hardware, operating system, and user
program are also shifting in the context of parallel computing, where communication, schedul-
ing, sharing, and resource management are intrinsic to the program.

Applications areas, such as computer graphics and multimedia, scientific computing, computer
aided design, decision support and transaction processing, are al likely to see a tremendous
transformation as aresult of the vast computing power available at low cost through parallel com-
puting. However, developing parallel applications that are robust and provide good speed-up
across current and future multiprocessors is a challenging task, and requires a deep understand-
ing of forces driving parallel computers. The book seeks to provide this understanding, but also
to stimulate the exchange between the applications fields and computer architecture, so that bet-
ter architectures can be designed --- those that make the programming task easier and perfor-
mance more robust.

Organization of the Book

The book is organized into twelve chapters. Chapter 1 begins with the motivation why parallel
architectures are inevitable based on technology, architecture, and applications trends. It then
briefly introduces the diverse multiprocessor architectures we find today (shared-memory, mes-
sage-passing, data parallel, dataflow, and systolic), and it shows how the technology and architec-
tural trends tell astrong story of convergencein the field. The convergence does not mean the end
to innovation, but on the contrary, it implies that we will now see atime of rapid progress in the
field, as designers start talking to each other rather than past each other. Given this convergence,
the last portion of the chapter introduces the fundamaental design issues for multiprocessors:
naming, synchronization, latency, and bandwidth. These four issues form an underlying theme
throughout the rest of this book. The chapter ends with a historical perspective, poviding a
glimpse into the diverse and rich history of the field.

Chapter 2 provides a brief introduction to the process of parallel programming and what are the
basic components of popular programming models. It is intended to ensure that the reader has a
clear understanding of hardware/software trade-offs, as well as what aspects of performance can
be addressed through architectural means and what aspects much be addressed either by the com-
piler or the programmer in providing to the hardware awell designed parallel program. The anal-
ogy in sequential computing is that architecture cannot transform an O(n2) algorithm into an
O(nlogn) algorithm, but it can improve the average access time for common memory reference
patterns. The brief discussion of programming issues is not likely to turn you into an expert par-
alel programmer, if you are not already, but it will familiarize you with the issues and what pro-
grams look like in various programming models. Chapter 3 outlines the basic techniques used in
programming for performance and presents a collection of application case studies, that serve as
abasis for quantitative evaluation of design trade-offs throughout the book.

Chapter 4 takes up the challenging task of performing a solid empirical evaluation of design
trade-offs. Architectural evaluation is difficult even for modern uni-processors where we typi-
cally look at variations in pipeline design or memory system design against a fixed set of pro-
grams. In paralel architecture we have many more degrees of freedom to explore, the
interactions between aspects of the design are more profound, the interactions between hardware

8/29/97

DRAFT: Parallel Computer Architecture 5

and software are more significant and of awider scope. In general, we arelooking at performance
as the machine and the program scale. There is no way to scale one without the other example.
Chapter 3 discusses how scaling interacts with various architectural parameters and presents a set
of benchmarks that are used throughout the later chapters.

Chapters 5 and 6 provide a complete understanding of the bus-based multiprocessors, SMPs, that
form the bread-and-butter of modern commercial machines beyond the desktop, and even to
some extent on the desktop. Chapter 5 presents the logical design of “snooping” bus protocols
which ensure that automaticaly replicated datais conherent across multiple caches. This chapter
provides an important discussion of memory consistency models, which allows us to come to
terms with what shared memory really meansto algorithm designers. It discusses the spectrum of
design options and how machines are optimized against typical reference patterns occuring in
user programs and in the operating system. Given this conceptual understanding of SMPs, it
reflects on implications for parallel programming.

Chapter 6 examines the physical design of bus-based multiprocessors. Itdigs down into the engi-
neering issues that arise in supporting modern microprocessors with multilevel caches on modern
busses, which are highly pipelined. Although some of this material is contained in more casual
treatments of multiprocessor architecture, the presentation here provides a very complete under-
standing of the design issues in this regime. It is especialy important because these small-scale
designs form a building block for large-scale designs and because many of the concepts will
reappear later in the book on alarger scale with a broader set of concerns.

Chapter 7 presents the hardware organization and architecture of a range of machines that are
scalable to large or very large configurations. The key organizational concept is that of a network
transaction, analogous to the bus transaction, which is the fundamental primitive for the designs
in Chapters 5 and 6. However, in large scale machines the global information and global arbitra-
tion of small-scale designs is lost. Also, a large number of transactions can be outstanding. We
show how conventional programming models are realized in terms of network transactions and
then study a spectrum of important design points, organized according to the level of direct hard-
ware interpretation of the network transaction, including detailed case studies of important com-
mercial machines.

Chapter 8 puts the results of the previous chapters together to demonstrate how to realize aglobal
shared physical address space with automatic replication on alarge scale. It provides a complete
treatment of directory based cache coherence protocols and hardware design alternatives.

Chapter 9 examines a spectrum of alternatives that push the boundaries of possible hardware/
software trade-offs to obtain higher performance, to reduce hardware complexity, or both. It
looks at relaxed memory consistency models, cache-only memory architectures, and software
based cache coherency. This material is currently in the transitional phase from academic
research to commercial product at the time of writing.

Chapter 10 addresses the design of scable high-performance communication networks, which
underlies al the large scale machines discussed in previous chapters, but was deferred in order to
complete our understanding of the processor, memory system, and network interface design
which drive these networks. The chapter builds a general framework for understanding where
hardware costs, transfer delays, and bandwidth restrictions arise in networks. We then look at a
variety of trade-offs in routing techniques, switch design, and interconnection topology with

DRAFT: Parallel Computer Architecture 8/29/97

respect to these cost-performance metrics. These trade-offs are made concrete through case stud-
ies of recent designs.

Given the foundation established by the first ten chapters, Chapter 11 examines a set of cross-cut-
ting issues involved in tolerating significant communication delays without impeding perfor-
mance. The techniques essentially exploit two basic capabilities: overlapping communication
with useful computation and pipelinng the communication of a volume of data. The simplest of
these are essentially bulk transfers, which pipeline the movement of alarge regular sequence of
data items and often can be off-loaded from the processor. The other techniques attempt to hide
the latency incured in collections of individual loads and stores. Write latencies are hidden by
exploiting weak consistency models, which recognize that ordering is convey by only asmall set
of the accesses to shared memory in a program. Read |atencies are hidden by implicit or explicit
prefetching of data, or by look-ahead techniques in modern dynamically scheduled processors.
The chapter provides a thorough examination of these alternatives, the impact on compilation
techniques, and quantitative evaluation of the effectiveness. Finally, Chapter 12 examines the
trends in technology, architecture, software systems and applications that are likely to shape evo-
lution of thefield.

We believe parallel computer architecture is an exciting core field whose importance is growing;
it has reached a point of maturity that a textbook makes sense. From arich diversity of ideas and
approaches, there is now a dramatic convergence happening in the field. It is time to go beyond
surveying the machine landscape, to an understanding of fundamental design principles. We have
intimately participated in the convergence of thefield; this text arises from this experience of ours
and we hope it conveys some of the excitement that we feel for this dynamic and growing area.

8/29/97

DRAFT: Parallel Computer Architecture 7

DRAFT: Parallel Computer Architecture

8/29/97

CHAPTER 1 INEFOTUCTION ettt e e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeenenennnnnnns 19

IS R 1 011 oo 1 1o o [T RSRR 19
1.2 Why Parallel ArChITECIUIE ooeeceecece ettt st se e e e ne s e snennen 22
2 AN o) o 1o i 1o 1= o 23
27 U= 00 oo |V 1= 010 30
1.2.3 ArChiteCtural TTENUS.cceiueuirieirieiesiee ettt sttt 32
124 SUPEICOMPULEIS. ...ccueeititiieestee st e steesiteestessbeesbessbeesbeesebeesbeesase e sbeesabeesbessabeenseesabeensaesanenne 36
125 SUMIMEIY ..oeiiiiiiciieeteetee ettt sttt b e st be e st e sbe e sab e e sbe e sabeenbe e sateenbeesabeesbaennnenne 38

1.3 Convergence of Parallel ArChiteCtUIES oeiiieeeee e 40
1.3.1 CommuNiCationN ATCHITECIUIEccueeieeeectee ettt st e e st e e sbeseee e sbessteessesssbessreesnree e 40

I T S 7= 1= o AV = 0T PSR 44
1.3.3 MESSAPE-PASSING ..veeeverieiereeierieie ettt sttt sttt st b e st se et bbbt bbb e 50
1.314 CONVEIGENCEccueiueiuearerteseeeres e st s e et et s et b e bt sb e sh e b e b s e e s e s e n e e eseeaeeseebeebenbesnenrenrennens 53
135 DataParallel PrOCESSING......ccooeoiieitrieerierisie sttt sttt ettt be e 56

1.3.6 Other Parallel ArChitECIUIEScecveieeeeeeeieeeeee st sre e e 59
1.3.7 A Generic Parallel ArChItECIUIEcoveeeeeeeeeceee e e 62

1.4 Fundamental DESIGN ISSUES ..ociieeieiieiieiieieec ettt sttt ste e e e e ess e e nestesaesresresresnens 63
1.41 CommuniCation ADSIIACHION.ocuiieeeeeeeee ettt saen 64

1.4.2 Programming Model REQUIFEMENTSoouiiiiiieire et 64
IR B\ 01 oo TP 66
R @ o (=] oo [P 67

1.45 Communication and REPIICALION........c.ooiiiririieeeire e 68
R G = 1 0] 0= Lot PP 69

15 ConCluding REMEIKS ouiiiiiiiietirete et 73
16 REFEIENCES ettt ettt e et et e e e e st e ne e e aeeb e e seenbenbennen 76
L7 EXEICISES tecuiieeeiiieiesietsteseste e teseetese et sae b s e et st e st e s et e st et e st et e e e b et e b e e b e s b e bt b e st e e e Rt b e ne b e e b et retenn 85
CHAPTER 2 Parallel Programscccooiieieciee e 89
P25 A [1o o [0 [o ISR 89
2.2 Parallel Application Case SIUdIES ooviiiirirre e 90
221 Simulating OCEaN CUIMENESccueiueeeeeieeeeeteseste e s e stesrestesseseesseseeseeseesessessessesseseessenses 91
2.2.2 Simulating the EVOlUtion Of GalaXi€Sccccvcivveiiniinieie et sre s 93
2.2.3 Visualizing Complex Scenes using Ray TraCing.........ccceeeeerereeseeseeseeseeesesesesessessenses 94
224 Mining Datafor ASSOCIALIONS.......ccuciuerieieeieeieetesesestes e sresrestesaeseesseeeseeeesessessesressessessenses 94

2.3 The Parall€lization PrOCESS ccceieieieieeieeieie ettt e e eae e sbesae e sneeas 95
231 SLEPSINTNE PrOCESS.....c.iitiiiieieteeete sttt ettt s b e st s se e seene 96
2.3.2 Pardleizing Computation VErSUS Data.........ccccccereeirieinieienieeseesie st 102
2.3.3 Goals of the Parall€lization PrOCESS.......c.coeirirerinerese e eseseeseeeeseeeeeesese e ssesneseens 103

2.4 Parallelization of an EXample Program ccccecceecininie s e e e e sse s e 104
241 A Simple Example: The Equation SOIVer Kernel..........cocoveininnennenseneeeseeseee 104
2.4.2 DECOMPOSITION ...vitiieiteetiie e reeiesee e e et saesae et saesteseessesbeseseeeeneeneeneenessesaessesbesaeseens 105
243 ASSIGNIMENEeuiitietiiteite et ste et e et e e ae et eaeeae et saeebeseeseeeansesee s eneeneeneeneenesaeeaesbesaeseens 110
2.4.4 Orchestration under the Data Parallel Model ..o 111
2.4.5 Orchestration under the Shared Address Space Model ..o 111

9/4/97 DRAFT: Parallel Computer Architecture 9

25
2.6
2.7

CHAPTER 3

31
3.2

3.3

34

3.5

3.6

3.7
38
39
3.10

CHAPTER 4

4.1
4.2

4.3

2.4.6 Orchestration under the Message Passing Model ... 119

ConCluding REMAIKS ..ottt naens 125
= 1= 0= 126
(S (oK =SSR 127
Programming for Performanceccccocvvieiininnn e 131
L1100 [0 ('] o ST 131
Partitioning for PErfOrMAaNCE ..o e 133
3.21 Load Balance and Synchronization Wait Timec.cceceveiireneiienienene e 134
3.2.2 Reducing Inherent COMMUNICALTION.coeieeieeieire et 140
3.2.3 Reducing the EXIFAWWOIK........c.ciiiiieie ettt s 144
3B.2.4 SUIMIMBIY ...ttt ettt sttt ree st e s be st e besae e b e s aeesbeeabeebeeaseeae e s e eaeesesaeeseesanas 144
DataAccess and Communication in a Multi-Memory System ..o 145
3.3.1 A Multiprocessor as an Extended Memory Hierarchyc.ccocveevenevenesescseeeeeenen, 145
3.3.2 Artifactual Communication in the Extended Memory Hierarchycccccccevveveevenennene. 147
Orchestration for PErformanCe ...t 149
3.4.1 ReducingArtifactual COMMUNICELION.........ccoeiriiririiirieeeee e 149
3.4.2 Structuring Communication t0 REAUCE COSt..........curvririririeireereeseese e 156
Performance Factors from the Processors’ PErspective ... vescceseeseeeeee e 161
The Parallel Application Case Studies: AN IN-Depth LOOK ..o 164
1T C 30 A © T~ o OSSP 165
3.6.2 BAMES-HUL......cuiieiiiiiii sttt 170
G JL IR T == (V1 = o PSPPI 175
S A T =AY 3o 179
Implications for Programming MOEIS ..o 182
ConCluding REMAIKS ..ottt naens 188
= 1= 0= 189
(S (oK =SS 191
Workload-Driven Evaluation —........ccccceveivininnieneeseeee e 195
L1100 [0 ('] o RS R 195
Scaling Workloads and MaChiNgS ..o e 198
421 Why WOrry @boUt SCAITNG?........eoueriiiiieieeeeeie ettt s e e se e ne e enens 199
4.2.2 KeY ISSUES TN SCAIING. ... civeuerieeiteieeieseete sttt 202
4.2.3 SCAING MOUEIS.....ccoeieiie ettt st eeneeae e enesaesaesnen 202
424 Scaling WOrkload Parameters..........coi et 208
Evaluating aReal MEChINE ..o 209
4.3.1 Performance Isolation using Microbenchmarks..........cc.cccoeiieiineniencsececeeeceseseees 209
4.3.2 ChooSING WOIKIOAOS.........cceiieieiieiiericieieeee et st s sa e ese e aesnesresnesnens 211
4.3.3 Evauating aFixed-Size MaChine..........ccccevueieieiie s sne 214
4.3.4 Varying MaChINE SIZE.......ccoceiieiiiiiieesiee ettt et 220
435 Choosing Performance MELTICS.......coucuecieieeieciei e st sneenens 220

10

DRAFT: Parallel Computer Architecture 9/4/97

4.4

45

4.6
47
48

CHAPTER 5

51
52

53

54

55

5.6

5.7
58
59
5.10

4.3.6 PreSenting RESUILSc.oiviiiiiirierieerere et 224

Evauating an Architectural Ideaor Tradeoff —ccoocoeirieicic e 225
4.4.1 MUItiproCesSOr SIMUIBLTONc.cueiiiereiieteeeiese ettt 226
4.4.2 Scaling Down Problem and Machine Parametersfor Simulation...........cccccoceeeeenenene 227
4.4.3 Dealing with the Parameter Space: An Example Evaluationcccccooeennienicnennne 230
AAA SUMIMBIY ..eoitiiueiiei et eeesteaee et e seesaeebeshe e beabeasbeeae e beeaeaseeaeeabesaeesaeaasesaeeneesaeensesaeensasaeans 235
Iustrating Workload CharaCterizationcccoecieerinnenreree e 235
451 WOrKload Case SHUIES.ccceieeieeiieeite ettt see st et eebeeee st e e saeeeesaeentesreensesbeenbesaeens 236
452 WOrkload CharaCteriStiCSceirirrrieriiririeieesese et 243
ConCludiNg REMEIKS ...ttt e e et e aeeae e saesbesaeseen 250
REFEIENCES .ot 251
(S (01 =S 253
Shared Memory MUltiproCeSSOrs coceieeierieeneeseenieeee e 259
11 0o 1o oo 259
(0ol 0o 0] 0= (= oo SRR 263
521 The Cache Coherence Problem ... 263
5.2.2 Cache Coherence Through BUS SNOOPING.........cieerieirinirereeieseeieseeieseeesesieseeseseeesienens 266
MEMOIY CONSISLENCY ..vvcveeeeeteriesiestestesieseesteseesae e e e s e e sesressesaestesbesreseestesseseesseneesseseesessessesresseses 272
531 Sequential CONSISEEINCYcovererieereeeeieeee ettt st see st see e eee e e e neese e e nesbessesaesaeeeas 274
5.3.2 Sufficient Conditions for Preserving Sequential CoNSIStENCYccovveeeerieriencncneeene. 276
Design Space for SNooping ProtOCOIS ccoiveirieirieirirrer e 279
54.1 A 3-state (MSl) Write-back Invalidation Protocolcccceeevevevieicieieccecesese e, 280
54.2 A 4-state (MESI) Write-Back Invalidation Protocolcccceeeveveveeicciecececeseceeen, 285
5.4.3 A 4-state (Dragon) Write-back Update ProtoCol...........cccvuveeeirrieeennseeeseseceesenenns 287
Assessing Protocol Design TradeoffS ... e 290
L3R T80 R V1Y 04 1q o= o 292
5.5.2 Impact of Protocol OptimiZatioNS.........cccoeirieirieninenneseee st 296
55.3 Tradeoffsin Cache BIOCK SIZE.........coiiiiiiiiriee e 298
5.5.4 Update-based vs. Invalidation-based ProtOCOIS...........coceveireeneennineenecsieesieesieens 310
Y71 10 114 4 o] o IS 314
5.6.1 Components of a Synchronization EVENtccoceveiiiiie i 315
5.6.2 Roleof User, System Software and Hardware.............cooviereriieneneeeeeee e 316
5.6.3 MULUEl EXCIUSION ...t 317
5.6.4 Point-to-point Event Synchronization............c.ccoeeeie e 328
5.6.5 Global (Barrier) Event Synchronization..............ccoceoeierereienesesee e 330
5.6.6 Synchronization SUMMAEIYcccoeireirieineinieesiee sttt eneneas 334
IMPliCatiONS fOr SOFIWEAIE ..o bbb 335
ConCludiNg REMEIKS ...ttt sttt s e et seesesaesresbesaeseen 341
REFEIEINCES .ot 342
(S (1= 346

9/4/97

DRAFT: Parallel Computer Architecture 11

CHAPTER 6

6.1
6.2
6.3

6.4

6.5

6.6

6.7

6.8
6.9
6.10

Snoop-based Multiprocessor DeSigN —c.eeveveceevee e 355

g T [FTox ' o OSSPSR 355
CorrectNESS REQUITEMENTS ..ottt 356
Base Design: Single-level Cacheswith an AtOMIC BUS ooviiveiiiiinieee e 359
6.3.1 Cache controller @nd tAgScoeoervieriirirerreree bbb 359
6.3.2 ReEPOrting SNOOP FESUIScueueiieiiriiirteerie ettt 360
6.3.3 Dealing With WIteacKs.........coviiiiee s 362
6.3.4 Base OrganiZationcceierererieierieieseeie sttt b et a b aenes 362
6.3.5 NON-atomMiC State TraNSItIONS......ccverveeeerireresese e e e see s esee e seee e e ese e sseenesresseses 363
RS IS = T .2 (o] o 365
I T <o | o o: 366
6.3.8 LivElOCK and Starvation.........cceoveieeeeeirire et e et 367
6.3.9 Implementing AtOmMiC PriMItiVES........cccoueiiiiesice e 367
Multi-level Cache HIErarChieS c.coieiiiiiseses et 369
6.4.1 MaintaiNiNG INCIUSION......couiiiieiiieiee ettt se e e e e s sesaeenesbesee e 370
6.4.2 Propagating transactions for coherence in the hierarchy ... 372
SPIIT-raNSACLION BUS ...o.ecviiciiiecieieerie ettt b bbbt 374
6.5.1 AnExample Split-transaCtion DESIQNcccvceeiieiicese e 375
6.5.2 BusDesign and Request-response MatChingcccccovveieiiinienieseesieseeieceeee e 375
6.5.3 Snoop Results and Conflicting REQUESES...........ccceiirireie et 377
ST A o o L 0o o SRRSO 377
6.5.5 Path 0f 8 CaChE MISS......cciiiiiiiriir e 379
6.5.6 Seriaization and Sequential CONSISIENCYccccvveieririeie e 380
6.5.7 Alternative design ChOICES...........coueiricicice e 382
6.5.8 Putting it together with multi-level caches..........ccoceviiieiice s 384
6.5.9 Supporting Multiple Outstanding Misses from a ProCessor..........cccceeveeveereeiesieeeeennenns 386
Case Studies: SGI Challenge and Sun Enterprise SMPS ..o 387
6.6.1 SGI POWerpath-2 SYSIEM BUScoiuiiiiiiriirieiereeesie et 389
6.6.2 SGI Processor and Memory SUDSYSLEMS.......cc.ciriririnieireeereeseesiese s eseens 392
6.6.3 SGI /O SUDSYSIEMcooiveeiiiciiiiecctcee ettt s s b s se s ne e nesnenes 393
6.6.4 SGI Challenge Memory System PerformanCecocoverieninninseneeseeesee s 395
6.6.5 SUN Gigaplane SYSLEM BUScccciririirieirieieriecreeesieeseees et 396
6.6.6 Sun Processor and Memory SUDSYSIEMcociriirinirieee s 397
6.6.7 SUN I/O SUDSYSIEMcoivceiiceisieecciee sttt bbb a s aese s nesnenen 398
6.6.8 Sun Enterprise Memory System Performancecocvvvverineneneeneeseseeseeeeese e 399
6.6.9 Application PerfOrManCe.........coeueieeeirire et e e sresre e 399
Extending Cache CONEIENCE ovieiecccee e e e 401
6.7.1 Shared-CaChe DESIQNS.......couerieieerieeeeetere ettt sttt st ee st e e e e e e e e e eseesesaeenesteseees 401
6.7.2 Coherencefor Virtually Indexed Caches...........ccooeiiiiiiiiiineieeee e 405
6.7.3 Trandation Lookaside Buffer CONEIrenCe..........coeiiiereie i 407
6.7.4 Cache CONErenCe ON RINGS......cccoeirieieiriere ettt r e sbe e e 409
6.7.5 Scaling Data Bandwidth and Snoop Bandwidthcccoeeviininnincincecees 412
ConCluding REMAIKS ...t 413
L (= 1= 0= SRR 413
EXEICISES 1eoviiieeiiieti ettt sttt sttt sttt st s et s ettt ne b ek ek e ke e R e Re et e ne st ene et e e ntenes 417

12

DRAFT: Parallel Computer Architecture 9/4/97

CHAPTER 7

7.1
7.2

7.3

74

75

7.6

7.7

7.8

7.9

7.10

711
7.12
7.13

CHAPTER 8
8.1

Scalable MUItIPrOCESSOIS ...vvvcveecee e 423

g T [FTex ' o SRS 423
S o= o] 11 SR 426
7.2.1 Bandwidth SCAlINGcovveiieireeeree st s 426
P I (o S o [T oo R 429
A T O oo R 431
A = 01V Lo o 1 oo R 432
7.25 ScalinginaGeneric Parallel ArChiteCtUreccovieviie i 436
Realizing Programming MOGEIS ..ot 437
7.3.1 Primitive NEtWOrK TranSaCtioNS.cc.ccueveieeeeirese e esee e teseeseeseeeeseeeeseeessessessessessens 438
7.3.2 Shared AQAreSS SPACEcceiereeieriereeeeeee et etese e e et testeseeseesee e eseeseesesseesessesseseens 442
7.3.3 MESSAGE PESSING.....cueieeiirieiirieeriee ettt st 444
7.3.4 COMMON ChallENQES.....viiiiieseseeee ettt se e seese e e snesressenneneens 449
7.3.5 Communication architecture deSign SPECE.cccveereireienerer e 451
PhySICAl DIMA ettt ettt ettt 452
741 A CaseStudy: NCUBE/2.......c.oooeeee ettt 454
LGS L Y N ool 456
7.5.1 Case Study: Thinking MachineS CM-5..........ccccciiiiniiin e 458
7.5.2 USer LeVEl HAaNUIErS......coueiieeceeesse ettt s 459
Dedicated MeSSagE PrOCESSING ...ooveeveieerieieniereeieeeeeeetesie st stesteseesee e seeseeee e e e eneesesneenesreseeses 461
7.6.1 CaseStudy: INtEl Paragoncoeerienirireee st 464
7.6.2 Case StUAY: MEKO CS2.....uoiiiiiiieesene sttt st s e 467
Shared Physical ADOrESS SPACE ...ccvvcvicieiecceeeeecee et st s reeneeneere s 470
771 CaseStudy: Cray T3Dcccceoeierieieieeeeeeeee st st teseeseestessesee e enee e eneesessesaessessesaeseeas 472
A A O - Y G | PSR 474
A S TS ¥ (101107 Y OO P TRSPRR 475
Clusters and Networks of WOrkstations —ooeeveeereeineee e 476
7.8.1 CaseStudy: MYrinEt SBUS LANGIcccccveieeeieiineiesesestestese e seeseeseeseeeesesessesresresnesnens 478
7.8.2 Case Study: PCl Memory Channel ... sre e snens 480
Comparison of Communication Performance ccccooeeeiieieiinere e 483
7.9.1 Network Transaction PerfOrmMancCe.........ccoeveerieriesiesiese e seeseee e 483
7.9.2 Shared Address SPace OPEratioNS........cocereereeerieeriee ettt st s 487
7.9.3 Message Passing OPEratiONSccceeeueeereeeeeneseseseseeseessesseseeseesseseesessessessessessessessens 489
7.9.4 Application Level PerformManCe.........cooovereereenee ettt 490
Y71 110 114 4 o] o 1S 495
7.10.1 AlQOrthmS fOr LOCKScuiteieeieeieie ettt e sae b sne e 497
7.10.2 AlQOrithmS fOr BarmierS. ..o et e sbe e ena 499
(@00 1U o [g To l == 107= 4 & P 505
= 1= o= 506
EXEICICES otiietiietisiete ettt ettt et bbbttt e 510
Directory-based Cache Coherenceccccccveeeveevceeveeccieesee e, 513
gl [FTex ' o OSSR 513

9/4/97

DRAFT: Parallel Computer Architecture 13

8.2
8.3

8.4

8.5

8.6

8.7

8.8
8.9

8.10
8.11

8.12
8.13
8.14

CHAPTER 9

9.1
9.2

SCAADIE CACNE CONEIENCE ...ttt et e e et e s ettt e st e s aab e e sabeessreessareeesaseessarees 517

Overview of Directory-Based APProaChes ... 519
8.3.1 Operation of a Simple Directory SCheme.........cccoovirirrineeer e 520
8.3.2 SCAIING .ttt e bbbttt 522
8.3.3 Alternatives for Organizing DIir€CLOMNEScouruerieirieirieerieese e 523
Assessing Directory Protocols and TradeoffS ..o 528
8.4.1 Data Sharing Patterns for DireCtory SChemES.........ccvirieirieeneieneeseesesese e 528
8.4.2 Loca versus RemMOE TraffiC........ooeiireieeeeee e 532
8.4.3 Cache BIOCK SIZ€ EffECtScoiiiiiiieee et 534
Design Challenges for DIirectory ProtOCOIS cocoevieririirinenene ettt 534
8.5. 1 PEITOIMMENCE.........ccoiiiirtieiiert et 535
8.5.2 COITECINESS.......oouiiiriiitirt s e 539
Memory-based Directory Protocols: The SGI Origin System ..o 545
8.6.1 Cache CoNErence ProtOCO!ccvrrrereinirnrere e 545
8.6.2 Dealing With COrreCtNESS ISSUES........coueuiriiirieirierieise et 551
8.6.3 Details Of DIreCtOry SITUCIUIEcveuiieeeirieiirierie et 556
8.6.4 ProtOCOl EXIENSIONS.......ceiuiirtiietiieierieie sttt sttt 556
8.6.5 Overview of Origin2000 HardWare...........cccoeeruereriirinenieiseese e 558
8.6.6 HUD IMPIEMENLALION......c.eieiieiiieiee bbb 560
8.6.7 Performance CharaCteriStiCS. e 563
Cache-based Directory Protocols: The Sequent NUMA-Q oo 566
8.7.1 Cache Conerence ProtOCO ... e 567
8.7.2 Dealing With COrreCtNESS ISSUES........couiieeieieeeieieee ettt 574
8.7.3 Protocol EXIENSIONS........cccucuiiiiiici it e s 576
8.7.4 Overview of NUMA-Q HardWare..........ccooeeeeiiiie ettt e s 576
8.7.5 Protocol Interactions with SMP NOCE...........ccccviiiiiiiciicccis 578
8.7.6 1Q-Link IMPlemMENtELiON........cceiuiiiirieeseee ettt 580
8.7.7 Performance CharaCteriStiCS........oiuiiiirieeie et 582
8.7.8 Comparison Case Study: The HAL S1 MUItiPrOCESSOXccovveuerieerieirienenienieeeseeieneene 583
Performance Parameters and Protocol Performance ... 584
Y1 0] 114 1 o] o IR 587
8.9.1 Performance of Synchronization Algorithms..........ccceereiineineineseree e 588
8.9.2 Supporting AtOMIC PriMItIVESccoviirieiieeeee e 589
Implications for Parallel SOftWare ..o 589
AGVENCE TOPICS .ecveeeieieeie sttt sttt et st b et e et bt bbbt b e ettt et e 591
8.11.1 Reducing Directory Storage Overhead............cccvvvvieiiiiiiisese e 591
8.11.2 HierarchiCal CONEIENCEccuvuiieieireriete e 595
ConCluding REMEIKS ...ttt ettt ettt ae b e aeenesbe e e 603
REFEIENCES ..ttt r e r e s r e seer e ne s e nr e nr e s e nr e rene s 603
EXEICISES ettt et b bbb e bt e bt a bt et 606
Hardware-Software Tradeoffs ccoooviiiiieie 613
INEFOTUCTION .ottt bbb e bbb bt sa bt se s sb et e e sbeneas 613
Relaxed Memory Consistency MOEIS ... 615

14

DRAFT: Parallel Computer Architecture 9/4/97

9.3

94

9.5

9.6
9.7

9.8
9.9
9.10

CHAPTER 10

101

10.2

10.3

104

105

9.2 1 SysStem SPECITICALTIONS.....c.civieetereeie ettt b e s 620

9.2.2 The Programming INTEITACEccoveiiiirieere e 626
9.2.3 Trandation MEChANISMS.........ccuiiiiiiiiece ettt s e st s saeeae s be e besreens 629
9.2.4 Consistency Modelsin Real SYSIEMS.........coviiiininnenee e 629
Overcoming CapacCity LIMItaliONS ccccveieieeiecerice e re e 630
LS R R 1= 1 (=Y O o == TSR 631
9.3.2 Cache-only Memory ArchiteCtureS (COMA).......ooiiiiirere e 631
ReAUCING HArAWEAIE COSE oveieiiiieeiieres et 635
9.4.1 Hardware Access Control with a Decoupled ASSISt......ccovveveviiieierecce e 636
9.4.2 Access Control through Code INStrumentation.............ccoevevevevesereececesceee e 636
9.4.3 Page-based Access Control: Shared Virtual MemOory.........ccccoceveveveeeeinieeieeesese e 638
9.4.4 Access Control through Language and Compiler SUPPOIt..........cccveeveererenierenienenenens 648
Putting it All Together: A Taxonomy and SIMPIe-COMA ..o 650
9.5.1 Putting it All Together: Simple-COMA and Stache.........cccovvvererereeeceeeeeeese e 652
Implications for Parallel SOftWare ..o 653
AGVENCE TOPICS oottt sttt ettt b et b e b e bbbt e et b e b b b et benans 656
9.7.1 Flexibility and Address Constraints in CC-NUMA Systems........cccccevveveevecveeesesennennns 656
9.7.2 Implementing Relaxed Memory Consistency in SOftWare..........ccvveevereveienienesenenenens 657
ConCludiNg REMEIKS ...ttt et s e e e s aesaeeaesbesaesnen 662
REFEIBNCES bbbt ne e et bbbt bbb s 663
EXEICISES oottt ettt et ettt s he et s he e e b e eae e beeaa e beeabeebeeabeereeareeheetesaeeresaeas 668
Interconnection Network Design —ooeieeecie v 675
INEFOAUCTION ettt ettt e s b et e e aae b e easeebeeaseebeensesaeensesaeensesanas 675
10.1.1 BaSIC AEfINItIONS.......ceiuiiriiiiiisiie ettt 677
10.1.2 Basic communiCation PErfONMANCE.........coueireeeeire ettt see s 680
Organizational SIFUCTUIE o.ecuieeiiieceeriee ettt ekttt b e b eneneas 688
FO.2.1 LINKS...uiiiiiteeeieieeite ettt ettt ettt et et e e re e aesbe e besaeesbesbeesbeeaaesbeeaseabeesseeseensesaeensesreennesaeas 689
O V] (o 1= SRR 691
10.2.3 NEWOTK INTEITACEScviciieticecte ettt et e b e s aeenresaeesreeneas 692
INterconneCtion TOPOIOGIES ...cueiiiiiiieiesiee ettt st st e se e a e aeere e enesre e es 692
10.3.1 Fully cONNECLE NEEWOTKocuiieieeieee ettt se e e 693
10.3.2 Lin@ar @rrayS @0 FNQS.cceeuereereerieneereeeeeeeeeeeesaesaestesteseeseessessessessensseesessessessessesseses 693
10.3.3 Multidimensional MeShES aNd tOFcceciiieiiiiee e 694
O B R I (= SRR 696
O ST =10 1= 4 1= SR 697
10.3.6 HYPEICUDES.......ceeeee ettt sttt eb e ene b e e 701
Evauating Design Trade-offsin Network TOpology — ..ccceeveevereresenieseseeseesee e 702
L0 U g or=o =0 [R (= o 1osY A 703
10.4.2 LatenCy UNEr [080..........ccceciieiiieesesieeeee ettt e e r e ne b sre e 707
010111 o 711
10.5.1 ROULING MECNANISIMS.......ciuiuiiiiniriiieiesiees ettt bbbt 711
10.5.2 DeterminiStiC ROULINGcoviireiirieeseseeeeee e stese st te st e saesee e see e esessessesssssesseses 713
10.5.3 DEAAIOCK FrEEUOMc.viivveticeeecte ettt ettt sttt et e are et e eareebe e e saeennesaeesresneas 713

9/4/97

DRAFT: Parallel Computer Architecture 15

10.6

10.7

10.8

10.9
10.10
10.11

CHAPTER 11

111
11.2

11.3

114

115

11.6

10.5.4 VirtUal ChanNEIS....coocveeieeei ettt ettt e e et e s ettt s s e e s st et s sanreessseessabeessssseesaseessareesan 716

10.5.5 UpP*-DOWN* ROULING ...coveueieiieierietereetisieie sttt st st seebe s ebesas e sa e st sne e snenens 717
10.5.6 TUIN-MOJE] ROULINGcoviietirieierietenietesiee sttt st st sb et 719
10.5.7 AdaptivVe ROULING.......coeeiieeiireeie ettt st st s b e sttt sbe e 721
T (o L=< T o S 723
0 GT0 R = o ST TTRTTRN 723
10.6.2 Internal Dat@Pathcceiuiieieeeeee e et eae s 723
10.6.3 Channel BUFFEIS.......ccuiiiiciiceceee ettt st st sre e saeeaesae e tesanens 725
10.6.4 OULPUE SCNEAUIINGcveeeeee ettt ettt eaesaesne e neas 728
10.6.5 Stacked DIimMENSION SWILTCNESccoui ettt sanns 730
FIOW CONMEIOL ettt st e et e st e et e sbe et e saeesbesaeesbeennesaeentesseans 731
10.7.1 Parallel Computer Networks vs. LANS and WANS.......cccce i 731
10.7.2 Link-level fIOW CONTOLooveirieirieisiee ettt 733
10.7.3 ENd-to-end flOW CONIOLcoveirieirieisiecsiecsecs ettt 736
(0= TS SIS (o 1= RSP 737
10.8.1 Cray T3D NEIWOIKc.ceirieuirieierieierieti sttt b e st st e b e b e bbb 737
10.8.2 IBM SP-1, SP-2 NEIWOIKeccvierieitiiie it cee et st e et e e steereeseessesaeesreseesaeenesaeebesanens 739
10.8.3 Scalable Coherent INtErCONMNECE........c.coveeeerireees et sne e nes 741
10.8.4 SGI Origin NEIWOTKc.coveuirieiirieiirieirieere sttt sbe e 743
10.8.5 MYTiCOM NEIWOIK ...veviiesiesiiieiesieeeeees et see e ste e te e sae e eaenae e e e eseeseeseesessessnssenss 744
ConCluding REMAIKS ..ottt naens 745
REFEIENCES ..ottt st st e et e s be e besbeenbesbeenbesaeesbesaeesaeenaesbeentesseans 745
EXEICISES oottt et et sttt et e e beebe e beeae e be et e areeneesaeeneesteenrenreans 749
Latency TOIEranCe oooceeecee e e 751
1o [N 1) o SRRSO 751
Overview of LatenCy TOIEraNCE coceieiiiieie ettt st sttt e e se e reene e 754
11.2.1 Latency Tolerance and the Communication Pipeline............ccoerererenennneeieeeeeeeeee 756
A Y o] o (0 o 1= J SRR 757
11.2.3 Fundamental Requirements, Benefits and Limitations.............ccocevereienenenncnicneeee, 760
Latency Tolerance in EXplicit MeSSage Passing cccoevrernienineneeieniee st 766
11.3.1 Structure of COMMUNICALIONcuevieirieirieiseese sttt et e st e stesesreneas 766
11.3.2 BIOCK D@Ata TranSfr.....ccceieeviieeierieie sttt sttt sttt et 767
11.3.3 PreCOMIMUNICALION.c.ceuiietireeeerieresietesiesestesestesestesessesessesesseseeteseesessesessesessesessenessensesenens 767
11.3.4 Proceeding Past Communication and Multithreading...........cccvevvneevninnnsensensenens 769
Latency Tolerancein a Shared AddreSS SPace ooccoeeeeeieiinere e 770
11.4.1 Structure of COMMUNICALIONceeiviiieiieiee sttt e esre e e sreeeesaeesaesaeesbesanens 770
Block Data Transfer in a Shared AddreSsS SPace cccveeveieceve e 771
11.5.1 Techniques and MEChANISMS.........covieririeerere et 771
11.5.2 Policy Issues and TradeoffS........coeoeerieieere e e 772
11.5.3 PerformanCe BENEFILS.........cooui ittt 774
Proceeding Past Long-latency Eventsin a Shared Address Space ccovceveveeeveeneereeeeeseneenen, 780
11.6.1 Proceeding Past WIITES.........cccieiieiciceeeces st sttt renns 781
11.6.2 Proceeding Past REAAS...........ccuiririeiieisec ettt sttt et 785

16

DRAFT: Parallel Computer Architecture 9/4/97

11.7

11.8

11.9
11.10
1111
11.12

CHAPTER 12

121

12.2

12.3

APPENDIX A

Al
A2
A3
A4
A5
A.6

11.6.3 IMPIEMENLALION ISSUES........eeieiiriiiriirieier ettt 791

L1164 SUMMEBIY ..ottt st a b bt a e r R se e se e e e e e e e e e e eaeer e s s e nneerenne s 793
Precommunication in a Shared AddreSS SPaCe ccvceceveienece s 793
11.7.1 Shared Address Space With No Caching of Shared Data..........cccoceeevevenennenenennennes 794
11.7.2 Cache-coherent Shared AAreSS SPaCE.......cooeerererinere e 795
11.7.3 Performance BENEFITScoiiiiiiiee e s 807
11.7.4 IMPlEMENLELION ISSUES........eiuiiieieereeieie ettt ettt sttt st e se e e e e nessesaeenesreseees 811
L11.7.5 SUMMAIY c.ocviietiiieeieieeisieisi ettt st se st s s tesestesesse e s seaese e sessesesbesesbe e sbeneeseensenens 812
Multithreading in @ Shared AdAreSS SPACE ...ovveiriririire e 813
11.8.1 Techniques and MEChANISIMS..........cceiierieieiceeecer et rere e 814
11.8.2 Performance BENEMiLScuriiriiiieiieerie st 825
11.8.3 Implementation Issues for the Blocked SChemME ... 828
11.8.4 Implementation Issuesfor the Interleaved Scheme..........ccococeie e 830
11.8.5 Integrating Multithreading with Multiple-1Ssue Processors.........ccooeveveveereeeeieeesrennenns 833
LOCKUP-free CaChe DESIGN ..oouiieiiieiie ettt sttt e et b e ene b e e 835
(0000 11 o [g To [T == 1074 &S 838
= 1= 0= 839
(S (0K S 842
FULUrE DITECLIONS ...veeeveceeecieecieeie et 849
Technology and ArChItECIUIE ...t 850
12.1.1 EVOIULIONAIY SCENAMOcviuiriiieiiieiesie ettt bbbttt 851
12.1.2 HitliNG @Wall ..o bbb 854
12.1.3 Potential BreaKthroUgRS..........cocoiiiirieinee e 857
Applications and SyStem SOFtWAIE cvceeeeecere e 866
I T Y o] U1 1T o 867
12.2.2 HitiNG @Wall ..ot 871
12.2.3 Potential Breakthroughs.............ooeoieieeee e 871
= 1= 0= 873
Parallel Benchmark SUItES coovveiie e 875
SCALBPACK .ottt bbb e e e e bbbt bbb 876
1 TSRS 876
SPLASH bt e et b ettt b e ettt e e 877
NAS Parallel BENChMArKS cooiiiie et sr e 877
L =] =N 1 SR 878
(0197 g ®aTo (o1l alo [i o] o ¢S 879

9/4/97

DRAFT: Parallel Computer Architecture 17

18

DRAFT: Parallel Computer Architecture

9/4/97

Introduction

CHAPTER 1

| ntroduction

Morgan Kaufmann ispleased to present material from a preliminary draft of Parallel Computer Architecture; the
material is(c) Copyright 1996 Morgan Kaufmann Publishers. Thismaterial may not be used or distributed for any
commercial purpose without the expresswritten consent of Morgan Kaufmann Publishers. Please note that this
material isadraft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changes or alterationsin thefinal edition.

11

I ntroduction

We have enjoyed an explosive growth in performance and capability of computer systems for
over a decade. The theme of this dramatic success story is the advance of the underlying VLS
technology, which allows larger and larger numbers of components to fit on a chip and clock
rates to increase. The plot is one of computer architecture, which translates the raw potential of
the technology into greater performance and expanded capability of the computer system. The
leading character is parallelism. A larger volume of resources means that more operations can be
done at once, in paralel. Parallel computer architecture is about organizing these resources so
that they work well together. Computers of all types have harnessed parallelism more and more
effectively to gain performance from the raw technology, and the level at which paralelism is
exIploited continues to rise. The other key character is storage. The data that is operated on at an
ever faster rate must be held somewhere in the machine. Thus, the story of parallel processing is
deeply intertwined with data locality and communication. The computer architect must sort out

9/10/97

DRAFT: Parallel Computer Architecture 19

Introduction

these changing relationships to design the various levels of a computer system so as to maximize
performance and programmability within the limits imposed by technology and cost at any par-
ticular time.

Parallelism is a fascinating perspective from which to understand computer architecture, because
it appliesat al levels of design, it interacts with essentialy all other architectural concepts, and it
presents a unique dependence on the underlying technology. In particular, the basic issues of
locality, bandwidth, latency, and synchronization arise at many levels of the design of parallel
computer systems. The trade-offs must be resolved in the context of real application workloads.

Parallel computer architecture, like any other aspect of design, involves elements of form and
function. These elements are captured nicely in the following definitionAGo89].

A parallel computer is a collection of processing elements that cooperate and communicate
to solve large problems fast.

However, this ssimple definition raises many questions. How large a collection are we talking
about? How powerful are the individual processing elements and can the number be increased in
a straight-forward manner? How do they cooperate and communicate? How are data transmitted
between processors, what sort of interconnection is provided, and what operations are available
to sequence the actions carried out on different processors? What are the primitive abstractions
that the hardware and software provide to the programmer? And finally, how does it al trandate
into performance? As we begin to answer these questions, we will see that small, moderate, and
very large collections of processing elements each have important roles to fill in modern comput-
ing. Thus, it isimportant to understand parallel machine design across the scale, from the small
to the very large. There are design issues that apply throughout the scale of parallelism, and oth-
ersthat are most germane to a particular regime, such as within a chip, within abox, or on avery
large machine. It is safe to say that parallel machines occupy a rich and diverse design space.
This diversity makes the area exciting, but also means that it is important that we develop a clear
framework in which to understand the many design alternatives.

Paralel architectureisitself arapidly changing area. Historically, parallel machines have demon-
strated innovative organizational structures, often tied to particular programing models, as archi-
tects sought to obtain the ultimate in performance out of a given technology. In many cases,
radical organizations were justified on the grounds that advances in the base technology would
eventually run out of steam. These dire predictions appear to have been overstated, as logic den-
sities and switching speeds have continued to improve and more modest parallelism has been
employed at lower levels to sustain continued improvement in processor performance. Nonethe-
less, application demand for computational performance continues to outpace what individual
processors can deliver, and multiprocessor systems occupy an increasingly important place in
mainstream computing. What has changed is the novelty of these parallel architectures. Even
large-scale parallel machines today are built out of the same basic components as workstations
and personal computers. They are subject to the same engineering principles and cost-perfor-
mance trade-offs. Moreover, to yield the utmost in performance, a parallel machine must extract
the full performance potential of its individual components. Thus, an understanding of modern
parallel architectures must include an in-depth treatment of engineering trade-offs, not just a
descriptive taxonomy of possible machine structures.

Parallel architectures will play an increasingly centra role in information processing. This view
is based not so much on the assumption that individual processor performance will soon reach a

20

DRAFT: Parallel Computer Architecture 9/10/97

Introduction

plateau, but rather on the estimation that the next level of system design, the multiprocessor level,
will become increasingly attractive with increases in chip density. The goal of this book is to
articulate the principles of computer design at the multiprocessor level. We examine the design
issues present for each of the system components — memory systems, processors, and networks —
and the relationships between these components. A key aspect is understanding the division of
responsibilities between hardware and software in evolving paralel machines. Understanding
this division, requires familiarity with the requirements that parallel programs place on the
machine and the interaction of machine design and the practice of parallel programming.

The process of learning computer architecture is frequently likened to peeling an onion, and this
analogy is even more appropriate for parallel computer architecture. At each level of understand-
ing we find a complete whole with many interacting facets, including the structure of the
machine, the abstractions it presents, the technology it rests upon, the software that exercises it,
and the models that describe its performance. However, if we dig deeper into any of these facets
we discover another whole layer of design and a new set of interactions. The wholistic, many
level nature of parallel computer architecture makes the field challenging to learn and challeng-
ing to present. Something of the layer by layer understanding is unavoidable.

This introductory chapter presents the ‘outer skin’ of parallel computer architecture. It first out-
lines the reasons why we expect parallel machine design to become pervasive from desktop
machines to supercomputers. We look at the technological, architectural, and economic trends
that have led to the current state of computer architecture and that provide the basis for anticipat-
ing future parallel architectures. Section 1.2 focuses on the forces that have brought about the
dramatic rate of processor performance advance and the restructuring of the entire computing
industry around commaodity microprocessors. These forces include the insatiable application
demand for computing power, the continued improvements in the density and level of integration
inVLSI chips, and the utilization of parallelism at higher and higher levels of the architecture.

We then take a quick look at the spectrum of important architectural styles which give the field
such arich history and contribute to the modern understanding of parallel machines. Within this
diversity of design, a common set of design principles and trade-offs arise, driven by the same
advances in the underlying technology. These forces are rapidly leading to a convergence in the
field, which forms the emphasis of this book. Section 1.3 surveys traditional parallel machines,
including shared-memory, message-passing, single-instruction-multiple-data, systolic arrays,
and dataflow, and illustrates the different ways that they address common architectural issues.
The discussion illustrates the dependence of parallel architecture on the underlying technology
and, more importantly, demonstrates the convergence that has come about with the dominance of
Mi Croprocessors.

Building on this convergence, in Section 1.4 we examine the fundamental design issues that cut
across parallel machines: what can be named at the machine level as a basis for communication
and coordination, what is the latency or time required to perform these operations, and what is
the bandwidth or overall rate at which they can be performed. This shift from conceptual struc-
ture to performance components provides a framework for quantitative, rather than merely quali-
tative, study of parallel computer architecture.

With this initial, broad understanding of parallel computer architecture in place, the following
chapters dig deeper into its technical substance. Chapter 2 delves into the structure and require-
ments of parallel programs to provide a basis for understanding the interaction between parallel
architecture and applications. Chapter 3 builds a framework for evaluating design decisions in

9/10/97

DRAFT: Parallel Computer Architecture 21

Introduction

12

terms of application reguirements and performance measurements. Chapter 4 is a complete study
of parallel computer architecture at the limited scale that is widely employed in commercial mul-
tiprocessors — a few processors to a few tens of processors. The concepts and structures intro-
duced at this scale form the building blocks for more aggressive large scale designs presented
over the next five chapters.

Why Parallel Architecture

Computer architecture, technology, and applications evolve together and have very strong inter-
actions. Parallel computer architecture is no exception. A new dimension is added to the design
space — the number of processors — and the design is even more strongly driven by the demand
for performance at acceptable cost. Whatever the performance of a single processor at a given
time, higher performance can, in principle, be achieved by utilizing many such processors. How
much additional performance is gained and at what additional cost depends on a number of fac-
tors, which we will explore throughout the book.

To better understand this interaction, let us consider the performance characteristics of the pro-
cessor building blocks. Figure 1-1% illustrates the growth in processor performance over time for
several classes of computerfHeJo91]. The dashed lines represent a naive extrapolation of the
trends. Although one should be careful in drawing sharp quantitative conclusions from such lim-
ited data, the figure suggests several valuable observations, discussed bel ow.

First, the performance of the highly integrated, single-chip CMOS microprocessor is steadily
increasing and is surpassing the larger, more expensive alternatives. Microprocessor performance
has been improving at arate of more than 50% per year. The advantages of using small, inexpen-
sive, low power, mass produced processors as the building blocks for computer systems with
many processors are intuitively clear. However, until recently the performance of the processor
best suited to parallel architecture was far behind that of the fastest single processor system. This
is no longer so. Although parallel machines have been built at various scales since the earliest
days of computing, the approach is more viable today than ever before, because the basic proces-
sor building block is better suited to the job.

The second and perhaps more fundamental observation is that change, even dramatic change, is
the norm in computer architecture. The continuing process of change has profound implications
for the study of computer architecture, because we need to understand not only how things are,
but how they might evolve, and why. Change is one of the key challenges in writing this book,
and one of the key motivations. Parallel computer architecture has matured to the point where it
needs to be studied from a basis of engineering principles and quantitative evaluation of perfor-
mance and cost. These are rooted in abody of facts, measurements, and designs of real machines.

1. Thefigureisdrawn from an influential 1991 paper that sought to explain the dramatic changes
taking place in the computing industry[HeJo91] The metric of performance is a bit tricky when
reaching across such a range of time and market segment. The study draws data from general
purpose benchmarks, such as the SPEC benchmark that is widely used to assess performance on
technical computing applications|HePa90]. After publication, microprocessors continued to track
the prediction, while mainframes and supercomputers went through tremendous crises and
emerged using multiple CMOS microprocessors in their market niche.

22

DRAFT: Parallel Computer Architecture 9/10/97

Why Parallel Architecture

Mainframes
Microprocessors

Minicomputers

0.1
TIIIIIII|||||||||||||||||||||5||||||
1965 1970 1975 1980 1985 1990 1995

Figure 1-1 Performance trends over time of micro, mini, mainframe and supercomputer processors.[HeJo91]

Performance of microprocessors has been increasing at a rate of nearly 50% per year since the mid 80's. More tra-
ditional mainframe and supercomputer performance has been increasing at a rate of roughly 25% per year. As a
result we are seeing the processor that is best suited to parallel architecture become the performance [eader as well.

121

Unfortunately, the existing data and designs are necessarily frozen in time, and will become
dated as the field progresses. We have elected to present hard data and examine real machines
throughout the book in the form of a “late 1990s” technological snapshot in order to retain this
grounding. We strongly believe that the methods of evaluation underlying the analysis of con-
crete design trade-offs transcend the chronological and technological reference point of the book.

The“late 1990s" happens to be a particularly interesting snapshot, because we are in the midst of
a dramatic technological realignment as the single-chip microprocessor is poised to dominate
every sector of computing, and as parallel computing takes hold in many areas of mainstream
computing. Of course, the prevalence of change suggests that one should be cautious in extrapo-
lating toward the future. In the remainder of this section, we examine more deeply the forces and
trends that are giving parallel architectures an increasingly important role throughout the com-
puting field and pushing parallel computing into the mainstream. We look first at the application
demand for increased performance and then at the underlying technological and architectural
trends that strive to meet these demands. We see that parallelism is inherently attractive as com-
puters become more highly integrated, and that it is being exploited at increasingly high levels of
the design. Finally, we look at the role of parallelism in the machines at the very high end of the
performance spectrum.

Application Trends

The demand for ever greater application performanceis afamiliar feature of every aspect of com-
puting. Advances in hardware capability enable new application functionality, which grows in

9/10/97

DRAFT: Parallel Computer Architecture 23

Introduction

significance and places even greater demands on the architecture, and so on. This cycle drives the
tremendous ongoing design, engineering, and manufacturing effort underlying the sustained
exponential performance increase in microprocessor performance. It drives parallel architecture
even harder, since parallel architecture focuses on the most demanding of these applications.
With a 50% annual improvement in processor performance, a parallel machine of a hundred pro-
cessors can be viewed as providing to applications the computing power that will be widely avail-
able ten years in the future, whereas a thousand processors reflects nearly a twenty year horizon.

Application demand also leads computer vendors to provide a range of models with increasing
performance and capacity at progressively increased cost. The largest volume of machines and
greatest number of users are at the low end, whereas the most demanding applications are served
by the high end. One effect of this “platform pyramid” is that the pressure for increased perfor-
mance is greatest at the high-end and is exerted by an important minority of the applications.
Prior to the microprocessor era, greater performance was obtained through exotic circuit technol -
ogies and machine organizations. Today, to obtain performance significantly greater than the
state-of -the-art microprocessor, the primary option is multiple processors, and the most demand-
ing applications are written as parallel programs. Thus, parallel architectures and parallel appli-
cations are subject to the most acute demands for greater performance.

A key reference point for both the architect and the application developer is how the use of paral-
Ielism improves the performance of the application. We may define the speedup on p processors
as

Performance(p processors)
Performance(1 processors)

Speedup(p processors) = (EQ 1.1)

For asingle, fixed problem, the performance of the machine on the problem is simply the recipro-
cal of the time to complete the problem, so we have the following important special case:

Time(1 processor)
Time(p processors) -

Speedupyiyeq problem(p processors) = (EQ 1.2)

Scientific and Engineering Computing

The direct reliance on increasing levels of performance is well established in a number of
endeavors, but is perhaps most apparent in the field of computational science and engineering.
Basically, computers are used to simulate physical phenomenathat are impossible or very costly
to observe through empirical means. Typical examples include modeling global climate change
over long periods, the evolution of galaxies, the atomic structure of materials, the efficiency of
combustion with an engine, the flow of air over surfaces of vehicles, the damage due to impacts,
and the behavior of microscopic electronic devices. Computational modeling alows in-depth
analyses to be performed cheaply on hypothetical designs through computer simulation. A direct
correspondence can be drawn between levels of computational performance and the problems
that can be studied through simulation. Figure 1-2 summarizes the 1993 findings of the Commit-
tee on Physical, Mathematical, and Engineering Sciences of the federal Office of Science and
Technology Policy[OST93]. It indicates the computational rate and storage capacity required to
tackle a number of important science and engineering problems. Also noted is the year in which
this capability was forecasted to be available. Even with dramatic increases in processor perfor-
mance, very large parallel architectures are needed to address these problems in the near future.
Some years further down the road, new grand challenges will be in view.

24

DRAFT: Parallel Computer Architecture 9/10/97

Why Parallel Architecture

Storage Requirement

1 GB

Grand Challenge Problems

| Human Genome

I
1TB | Fluid Turbulence I
— I Vehicle Dynamics
Ocean Circulation |
1 B | Viscous Fluid Dyn's |
00 GB_ | Superconductor Mod. I
I_QCD, Vision .
10 GB_] Structural
Vehicle Biology
Signature Pharmaceutical Design
72 hour
Weather
100 MB 48 Hour 3D Plasma
10 MB_ 2D Oil Resevoir
Airfoil Modeling
I 1 I T 1
100 Mflops 1 Gflops 10 Gflops 100 Gflops 1Tflops

Computational Performance Requirement

Figure 1-2 Grand Challenge Application Requirements

A collection of important scientific and engineering problems are positioned in a space defined by computational
performance and storage capacity. Given the exponential growth rate of performance and capacity, both of these
axes map directly to time. In the upper right corner appears some of the Grand Challenge applications identified by
the U.S. High Performance Computing and Communications program.

Parallel architectures have become the mainstay of scientific computing, including physics,
chemistry, material science, biology, astronomy, earth sciences, and others. The engineering
application of these tools for modeling physical phenomenais now essential to many industries,
including petroleum (reservoir modeling), automotive (crash ssimulation, drag analysis, combus-
tion efficiency), aeronautics (airflow analysis, engine efficiency, structural mechanics, electro-
magnetism), pharmaceuticals (molecular modeling), and others. In amost al of these
applications, there is alarge demand for visualization of the results, which isitself a demanding
application amenable to parallel computing.

The visualization component has brought the traditional areas of scientific and engineering com-
puting closer to the entertainment industry. In 1995, the first full-length computer-animated
motion picture, Toy Story, was produced on a parallel computer system composed of hundreds of
Sun workstations. This application was finally possible because the underlying technology and
architecture crossed three key thresholds: the cost of computing dropped to where the rendering
could be accomplished within the budget typically associated with a feature film, while the per-
formance of the individual processors and the scale of parallelism rose to where it could be
accomplished in a reasonable amount of time (several months on several hundred processors).

9/10/97

DRAFT: Parallel Computer Architecture 25

Introduction

Each science and engineering applications has an analogous threshold of computing capacity and
cost at which it becomes viable.

Let us take an example from the Grand Challenge program to help understand the strong interac-
tion between applications, architecture, and technology in the context of parallel machines. A
1995 study[INNIE] examined the effectiveness of awide range of parallel machines on a variety
of applications, including a molecular dynamics package, AMBER (Assisted Model Building
through Energy Refinement). AMBER is widely used to simulate the motion of large biological
models such as proteins and DNA, which consist of sequences of residues (amino acids and
nucleic acids, respectively) each composed of individual atoms. The code was developed on Cray
vector supercomputers, which employ custom ECL-based processors, large expensive SRAM
memories, instead of caches, and machine instructions that perform arithmetic or data movement
on a sequence, or vector, of data values. Figure 1-3 shows the speedup obtained on three versions
of this code on a 128-processor microprocessor-based machine - the Intel Paragon, described
later. The particular test problem involves the smulation of a protein solvated by water. This test
consisted of 99 amino acids and 3,375 water molecules for approximately 11,000 atoms.

The initia paralelization of the code (vers. 8/94) resulted in good speedup for small configura-
tions, but poor speedup on larger configurations. A modest effort to improve the balance of work
done by each processor, using techniques we discuss in Chapter 2, improved the scaling of the
application significantly (vers. 9/94). An additional effort to optimize communication produced a
highly scalable version(12/94). This 128 processor version achieved a performance of 406
MFLOPS; the best previously achieved was 145 MFLOPS on a Cray C90 vector processor. The
same application on amore efficient parallel architecture, the Cray T3D, achieved 891 MFLOPS
on 128 processors. This sort of “learning curve” is quitetypical in the parallelization of important
applications, as is the interaction between application and architecture. The application writer
typically studies the application to understand the demands it places on the available architec-
tures and how to improve its performance on a given set of machines. The architect may study
these demands as well in order to understand how to make the machine more effective on agiven
set of applications. Ideally, the end user of the application enjoys the benefits of both efforts.

The demand for ever increasing performance is a natural consegquence of the modeling activity.
For example, in electronic CAD as the number of devices on the chip increases, there is obvi-
ously more to simulate. In addition, the increasing complexity of the design requires that more
test vectors be used and, because higher level functionality is incorporated into the chip, each of
these tests must run for alarger number of clock cycles. Furthermore, an increasing level of con-
fidence is required, because the cost of fabrication is so great. The cumulative effect is that the
computational demand for the design verification of each new generation isincreasing at an even
faster rate than the performance of the microprocessors themselves.

Commercial Computing

Commercial computing has also cometo rely on parallel architectures for its high-end. Although
the scale of parallelism istypically not as large as in scientific computing, the use of parallelism
is even more wide-spread. Multiprocessors have provided the high-end of the commercial com-
puting market since the mid-60s. In this arena, computer system speed and capacity trandate
directly into the scale of business that can be supported by the system. The relationship between
performance and scale of business enterprise is clearly articulated in the on-line transaction pro-
cessing (OLTP) benchmarks sponsored by the Transaction Processing Performance Council

26

DRAFT: Parallel Computer Architecture 9/10/97

Why Parallel Architecture

70
—A—Vers. 12/94
60 —O—Vers. 9/94
—O—Vers. 8/94
50
g 40
©
Q
]
& 30
20
10
0
0 50 100 150

Processors

Figure 1-3 Speedup on Three Versions of a Parallel Program

The parallelization learning curve isillustrated by the speedup obtained on three successive versions of this
molecular dynamics code on the Intel Paragon.

(TPC) [tpc]. These benchmarks rate the performance of a system in terms of its throughput in
transactions-per-minute (tpm) on atypical workload. TPC-C is an order entry application with a
mix of interactive and batch transactions, including redlistic features like queued transactions,
aborting transactions, and elaborate presentation features GrRe93]. The benchmark includes an
explicit scaling criteria to make the problem more redlistic: the size of the database and the num-
ber of terminals in the system increase as the tpmC rating rises. Thus, a faster system must oper-
ate on alarger database and service alarger number of users.

Figure 1-4 shows the tpm-C ratings for the collection of systems appearing in one edition of the
TPC results (March 1996), with the achieved throughput on the vertical axis and the number of
processors employed in the server along the horizontal axis. This data includes a wide range of
systems from avariety of hardware and software vendors; we have highlighted the data points for
models from afew of the vendors. Since the problem scales with system performance, we cannot
compare times to see the effectiveness of parallelism. Instead, we use the throughput of the sys-
tem as the metric of performance in Equation 1.1.

9/10/97

DRAFT: Parallel Computer Architecture 27

Introduction

25000
A
20000
%)
€
o
< 15000
5
A
S; 10000 < © other
3 X A Tandem Himalaya
c B IBM PowerPC
~ 8 A
5000 { © g X DEC Alpha
%) AC X SGI PowerChallenge
28 O HPPA
0
0 20 40 60 80 100 120

Processors

Figure 1-4 TPC-C throughput versus number of processors on TPC

he March 1996 TPC report documents the transaction processing performance for a wide range of system. The
figure shows the number of processors employed for al of the high end systems, highlights five leading vendor
product lines. All of the major database vendors utilize multiple processors for their high performance options,
although the scale of parallelism varies considerably.

Example 1-1 The tpmC for the Tandem Himalaya and IBM Power PC systems are given in the
following table. What is the speedup obtained on each?
tpmC
Number of Processors IBM RS 6000 PowerPC Himalaya K10000
1 735
4 1438
8 3119
16 3043
32 6067
64 12021
112 20918

For the IBM system we may calculate speedup relative to the uniprocessor system, whereas in
the Tandem case we can only calculate speedup relative to a sixteen processor system. For the
IBM machine there appears to be a significant penalty in the parallel database implementation in

28 DRAFT: Parallel Computer Architecture 9/10/97

Why Parallel Architecture

going from one to four processors, however, the scaling is very good (superlinear) from four to
eight processors. The Tandem system achieves good scaling, although the speedup appears to be
beginning to flatten towards the hundred processor regime.

SpeedUptme
Number of Processors IBM RS 6000 PowerPC Himalaya K10000
1 1
4 1.96
8 4.24
16 1
32 1.99
64 3.95
112 6.87

Several important observations can be drawn from the TPC data. First, the use of parallel archi-
tecturesis prevalent. Essentially all of the vendors supplying database hardware or software offer
multiprocessor systems that provide performance substantially beyond their uniprocessor prod-
uct. Second, it is not only large scale parallelism that isimportant, but modest scale multiproces-
sor servers with tens of processors, and even small-scale multiprocessors with two or four
processors. Finaly, even a set of well-documented measurements of a particular class of system
at a specific point in time cannot provide a true technological snapshot. Technology evolves rap-
idly, systems take time to develop and deploy, and rea systems have a useful lifetime. Thus, the
best systems available from a collection of vendors will be at different pointsin their life cycle at
any time. For example, the DEC Alpha and IBM PowerPC systems in the 3/96 TPC report were
much newer, at the time of the report, than the Tandem Himalaya system. We cannot conclude,
for example, that the Tandem system is inherently less efficient as a result of its scalable design.
We can, however, conclude that even very large scale systems must track the technology to retain
their advantage.

Even the desktop demonstrates a significant number of concurrent processes, with a host of
active windows and daemons. Quite often a single user will have tasks running on many
machines within the local area network, or farm tasks across the network. The transition to paral-
lel programming, including new algorithms in some cases or attention to communication and
synchronization requirements in existing algorithms, has largely taken place in the high perfor-
mance end of computing, especially in scientific programming. The transition is in progress
among the much broader base of commercial engineering software. In the commercia world, all
of the major database vendors support parallel machines for their high-end products. Typically,
engineering and commercial applications target more modest scale multiprocessors, which domi-
nate the server market. However, the major database vendors also offer “shared-nothing” ver-
sions for large parallel machines and collections of workstations on a fast network, often called
clusters. In addition, multiprocessor machines are heavily used to improve throughput on multi-
programming workloads. All of these trends provide a solid application demand for parallel
architectures of avariety of scales.

9/10/97

DRAFT: Parallel Computer Architecture 29

Introduction

1000

€i8086

100,000,000

]
'10000
10,000,000 . a®
100 Pntium S $r10000
tium
i80386DX :.W‘
. N/ .0.00 © 1,000,000 -oo.r'o
° g0286 *180388 2 [4
d —
s @ §i80386 *
©
=

Clock Rate (MHz)
-
o

)

1 ©i8080
L 4

9i4004

0.1
1970 1975

1980 1985 1990 1995

[y
©i80286 @ QR3000

100,000
s @ ®R2000

$i8086
10,000

O\aﬂao
@i4004

1,000

1970 1975 1980 1985 1990 1995 2000

Figure 1-5 Improvement in logic density and clock frequency of microprocessors.

Improvements in lithographic technique, process technology, circuit design, and datapath design have yielded

a sustained improvement in logic density and clock rate.

1.2.2 Technology Trends

The importance of parallelism in meeting the application demand for ever greater performance
can be brought into sharper focus by looking more closely at the advancements in the underlying
technology and architecture. These trends suggest that it may beincreasingly difficult to “wait for
the single processor to get fast enough,” while parallel architectures will become more and more
attractive. Moreover, the examination shows that the critical issuesin parallel computer architec-
ture are fundamentally similar to those that we wrestle with in “sequential” computers, such as
how the resource budget should be divided up among functional units that do the work, cachesto
exploit locality, and wires to provide bandwidth.

The primary technological advance is a steady reduction in the basic VLS| feature size. This
makes transistors, gates, and circuits faster and smaller, so more fit in the same area. In addition,
the useful die sizeis growing, so thereis more areato use. Intuitively, clock rate improvesin pro-
portion to the improvement in feature size, while the number of transistors grows as the square,
or even faster due to increasing overall die area. Thus, in the long run the use of many transistors
at once, i.e., paralelism, can be expected to contribute more than clock rate to the observed per-
formance improvement of the single-chip building block.

This intuition is borne out by examination of commercial microprocessors. Figure 1-5 shows the
increase in clock frequency and transistor count for several important microprocessor families.
Clock rates for the leading microprocessorsincrease by about 30% per year, while the number of
transistors increases by about 40% per year. Thus, if we look at the raw computing power of a
chip (total transistors switching per second), transistor capacity has contributed an order of mag-
nitude more than clock rate over the past two decades.’ The performance of microprocessors on
standard benchmarks has been increasing at a much greater rate. The most widely used bench-
mark for measuring workstation performance is the SPEC suite, which includes severa redlistic

30

DRAFT: Parallel Computer Architecture 9/10/97

Why Parallel Architecture

integer programs and floating point programs[SPEC]. Integer performance on SPEC has been
increasing at about 55% per year, and floating-point performance at 75% per year. The LINPACK
benchmark[Don94] is the most widely used metric of performance on numerical applications.
LINPACK floating-point performance has been increasing at more than 80% per year. Thus, pro-
cessors are getting faster in large part by making more effective use of an ever larger volume of
computing resources.

The simplest analysis of these technology trends suggests that the basic single-chip building
block will provide increasingly large capacity, in the vicinity of 100 million transistors by the
year 2000. This raises the possibility of placing more of the computer system on the chip, includ-
ing memory and 1/0O support, or of placing multiple processors on the chip[Gwe94b]. The former
yields a small and conveniently packaged building block for parallel architectures. The latter
brings parallel architecture into the single chip regimelGwed44d]. Both possibilities are in evi-
dence commercialy, with the system-on-a-chip becoming first established in embedded systems,
portables, and low-end personal computer products.[x86,mips] Multiple processors on a chip is
becoming established in digital signal processing[Fei94].

The divergence between capacity and speed is much more pronounced in memory technology.
From 1980 to 1995, the capacity of a DRAM chip increased a thousand-fold, quadrupling every
three years, while the memory cycle time improved by only afactor of two. In the time-frame of
the 100 million transistor microprocessor, we anticipate gigabit DRAM chips, but the gap
between processor cycle time and memory cycle time will have grown substantially wider. Thus,
the memory bandwidth demanded by the processor (bytes per memory cycle) is growing rapidly
and in order to keep pace, we must transfer more data in parallel. From PCs to workstations to
servers, designs based on conventional DRAMs are using wider and wider paths into the memory
and greater interleaving of memory banks. Parallelism. A number of advanced DRAM designs
are appearing on the market which transfer a large number of bits per memory cycle within the
chip, but then pipeline the transfer of those bits across a narrower interface at high frequency. In
addition, these designs retain recently datain fast on-chip buffers, much as processor caches do,
in order to reduce the time for future accesses. Thus, exploiting parallelism and locality is central
to the advancements in memory devices themselves.

The latency of a memory operation is determined by the access time, which is smaller than the
cycle time, but still the number of processor cycles per memory accesstime is large and increas-
ing. To reduce the average latency experienced by the processor and to increase the bandwidth
that can be delivered to the processor, we must make more and more effective use of the levels of
the memory hierarchy that lie between the processor and the DRAM memory. As the size of the
memory increases, the access time increases due to address decoding, internal delays in driving
long bit lines, selection logic, and the need to use a small amount of charge per bit. Essentially all
modern microprocessors provide one or two levels of caches on chip, plus most system designs
provide an additional level of external cache. A fundamental question as we move into multipro-
cessor designs is how to organize the collection of caches that lie between the many processors
and the many memory modules. For example, one of the immediate benefits of parallel architec-

1. There are many reasons why the transistor count does not increase as the square of the clock rate. Oneis
that much of the area of a processor is consumed by wires, serving to distribute control, data, or clock, i.e.,
on-chip communication. We will see that the communication issue reappears at every level of parallel com-
puter architecture.

9/10/97

DRAFT: Parallel Computer Architecture 31

Introduction

123

turesisthat the total size of each level of the memory hierarchy can increase with the number of
processors without increasing the accesstime.

Extending these observations to disks, we see a similar divergence. Parallel disks storage sys-
tems, such as RAID, are becoming the norm. Large, multi-level cachesfor files or disk blocks are
predominant.

Architectural Trends

Advances in technology determine what is possible; architecture trandates the potential of the
technology into performance and capability. There are fundamentally two waysin which alarger
volume of resources, more transistors, improves performance: parallelism and locality. More-
over, these two fundamentally compete for the same resources. Whenever multiple operations are
performed in parallel the number of cycles required to execute the program is reduced. However,
resources are required to support each of the simultaneous activities. Whenever data references
are performed close to the processor, the latency of accessing deeper levels of the storage hierar-
chy is avoided and the number of cycles to execute the program is reduced. However, resources
are also required to provide this local storage. In general, the best performance is obtained by an
intermediate strategy which devotes resources to exploit a degree of parallelism and a degree of
locality. Indeed, we will see throughout the book that parallelism and locality interact in interest-
ing waysin systems of al scales, from within a chip to across alarge parallel machine. In current
microprocessors, the die areais divided roughly equally between cache storage, processing, and
off-chip interconnect. Larger scale systems may exhibit a somewhat different split, due to differ-
encesin the cost and performance trade-offs, but the basic issues are the same.

Examining the trends in microprocessor architecture will help build intuition towards the issues
we will be dealing with in parallel machines. It will also illustrate how fundamental parallelismis
to conventional computer architecture and how current architectura trends are leading toward
multiprocessor designs. (The discussion of processor design techniques in this book is cursory,
since many of the readers are expected to be familiar with those techniques from traditional
architecture textsfHeP90] or the many discussions in the trade literature. It does provide provide
an unique perspective on those techniques, however, and will serve to refresh your memory.)

The history of computer architecture has traditionally been divided into four generations identi-
fied by the basic logic technology: tubes, transistors, integrated circuits, and VLSI. The entire
period covered by the figures in this chapter is lumped into the fourth or VLS| generation.
Clearly, there has been tremendous architectural advance over this period, but what delineates
one era from the next within this generation? The strongest delineation is the kind of parallelism
that is exploited. The period up to about 1985 is dominated by advancementsin bit-level parallel-
ism, with 4-bit microprocessors replaced by 8-bit, 16-bit, and so on. Doubling the width of the
datapath reduces the number of cycles required to perform a full 32-bit operation. This trend
slows once a 32-hit word size is reached in the mid-80s, with only partial adoption of 64-bit oper-
ation obtained a decade later. Further increases in word-width will be driven by demands for
improved floating-point representation and a larger address space, rather than performance. With
address space requirements growing by less than one bit per year, the demand for 128-bit opera-
tion appears to be well in the future. The early microprocessor period was able to reap the bene-
fits of the easiest form of parallelism: bit-level parallelism in every operation. The dramatic
inflection point in the microprocessor growth curve in Figure 1-1 marks the arrival of full 32-bit
word operation combined with the prevalent use of caches.

32

DRAFT: Parallel Computer Architecture 9/10/97

Why Parallel Architecture

Transistors

Bit Level Parallelism Instruction Level Thread Level (?)

100,000,000
. /
10,000,000 /
] *0
b 1000
%o
Y
1,000,000 -+ L
3 e
®iso03se *
¢,460286 | @ R3000
100,000 P L 500
i8086
10,000
ig®s0
14004
1,000 t } t } t } i
1970 1975 1980 1985 1990 1995 2000 2005
Year

Figure 1-6 Number of transistors per processor chip over the last 25 years.

The growth essentially follows Moore's law which
casting from past trends we can reasonabl

s that the number of transistors doubles every 2 years. Fore-
ect to be designing for a 50-100 million transistor budget at the end

ex
of the decade. Also indicated are the epoc},\s _0? design within the fourth, or VLSI generation of computer architec-
ture reflecting the increasing level of parallelism.

The period from the mid-80s to mid-90s is dominated by advancements in instruction-level par-
allelism. Full word operation meant that the basic steps in instruction processing (instruction
decode, integer arithmetic, and address calculation) could be performed in a single cycle; with
cachestheinstruction fetch and data access could a so be performed in asingle cycle, most of the
time. The RISC approach demonstrated that, with care in the instruction set design, it was
straightforward to pipeline the stages of instruction processing so that an instruction is executed
amost every cycle, on average. Thus the parallelism inherent in the steps of instruction process-
ing could be exploited across a small number of instructions. While pipelined instruction pro-
cessing was not new, it had never before been so well suited to the underlying technology. In
addition, advances in compiler technology made instruction pipelines more effective.

The mid-80s microprocessor-based computers consisted of a small constellation of chips. an
integer processing unit, a floating-point unit, a cache controller, and SRAMs for the cache data
and tag storage. As chip capacity increased these components were coalesced into a single chip,
which reduced the cost of communicating among them. Thus, a single chip contained separate
hardware for integer arithmetic, memory operations, branch operations, and floating-point opera-
tions. In addition to pipelining individual instructions, it became very attractive to fetch multiple
instructions at atime and issue them in parallel to distinct function units whenever possible. This

9/10/97

DRAFT: Parallel Computer Architecture 33

Introduction

form of instruction level parallelism came to be called superscalar execution. It provided a natu-
ral way to exploit the ever increasing number of available chip resources. More function units
were added, more instructions were fetched at time, and more instructions could be issued in
each clock cycle to the function units.

However, increasing the amount of instruction level parallelism that the processor can exploit is
only worthwhile if the processor can be supplied with instructions and data fast enough to keep it
busy. In order to satisfy the increasing instruction and data bandwidth requirement, larger and
larger caches were placed on-chip with the processor, further consuming the ever increasing
number of transistors. With the processor and cache on the same chip, the path between the two
could be made very wide to statisfy the bandwidth requirement of multiple instruction and data
accesses per cycle. However, as more instructions are issued each cycle, the performance impact
of each control transfer and each cache miss becomes more significant. A control transfer may
have to wait for the depth, or latency, of the processor pipeline, until a particular instruction
reaches the end of the pipeline and determines which instruction to execute next. Similarly,
instructions which use a value loaded from memory may cause the processor to wait for the
latency of acache miss.

Processor designs in the 90s deploy a variety of complex instruction processing mechanisms in
an effort to reduce the performance degradation due to latency in “wide-issue’ superscalar pro-
cessors. Sophisticated branch prediction techniques are used to avoid pipeline latency by guess-
ing the direction of control flow before branches are actually resolved. Larger, more sophisticated
caches are used to avoid the latency of cache misses. Instructions are scheduled dynamically and
allowed to complete out of order so if one instruction encounters a miss, other instructions can
proceed ahead of it, as long as they do not depend on the result of the instruction. A larger win-
dow of instructions that are waiting to issue is maintained within the processor and whenever an
instruction produces a new result, several waiting instructions may be issued to the function
units. These complex mechanisms allow the processor to tolerate the latency of a cache-miss or
pipeline dependence when it does occur. However, each of these mechanisms place a heavy
demand on chip resources and a very heavy design cost.

Given the expected increases in chip density, the natural question to ask is how far will instruc-
tion level parallelism go within a single thread of control? At what point will the emphasis shift
to supporting the higher levels of parallelism available as multiple processes or multiple threads
of contol within a process, i.e, thread level parallelism? Severa research studies have sought to
answer the first part of the question, either through simulation of aggressive machine
designg[Cha*91,Hor* 90,Lee* 91,MePa91] or through analysis of the inherent properties of pro-
gramgBut* 91,JoWa89,Joh90,Smi*89,Wal91]. The most complete treatment appears in
Johnson’'s book devoted to the topic[Joh90]. Simulation of aggressive machine designs generally
shows that 2-way superscalar, i.e., issuing two instructions per cycle, is very profitable and 4-way
offers substantial additional benefit, but wider issue widths, e.g., 8-way superscalar, providelittle
additional gain. The design complexity increases dramatically, because control transfers occur
roughly once in five instructions, on average.

To estimate the maximum potential speedup that can be obtained by issuing multiple instructions
per cycle, the execution trace of a program is simulated on an ideal machine with unlimited
instruction fetch bandwidth, as many functions units as the program can use, and perfect branch
prediction. (The latter is easy, since the trace correctly follows each branch.) These generous
machine assumptions ensure that no instruction is held up because a function unit is busy or
because the instruction is beyond the look-ahead capability of the processor. Furthermore, to

34

DRAFT: Parallel Computer Architecture 9/10/97

Why Parallel Architecture

ensure that no instruction is delayed because it updates alocation that is used by logically previ-
ous instructions, storage resource dependences are removed by a technique called renaming.
Each update to a register or memory location is treated as introducing a new “name,” and subse-
guent uses of the value in the execution trace refer to the new name. In this way, the execution
order of the program is constrained only by essential data dependences; each instruction is exe-
cuted as soon as its operands are available. Figure 1-7 summarizes the result of this “ideal
machine” analysis based on data presented by Johnson[Joh91]. The histogram on the left shows
the fraction of cycles in which no instruction could issue, only one instruction, and so on.
Johnson's ideal machine retains realistic function unit latencies, including cache misses, which
accounts for the zero-issue cycles. (Other studies ignore cache effects or ignore pipeline laten-
cies, and thereby obtain more optimistic estimates.) We see that even with infinite machine
resources, perfect branch prediction, and idea renaming, 90% of the time no more than four
instructions issue in a cycle. Based on this distribution, we can estimate the speedup obtained at
various issue widths, as shown in the right portion of the figure. Recent work[Lawi92,Soh94]
provides empirical evidence that to obtain significantly larger amounts of parallelism, multiple
threads of control must be pursued simultaneously. Barring some unforeseen breakthrough in
instruction level parallelism, the leap to the next level of useful parallelism, multiple concurrent
threads, isincreasingly compelling as chipsincrease in capacity.

30% - 3 T
8 — -
O 25% A 254+ /
>
(]
= 20% - a 27T y
o 3
F 15% A o 154
5 o
n
- 10% 4 1 41
Qo
g 50 - 0.5+
s
0% A 0 t t t
o — ~N ™ < [Te) + 0 5 10 15
[(]
Number of Instructions Issued Instructions Issued Per Cycle

Figure 1-7 Distribution of potentia instruction-level parallelism and estimated speedup under ideal superscalar
execution

The figure shows the distribution of available instruction-level parallelism and maximum potential speedup under ide-
alized superscalar execution, including unbounded %oc ng resources and perfect branch prediction. Data is an
average of that presented for several benchmarks by Johnson[Joh91].

Thetrend toward thread or process-level parallelism has been strong at the computer system level
for some time. Computers containing multiple state-of-the-art microprocessors sharing a com-
mon memory became prevalent in the mid 80's, when the 32-bit microprocessor was first intro-
duced[Bel85]. As indicated by Figure 1-8, which shows the number of processors available in
commercial multiprocessors over time, this bus-based shared-memory multiprocessor approach
has maintained a substantial multiplier to the increasing performance of the individual proces-
sors. Almost every commercial microprocessor introduced since the mid-80s provides hardware
support for multiprocessor configurations, as we discuss in Chapter 5. Multiprocessors dominate
the server and enterprise (or mainframe) markets and have migrated down to the desktop.

9/10/97

DRAFT: Parallel Computer Architecture 35

Introduction

124

The early multi-microprocessor systems were introduced by small companies competing for a
share of the minicomputer market, including Synapse]Nes85], Encore]Sha85], Flex|Mat85],
Sequent[Rod85] and Myriag[Sav85]. They combined 10 to 20 microprocessors to deliver com-
petitive throughput on timesharing loads. With the introduction of the 32-bit Intel i80386 as the
base processor, these system obtained substantial commercia success, especially in transaction
processing. However, the rapid performance advance of RISC microprocessors, exploiting
instruction level parallelism, sapped the CISC multiprocessor momentum in the late 80s (and al
but eliminated the minicomputer). Shortly thereafter, several large companies began producing
RISC multiprocessor systems, especially as servers and mainframe replacements. Again, we see
the critical role of bandwidth. In most of these multiprocessor designs, al the processors plug
into acommon bus. Since a bus has a fixed aggregate bandwidth, as the processors become faster,
asmaller number can be supported by the bus. The early 1990s brought a dramatic advance in the
shared memory bus technology, including faster electrical signalling, wider data paths, pipelined
protocols, and multiple paths. Each of these provided greater bandwidth, growing with time and
design experience, as indicated in Figure 1-9. This allowed the multiprocessor designs to ramp
back up to the ten to twenty range and beyond, while tracking the microprocessor
advances AR94,Cek* 93,Fen* 95,Fra93,Gal* 94,GoM a95].

The picture in the mid-90s is very interesting. Not only has the bus-based shared-memory multi-
processor approach become ubiquitous in the industry, it is present at a wide range of scale.
Desktop systems and small servers commonly support two to four processors, larger servers sup-
port tens, and large commercial systems are moving toward a hundred. Indications are that this
trend will continue. As indication of the shift in emphasis, in 1994 Intel defined a standard
approach to the design of multiprocessor PC systems around its Pentium microprocessor[Sla94].
The follow-on PentiumPro microprocessor alows four-processor configurations to be con-
structed by wiring the chips together without even any glue logic; bus drivers, arbitration, and so
on are in the microprocessor. This development is expected to make small-scale multiprocessors
atrue commodity. Additionally, ashift in the industry business model has been noted, where mul-
tiprocessors are being pushed by software vendors, especialy database companies, rather than
just by the hardware vendors. Combining these trends with the technology trends, it appears that
the question is when, not if, multiple processors per chip will become prevalent.

Supercomputers

We have looked at the forces driving the development of parallel architecture in the general mar-
ket. A second, confluent set of forces come from the quest to achieve absolute maximum perfor-
mance, or supercomputing. Although commercial and information processing applications are
increasingly becoming important drivers of the high end, historicaly, scientific computing has
been akind of proving ground for innovative architecture. In the mid 60's this included pipelined
instruction processing and dynamic instruction scheduling, which are commonplace in micropro-
cessors today. Starting in the mid 70's, supercomputing was dominated by vector processors,
which perform operations on sequences of data elements, i.e, a vector, rather than individual sca-
lar data. Vector operations permit more parallelism to be obtained within a single thread of con-
trol. Also, these vector supercomputers were implemented in very fast, expensive, high power
circuit technologies.

Dense linear algebrais an important component of Scientific computing and the specific empha-
sis of the LINPACK benchmark. Although this benchmark evaluates a narrow aspect of system
performance, it is one of the few measurements available over avery wide class of machines over

36

DRAFT: Parallel Computer Architecture 9/10/97

Why Parallel Architecture

70
® ®
60 Cray Sun
CS6400E10000
50
2
© 40 SGI Challenge
o L]
o
°© 30 @ Sequent B2100 @ Symmetry8l SE70¢ @ @
o Sun E6000
20 Sun SC200@® ° SGl’ SC2000E
PowerChallenge
@ Sequent B8000O .A58400
10 au @ symmetgy21 S
®
J‘P K$PPro
0 € SGI Power 3 ¢ o

1984 1986 1988 1990 1992 1994 1996 1998

Figure 1-8 Number of processorsin fully configured commercial bus-based shared-memory multiprocessors.

After an initial era of 10 to 20-way SMPs based on slow CISC microprocessors, companies such as Sun, HP, DEC,
SGI, IBM and CRI began produ0| ng sizable RISC-based SMPs, as did commercia vendors not shown here, includi ng
NCR/ATT, Tandem, and Pyramid.

along period of time. Figure 1-10 shows the Linpack performance trend for one processor of the
leading Cray Research vector supercomputers] Aug* 89,Rus78] compared with that of the fastest
contemporary microprocessor-based workstations and servers. For each system two data points
are provided. The lower one is the performance obtained on a 100x100 matrix and the higher one
on a 1000x1000 matrix. Within the vector processing approach, the single processor performance
improvement is dominated by modest improvementsin cycle time and more substantial increases
in the vector memory bandwidth. In the microprocessor systems, we see the combined effect of
increasing clock rate, on-chip pipelined floating-point units, increasing on-chip cache size,
increasing off-chip second-level cache size, and increasing use of instruction level parallel-
ism.The gap in uniprocessor performanceisrapidly closing.

Multiprocessor architectures are adopted by both the vector processor and microprocessor
designs, but the scale is quite different. The Cray Xmp provided first two and later four proces-
sors, the Ymp eight, the C90 sixteen, and the T94 thirty-two. The microprocessor based super-
computers provided initially about a hundred processors, increasing to roughly athousand from
1990 onward. These massively parallel processors (MPPs) have tracked the microprocessor
advance, with typically alag of one to two years behind the leading microprocessor-based work-
station or personal computer. As shown in Figure 1-11, the large number of dlightly slower
microprocessors has proved dominant for this benchmark. (Note the change of scale from
MFLOPS Figure 1-10to GFLOPS.) The performance advantage of the MPP systems over tradi-

9/10/97

DRAFT: Parallel Computer Architecture 37

Introduction

100000
10000 ¢
@
m
2
=
L]
@ e o ®
w 1000) S
o ® (]
® o N
]) oo o
=
wn
100
&
L L
e o
10

1984 1986 1988 1990 1992 1994 1996 1998

Figure 1-9 Bandwidth of the shared memory busin commercial multiprocessors.

After slow growth for several years, a new era of memory bus design began in 1991. This supported the use of sub-
stantial numbers of very fast microprocessors.

125

tional vector supercomputers is less substantial on more complete applicationsf NAS] owing to
the relative immaturity of the programming languages, compilers, and agorithms, however, the
trend toward the MPPs is still very pronounced. The importance of this trend was apparent
enough that in 1993 Cray Research announced its T3D, based on the DEC Alpha microprocessor.
Recently the Linpack benchmark has been used to rank the fastest computers systems in the
world. Figure 1-12 shows the number of multiprocessor vector processors (PVP), MPPs, and
bus-based shared memory machines (SMP) appearing in the list of the top 500 systems. The lat-
ter two are both microprocessor based and the trend is clear.

Summary

In examining current trends from a variety of perspectives— economics, technology, architecture,
and application demand — we see that parallel architecture isincreasingly attractive and increas-
ingly central. The quest for performance is so keen that parallelism is being exploited at many
different levels at various points in the computer design space. Instruction level paralelism is
exploited in al modern high-performance processors. Essentialy all machines beyond the desk-
top are multiprocessors, including servers, mainframes, and supercomputers. The very high-end
of the performance curve is dominated by massively parallel processors. The use of large scale
parallelism in applications is broadening and small-scale multiprocessors are emerging on the

38

DRAFT: Parallel Computer Architecture 9/10/97

Why Parallel Architecture

Linpack MFLOPS

10000
a ¥
1000 <
O 194
c90 A
A o
- o DEC 8200
o - Yme IBM P 2/990
A ° ower
AXmpP Seoe
100 o @ MIPS R4400
Xmp
A ° o HP9000/735
o 2 55
SR @ IBM RS6000/540
10
* @ Cray n=1000
o ’MIPS M/2000 aCray n=100
MIPS M/120 o Micro n=1000
®Micro n=100
1 @ Sun 4/260
1975 1980 1985 1990 1995 2000

Figure 1-10 Uniprocessor performance of supercomputers and microprocessor-based systems on the LINPACK
benchmark.

Performance in MFLOPS for a single processor on solving dense linear equations is shown for the leading Cray
vector supercomputer and the fastest workstations on a 100x100 and 1000x1000 matrix.

desktop and servers are scaling to larger configurations. The focus of this book is the multipro-
cessor level of parallelism. We study the design principles embodied in parallel machines from
the modest scale to the very large, so that we may understand the spectrum of viable parallel
architectures that can be built from well proven components.

Our discussion of the trends toward parallel computers has been primarily from the processor
perspective, but one may arrive at the same conclusion from the memory system perspective.
Consider briefly the design of a memory system to support a very large amount of data, i.e., the
data set of large problems. One of the few physical laws of computer architecture is that fast
memories are small, large memories are slow. This occurs as a result of many factors, including
the increased address decode time, the delays on the increasingly long bit lines, the small drive of
increasingly dense storage cells, and the selector delays. This is why memory systems are con-
structed as a hierarchy of increasingly larger and slower memories. On average, alarge hierarchi-
cal memory isfast, aslong as the references exhibit good locality. The other trick we can play to
“cheat the laws of physics’ and aobtain fast access on a very large data set is to replicate the pro-
cessor and have the different processors access independent smaller memories. Of course, phys-
icsisnot easily fooled. We pay the cost when a processor accesses non-local data, which we call
communication, and when we need to orchestrate the actions of the many processors, i.e., in syn-
chronization operations.

9/10/97

DRAFT: Parallel Computer Architecture 39

Introduction

1000
Paragon XP/S
(6768) w
Paragon XP/S @MP
100 T3D®
CM-®»
T932(3%
4 Paragon XRS TS
) Deltg B C90(16) d
o 10 CM-20@ = Cray
© cMm-®
® nCUBE/2 (1024
Ymp/832(8) @ ipsSC/860 ()
1 o
Xmp (4)
0.1
1985 1987 1989 1991 1993 1995

Figure 1-11 Performance of supercomputers and MPPs on the LINPACK Peak-performance benchmark.

Peak performancein GFLOPS for solving dense linear equations is shown for the Ieadin%Cray multiprocessor vec-
tor supercomputer and the fastest MPP systems. Note the change in scale from Figure 1-10.

13

Convergence of Parallel Architectures

131

Historically, paralel machines have developed within several distinct architectural “camps’ and
most texts on the subject are organized around a taxonomy of these designs. However, in looking
at the evolution of parallel architecture, it is clear that the designs are strongly influenced by the
same technological forces and similar application requirements. It is not surprising that thereisa
great deal of convergence in the field. In this section, our goal is to construct a framework for
understanding the entire spectrum of parallel computer architectures and to build intuition as to
the nature of the convergencein the field. Along the way, we will provide a quick overview of the
evolution of parallel machines, starting from the traditional camps and moving toward the point
of convergence.

Communication Architecture

Given that a parallel computer is “a collection of processing elements that communicate and
cooperate to solve large problems fast,” we may reasonably view paralel architecture as the
extension of conventional computer architecture to address issues of communication and cooper-
ation among processing elements. In essence, parallel architecture extends the usual concepts of
a computer architecture with a communication architecture. Computer architecture has two dis-

40

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

of Systems

Number

350

1313 5319

w
o
o

N
(¢}
o

39

N
o
o
[]

08 —O— MPP
—O0—PVP

—A—SMP

O

87

[ERN
ol
o

110
A 2106

106‘\\\“\~\\ﬁ573

I
o
o

[¢)]
o

0 &%
11/93 11/94 11/95 11/96

Figure 1-12 Type of systems used in 500 fastest computer systemsin the world.

Parallel vector processors S%F’VPS) have given way to microprocessor-based Massively Parallel Processors (MPPs)
and bus-based symmetric

ared-memory multiprocessors (SMPs) at the high-end of computing.

tinct facets. One isthe definition of critical abstractions, especially the hardware/software bound-
ary and the user/system boundary. The architecture specifies the set of operations at the boundary
and the data types that these operate on. The other facet is the organizational structure that real-
izes these abstractions to deliver high performance in a cost-effective manner. A communication
architecture has these two facets, aswell. It defines the basic communication and synchronization
operations, and it addresses the organizational structures that realize these operations.

The framework for understanding communication in a parallel machineisillustrated in Figure 1-
13. The top layer is the programming model, which is the conceptualization of the machine that
the programmer uses in coding applications. Each programming model specifies how parts of the
program running in parallel communicate information to one another and what synchronization
operations are available to coordinate their activities. Applications are written in a programming
model. In the simplest case, a multiprogramming workload in which a large number of indepen-
dent sequential programs are run on a parallel machine, there is no communication or coopera-
tion at the programming level. The more interesting cases include parallel programming models,
such as shared address space, message passing, and data parallel programming. We can describe
these models intuitively as follows:

e Shared address programming is like using a bulletin board, where one can communicate with
one or many colleagues by posting information at known, shared locations. Individual activi-
ties can be orchestrated by taking note of who is doing what task.

9/10/97

DRAFT: Parallel Computer Architecture 41

Introduction

* Message passing is akin to telephone calls or letters, which convey information from a spe-
cific sender to a specific receiver. There is a well-defined event when the information is sent
or received, and these events are the basis for orchestrating individual activities. However,
there is no shared locations accessible to all.

* Data parallel processing isamore regimented form of cooperation, where several agents per-
form an action on separate elements of a data set simultaneously and then exchange informa-
tion globally before continuing en masse. The global reorganization of data may be
accomplished through accesses to shared addresses or messages, since the programming
model only defines the overall effect of the parallel steps.

A more precise definition of these programming models will be developed later in the text; at this
stage it is most important to understand the layers of abstraction.

A programming model isrealized in terms of the user-level communication primitives of the sys-
tem, which we call the communication abstraction. Typically, the programming model is embod-
ied in a parallel language or programming environment, so there is a mapping from the generic
language constructs to the specific primitives of the system. These user-level primitives may be
provided directly by the hardware, by the operating system or by machine specific user software
which maps the communication abstractions to the actual hardware primitives. The distance
between the linesin the figure isintended to indicate that the mapping from operationsin the pro-
gramming model to the hardware primitives may be very simple or it may be very involved. For
example, access to a shared location is realized directly by load and store instructions on a
machine in which all processors use the same physical memory, however, passing a message on
such a machine may involve alibrary or system call to write the message into a buffer area or to
read it out. We will examine the mapping between layers more below.

CAD Database Scientific Modeling
Parallel Applications

Multi programming %%rr%%s Mgﬁge IE:rI;I o Programming Models

Compilation Communication Abstraction
or User/System Boundary
Library * Operating Systems Support

] 2 OV ar e/ Software Boundary
Communication Hardware

Physical Communication Medium

Figure 1-13 Layers of Abstraction in Parallel Computer Architecture

Critical layers of abstractions lie between the application pro?ram and the actua hardware, The application iswrit-
ten for a programming model, which dictates how pieces of the program share information and coordinate their
activies. The specific operations providing communication and synchronization form the communication abstrac-
tion, which is he boundary between the user program and the s,?/)

through compiler or library support using the primitives available from the hardware of from the operating system,
which uses priviledged hardware primtives. The communication hardware is organized to provide these operations
efficiently on the physical wires connecting together the machine.

stem implementation. This abstraction is realized

The communication architecture defines the set of communication operations available to the
user software, the format of these operations, and the data types they operate on, much as an

42

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

instruction set architecture does for a processor. Note that even in conventional instruction sets,
some operations may be realized by a combination of hardware and software, such as a load
instruction which relies on operating system intervention in the case of a page fault. The commu-
nication architecture also extends the computer organization with the hardware structures that
support communication.

As with conventional computer architecture, there has been a great deal of debate over the years
as to what should be incorporated into each layer of abstraction in parallel architecture and how
large the “gap” should be between the layers. This debate has been fueled by various assumptions
about the underlying technology and more qualitative assessments of “ease of programming.” We
have drawn the hardware/software boundary as flat, which might indicate that the available hard-
ware primitivesin different designs have more or less uniform complexity. Indeed, thisis becom-
ing more the case as the field matures. In most early designs the physical hardware organization
was strongly oriented toward a particular programming model, i.e., the communication abstrac-
tion supported by the hardware was essentially identical to the programming model. This “high
level” parallel architecture approach resulted in tremendous diversity in the hardware organiza-
tions. However, as the programming models have become better understood and implementation
techniques have matured, compilers and run-time libraries have grown to provide an important
bridge between the programming model and the underlying hardware. Simultaneously, the tech-
nological trends discussed above have exerted a strong influence, regardless of programming
model. The result has been a convergence in the organizational structure with relatively ssimple,
general purpose communication primitives.

In the remainder of this section surveys the most widely used programming models and the cor-
responding styles of machine design in past and current parallel machines. Historically, parallel
machines were strongly tailored to a particular programming model, so it was common to lump
the programming model, the communication abstraction, and the machine organization together
as “the architecture”, e.g., a shared memory architecture, a message passing architecture, and so
on. This approach is less appropriate today, since there is a large commonality across parallel
machines and many machines support several programming models. It is important to see how
this convergence has come about, so we will begin from the traditional perspective and look at
machine designs associated with particular programming models, and explain their intended role
and the technological opportunities that influenced their design. The goal of the survey is not to
develop ataxonomy of parallel machines per se, but to identify a set of core concepts that form
the basis for assessing design trade-offs across the entire spectrum of potential designs today and
in the future. It also demonstrates the influence that the dominant technological direction estab-
lished by microprocessor and DRAM technologies has had on parallel machine design, which
makes a common treatment of the fundamental design issues natural or even imperative. Specifi-
cally, shared-address, message passing, data parallel, dataflow and systolic approaches are pre-
sented. In each case, we explain the abstraction embodied in the programming model and look at
the motivations for the particular style of design, as well as the intended scale and application.
The technological motivations for the approach are examine and how these changed over time.
These changes are reflected in the machine organization, which determines what is fast and what
is slow. The performance characteristics ripple up to influence aspects of the programming
model. The outcome of this brief survey isaclear organizational convergence, which is captured
in ageneric parallel machine at then end of the section.

9/10/97

DRAFT: Parallel Computer Architecture 43

Introduction

1.3.2 Shared Memory

One of the most important classes of parallel machines is shared memory multiprocessors. The
key property of this class is that communication occurs implicitly as a result of conventional
memory access instructions, i.e., loads and stores. This class has along history, dating at least to
precursors of mainframes in the early 60st, and today it has arolein almost every segment of the
computer industry. Shared memory multiprocessors serve to provide better throughput on multi-
programming workloads, as well as to support parallel programs. Thus, they are naturally found
across awide range of scale, from a few processors to perhaps hundreds. Below we examine the
communication architecture of shared-memory machines and the key organizational issues for
small-scale designs and large configurations.

The primary programming model for these machine is essentially that of timesharing on asingle
processor, except that real parallelism replaces interleaving in time. Formally, a processis avir-
tual address space and one or more threads of control. Processes can be configured so that por-
tions of their address space are shared, i.e.,, are mapped to common physical location, as
suggested by Figure 1-19. Multiple threads within a process, by definition, share portions of the
address space. Cooperation and coordination among threads is accomplished by reading and
writing shared variables and pointers referring to shared addresses. Writes to a logically shared
address by one thread are visible to reads of the other threads. The communication architecture
employs the conventional memory operations to provide communication through shared
addresses, aswell as special atomic operations for synchronization. Completely independent pro-
cesses typically share the kernel portion of the address space, athough thisis only accessed by
operating system code. Nonetheless, the shared address space mode! is utilized within the operat-
ing system to coordinate the execution of the processes.

While shared memory can be used for communication among arbitrary collections of processes,
most paralel programs are quite structured in their use of the virtual address space. They typi-
cally have a common code image, private segments for the stack and other private data, and
shared segments that are in the same region of the virtual address space of each process or thread
of the program. This simple structure implies that the private variablesin the program are present
in each process and that shared variables have the same address and meaning in each process or
thread. Often straightforward parall€elization strategies are employed; for example, each process
may perform a subset of the iterations of a common parallel loop or, more generally, processes
may operate as a pool of workers obtaining work from a shared queue. We will discuss the struc-
ture of parallel program more deeply in Chapter 2. Here we look at the basic evolution and devel -
opment of thisimportant architectural approach.

The communication hardware for shared-memory multiprocessors is a natural extension of the
memory system found in most computers. Essentially all computer systems allow a processor
and a set of 1/0 controllers to access a collection of memory modules through some kind of hard-
ware interconnect, as illustrated in Figure 1-15. The memory capacity is increased simply by
adding memory modules. Additional capacity may or may not increase the available memory
bandwidth, depending on the specific system organization. 1/O capacity is increased by adding

1. Some say that BINAC was the first multiprocessors, but it was intended to improve reliability. The two
processors check each other at every instruction. They never agreed, so people eventually turned one of
them off.

44

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

. Machine Physical Address Space
Virtual address spacesfor a 4 P
collection of processes communicating P privat
via Shared Addresses y privale

load ‘o
% " R N7/
2 B
P2 s
p1 | S Common Physical
[- - / Addresses
PO— e /
w77 ;S
€ / _ ~ | P2private
Shared Portion —~
of Address Space L
— —
— - - — — P]
B P1 private
Private Portion T = _
of Address Space - — —
T
I PO private

Figure 1-14 Typical memory model for shared-memory parallel programs

Collection of processes have a common rePi on of physical addresses mapped into their virtual address space, in
addition to the private region, which typical

y contains the stack and private data.

devicesto 1/O controllers or by inserting additional 1/O controllers. There are two possible ways
to increase the processing capacity: wait for a faster processor to become available, or add more
processors. On a timesharing workload, this should increase the throughput of the system. With
more Processors, more processes run at once and throughput is increased. If a single application
is programmed to make use of multiple threads, more processors should speed up the application.
The primitives provided by the hardware are essentially one-to-one with the operations available
in the programming model.

Within the general framework of Figure 1-15, there has been a great deal of evolution of shared
memory machines as the underlying technology advanced. The early machines were “high end”
mainframe configurations [Lon61,Padeg]. On the technology side, memory in early mainframes
was slow compared to the processor, so it was necessary to interleave data across several memory
banks to obtain adequate bandwidth for a single processor; this required an interconnect between
the processor and each of the banks. On the application side, these systems were primarily
designed for throughput on alarge number of jobs. Thus, to meet the I/O demands of aworkload,
several /0 channels and devices were attached. The I/O channels also required direct access each
of the memory banks. Therefore, these systems were typically organized with a cross-bar switch
connecting the CPU and several 1/O channels to several memory banks, asindicated by Figure 1-
16a. Adding processors was primarily amatter of expanding the switch; the hardware structure to
access amemory location from aport on the processor and /0O side of the switch was unchanged.
The size and cost of the processor limited these early systems to a small number of processors.
As the hardware density and cost improved, larger systems could be contemplated. The cost of
scaling the cross-bar became the limiting factor, and in many cases it was replaced by a multi-

9/10/97

DRAFT: Parallel Computer Architecture 45

Introduction

Mem|[Mem|[Mem|[Mem| | 10C || 10C
| | | | | |

Interconnect)

Proc Proc

Figure 1-15 Extending a system into a shared-memory multiprocessor by adding processor modules

Most systems consist of one or more memory modules accessible by a processor and 1/0 controllers through a hard-
ware interconnect, typically a bus, cross-bar or multistage interconnect. Memory and /O capacity is increased by
attaching metgolry and I/0O modules. Shared-memory machines allow processing capacity to be increased by adding
processor modulés.

stage interconnect, suggested by Figure 1-16b, for which the cost increases more slowly with the
number of ports. These savings come at the expense of increased latency and decreased band-
width per port, if al are used at once. The ability to access all memory directly from each proces-
sor has several advantages. any processor can run any process or handle any 1/0 event and within
the operating system data structures can be shared.

M M| M| M[| M M| M| M| M
M
M
M $ $ 10|10
10|10 g Fsi[10][10
SIE nlipe
P/l P P/l P
(a) Cross-bar Switch (b) Multistage I nterconnection Network (c) Bus Interconnect

Figure 1-16 Typical Shared-Memory Multiprocessor Interconnection schemes.

The interconnection of multiple processors, with their local caches (indicated by $), and 1/0 controllers to multiple
memory modules may be a cross-bar, multistage interconnection network, or bus.

The widespread use of shared-memory multiprocessor designs came about with the 32-bit micro-
processor revolution in the mid 80s, because the processor, cache, floating point, and memory
management unit fit on asingle board[Bel95], or even two to aboard. Most mid-range machines,
including minicomputers, servers, workstations, and personal computers are organized around a
central memory bus, as illustrated in Figure 1-16a. The standard bus access mechanism allows
any processor to access any physical address in the system. Like the switch based designs, al
memory locations are equidistant to al processors, so al processors experience the same access
time, or latency, on a memory reference. This configuration is usually called a symmetric multi-
processor (SMP)L. SMPs are heavily used for execution of parallel programs, as well as multi-

46

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

programming. The typical organization of bus-based symmetric multiprocessor is illustrated by
Figure 1-17, which describes the first highly integrated SMP for the commodity market.
Figure 1-18 illustrates a high-end server organization which distributes the physical memory over
the processor modules.

The factors limiting the number of processors that can be supported with a bus-based organiza-
tion are quite different from those in the switch-based approach. Adding processors to the switch
is expensive, however, the aggregate bandwidth increases with the number of ports. The cost of
adding a processor to the bus is small, but the aggregate bandwidth is fixed. Dividing this fixed
bandwidth among the larger number of processors limits the practical scalability of the approach.
Fortunately, caches reduce the bandwidth demand of each processor, since many references are
satisfied by the cache, rather than by the memory. However, with data replicated in local caches
there is a potentialy challenging problem of keeping the caches “consistent”, which we will
examine in detail later in the book.

Starting from a baseline of small-scale shared memory machines, illustrated in the figures above,
we may ask what is required to scale the design to a large number of processors. The basic pro-
cessor component iswell-suited to the task, sinceit is small and economical, but thereisclearly a
problem with the interconnect. The bus does not scale because it has a fixed aggregate band-
width. The cross-bar does not scale well, because the cost increases as the square of the number
of ports. Many alternative scalable interconnection networks exist, such that the aggregate band-
width increases as more processors are added, but the cost does not become excessive. We need
to be careful about the resulting increase in latency, because the processor may stall while a
memory operation moves from the processor to the memory module and back. If the latency of
access becomes too large, the processors will spend much of their time waiting and the advan-
tages of more processors may be offset by poor utilization.

One natural approach to building scalable shared memory machines is to maintain the uniform
memory access (or “dancehall”) approach of Figure 1-15 and provide a scalable interconnect
between the processors and the memories. Every memory access is trandated into a message
transaction over the network, much as it might be trandated to a bus transaction in the SMP
designs. The primary disadvantage of this approach isthat the round-trip network latency is expe-
rienced on every memory access and a large bandwidth must be supplied to every processor.

An dternative approach is to interconnect complete processors, each with a local memory, as
illustrated in Figure 1-19. In this non-uniform memory access (NUMA) approach, the local
memory controller determines whether to perform alocal memory access or a message transac-
tion with a remote memory controller. Accessing local memory is faster than accessing remote
memory. (The 1/O system may either be a part of every node or consolidated into special 1/0
nodes, not shown.) Accesses to private data, such as code and stack, can often be performed
locally, as can accesses to shared data that, by accident or intent, are stored on the local node. The
ability to access the local memory quickly does not increase the time to access remote data appre-
ciably, so it reduces the average access time, especially when alarge fraction of the accesses are

1. Theterm SMP iswidely used, but causes abit of confusion. What exactly needs to be symmetric? Many
designs are symmetric in some respect. The more precise description of what isintended by SMPisashared
memory multiprocessor where the cost of accessing amemory location isthe same for all processors, i.e., it
has uniform access costs when the access actually isto memory. If the location is cached, the access will be
faster, but still it is symmetric with respect to processors.

9/10/97

DRAFT: Parallel Computer Architecture 47

Introduction

CPU
P-Pro P-Pro P-Pro
Iq 256k8 | Module || Module || Module
L2%
Bl
Picture of Intel # # # #
Pentium Pro Orion y y y y
Motherboard < P-Pro bus (64-bit data, 36-bit address, 66 MHz)
goes here
PCl PCI Mem
bridge bridge Controller
PCI 0 %)
110 2 B
Cardg or 4-way

interleaved
DRAM

Figure 1-17 Physical and logica organization of the Intel PentiumPro four processor “quad pack”

The Intel quad-processor Pentium Pro motherboard employed in many multiprocessor servers illustrates the major
design elements of most small scale SMPs. Itslogica block diagram shows there can be up to four processor mod-
ules, each containing a Pentium-Pro processor, first level caches, TLB, 256 KB second level cache, interrupt con-
troller (IC), and abusinterface (Bl) in asingle chip connecting directly to a 64-bit memory bus. The bus operates at
66 MHz and memory transactions are pipelined to give a peak bandwidth of 528 MB/s. A two-chip memory con-
troller and four-chip memory interleave unit (M1U) connect the bus to multiple banks of DRAM. Bridges connect
the memory bus to two independent PCI busses, which host display, network, SCSI, and lower speed 1/0 connec-
tions. The Pentium-Pro module contains all the logic necessary to support the multiprocessor communication archi-
tecture, including that required for memory and cache consistency. The structure of the Pentium-Pro “quad pack” is
similar to alarge number of earlier SMP designs, but has a much higher degree of integration and is targeted at a
much larger volume.

to local data. The bandwidth demand placed on the network is also reduced. Although some con-
ceptual simplicity arises from having al shared data equidistant from any processor, the NUMA
approach has become far more prevalent because of its inherent performance advantages and
because it harnesses more of the mainstream processor memory system technology. One example
of this style of design isthe Cray T3E, illustrated in Figure 1-20. This machine reflects the view-
point where, although all memory is accessible to every processor, the distribution of memory
across processors is exposed to the programmer. Caches are used only to hold data (and instruc-
tions) from local mmory. It is the programmer’s job to avoid frequent report references. The SGI
Origin is an example of a machine with a similar organizational structure, but it allows data from
any memory to be replicated into any of the caches and provide hardware support to keep these
caches consistent, without relying on a bus connecting all the modules with a common set of
wires. While this book was being written, the two dsigns literally converged after the two compa-
nies merged.

To summarize, the communication abstraction underlying the shared address space programming
model is reads and writes to shared variables, this is mapped one-to-one to a communication
abstraction consisting of load and store instructions accessing a global, shared address space,
which is supported directly in hardware through access to shared physical memory locations. The
communication abstraction is very “close” to the actual hardware. Each processor can name

48

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

CPU/Mem
Cards

Picture of Sun Enterprise

| |
< Gigaplane™ bus (256 data, 41 address, 83 MHz) >
' I /0O Cards
[
) &8
8 =
%
%) %)
A EEE:
S0]B)5 |

Figure 1-18 Physical and logica organization of the Sun Enterprise Server

A larger scale design is illustrated by the Sun Ultrasparc-based Enterprise multiprocessor server. The diagram
shows its physical structure and logical organization. A wide (256 bit), highly pipelined memory bus delivers 2.5
GB/s of memory bandwidth. This design uses a hierarchical structure, where each card is either a complete dual-
processor with memory or a complete 1/0O system. The full configuration supports 16 cards of either type, with at
least one of each. The CPU/Mem card contains two Ultrasparc processor modules, each with 16 KB level-1 and 512
KB level-2 caches, plus two 512-bit wide memory banks and an internal switch. Thus, adding processors adds
memory capacity and memory interleaving. The 1/O card provides three SBUS slots for I/O extensions, a SCSI con-
nector, 100bT Ethernet port, and two FiberChannel interfaces. A typical complete configuration would be 24 pro-
cessors and 6 1/0 cards. Although memory banks are physically packaged with pairs of processors, all
memory is equidistant from all processors and accessed over the common bus, preserving the SMP
characteristics. Data may be placed anywhere in the machine with no performance impact.

Scalable Network

M $ M $ ooo M $

P P P

Figure 1-19 Non-uniform Memory Access (NUMA) Scalable shared memory multiprocessor organization.

Processor and memory modules are closely integrated such that access to local memory is faster than access to
remote memories.

every physical location in the machine; a process can name all data it shares with otherswithinits
virtual address space. Data transfer isaresult of conventional 1oad and store instructions, and the
data is transferred either as primitive types in the instruction set, bytes, words, etc., or as cache
blocks. Each process performs memory operations on addresses in its virtual address space; the

9/10/97

DRAFT: Parallel Computer Architecture 49

Introduction

~ —| Externa 1/O |— —~
\

P
$
Picture of Cray T3E mem ctrl
net intf
A
goes here \ 4
pSWitch |¢ep
A

Figure 1-20 Cray T3E Scalable Shared Address Space Machine

The Cray T3E isdesigned to scale up to athousand processors supporting a global shared address space.
Each node contains a DEC Alpha processor, local memory, a network interface integrated with the
memory controller, and a network switch. The machine is organized as a three dimensional cube, with
each node connected to its six neighbors through 480 M B/s pdint-to-point links. Any processor can read
or write any memory location, however, the NUMA characteristic of the machine is'exposed in the com-
munjcation architecture, aswell asin its performance characteristics. A short sequence of instructionsis
required to establish addressability to remote memory, which can then be acCessed by conventional
loads and stores. The memory controller captures the access to a remote memory and conducts a mes-
sage transaction with the memory controller of the remote node on the local processor’s behalf. The
mi e transaction is automatically routed through intermediate nodes to the desired destination, with
asmall delay per “hop”. The remoté datais typically not cached, since there is no hardware mechanism
to keep it consistent. (Wewill 1ook at other désign pointsthat allow shared datato be replicated through-
out the processor caches.) The Cray T3E 1/0O system is distributed over a collection of hodes on the sur-
face of the cube, which are connected to the external world through an addition 1/O network

address translation process identifies a physical location, which may be local or remote to the
processor and may be shared with other processes. In either case, the hardware accesses it
directly, without user or operating system software intervention. The address translation realizes
protection within the shared address space, just as it does for uniprocessors, since a process can
only access the data in its virtual address space. The effectiveness of the shared memory
approach depends on the latency incurred on memory accesses, as well as the bandwidth of data
transfer that can be supported. Just as a memory storage hierarchy allows that data that is bound
to an address to be migrated toward the processor, expressing communication in terms of the
storage address space allows shared data to be migrated toward the processor that accesses it.
However, migrating and replicating data across a general purpose interconnect presents a unique
set of challenges. We will see that to achieve scalability in such a design it is necessary, but not
sufficient, for the hardware interconnect to scale well. The entire solution, including the mecha
nisms used for maintaining the consistent shared memory abstractions, must also scale well.

1.3.3 Message-Passing

A second important class of parallel machines, message passing architectures, employs complete
computers as building blocks — including the microprocessor, memory and I/O system — and pro-
vides communication between processors as explicit 1/0 operations. The high-level block dia-

50

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

gram for a message passing machine is essentially the same as the NUMA shared-memory
approach, shown in Figure 1-19. The primary difference is that communication is integrated at
the 1/O level, rather than into the memory system. This style of design aso has much in common
with networks of workstations, or “clusters’, except the packaging of the nodesistypically much
tighter, there is no monitor or direct user access, and the network is of much higher capability
than standard local area network. The integration between the processor and the network tends to
be much tighter than in traditional 1/O structures, which support connection to devices that are
much slower than the processor, since message passing is fundamentally processor-to-processor
communication.

In message-passing there is generally a substantial distance between the programming model and
the communication operations at the physical hardware level, because user communication is
performed through operating system or library calls which perform many lower level actions,
including the actual communication operation. Thus, the discussion of message-passing begins
with alook at the communication abstraction, and then briefly surveys the evolution of hardware
organi zations supporting this abstraction.

The most common user-level communication operations on message passing systems are variants
of send and receive. Inits simplest form, send specifiesalocal data buffer that isto be transmitted
and a receiving process (typically on a remote processor). Receive specifies a sending process
and alocal data buffer into which the transmitted data is to be placed. Together, the matching
send and receive cause a datatransfer from one process to another, asindicated in Figure 1-19. In
most message passing systems, the send operation also alows an identifier or tag to be attached
to the message and the receiving operation specifies amatching rule, such as a specific tag from a
specific processor, any tag from any processor. Thus, the user program names local addresses and
entries in an abstract process-tag space. The combination of a send and a matching receive
accomplishes a memory to memory copy, where each end specifies its local data address, and a
pairwise synchronization event. There are severa possible variants of this synchronization event,
depending upon whether the send compl etes when the receive has been executed, when the send
buffer is available for reuse, or when the request has been accepted. Similarly, the receive can
potentially wait until a matching send occurs or simply post the receive. Each of these variants
have somewhat different semantics and different implementation reguirements.

Message passing has long been used as a means of communication and synchronization among
arbitrary collections of cooperating sequential processes, even on a single processor. |mportant
exampl es include programming languages, such as CSP and Occam, and common operating sys-
tems functions, such as sockets. Paralel programs using message passing are typicaly quite
structured, like their shared-memory counter parts. Most often, all nodes execute identical copies
of a program, with the same code and private variables. Usually, processes can name each other
using asimple linear ordering of the processes comprising a program.

Early message passing machines provided hardware primitives that were very close to the simple
send/receive user-level communication abstraction, with some additional restrictions. A hode was
connected to afixed set of neighborsin aregular pattern by point-to-point links that behaved as
simple FIFOS[Sei85]. This sort of design isillustrated in Figure 1-22 for a small 3D cube. Most
early machines were hypercubes, where each node is connected to n other nodes differing by one
bit in the binary address, for a total of 2" nodes, or meshes, where the nodes are connect to
neighbors on two or three dimensions. The network topology was especialy important in the
early message passing machines, because only the neighboring processors could be named in a
send or receive operation. The data transfer involved the sender writing into a link and the

9/10/97

DRAFT: Parallel Computer Architecture 51

Introduction

address X

Match RecvY, Bt
dressY
Send X, Q, t
Local Process Local Process
Address Space Address Space
Process P Process Q

Figure 1-21 User level send/receive message passing abstraction

A data transfer from one local address space to another occurs when a send to a particular process is matched with
areceived postd by that process.

receiver reading from the link. The FIFOs were small, so the sender would not be able to finish
writing the message until the receiver started reading it, so the send would block until the receive
occured. In modern terms this is called synchronous message passing because the two events
coincide in time. The details of moving data were hidden from the programmer in a message
passi qg library, forming a layer of software between send and receive calls and the actual hard-
ware.

The direct FIFO design was soon replaced by more versatile and more robust designs which pro-
vided direct memory access (DMA) transfers on either end of the communication event. The use
of DMA allowed non-blocking sends, where the sender is able to initiate a send and continue
with useful computation (or even perform areceive) while the send completes. On the receiving
end, the transfer is accepted viaa DMA transfer by the message layer into a buffer and queued
until the target process performs a matching receive, at which point the data is copying into the
address space of the receiving process.

The physical topology of the communication network dominated the programming model of
these early machines and parallel algorithms were often stated in terms of a specific interconnec-
tion topology, e.g., aring, agrid, or a hypercube[Fox* 88]. However, to make the machines more
generally useful, the designers of the message layers provided support for communication
between arbitrary processors, rather than only between physical neighbors[NX]. This was origi-
nally supported by forwarding the data within the message layer along linksin the network. Soon
this routing function was moved into the hardware, so each node consisted of a processor with
mmory, and a switch that could forward messsages, called a router. However, in this store-and-
forward approach the time to transfer a message is proportional to the number of hops it takes

1. The motivation for synchronous message passing was not just from the machine structure; it
was also was also present in important programming languages, especially CSP[***CSP]. Early
in the microprocesor era the approach was captured in a single chip building block, the Trans-
puter, which was widely touted during its development by INMOS as a revolution in computing.

52

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

Figure 1-22 Typical structure of an early message passing machines

Each node is connected to neighborsin three dimensions via FIFOs.

134

through the network, so there remained an emphasis on interconnection topology.(See
Exercise 1.7)

The emphasis on network topology was significantly reduced with the introduction of more gen-
eral purpose networks, which pipelined the message transfer through each of the routers forming
the interconnection network[Bar* 94,BoR089,Dun88,HoMc93,Lei* 92,PiRe94,VEi*92]. In most
modern message passing machines, the incremental delay introduced by each router is small
enough that the transfer time is dominated by the time to simply move that data between the pro-
cessor and the network, not how far it travels.[Gro92,HoM c93,Hor* 93PiRe94]. This greatly sim-
plifies the programming model; typically the processors are viewed as simply forming a linear
sequence with uniform communication costs. In other words, the communication abstraction
reflects an organizational structure much as in Figure 1-19. One important example of such
machine is the IBM SP-2, illustrated in Figure 1-23, which is constructed from conventional
RS6000 workstations, a scalable network, and a network interface containing a dedicated proces-
sor. Another is the Intel Paragon, illustrated in Figure 1-24, which integrates the network inter-
face more tightly to the processors in an SMP nodes, where one of the processors is dedicated to
supporting message passing.

A processor in a message passing machine can name only the locations in its local memory, and
it can name each of the procesors, perhaps by number or by route. A user process can only name
private addresses and other processes; it can transfer data using the send/receive calls.

Convergence

Evolution of the hardware and software has blurred the once clear boundary between the shared
memory and message passing camps. First, consider the communication operations available to
the user process.

9/10/97

DRAFT: Parallel Computer Architecture 53

Introduction

Picture of IBM SP-2

goes here

Generd Interconnection
Network fromed from
8-port switches

Power 2
CPU

L2$

'

IBM SP-2 Node

< Mémory Bus

Mem

Con’ltrol | er'

4-way
interleaved
DRAM

Micro Channel Bus>

QE] DMA| 2

i860

NI é

A

Figure 1-23 IBM SP-2 Message Passing Machine

The IBM SP-2 is a scalable parallel machine constructed essentially out of complete RS6000 workstations. Modest
modifications are made to packaging the workstations into standing racks. A network interface card (NIC) is
inserted at the MicroChannel 1/0 bus. The NIC contains the drivers for the actual link into the network, a substan-
tial amount of memory to buffer message data, and a complete i960 microprocessor to move data between host
memory and the network. The network itself is a butterfly-like structure, constructed by cascading 8x8 cross-bar
switches. The links operate at 40 MB/s in each direction, which is the full capability of the 1/O bus. Several other
machine employ a similar network interface design, but connect directly to the memory bus, rather than at the I/0

bus.

* Traditional message passing operations (send/receive) are supported on most shared memory
machines through shared buffer storage. Send involves writing data, or a pointer to data, into
the buffer, receive involves reading the data from shared storage. Flags or locks are used to

control access to the buffer and to indicate events, such as message arrival.

¢ On amessage passing machine, a user process may construct a global address space of sorts
by carrying along pointers specifying the process and local virtual address in that process.
Access to such a global address can be performed in software, through an explicit message
transaction. Most message passing libraries allow a process to accept a message for “any”
process, so each process can serve data requests from the others. A logical read is realized by
sending an request to the process containing the object and receiving a response. The actual
message transaction may be hidden from the user; it may be carried out by compiler gener-

ated code for access to a shared variable.[Split-C,Midway,CID,CilK]

54

DRAFT: Parallel Computer Architecture

9/10/97

Convergence of Parallel Architectures

i860 i860
Intel
L1 L1 Paragon
$ $ Node

#

< Memory Bus (64-bit, 50 MHz)

Mem g DMA
Controller
| NI
4-w.

interleaved
Source: http://www.cs.sandia.gov/gif/paragon.gif DRAM T
courtesy of Sandia National Laboratory
1824 nodes configured as a 16
high by 114 wide array | | | | 8 hits

175 MHz
_ bidirectional

2D grid network
with processing node | | | |
attached to every switch

Figure 1-24 Intel Paragon

The Intel Paragon illustrates a much tighter packaging of nodes. Each card is an SMP with two or more i860 pro-
cessors and a network interface chip connected to the cache-coherent memory bus. One of the processors is dedi-
cated to servicing the network. In addition, the node hasa DMA engine to transfer contiguous chunks of datato and
from the network at a high rate. The network isa 3D grid, much like the Cray T3E, with links operating at 175 MB/
sin each direction.

e A shared virtual address space can be established on a message passing machine at the page
level. A collection of processes have a region of shared addresses, but for each process only
the pages that are local to it are accessible. Upon access to a missing (i.e., remote) page, a
page fault occurs and the operating system engages the remote node in a message transaction
to transfer the page and map it into the user address space.

At the level of machine organization, there has been substantial convergence as well. Modern
message passing architectures appear essentially identical at the block diagram level to the scal-
able NUMA design illustrated in Figure 1-19. In the shared memory case, the network interface
was integrated with the cache controller or memory controller, in order for that device to observe
cache misses and conduct a message transaction to access memory in aremote node. In the mes-
sage passing approach, the network interface is essentially an 1/0 device. However, the trend has
been to integrate this device more deeply into the memory system as well, and to transfer data
directly from the user address space. Some designs provide DMA transfers across the network,
from memory on one machine to memory on the other machine, so the network interface isinte-

9/10/97 DRAFT: Parallel Computer Architecture 55

Introduction

135

grated fairly deeply with the memory system. Message passing is implemented on top of these
remote memory copiesfHoMc92]. In some designs a complete processor assists in communica-
tion, sharing a cache-coherent memory bus with the main processor[Gro92,PiRe94,HoM c92].
Viewing the convergence from the other side, clearly al large-scale shared memory operations
are ultimately implemented as message transactions at some level.

In addition to the convergeence of scalable message passing and shared memory machines,
switched-based local area networks, including fast ethernet, ATM, FiberChannel, and several
proprietary design[Bod95, Gil96] have emerged, providing scalable interconnects that are
approaching what traditional parallel machines offer. These new networks are being used to con-
nect collections of machines, which may be shared-memory multiprocessors in their own right,
into clusters, which may operate as a parallel machine on individual large problems or as many
individual machines on a multiprogramming load. Also, essentially all SMP vendors provide
some form of network clustering to obtain better reliability.

In summary, message passing and a shared address space represent two clearly distinct program-
ming models, each providing a well-defined paradigm for sharing, communication, and synchro-
nization. However, the underlying machine structures have converged toward a common
organization, represented by a collection of complete computers, augmented by a communication
assist connecting each node to a scalable communication network. Thus, it is natural to consider
supporting aspects of both in a common framework. Integrating the communication assist more
tightly into the memory system tends to reduce the latency of network transactions and improve
the bandwidth that can be supplied to or accepted from the network. We will want to look much
more carefully at the precise nature of thisintegration and understand how it interacts with cache
design, address trandation, protection, and other traditional aspects of computer architecture.

Data Parallel Processing

A third important class of parallel machines has been variously called: processor arrays, single-
instruction-multiple-data machines, and data parallel architectures. The changing names reflect a
gradual separation of the user-level abstraction from the machine operation. The key characteris-
tic of the programming model is that operations can be performed in parallel on each element of
a large regular data structure, such as an array or matrix. The program is logically a single
thread of control, carrying out a sequence of either sequential or parallel steps. Within this gen-
eral paradigm, there has been many novel designs, exploiting various technological opportuni-
ties, and considerable evolution as microprocessor technology has become such a dominate
force.

An influential paper in the early 70'qFly72] developed a taxonomy of computers, known as
Flynn's taxonomy , which characterizes designs in terms of the number of distinct instructions
issued at atime and the number of data elements they operate on. Conventional sequential com-
puters being single-instruction-single-data (SISD) and parallel machines built from multiple con-
ventional processors being multiple-instruction-multiple-data (MIMD). The revolutionary
aternative was single-instruction-multiple-data (SIMD). Its history is rooted in the mid-60s
when an individua processor was a cabinet full of equipment and an instruction fetch cost as
much in time and hardware as performing the actual instruction. The ideawas that all the instruc-
tion sequencing could be consolidated in the control processor. The data processorsincluded only
the ALU, memory, and a simple connection to nearest neighbors.

56

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

In the early data parallel machines, the data parallel programming model was rendered directly in
the physical hardware[Bal* 62, Bou* 72,Cor72,Red73,Slo*62,Slot67,ViCo78]. Typicaly, a con-
trol processor broadcast each instruction to an array of data processing elements (PEs), which
were connected to form aregular grid, as suggested by Figure 1-25. It was observed that many
important scientific computations involved uniform calculation on every element of an array or
matrix, often involving neighboring elements in the row or column. Thus, the parallel problem
data was distributed over the memories of the data processors and scalar data was retained in the
control processor’'s memory. The control processor instructed the data processors to each perform
an operation on local data elements or all to perform acommunication operation. For example, to
average each element of a matrix with its four neighbors, a copy of the matrix would be shifted
across the PEsin each of the four directions and alocal accumulation performed in each PE. Data
PEs typically included a condition flag, allowing some to abstain from an operation. In some
designs, the local address can be specified with an indirect addressing mode, allowing processors
to al do the same operation, but with different local data addresses.

Control
Processor

ooo 000 ©coo

Figure 1-25 Typical organization of adataparallel (SIMD) parallel machine

Individual processing elements (PES) operate in |ock-step under the direction of a single control processor. Tradi-
tionally, SIMD machines provide a limited, regular interconnect _amon% the PEs, although this was generalized in
later machines, such as the Thinking Machines Connection Machine and the MasPar.

The devel opment of arrays of processors was almost completely eclipsed in the mid 70s with the
development of vector processors. In these machines, a scalar processor is integrated with a col-
lection of function units that operate on vectors of data out of one memory in a pipelined fashion.
The ability to operate on vectors anywhere in memory eliminated the need to map application
data structures onto arigid interconnection structure and greatly simplified the problem of getting
data aligned so that local operations could be performed. The first vector processor, the CDC
Star-100, provided vector operations in its instruction set that combined two source vectors from
memory and produced a result vector in memory. The machine only operated at full speed if the
vectors were contiguous and hence a large fraction of the execution time was spent smply trans-
posing matrices. A dramatic change occurred in 1976 with the introduction of the Cray-1, which
extended the concept of aload-store architecture employed in the CDC 6600 and CDC 7600 (and
rediscovered in modern RISC machines) to apply to vectors. Vectors in memory, of any fixed
stride, were transferred to or from contiguous vector registers by vector load and store instruc-
tions. Arithmetic was performed on the vector registers. The use of a very fast scalar processor
(operating at the unprecedented rate of 80 MHZz) tightly integrated with the vector operations and

9/10/97

DRAFT: Parallel Computer Architecture 57

Introduction

utilizing a large semiconductor memory, rather than core, took over the world of supercomput-
ing. Over the next twenty years Cray Research led the supercomputing market by increasing the
bandwidth for vector memory transfers, increasing the number of processors, the number of vec-
tor pipelines, and the length of the vector registers, resulting in the performance growth indicated
by Figure 1-10 and Figure 1-11.

The SIMD data parallel machine experienced a renaissance in the mid-80s, as VLS| advances
made simple 32-bit processor just barely practical[Bat79,Bat80,Hill85,Nic90,TuR088]. The
unique twist in the data parallel regime was to place thirty-two very simple 1-bit processing ele-
ments on each chip, along with serial connections to neighboring processors, while consolidating
the instruction sequencing capability in the control processor. In this way, systems with severa
thousand bit-serial processing elements could be constructed at reasonable cost. In addition, it
was recognized that the utility of such a system could be increased dramatically with the provi-
sion of ageneral interconnect allowing an arbitrary communication pattern to take placein asin-
gle rather long step, in addition to the regular grid neighbor connections[Hill85,HiSt86,Nic90].
The sequencing mechanism which expands conventional integer and floating point operations
into a sequence of bit serial operations also provided a means of “virtualizing” the processing
elements, so that afew thousand processing elements can give the illusion of operating in parallel
on millions of data elements with one virtual PE per data element.

The technological factors that made this bit-serial design attractive also provided fast, inexpen-
sive, single-chip floating point units, and rapidly gave way to very fast microprocessors with inte-
grated floating point and caches. This eliminated the cost advantage of consolidating the
sequencing logic and provided equal peak performance on a much smaller number of complete
processors. The simple, regular calculations on large matrices which motivated the data parallel
approach also have tremendous spatial and temporal locality, if the computation is properly
mapped onto a smaller number of complete processors, with each processor responsible for a
large number of logically contiguous data points. Caches and local memory can be brought to
bear on the set of data points local to each node, while communication occurs across the bound-
aries or asaglobal rearrangement of data.

Thus, while the user-level abstraction of parallel operations on large regular data structures con-
tinued to offer an attractive solution to an important class of problems, the machine organization
employed with data parallel programming models evolved towards a more generic parallel archi-
tecture of multiple cooperating microprocessors, much like scalable shared memory and message
passing machines, often with the inclusion of specialized network support for global synchroni-
zation, such as a barrier , which causes each process to wait at a particular point in the program
until al other processes have reach that point[Hor93,Lei* 92,Kum92,KeSc93,Koe*94]. Indeed,
the SIMD approach evolved into the SPMD (single-program-multiple-data) approach, in which
all processors execute copies of the same program, and has thus largely converged with the more
structured forms of shared memory and message passing programming.

Data parallel programming languages are usualy implemented by viewing the local address
spaces of a collection of processes, one per processor, as forming an explicit global address
space. Data structures are laid out across this global address space and there is a simple mapping
from indexes to processor and local offset. The computation is organized as a sequence of “bulk
synchronous’ phases of either local computation or global communication, separated by a global
barrier [cite BSP]. Because all processors do communication together and there is a global view
of what is going on, either a shared address space or message passing can be employed. For
example, if a phase involved every processor doing awrite to an address in the processor “to the

58

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

136

left”, it could be realized by each doing a send to the left and a receive “from the right” into the
destination address. Similarly, every processor reading can be realized by every processor send-
ing the address and then every processor sending back the data. In fact, the code that is produced
by compilers for modern data parallel languages is essentially the same as for the structured con-
trol-parallel programs that are most common in shared-memory and message passing program-
ming models. With the convergence in machine structure, there has been a convergence in how
the machines are actually used.

Other Parallel Architectures

The mid-80s renaissance gave rise to severa other architectural directions which received con-
siderable investigation by academia and industry, but enjoyed less commercial success than the
three classes discussed above and therefore experienced less use as a vehicle for parallel pro-
gramming. Two approaches that were developed into complete programming systems were data-
flow architectures and systolic architectures. Both represent important conceptual devel opments
of continuing value as the field evolves.

Dataflow Architecture

Dataflow models of computation sought to make the essential aspects of a parallel computation
explicit at the machine level, without imposing artificial constraints that would limit the available
paralelism in the program. The idea is that the program is represented by a graph of essential
data dependences, as illustrated in Figure 1-26, rather than as a fixed collection of explicitly
sequenced threads of control. An instruction may execute whenever its data operands are avail-
able. The graph may be spread arbitrarily over a collection of processors. Each node specifies an
operation to perform and the address of each of the nodes that need the result. In the original
form, a processor in a dataflow machine operates a simple circular pipeline. A message, or token,
from the network consists of data and an address, or tag, of its destination node. The tag is com-
pared against those in a matching store. If present, the matching token is extracted and the
instruction is issued for execution. If not, the token is placed in the store to await its partner.
When aresult is computed, a new message, or token, containing the result data is sent to each of
the destinations specified in the instruction. The same mechanism can be used whether the suc-
cessor instructions are local or on some remote processor. The primary division within dataflow
architectures is whether the graph is static, with each node representing a primitive operation, or
dynamic, in which case a node can represent the invocation of an arbitrary function, itself repre-
sented by a graph. In dynamic or tagged-token architectures, the effect of dynamically expanding
the graph on function invocation is usually achieved by carrying additional context information
in the tag, rather than actually modifying the program graph.

The key characteristic of dataflow architectures is the ability to name operations performed any-
where in the machine, the support for synchronization of independent operations, and dynamic
scheduling at the machine level. As the dataflow machine designs matured into real systems, pro-
grammed in high level parallel languages, a more conventional structure emerged. Typically, par-
allelism was generated in the program as aresult of parallel function calls and parallel loops, so it
was attractive to allocate these larger chunks of work to processors. This led to a family of
designs organized essentially like the NUMA design of Figure 1-19. The key differentiating fea-
tures being direct support for a large, dynamic set of threads of control and the integration of
communication with thread generation. The network was closely integrated with the processor;
in many designs the “ current message” is available in special registers, and there is hardware sup-

9/10/97

DRAFT: Parallel Computer Architecture 59

Introduction

a=(b+1)*(b-c)

d=c*e
f=a*d

Dataflow graph

oken| Prog
Store Store

Waiting > Instruction > Execute ; Form > Network
Matching Fetch Token
Token Queue —‘
¢
< Network

Figure 1-26 Dataflow graph and basic execution pipeline

port for dispatching to athread identified in the message. In addition, many designs provide extra
state bits on memory locations in order to provide fine-grained synchronization, i.e., synchroni-
zation on an element-by-element basis, rather than using locks to synchronize accesses to an
entire data structure. In particular, each message could schedule a chunk of computation which
could make use of local registers and memory.

By contrast, in shared memory machines one generally adopts the view that a static or slowly
varying set of processes operate within a shared address space, so the compiler or program maps
thelogical parallelism in the program to a set of processes by assigning loop iterations, maintain-
ing a shared work queue, or the like. Similarly, message passing programs involve a static, or
nearly static, collection of processes which can name one another in order to communicate. In
data parallel architectures, the compiler or sequencer maps alarge set of “virtual processor” oper-
ations onto processors by assigning iterations of a regular loop nest. In the dataflow case, the
machine provides the ability to name a very large and dynamic set of threads which can be
mapped arbitrarily to processors. Typically, these machines provided a global address space as
well. As we have seen with message passing and data parallel machines, dataflow architectures
experienced a gradual separation of programming model and hardware structure as the approach
matured.

60

DRAFT: Parallel Computer Architecture 9/10/97

Convergence of Parallel Architectures

Systolic Architectures

Another novel approach was systolic architectures, which sought to replace a single sequential
processor by a regular array of simple processing elements and, by carefully orchestrating the
flow of data between PEs, obtain very high throughput with modest memory bandwidth require-
ments. These designs differ from conventional pipelined function units, in that the array structure
can be non-linear, e.g. hexagonal, the pathways between PEs may be multidirectional, and each
PE may have a small amount of local instruction and data memory. They differ from SIMD in
that each PE might do a different operation.

The early proposals were driven by the opportunity offered by VLSI to provide inexpensive spe-
cial purpose chips. A given algorithm could be represented directly as a collection of specialized
computational units connected in aregular, space-efficient pattern. Data would move through the
system at regular “heartbeats’ as determined by local state. Figure 1-27 illustrates a design for
computing convolutions using a simple linear array. At each beat the input data advances to the
right, is multiplied by a local weight, and is accumulated into the output sequence as it aso
advances to the right. The systolic approach has aspects in common with message passing, data
parallel, and dataflow models, but takes on a unique character for a specialized class of problems.

Practical realizations of these ideas, such as iWarp[Bor*90], provided quite general programma-
bility in the nodes, in order for a variety of algorithms to be realized on the same hardware. The
key differentiation is that the network can be configured as a collection of dedicated channels,
representing the systolic communication pattern, and data can be transferred directly from pro-
Cessor registersto processor registers across achannel. The global knowledge of the communica-
tion pattern is exploited to reduce contention and even to avoid deadlock. The key characteristic
of systolic architectures is the ability to integrate highly specialized computation under asimple,
regular, and highly localized communication patterns.

y(i) = wl*x(i) + w2*x(i+1) + w3*x(i+2) + wa*x(i+3)

x8 X6 x4 X2
— X/ —pp X5 —p| X3 |—o| X1 |—>> — —>
—_ — a4 B mma B2 mng B2 mng B mma
y3 y2 yl
xin . xgut
X xout = x
X =Xin
—% , [yout=yin+w*xin
yin yout

Figure 1-27 Systolic Array computation of an inner product

9/10/97 DRAFT: Parallel Computer Architecture 61

Introduction

137

Systolic algorithms have also been generally amenable to solutions on generic machines, using
the fast barrier to delineate coarser grained phases. The regular, local communication pattern of
these algorithms yield good locality when large portions of the logical systolic array are executed
on each process, the communication bandwidth needed is low, and the synchronization require-
ments are simple. Thus, these algorithms have proved effective on the entire spectrum of parallel
machines.

A Generic Parallel Architecture

In examining the evolution of the major approaches to parallel architecture, we see a clear con-
vergence for scalable machines toward a generic paralel machine organization, illustrated in
Figure 1-28. The machine comprises a collection of essentially complete computers, each with
one or more processors and memory, connected through a scalable communication network via
communications assist, some kind of controller or auxiliary processing unit which assistsin gen-
erating outgoing messages or handling incoming messages. While the consolidation within the
field may seem to narrow the interesting design space, in fact, there is great diversity and debate
as to what functionality should be provided within the assist and how it interfaces to the proces-
sor, memory system, and network. Recognizing that these are specific differences within a
largely similar organization helps to understand and evaluate the important organizational trade-
offs.

Not surprisingly, different programming models place different requirements on the design of the
communication assist, and influence which operations are common and should be optimized. In
the shared memory case, the assist is tightly integrated with the memory system in order to cap-
ture the memory events that may require interaction with other nodes. Also, the assist must
accept messages and perform memory operations and state transitions on behalf of other nodes.
In the message passing case, communication is initiated by explicit actions, either at the system
or user level, so it is not required that memory system events be observed. Instead, thereis aneed
to initiate the messages quickly and to respond to incoming messages. The response may reguire
that a tag match be performed, that buffers be allocated, that data transfer commence, or that an
event be posted. The data parallel and systolic approaches place an emphasis on fast global syn-
chronization, which may be supported directly in the network or in the assist. Dataflow places an
emphasis on fast dynamic scheduling of computation based on an incoming message. Systolic
algorithms present the opportunity to exploit global patternsin local scheduling. Even with these
differences, isimportant to observe that al of these approaches share common aspects; they need
to initiate network transactions as a result of specific processor events, and they need to perform
simple operations on the remote node to carry out the desired event.

We also see that a separation has emerged between programming model and machine organiza-
tion as parallel programming environments have matured. For example, Fortran 90 and High Per-
formance Fortran provide a shared-address data-parallel programming model, which is
implemented on awide range of machines, some supporting a shared physical address space, oth-
ers with only message passing. The compilation techniques for these machines differ radically,
even though the machines appear organizationally similar, because of differencesin communica
tion and synchronization operations provided at the user level (i.e., the communication abstrac-
tion) and vast differences in the performance characteristics of these communication operations.
As a second example, popular message passing libraries, such as PVM (parallel virtual machine)
and MPI (message passing interface), are implemented on this same range of machines, but the

62

DRAFT: Parallel Computer Architecture 9/10/97

Fundamental Design Issues

implementation of the libraries differ dramatically from one kind of machine to another. The
same observations hold for parallel operating systems.

(Networ k >

$ 1] /
P

Figure 1-28 Generic scalable multiprocessor organization.

A collection of essentially comﬁlete computers, including one or more processors and memory, communicating
through a general purpose, high-perfo
which assists in communi cation operations across the network.

performance, scalable interconnect. Typically, each node contains a controller

1.4 Fundamental Design | ssues

Given how the state of the art in parallel architecture has advanced, we need to take a fresh look
at how to organize the body of material in the field. Traditional machine taxonomies, such as
SIMD/MIMD, are of little help since multiple general purpose processors are so dominant. One
cannot focus entirely on programming models, since in many cases widely differing machine
organizations support a common programming model. One cannot just look at hardware struc-
tures, since common elements are employed in many different way. instead, we ought to focus
our attention on the architectural distinctions that make a difference to the software that isto run
on the machine. In particular, we need to highlight those aspects that influence how a compiler
should generate code from a high-level parallel language, how alibrary writer would code awell-
optimized library, or how an application would be written in a low-level parallel language. We
can then approach the design problem as one that is constrained from above by how programs use
the machine and from below by what the basic technology can provide.

In our view, the guiding principles for understanding modern parallel architecture are indicated
by the layers of abstraction presented in Figure 1-13. Fundamentally, we must understand the
operations that are provided at the user-level communication abstraction, how various program-
ming models are mapped to these primitives, and how these primitives are mapped to the actual
hardware. Excessive emphasis on the high-level programming model without attention to how it
can be mapped to the machine would detract from understanding the fundamental architectural
issues, as would excessive emphasis on the specific hardware mechanisms in each particular
machine.

This section looks more closely at the communication abstraction and the basic requirements of a
programming model. It then defines more formally the key concepts that tie together the layers:

9/10/97

DRAFT: Parallel Computer Architecture 63

Introduction

141

142

naming, ordering, and communication and replication of data. Finaly, it introduces the basic per-
formance models required to resolve design trade-offs.

Communication Abstraction

The communication abstraction forms the key interface between the programming model and the
system implementation. It plays arole very much like the instruction set in conventional sequen-
tial computer architecture. Viewed from the software side, it must have a precise, well-defined
meaning so that the same program will run correctly on many implementations. Also the opera-
tions provided at this layer must be simple, composable entities with clear costs, so that the soft-
ware can be optimized for performance. Viewed from the hardware side, it also must have awell-
defined meaning so that the machine designer can determine where performance optimizations
can be performed without violating the software assumptions. While the abstraction needs to be
precise, the machine designer would like it not to be overly specific, so it does not prohibit useful
techniques for performance enhancement or frustrate efforts to exploit properties of newer tech-
nologies.

The communication abstraction is, in effect, a contract between the hardware and the software
allowing each the flexibility to improve what it does, while working correctly together. To under-
stand the “terms” of this contract, we need to look more carefully at the basic requirements of a
programming model.

Programming M odel Requirements

A paralel program consists of one or more threads of control operating on data. A parallel pro-
gramming model specifies what data can be named by the threads, what operations can be per-
formed on the named data, and what ordering exists among these operations.

To make these issues concrete, consider the programming model for a uniprocessor. A thread can
name the locations in its virtual address space and can name machine registers. In some systems
the address space is broken up into distinct code, stack, and heap segments, while in othersit is
flat. Similarly, different programming languages provide access to the address space in different
ways, for example, some alow pointers and dynamic storage allocation, while others do not.
Regardless of these variations, the instruction set provides the operations that can be performed
on the named locations. For example, in RISC machines the thread can load data from or store
data to memory, but perform arithmetic and comparisons only on data in registers. Older instruc-
tion sets support arithmetic on either. Compilers typically mask these differences at the hardware/
software boundary, so the user’s programing model is one of performing operations on variables
which hold data. The hardware translates each virtual address to a physical address on every
operation.

The ordering among these operations is sequential program order — the programmer’s view is
that variables are read and modified in the top-to-bottom, left-to-right order specified in the pro-
gram. More precisely, the value returned by a read to an address is the last value written to the
addressin the sequential execution order of the program. This ordering assumption is essential to
the logic of the program. However, the reads and writes may not actually be performed in pro-
gram order, because the compiler performs optimizations when translating the program to the
instruction set and the hardware performs optimizations when executing the instructions. Both
make sure the program cannot tell that the order has been changed. The compiler and hardware

64

DRAFT: Parallel Computer Architecture 9/10/97

Fundamental Design Issues

preserve the dependence order. If avariable is written and then read later in the program order,
they make sure that the later operation uses the proper value, but they may avoid actually writing
and reading the value to and from memory or may defer the write until later. Collections of reads
with no intervening writes may be completely reordered and, generaly, writes to different
addresses can be reordered as long as dependences from intervening reads are preserved. This
reordering occurs at the compilation level, for example, when the compiler allocates variables to
registers, manipulates expressions to improve pipelining, or transforms loops to reduce overhead
and improve the data access pattern. It occurs at the machine level when instruction execution is
pipelined, multiple instructions are issued per cycle, or when write buffers are used to hide mem-
ory latency. We depend on these optimizations for performance. They work because for the pro-
gram to observe the effect of a write, it must read the variable, and this creates a dependence,
which is preserved. Thus, the illusion of program order is preserved while actually executing the
program in the looser dependence order.! We operate in a world where essentially all program-
ming languages embody a programming model of sequential order of operations on variablesin a
virtual address space and the system enforces a weaker order wherever it can do so without get-
ting caught.

Now let’s return to parallel programming models. The informal discussion earlier in this chapter
indicated the distinct positions adopted on naming, operation set, and ordering. Naming and
operation set are what typically characterize the models, however, ordering is of key importance.
A parallel program must coordinate the activity of its threads to ensure that the dependences
within the program are enforced; this requires explicit synchronization operations when the
ordering implicit in the basic operationsis not sufficient. As architects (and compiler writers) we
need to understand the ordering properties to see what optimization “tricks’” we can play for per-
formance. We can focus on shared address and message passing programming models, since they
are the most widely used and other models, such as data parallel, are usually implemented in
terms of one of them.

The shared address space programming model assumes one or more threads of control, each
operating in an address space which contains a region that is shared between threads, and may
contain a region that is private to each thread. Typically, the shared region is shared by al
threads. All the operations defined on private addresses are defined on shared addresses, in partic-
ular the program accesses and updates shared variables ssimply by using them in expressions and
assignment statements.

Message passing models assume a collection of processes each operating in a private address
space and each able to name the other processes. The normal uniprocessor operations are pro-
vided on the private address space, in program order. The additional operations, send and receive,
operate on the local address space and the globa process space. Send transfers data from the
local address space to a process. Receive accepts datainto the local address space from a process.
Each send/receive pair is a specific point-to-point synchronization operation. Many message
passing languages offer global or collective communication operations as well, such as broad-
cast.

1. Theillusion breaks down alittle bit for system programmers, say, if the variable is actually a
control register on a device. Then the actual program order must be preserved. This is usually
accomplished by flagging the variable as special, for example using the volatile type modifier in
C.

9/10/97

DRAFT: Parallel Computer Architecture 65

Introduction

1.4.3 Naming

The position adopted on naming in the programming model is presented to the programmer
through the programming language or programming environment. It is what the logic of the pro-
gram is based upon. However, the issue of naming is critical at each level of the communication
architecture. Certainly one possible strategy is to have the operations in the programming model
be one-to-one with the communication abstraction at the user/system boundary and to have this
be one-to-one with the hardware primitives. However, it is also possible for the compiler and
libraries to provide a level of trandation between the programming model and the communica-
tion abstraction, or for the operating system to intervene to handle some of the operations at the
user/system boundary. These alternatives allow the architect to consider implementing the com-
mon, simple operations directly in hardware and supporting the more complex operations partly
or wholely in software.

Let us consider the ramification of naming at the layers under the two primary progrramming
models. shared address and mssage passing. First, in a shared address model, accesses to shared
variables in the program are usually mapped by the compiler to load and store instructions on
shared virtual addresses, just like access to any other variable. This is not the only option, the
compiler could generate special code sequences for accesses to shared variables, the uniform
access to private and shared addresses is appealing in many respects. A machine supports a glo-
bal physical address spaceif any processor is able to generate a physical address for any location
in the machine and access the location in a single memory operation. It is straightforward to real -
ize a shared virtual address space on a machine providing a global physical address space: estab-
lish the virtual-to-physical mapping so that shared virtual addresses map to the same physical
location, i.e., the processes have the same entries in their page tables. However, the existence of
the level of tranglation allows for other approaches. A machine supports independent local physi-
cal address spaces, if each processor can only access a distinct set of locations. Even on such a
machine, a shared virtual address space can be provided by mapping virtual addresses which are
local to a process to the corresponding physical address. The non-local addresses are left
unmapped, so upon access to a non-local shared address a page fault will occur, allowing the
operating system to intervene and access the remote shared data. While this approach can provide
the same naming, operations, and ordering to the program, it clearly has different hardware
requirements at the hardware/software boundary. The architect’s job is resolve these design
trade-offs across layers of the system implementation so that the result is efficient and cost effec-
tive for the target application workload on available technol ogy.

Secondly, message passing operations could be realized directly in hardware, but the matching
and buffering aspects of the send/receive operations are better suited to software implementation.
More basic data transport primitives are well supported in hardware. Thus, in essentialy all par-
allel machines, the message passing programming model is readlized via a software layer that is
built upon asimpler communication abstraction. At the user/system boundary, one approach isto
have al message operations go through the operating system, as if they were I/O operations.
However, the frequency of message operations is much greater than 1/O operations, so it makes
sense to use the operating system support to set up resources, priviledges etc. and alow the fre-
quent, simple data transfer operations to be supported directly in hardware. On the other hand,
we might consider adopting a shared virtual address space as the lower level communication
abstraction, in which case send and receive operations involve writing and reading shared buffers
and posting the appropriate synchronization events. The issue of naming arises at each level of
abstraction in a paralléel architecture, not just in the programming model. As architects, we need
to design against the frequency and type of operations that occur at the communication abstrac-

66

DRAFT: Parallel Computer Architecture 9/10/97

Fundamental Design Issues

144

tion, understanding that there are trade-offs at this boundary involving what is supported directly
in hardware and what in software.

Operations

Each programming model defines a specific set of operationsthat can be performed on the data or
objects that can be named within the model. For the case of a shared address model, theseinclude
reading and writing shared variables, as well as various atomic read-modify-write operations on
shared variables, which are used to synchronize the threads. For message passing the operations
are send and receive on private (local) addresses and process identifiers, as described above. One
can observe that there is a global address space defined by a message passing model. Each ele-
ment of datain the program is named by a process number and local address within the process.
However, there are no operations defined on these global addresses. They can be passed around
and interpreted by the program, for example, to emulate a shared address style of programming
on top of message passing, but they cannot be operated on directly at the communication abstrac-
tion. As architects we need to be aware of the operations defined at each level of abstraction. In
particular, we need to be very clear on what ordering among operations is assumed to be present
at eacg level of abstraction, where communication takes place, and how datais replicated.

Ordering

The properties of the specified order among operations also has a profound effect throughout the
layers of parallel architecture. Notice, for example, that the message passing model places no
assumption on the ordering of operations by distinct processes, except the explicit program order
associated with the send/receive operations, whereas a shared address model must specify
aspects of how processes see the order of operations performed by other processes. Ordering
issues are important and rather subtle. Many of the “tricks’ that we play for performance in the
uniprocessor context involve relaxing the order assumed by the programmer to gain performance,
either through parallelism or improved locality or both. Exploiting parallelism and locality is
even more important in the multiprocessor case. Thus, we will need to understand what new
tricks can be played. We also need to examine what of the old tricks are till valid. Can we per-
form the traditional sequential optimizations, at the compiler and architecture level, on each pro-
cess of a parallel program? Where can the explicit synchronization operations be used to allow
ordering to be relaxed on the conventional operations? To answer these questions we will need to
develop a much more complete understanding of how programs use the communication abstrac-
tion, what properties they rely upon, and what machine structures we would like to exploit for
performance.

A natural position to adopt on ordering is that operationsin athread are in program order. That is
what the programmer would assume for the special case of one thread. However, there remains
the question of what ordering can be assumed among operations performed on shared variables
by different threads. The threads operate independently and, potentially, at different speeds so
thereis no clear notion of “latest”. If one hasin mind that the machines behave as a collection of
simple processors operating on a common, centralized memory, then it is reasonable to expect
that the global order of memory accesses will be some arbitrary interleaving of the individual
program orders. In reality we won't build the machines this way, but it establishes what opera-
tions are implicitly ordered by the basic operations in the model. This interleaving is also what
we expect if acollection of threads that are timeshared, perhaps at a very fine level, on a unipro-
Cessor.

9/10/97

DRAFT: Parallel Computer Architecture 67

Introduction

Where the implicit ordering is not enough, explicit synchronization operations are required.
There are two types of synchronization required in parallel programs:

* Mutual exclusion ensures that certain operations on certain data are performed by only
one thread or process at atime. We can imagine aroom that must be entered to perform
such an operation, and only one process can be in the room at a time. This is accom-
plished by locking the door upon entry and unlocking it on exit. If several processes
arrive at the door together, only one will get in and the others will wait till it leaves. The
order in which the processes are allowed to enter does not matter and may vary from one
execution of the program to the next; what matters is that they do so one at a time.
Mutual exclusion operations tend to serialize the execution of processes.

* Eventsare used to inform other processes that some point of execution has been reached
so that they can proceed knowing that certain dependences have been satisfied. These
operations are like passing a batton from one runner to the next in a relay race or the
starter firing a gun to indicate the start of a race. If one process writes a value which
another is supposed to read, there needs to be an event synchronization operation to
indicate that the value is ready to be read. Events may be point-to-point, involving apair
of processes, or they may be global, involving all processes, or a group of processes.

1.45 Communication and Replication

The final issues that are closely tied to the layers of parallel architecture are that of communica-
tion and data replication. Replication and communication are inherently related. Consider first a
message passing operation. The effect of the send/receive pair is to copy data that is in the
sender’s address space into a region of the receiver’s address space. This transfer is essential for
the receiver to access the data. If the data was produced by the sender, it reflects a true communi-
cation of information from one process to the other. If the data just happened to be stored at the
sender, perhaps because that was the initial configuration of the data or because the data set is
simply to large to fit on any one node, then this transfer merely replicates the data to where it is
used. The processes are not actually communicating via the data transfer. If the data was repli-
cated or positioned properly over the processes to begin with, there would be no need to commu-
nicate it in a message. More importantly, if the receiver uses the data over and over again, it can
reuse its replica without additional data transfers. The sender can modify the region of addresses
that was previously communicated with no effect on the previous receiver. If the effect of these
later updates are to be communicated, an additional transfer must occur.

Consider now a conventional data access on a uniprocessor through a cache. If the cache does not
contain the desired address, a miss occurs and the block is transfered from the memory that
serves as a backing store. The data is implicitly replicated into cache near the processor that
accesses it. If the processor resuses the data while it resides in the cache, further transfers with
the memory are avoided. In the uniprocessor case, the processor produces the data and the pro-
cessor that consumes it, so the “communication” with the memory occurs only because the data
does not fit in the cache or it is being accessed for the first time.

Interprocess communication and data transfer within the storage hierarchy become melded
together in a shared physica address space. Cache misses cause a data transfer across the
machine interconnect whenever the physical backing storage for an address is remote to the node
accessing the address, whether the address is private or shared and whether the transfer is aresult
of true communication or just a data access. The natural tendency of the machine is to replicate

68

DRAFT: Parallel Computer Architecture 9/10/97

Fundamental Design Issues

146

data into the caches of the processors that access the data. If the data is reused while it isin the
cache, no data transfers occur; this is a major advantage. However, when a write to shared data
occurs, something must be done to ensure that later reads by other processors get the new data,
rather than the old data that was replicated into their caches. Thiswill involve more than asimple
data transfer.

To be clear on the relationship of communication and replication it is important to distinguish
several concepts that are frequently bundled together. When a program performs awrite, it binds
adata value to an address; aread obtains the data value bound to an address. The dataresidesin
some physical storage element in the machine. A data transfer occurs whenever datain one stor-
age element istransfered into another. This does not necessarily change the bindings of addresses
and values. The same data may reside in multiple physical locations, as it does in the uniproces-
sor storage hierarchy, but the one nearest to the processor is the only one that the processor can
observe. If it is updated, the other hidden replicas, including the actual memory location, must
eventually be updated. Copying data binds a new set of addresses to the same set of values. Gen-
eraly, this will cause data transfers. Once the copy has been made, the two sets of bindings are
completely independent, unlike the implicit replication that occurs within the storage hierarchy,
S0 updates to one set of addresses do not effect the other. Communication between processes
occurs when data written by one processis read by another. This may cause a data transfer within
the machine, either on the write or the read, or the data transfer may occur for other reasons.
Communication may involve establishing a new binding, or not, depending on the particular
communication abstraction.

In general, replication avoids “unnecessary” communication, that is transferring data to a con-
sumer that was not produced since the data was previously accessed. The ability to perform repli-
cation automatically at a given level of the communication archtiecture depends very strongly on
the naming and ordering properties of the layer. Moreover, replication is not a panacea. Replica-
tion itself requires data transfers. It is disadvantageous to replicate data that is not going to be
used. We will see that replication plays an important role throughout parallel computer architec-
ture.

Performance

In defining the set of operations for communication and cooperation, the data types, and the
addressing modes, the communication abstraction specifies how shared objects are named, what
ordering properties are preserved, and how synchronization is performed. However, the perfor-
mance characteristics of the available primitives determines how they are actually used. Program-
mers and compiler writers will avoid costly operations where possible. In evaluating architectural
trade-offs, the decision between feasible aternatives ultimately rests upon the performance they
deliver. Thus, to complete our introduction to the fundamental issues of parallel computer archi-
tecture, we need to lay aframework for understanding performance at many levels of design.

Fundamentally, there are three performance metrics, latency, the time taken for an operation,
bandwidth, the rate at which operations are performed, and cost, the impact these operations have
on the execution time of the program. In a simple world where processors do only one thing at a
time these metrics are directly related; the bandwidth (operations per second) is the reciprocal of
the latency (seconds per operation) and the cost is simply the latency times the number of opera-
tions performed. However, modern computer systems do many different operations at once and

9/10/97

DRAFT: Parallel Computer Architecture 69

Introduction

Example 1-2

the relationship between these performance metrics is much more complex. Consider the follow-
ing basic example.

Suppose a component can perform a specific operation in 100ns. Clearly it can
support a bandwidth of 10 million operations per second. However, if the
component is pipelined internally as ten equal stages, it is able to provide a peak
bandwidth of 100 million operations per second. The rate at which operations can
be initiated is determined by how long the slowest stage is occupied, 10 ns, rather
than by the latency of an individual operation. The bandwidth delivered on an
application depends on how frequently it initiates the operations. If the application
starts an operation every 200 ns, the delivered bandwidth is 5 million operations per
seconds, regardless of how the component is pipelined. Of course, usage of
resources is usualy birsty, so pipelining can be advantageous even when the
average initiation rate is low. If the application performed one hundred million
operations on this component, what is the cost of these operations? Taking the
operation count times the operation latency would give upper bound of 10 seconds.
Taking the operation count divided by the peak rate gives a lower bound of 1
second. The former isaccurate if the program waited for each operation to complete
before continuing. The latter assumes that the operations are completely overlapped
with other useful work, so the cost is ssimply the cost to initiate the operation.
Suppose that on average the program can do 50 ns of useful work after each
operation issued to the component before it depends on the operations result. Then
the cost to the application is 50 ns per operation — the 10 ns to issue the operation
and the 40 ns spent waiting for it to complete.

Since the unique property of parallel computer architecture is communication, the operations that
we are concerned with most often are data transfers. The performance of these operations can be
understood as a generalization of our basic pipeline example.

Data Transfer Time

Thetime for adata transfer operation is generally described by alinear model:
TransferTime(n) = T+ % (EQ 1.3)

where n is the amount of data (e.g., humber of bytes), B is the transfer rate of the component
moving the data (e.g., bytes per second), and the constant term, T, is the start-up cost. Thisisa
very convenient model, and it is used to describe a diverse collection of operations, including
messages, memory accesses, bus transactions, and vector operations. For message passing, the
start up cost can be thought of as the time for the first bit to get to the destination. It appliesin
many aspects of traditional computer architecture, as well. For memory operations, it is essen-
tially the access time. For bus transactions, it reflects the bus arbitration and command phases.
For any sort of pipelined operation, including pipelined instruction processing or vector opera-
tions, it isthe time to fill pipeline.

Using this simple model, it is clear that the bandwidth of a data transfer operation depends on the
transfer size. Asthe transfer size increasesit approaches the asymptotic rate of B, which is some-
timesreferredtoas r,, . How quickly it approaches this rate depends on the start-up cost. It is eas-

70

DRAFT: Parallel Computer Architecture 9/10/97

Fundamental Design Issues

ily shown that the size at which half of the peak bandwidth is obtained, the half-power point, is
given by

—— (EQ 1.4)

Unfortunately, thislinear model does not give any indication when the next such operation can be
initiated, nor does it indicate whether other useful work can be performed during the transfer.
These other factors depend on how the transfer is performed.

Overhead and Occupancy

The datatransfer in which we are most interested is the one that occurs across the network in par-
alel machines. It is initiated by the processor through the communication assist. The essential
components of this operation can be described by the following simple model.

CommunicationTime(n) = Overhead + Network Delay + Occupancy (EQ 1.5)

The Overhead is the time the processor spends initiating the transfer. This may be afixed cost, if
the processor simply has to tell the communication assist to start, or it may belinear in n, if the
processor has to copy the data into the assist. The key point is that this is time the processor is
busy with the communication event; it cannot do other useful work or initiate other communica-
tion during this time. The remaining portions of the communication time is considered the net-
work latency; it is the part that can be hidden by other processor operations.

The Occupancy is the time it takes for the data to pass through the slowest component on the
communication path. For example, each link that is traversed in the network will be occupied for
time %, where B is the bandwidth of the link. The data will occupy other resources, including
buffers, switches, and the communication assist. Often the communication assist is the bottleneck
that determines the occupancy. The occupancy limits how frequently communication operations
can be initiated. The next data transfer will have to wait until the critical resource is no longer
occupied before it can use that same resource. If there is buffering between the processor and the
bottleneck, the processor may be able to issue a burst of transfers at a frequency greater than
1
Occupancy '
occupancy. A new transfer can start only when a older one finishes.

however, once this buffering is full, the processor must slow to the rate set by the

The remaining communication time is lumped into the Network Delay, which includes the time
for a bit to be routed across the actual network and many other factors, such as the time to get
through the communication assist. From the processors viewpoint, the specific hardware compo-
nents contributing to network delay are indistinguishable. What effects the processor is how long
it must wait before it can use the result of a communication event, how much of thistime it can
be bust with other activities, and how frequently it can communicate data. Of course, the task of
designing the network and its interfacesis very concerned with the specific components and their
contribution to the aspects of performance that the processor observes.

In the simple case where the processor issues a request and waits for the response, the breakdown
of the communication time into its three components is immaterial. All that matters is the total

9/10/97

DRAFT: Parallel Computer Architecture 71

Introduction

round trip time. However, in the case where multiple operations are issued in a pipelined fashion,
each of the components has a specific influence on the delivered performance.

Indeed, every individual component along the communication path can be described by its delay
and its occupancy. The network delay is simply the sum of the delays along the path. The net-
work occupancy is the maximum of the occupancies along the path. For interconnection net-
works there is an additional factor that arises because many transfers can take place
simultaneously. If two of these transfers attempt to use the same resource at once, for exampleis
they use the same wire at the same time, one must wait. This contention for resources increases
the average communication time. From the processors viewpoint, contention appears as
increased occupancy. Some resource in the system is occupied for atime determined by the col-
lection of transfers acrossiit.

Equation 1.5 is avery general model. It can be used to describe data transfers in many placesin
modern, highly pipelined computer systems. As one example, consider the time to move a block
between cache and memory on amiss. Thereis a period of time that the cache controller spends
inspecting the tag to determine that it is not a hit and then starting the transfer; this is the over-
head. The occupancy is the block size divided by the bus bandwidth, unless there is some slower
component in the system. The delay includes the normal time to arbitrate and gain access to the
bus plus the time spent delivering data into the memory. Additional time spent waiting to gain
access to the bus or wait for the memory bank cycle to complete is due to contention. A second
obvious example is the time to transfer a message from one processor to another.

Communication Cost

The bottom line is, of course, the time a program spends performing communication. A useful
model connecting the program characteristics to the hardware performance is given by the fol-
lowing.

CommunicationCost = frequency x (CommunicationTime — Overlap) (EQ 1.6)

The frequency of communication, defined as the number of communication operations per unit of
work in the program, depends on many programming factors (as we will see in Chapter 2) and
many hardware design factors. In particular, hardware may limit the transfer size and thereby
determine the minimum number of messages. It may automatically replicate data or migrate it to
where it is used. However, thereis a certain amount of communication that is inherent to parallel
execution, since data must be shared and processors must coordinate their work. In general, for a
machine to support programs with a high communication frequency the other parts of the com-
munication cost equation must be small — low overhead, low network delay, and small occu-
pancy. The attention paid to communication costs essentially determines which programming
models a machine can realize efficiently and what portion of the application space it can support.
Any parallel computer with good computational performance can support programs that commu-
nicate infrequently, but as the frequency increases or volume of communication increases greater
stressis placed on the communication architecture.

The overlap is the portion of the communication operation which is performed concurrently with
other useful work, including computation or other communication. This reduction of the effective
cost is possible because much of the communication time involves work done by components of
the system other than the processor, such as the network interface unit, the bus, the network or the
remote processor or memory. Overlapping communication with other work is a form of small

72

DRAFT: Parallel Computer Architecture 9/10/97

Concluding Remarks

15

scale parallelism, as is the instruction level parallelism exploited by fast microprocessors. In
effect, we may invest some of the available parallelism in a program to hide the actual cost of
communication.

Summary

The issues of naming, operation set, and ordering apply at each level of abtraction in a parallel
architecture, not just the programming model. In general, there may be a level of trandation or
run-time software between the programming model and the communication abstraction, and
beneath this abstraction are key hardware abstractions. At any level, communication and replica-
tion are deeply related. Whenever two processes access the same data, it either needs to be com-
municated between the two or replicated so each can access a copy of the data. The ability to
have the same name refer to two distinct physical locations in a meaningful manner at a given
level of abstraction depends on the position adopted on naming and ordering at that level. Wher-
ever data movement is involved, we need to understand its performance characteristics in terms
of the latency and bandwidth, and furthermore how these are influenced by overhead and occu-
pancy. As architects, we need to design against the frequency and type of operations that occur at
the communication abstraction, understanding that there are trade-offs across this boundary
involving what is supported directly in hardware and what in software. The position adopted on
naming, operation set, and ordering at each of these levels has a qualitiative impact on these
trade-offs, as we will see throughout the book.

Concluding Remarks

Parallel computer architecture forms an important thread in the evolution of computer architec-
ture, rooted essentially in the beginnings of computing. For much of this history it takes on a
novel, even exotic role, asthe avenue for advancement over and beyond what the base technology
can provide. Parallel computer designs have demonstrated a rich diversity of structure, usualy
motivated by specific higher level parallel programming models. However, the dominant techno-
logical forces of the VLS| generation have pushed parallelism increasingly into the mainstream,
making parallel architecture almost ubiquitous. All modern microprocessors are highly parallel
internally, executing several bit-parallel instructions in every cycle and even reordering instruc-
tionswithin the limits of inherent dependences to mitigate the costs of communication with hard-
ware components external to the processor itself. These microprocessors have become the
performance and price-performance leaders of the computer industry. From the most powerful
supercomputers to departmental servers to the desktop, we see even higher performance systems
constructed by utilizing multiple of such processors integrated into a communications fabric.
This technological focus, augmented with increasing maturity of compiler technology, has
brought about a dramatic convergence in the structural organization of modern parallel machines.
The key architectural issueis how communication is integrated into the memory and I/O systems
that form the remainder of the computational node. This communications architecture reveals
itself functionally in terms of what can be named at the hardware level, what ordering guarantees
are provided and how synchronization operations are performed, while from a performance point
of view we must understand the inherent latency and bandwidth of the available communication
operations. Thus, modern parallel computer architecture carries with it a strong engineering com-
ponent, amenable to quantitative analysis of cost and performance trade-offs.

Computer systems, whether parallel or sequential, are designed against the requirements and
characteristics of intended workloads. For conventional computers, we assume that most practi-
tioners in the field have a good understanding of what sequential programs look like, how they

9/10/97

DRAFT: Parallel Computer Architecture 73

Introduction

are compiled, and what level of optimization is reasonable to assume the programmer has per-
formed. Thus, we are comfortable taking popular sequential programs, compiling them for a tar-
get architecture, and drawing conclusions from running the programs or evaluating execution
traces. When we attempt to improve performance through architectural enhancements, we
assume that the program is reasonably “good” in the first place.

The situation with parallel computersis quite different. There is much less general understanding
of the process of parallel programming and there is awider scope for programmer and compiler
optimizations, which can greatly affect the program characteristics exhibited at the machine
level. To address this situation, Chapter 2 provides an overview of parallel programs, what they
look like, how they are constructed. Chapter 3 explains the issues that must be addressed by the
programmer and compiler to construct a “good” parallel program, i.e., one that is effective
enough is using multiple processors to form a reasonable basis for architectural evaluation. Ulti-
mately, we design parallel computers against the program characteristics at the machine level, so
the goal of Chapter 3 isto draw a connection between what appears in the program text and how
the machine spends its time. In effect, Chapter 2 and 3 take us from a general understanding of
issues at the application level down to a specific understanding of the character and frequency of
operations at the communication abstraction.

Chapter 4 establishes a framework for workload-driven evaluation of parallel computer designs.
Two related scenarios are addressed. First, for a parallel machine that has already been built, we
need a sound method of evaluating its performance. This proceeds by first testing what individual
aspects of the machine are capable of in isolation and then measures how well they perform col-
lectively. The understanding of application characteristics is important to ensure that the work-
load run on the machine stresses the various aspects of interest. Second, we outline a process of
evaluating hypothetical architectural advancements. New ideas for which no machine exists need
to be evaluated through simulations, which imposes severe restrictions on what can reasonably be
executed. Again, an understanding of application characteristics and how they scale with problem
and machine size is crucial to navigating the design space.

Chapters 5 and 6 study the design of symmetric multiprocessors with a shared physical address
spacein detail. There are several reasons to go deeply into the small-scale case before examining
scalable designs. First, small-scale multiprocessors are the most prevalent form of parallel archi-
tecture; they are likely to be what the most students are exposed to, what the most software devel-
opers are targeting and what the most professional designers are dealing with. Second, the issues
that arise in the small-scale are indicative of what is critical in the large scale, but the solutions
are often simpler and easier to grasp. Thus, these chapters provides a study in the small of what
the following four chapters address in the large. Third, the small-scale multiprocessor designisa
fundamental building block for the larger scale machines. The available options for interfacing a
scalable interconnect with a processor-memory node are largely circumscribed by the processor,
cache, and memory structure of the small scale machines. Finaly, the solutions to key design
problems in the small-scal e case are elegant in their own right.

The fundamental building-block for the designsin Chapter 5 and 6 is the shared bus between pro-
cessors and memory. The basic problem that we need to solve is to keep the contents of the
caches coherent and the view of memory provided to the processors consistent. A busis a power-
ful mechanism. It provides any-to-any communication through a single set of wires, but more-
over can serve as a broadcast medium, since there is only one set of wires, and even provide
global status, via wired-or signals. The properties of bus transactions are exploited in designing
extensions of conventional cache controllers that solve the coherence problem. Chapter 5 pre-

74

DRAFT: Parallel Computer Architecture 9/10/97

Concluding Remarks

sents the fundamental techniques to bus-based cache coherence at the logical level and presents
the basic design aternatives. These design alternatives provide an illustration of how workload-
driven evaluation of can be brought to bear in making design decisions. Finally, we return to the
parallel programming issues of the earlier chpapters and examine how aspects of the machine
design influence the software level, especialy in regard to cache effects on sharing patterns and
the design of robust synchronization routines. Chapter 6 focuses on the organization structure
and machine implementation of bus-based cache coherence. It examines a variety of more
advanced designs that seek to reduce latency and increase bandwidth while preserving a consis-
tent view of memory.

Chapters 7 through 10 form a closely interlocking study of the design of scalable parallel archi-
tectures. Chapter 7 makes the conceptual step from a bus transaction as a building block for
higher level abstractions to a network transaction as a building block. To cement this understand-
ing, the communication abstractions that we have surveyed in this introductory chapter are con-
structed from primitive network transactions. Then the chapter studies the design of the node to
network interface in depth using a spectrum of case studies.

Chapters 8 and 9 go deeply into the design of scalable machines supporting a shared address
space, both a shared physical address space and a shared virtual address space upon independent
physical address spaces. The central issue is automatic replication of datawhile preserving acon-
sistent view of memory and avoiding performance bottlenecks. The study of a global physical
address space emphasizes hardware organizations that provide efficient, fine-grain sharing. The
study of a global virtual address space provides an understanding of what is the minimal degree
of hardware support required for most workloads.

Chapter 10 takes up the question of the design of the scalable network itself. As with processors,
caches, and memory systems, there are several dimensions to the network design space and often
adesign decision involves interactions along several dimensions. The chapter lays out the funda-
mental design issues for scalable interconnects, illustrates the common design choices, and eval-
uates them relative to the requirements established in chapters 5 and 6. Chapter 9 draws together
the material from the other three chapters in the context of an examination of techniques for
latency tolerance, including bulk transfer, write-behind, and read-ahead across the spectrum of
communication abstractions. Finally, Chapter 11 looks at what has been learned throughout the
text in light of technologocal, application, and economic trends to forcast what will be the key
on-going developmentsin parallel computer architecture. The book presents the conceptual foun-
dations as well as the engineering issues across a broad range of potential scales of design, all of
which have an important role in computing today and in the future.

9/10/97

DRAFT: Parallel Computer Architecture 75

Introduction

1.6 References

[AIG089]
[And*62]
[Amdh67]

[Don94]

[Fly72]
[HeP90]

[HoJe]

[Bak90]

[Feiod]
[Fla94]

[Gwe94a]
[Gwe4b]
[HeJo91]

[MR*]

[OST93]

[Sla94]

[SPEC]
[Russ78]

[Aug*89]

[NAS]

George S. Almasi and Alan Gottlieb. Highly Parallel Computing. Benjamin/Cummings, Redwood
CA 1989.

J. P. Anderson, S. A. Hoffman, J. Shifman, and R. Williams, “ D825 - aMulitple-computer System
for Command and Control”, AFIP Proceedings of the FICC, vol 22, pp. 86-96, 1962.

Gene M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale Comput-
ing Capabilities. AFIPS 1967 Spring Joint Computer Conference, vol 40, pp. 483-5.

Jack J. Dongarra. Performance of Various Computers Using Standard Linear Equation Software.
Tech Report CS-89-85, Computer Science Dept., Univ. of Tennessee, Nov. 1994 (current report
available from netlib@ornl.gov).

M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans. on Computing,
C-21():948-60.

John Hennessy and David Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, 1990.

R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam Hilger, 1988.

Technology and Application Trends

H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley Pub. Co.,
1990.

Curtis P. Feigel, Tl Introduces Four-Processor DSP Chip, Microprocessor Report, Mar 28, 1994.

James L. Flanagan. Technologies for Multimedia Communications. |EEE Proceedings, pp. 590-
603, vol 82, No. 4, April 1994

Linley Gwennap, PA-7200 Enables | nexpensive MP Systems, Microprocessor Report, Mar. 1994.
(This should be replaced by Compon94 or | SSCC reference.)

Linley Gwennap, Microprocessors Head Toward MP on a Chip, Microprocessor Report, May 9,
1994.

John Hennessy and Norm Jouppi, Computer Technology and Architecture: An Evolving Interac-
tion. IEEE Computer, 24(9):18-29, Sep. 1991.

Several issues of Microprocessor report provide data for chip clock-rate and frequency. Need to
flesh this out.

Office of Science and Technology Policy. Grand Challenges 1993: High Performance Computing
and Communications, A Report by the Committee on Physical, Mathematical, and Engineering
Sciences, 1993.

Michael Slater, Intel Unveils Multiprocessor System Specification, Microprocessor Report, pp.
12-14, May 1994.

Standard Performance Evaluation Corporation, http://www.specbench.org/

R. M. Russel, The CRAY-1 Computer System, Communications of the ACM, 21(1):63-72, Jan
1978

August, M.C.; Brost, G.M.; Hsiung, C.C.; Schiffleger, A.J. Cray X-MP: the birth of a supercom-
puter, Computer, Jan. 1989, vol.22, (no.1):45-52.

Bailey, D.H.; Barszcz, E.; Dagum, L.; Simon, H.D. NAS Parallel Benchmark results 3-94, Pro-
ceedings of the Scalable High-Performance Computing Conference, Knoxville, TN, USA, 23-25
May 1994, p. 111-20.

76

DRAFT: Parallel Computer Architecture 9/10/97

References

[INNIE]

[But+91]
[Chat+91]
[Hor+90]

[Johg0]
[JoWa89]

[Lawi92]
[Leet9]]
[MePa91]

[Smi+89]

[Soh*94]

[Wal91]

[Loki61]
[Pad8l]

[ArBasg6]

[Bel85]
[Bro*?7]
[Goo83]

[Got*83]

[HEL +86]

Pfeiffer, Hotovy, S., Nystrom, N., Rudy, D., Sterling, T., Straka, “INNIE: The Joint NSF-NASA
Initiative on Evaluation”, URL http://www.tc.cornell.edu/INNIE/finrep/jnnie.html.

Instruction Level Parallelism

M. Butler, T-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow. Single Instruction Stream
Parallelism is Greater than Two, pp. 276-86, ISCA 1991.

P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, W. W. Hwu. IMPACT: An Architectura
Framework for Multiple-Instruction Issue Processors, pp. 226-1SCA 1991.

R. W. Horgt, R. L. Harris, R. L. Jardine. Multiple Instruction Issue in the NonStop Cyclone Pro-
Cessor, pp. 216-26, ISCA 1990.

M. Johnson. Superscalar Processor Design, Prentice Hall, Englewood Cliffs, NJ, 1990.

N. Jouppi and D. Wall. Available Instruction-Level Parallelism for Superscalar and Superpipe-
lined Machines, ASPLOS 111, pp. 272-282, 1989

Monica S. Lam and Robert P. Wilson, Limits on Control Flow on Parallelism, Proc. of the 19th
Annual International Symposium on Computer Architecture, pp. 46-57.

R. L. Lee, A. Y. Kwok, and F. A. Briggs. The Floating Point Performance of a Superscalar
SPARC Processor, ASPLOS IV, Apr. 1991.

S. Melvinand Y. Patt. Exploiting Fine-Grained Parallelism through a Combination of Hardware
and Software Techniques, pp. 287-296, ISCA 1991.

M. D. Smith, M. Johnson, and M. A. Horowitz. Limits on Multiple Instruction I ssue, Proceedings
of the Third International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 290-302, Apr. 1989.

G. Sohi, S. Breach, and T. N. Vijaykumar, Multiscalar Processors, Proc. of the 22nd Annual In-
ternational Symposium on Computer Architecture, Jun 1995, pp. 414-25.

David W. Wall. Limits of Instruction-Level Parallelism, ASPLOS IV, Apr. 1991.

Shared Memorw

W. Lonergan and P. King, Design of the B 5000 System. Datamation, vol 7 no. 5, may 1961, pp.
28-32

A. Padegs, System/360 and Beyond, IBM Journal of Research and Development, Vol 25., no. 5,
Sept. 1981, pp377-90.

James Archibald and Jean-L oup Bager. Cache Coherence Protocols. Evaluation Using aMultipro-
cessor Simulation Model. ACM Transactions on Computer Systems, 4(4):273-298, November
1986.

C. Gordon Bell. Multis: A New Class of Multiprocessor Computers. Science, 228:462-467, April
1985.

E. D. Brookslll, B. C. Gorda, K. H. Warren, T. S. Welcome, BBN TC2000 Architecture and Pro-
gramming Models.

James Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. In Proceedings of
the 10th Annual International Symposiumon Computer Architecture, pp. 124-131, June 1983.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir. The NYU
Ultracomputer - Designing an MIMD Shared Memory Parallel Computer, |IEEE Trans. on Com-
puters, ¢c-32(2):175-89, Feb. 1983.

Mark Hill et al. Design Decisionsin SPUR. |EEE Computer, 19(10):8-22, November 1936.

9/10/97

DRAFT: Parallel Computer Architecture 77

Introduction

[Kesca3]
[Koe*94]

[LL3+02]

[Pfi*85]

[Swa* 773

[Swa* 77b]

[Wul*75]

[AR94]

[Fen*95]

[GoMa95]
[Rod85]

[Nes85]

[Shas5]

[Mates5]

[Savos]

[HoChgs]

[Cek*93]

R. E. Kesser and J. L. Schwarzmeier, Cray T3D: a new dimension for Cray Research, Proc. of
Papers. COMPCON Spring'93, pp 176-82, San Francisco, CA, Feb. 1993.

R. Kent Koeninger, Mark Furtney, and Martin Walker. A Shared Memory MPP from Cray Re-
search, Digital Technical Journal 6(2):8-21, Spring 1994.

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop Gupta, and
John Hennessy. The DASH Prototype: Logic Overhead and Performance. IEEE Transactions on
Parallel and Distributed Systems, 4(1):41-61, January 1993.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuUliff, E.
A. Melton, V. A. Norton, and J. Weiss, The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture, International Conference on Parallel Processing, 1985.

R. J. Swan, S. H. Fuller, and D. P. Siewiorek, CM* - a modular, multi-microprocessor, AFIPS
Conference Proceedings, vol 46, National Computer Conference, 1977, pp. 637-44.

R. J. Swan, A. Bechtolsheim, K-W Lai, and J. K. Ousterhout, The Implementation of the CM*
multi-microprocessor, AFIPS Conference Proceedings, vol 46, National Computer Conference,
1977, pp. 645-55.

W. Wulf, R. Levin, and C. Person, Overview of the Hydra Operating System Development, Proc.
of the 5th Symposium on Operating Systems Principles, Nov. 1975, pp. 122-131.

Thomas B. Alexander, Kenneth G. Robertson, Deal T. Lindsay, Donald L. Rogers, John R. Ober-
meyer, John R. Keller, Keith Y. Oka, and Marlin M. Jones1I. Corporate Business Servers: An Al-
ternative to Mainframes for Business Computing. Hewlett-Packard Journal, June 1994, pages 8-
33. (HP K-class)

David M. Fenwick, Denis J. Foley, William B. Gist, Stephen R. VanDoren, and Daniel Wissell,
The AlphaServer 8000 Series: High-end Server Platform Development, Digital Technical Journal,
Vol. 7 No. 1, 1995.

Nitin D. Godiwala and Barry A. Maskas, The Second-generation Processor Module for Al-
phaServer 2100 Systems, Digital Technical Journal, Vol. 7 No. 1, 1995.

D. Rodgers, Improvements ion Multiprocessor System Design, Proc. of the 12th Annual Interna-
tional Symposium on Computer Architecture, pp. 225-31, Jun1985, Boston MA. (Sequent B8000)

E. Nestle and A Inselberg, The Synapse N+1 System: Architectural Characteristics and Perfor-
mance Data of a Tightly-coupled Multiprocessor System, Proc. of the 12th Annual International
Symposium on Computer Architecture, pp. 233-9, June 1985, Boston MA. (Synapse)

Schanin, D.J., The design and development of avery high speed system bus-the Encore M ultimax
Nanobus, 1986 Proceedings of the Fall Joint Computer Conference. Dallas, TX, USA, 2-6 Nov.
1986). Edited by: Stone, H.S. Washington, DC, USA: IEEE Comput. Soc. Press, 1986. p. 410-18.
(Encore)

N. Matelan, The FLEX/32 Multicomputer, Proc. of the 12th Annual International Symposium on
Computer Architecture, pp. 209-13, Jun1985, Boston MA. (Flex)

J. Savage, Parallel Processing as a Language Design Problem, Proc. of the 12th Annual Interna
tional Symposium on Computer Architecture, pp. 221-224, Jun 1985, Boston MA. (Myrias 4000)

R. W. Horst and T. C. K. Chou, An Architecture for High Volume Transaction Processing, Proc.
of the 12th Annual International Symposium on Computer Architecture, pp. 240-5, June 1985,
Boston MA. (Tandem NonStop I1)

Cekleov, M., et a, SPARCcenter 2000: multiprocessing for the 90's, Digest of Papers. COMP-
CON Spring'93 San Francisco, CA, USA, 22-26 Feb. 1993). Los Alamitos, CA, USA: IEEE Com-
put. Soc. Press, 1993. p. 345-53. (Sun)

78

DRAFT: Parallel Computer Architecture 9/10/97

References

[Gal*94]

[Aga*94]

[Fra3]

[Saa93]

[Len*92]

[IEE93]

[Woo* 93]

[AtSesg]
[Bar*94]
[BoRo8Y]
[Dungg]
[Fox*8g]
[Gro92]
[HoMc93]

[Hor*93]

[Kum92]

Galles, M.; Williams, E. Performance optimizations, implementation, and verification of the SGI
Challenge multiprocessor. Proceedings of the Twenty-Seventh Hawaii International Conference
on System Sciences Val. I: Architecture, Wailea, HI, USA, 4-7 Jan. 1994, Edited by: Mudge,
T.N.; Shriver, B.D. Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 1994. p. 134-43. (SGI
Challenge)

Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk Johnson, David Kranz, John Kubiatow-
icz, Ben-Hong Lim, Ken Mackenzie, and Donald Yeung. The MIT Alewife Machine: Architec-
ture and Performance. Proc. of the 22nd Annual International Symposium on Computer Architec-
ture, May 1995, pp. 2-13.

Frank, S.; Burkhardt, H., I11; Rothnie, J. The KSR 1: bridging the gap between shared memory
and MPPs, COMPCON Spring ‘93. Digest of Papers, San Francisco, CA, USA, 22-26 Feb. 1993)
p. 285-94. (KSR)

Saavedra, R.H.; Gains, R.S.; Carlton, M.J. Micro benchmark analysis of the KSR1, Proceedings
SUPERCOMPUTING ‘93, Portland, OR, USA, 15-19 Nov. 1993 p. 202-13.

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop Gupta, and
John Hennessy. The DASH Prototype: Implementation and Performance. In Proceedings of the
19th International Symposium on Computer Architecture, pages 92-103, Gold Coast, Australia,
May 1992
|IEEE Computer Society. |IEEE Standard for Scalable Coherent Interface (SCI). |IEEE Standard
1596-1992, New Y ork, August 1993.

David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill, James R. Larus, Alvin R. Lebeck,
James C. Lewis, Shubhendu S. Mukherjee, Subbarao Palacharla, Steven K. Reinhardt, Mecha

nisms for Cooperative Shared Memory, Proc. 20th Annual Symposium on Computer Architec-
ture, May 1993, pp. 156-167.

Message Passing

William C. Athasand CharlesL. Seitz, Multicomputers. M essage-Passing Concurrent Computers,
|EEE Computer, Aug. 1988, pp. 9-24.

E. Barton, J. Crownie, and M. McLaren. Message Passing on the Melko CS-2. Parallel Comput-
ing, 20(4):497-507, Apr. 1994.

Luc Bomans and Dirk Roose, Benchmarking the iPSC/2 Hypercube Multiprocessor. Concurren-
cy: Practice and Experience, 1(1):3-18, Sep. 1989.

T. H. Dunigan, Performance of a Second Generation Hypercube, Technical Report ORNL/TM-
10881, Oak Ridge Nat. Lab., Nov. 1988.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker, Solving Problems on Concurrent
Processors, vol 1, Prentice-Hall, 1988.

W. Groscup, The Intel Paragon XP/S supercomputer. Proceedings of the Fifth ECMWF Work-
shop on the Use of Parallel Processorsin Meteorology. Nov 1992, pp. 262--273.

Mark Homewood and Moray McLaren, Meiko CS-2 Interconnect Elan - Elite Design, Hot Inter-
connects, Aug. 1993.

Horiw, T., Hayashi, K., Shimizu, T., and Ishihata, H., Improving the AP1000 Parallel Computer
Performance with Message Passing, Proc. of the 20th Annual International Symposium on Com-
puter Architecture, May 1993, pp. 314-325

Kumar, M., Unique design concepts in GF11 and their impact on performance, IBM Journal of
Research and Development, Nov. 1992, vol.36, (no.6):990-1000.

9/10/97

DRAFT: Parallel Computer Architecture 79

Introduction

[Lei*92]

[Miy94]

[PiRe94]

[Seigs)]

[And*94]
[Kun*91]
[Pfi*95]
[Bod*95]
[Gil96]

[Bal*62]

[Bat79]
[Bats0]
[Bou*72]

[Bor+90]

[Cor72]
[Hill85]
[Hist86]
[Nic90]
[Red73]

[Slo*62]

C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill,
W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong, S. Yang, R. Zak. The
Network Architecture of the CM-5. Symposium on Parallel and Distributed Algorithms92, Jun
1992, pp. 272-285.

Miyoshi, H.; Fukuda, M.; Iwamiya, T.; Takamura, T., et al, Development and achievement of
NAL Numerical Wind Tunnel (NWT) for CFD computations. Proceedings of Supercomputing
‘94, Washington, DC, USA, 14-18 Nov. 1994) p. 685-92.

Paul Pierce and Greg Regnier, The Paragon | mplementation of the NX Message Passing | nterface.
Proc. of the Scalable High-Performance Computing Conference, pp. 184-90, May 1994.

Charles L. Seitz, The Cosmic Cube, Communications of the ACM, 28(1):22-33, Jan 1985.

Networks of Workstations

Anderson, T.E.; Culler, D.E.; Patterson, D. A case for NOW (Networks of Workstations), |EEE
Micro, Feb. 1995, val.15, (no.1):54-6

Kung, H.T, et al, Network-based multicomputers: an emerging parallel architecture, Proceedings
Supercomputing ‘91, Albuquerque, NM, USA, 18-22 Nov. 1991 p. 664-73

G. F. Pfister, In Search of Clusters - the coming battle for lowly parallel computing, Prentice-Hall,
1995.

N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W. Su, Myrinet: A Gi-
gabit-per-Second Loca Area Network, IEEE Micro, Feb. 1995, val.15, (no.1), pp. 29-38.

Richard Gillett, Memory Channel Network for PCI, IEEE Micro, vol 16, no. 1, feb 1996.
Data Parallel / SMD / Systolic

J.R. Bal, R. C. Bollinger, T. A. Jeeves, R. C. McReynolds, D. H. Shaffer, On the Use of the So-
lomon Parallel-Processing Computer, Proceedings of the AFIPS Fall Joint Computer Conference,
vol. 22, pp. 137-146, 1962.

Kenneth E. Batcher, The STARAN Computer. Infotech State of the Art Report: Supercomputers.
vol 2, ed C. R. Jesshope and R. W. Hockney, Maidenhead: Infotech Intl. Ltd, pp. 33-49.

Kenneth E. Batcher, Design of aMassively Parallel Processor, | EEE Transactions on Computers,
€-29(9):836-840.

W. J. Bouknight, S. A Denenberg, D. E. Mcintyre, J. M. Randall, A. H. Sameh, and D. L. Slotnick,
Thellliac 1V System, Proceedings of the |EEE, 60(4):369-388, Apr. 1972.

Borkar, S. et al, Supporting systolic and memory communication iniWarp, Proceedings. The 17th
Annual International Symposium on Computer Architecture, Seattle, WA, USA, 28-31 May 1990,
p. 70-81.

J. A. Cornell. Parallel Processing of ballistic missile defense radar data with PEPE, COMPCON
72, pp. 69-72.

W. Danid Hillis, The Connection Machine, MIT Press 1985.
W. D. Hillisand G. L. Steele, Data-Parallel Algorithms, Comm. ACM, val. 29, no. 12, 1986

Nickolls, JR., The design of the MasPar MP-1: a cost effective massively paralel computer.
COMPCON Spring ‘90 Digest of Papers. San Francisco, CA, USA, 26 Feb.-2 March 1990, p. 25-
8.

S. F. Reddaway, DAP - a distributed array processor. First Annual International Symposium on
Computer Architecture, 1973.

Daniel L. Slotnick, W. Carl Borck, and Robert C. McReynolds, The Solomon Computer, Proceed-

80

DRAFT: Parallel Computer Architecture 9/10/97

References

[Slot67]
[TuR08S]

[ViCo78]

[ArCusé]

[Dal93]

[Denso]
[GrHo90]

[Gur*85]

PaCu90]

[Sak*91]

[Shi*84]

[Spe*93]

[VEi*92]

ings of the AFIPS Fall Joint Computer Conference, vol. 22, pp. 97-107, 1962.

Daniel L. Slotnick, Unconventional Systems, Proceedings of the AFIPS Spring Joint Computer
Conference, vol 30, pp. 477-81, 1967.

L.W. Tucker and G.G. Robertson, Architecture and Applications of the Connection Machine,
IEEE Computer, Aug 1988, pp. 26-38

C.R.Vickand J. A. Cornell, PEPE Architecture - present and future. AFIPS Conference Proceed-
ings, 47: 981-1002, 1978.

Dataflow / Message Driven

Dataflow Architectures, Annual Reviews in Computer Science, Vol 1., pp 225-253, Annual Re-
views Inc., Palo Alto CA, 1986 (Reprinted in Dataflow and Reduction Architectures, S. S.
Thakkar, ed, IEEE Computer Society Press, 1987).

Dally, W.J.; Keen, J.S,; Noakes, M.D., The JMachine architecture and evaluation, Digest of Pa-
pers. COMPCON Spring ‘93, San Francisco, CA, USA, 22-26 Feb. 1993, p. 183-8.

J. B. Dennis. Dataflow Supercomputers, |EEE Computer 13(11):93-100.

Grafe, V.G.; Hoch, J.E., The Epsilon-2 hybrid dataflow architecture, COMPCON Spring ‘90, San
Francisco, CA, USA, 26 Feb.-2 March 1990, p. 88-93.

J. R. Gurd, C. C. Kerkham, and I. Watson, The Manchester Prototype Dataflow Computer, Com-
munications of the ACM, 28(1):34-52, Jan. 1985.

Papadopoulos, G.M. and Culler, D.E. Monsoon: an explicit token-store architecture, Proceedings.
The 17th Annual International Symposium on Computer Architecture, Seattle, WA, USA, 28-31
May 1990, p. 82-91.

Sakal, S.; Kodama, Y.; Yamaguchi, Y., Prototype implementation of a highly parallel dataflow
machine EM4. Proceedings. The Fifth International Parallel Processing Symposium, Anaheim,
CA, USA, 30 April-2 May, p. 278-86.

T. Shimada, K. Hiraki, and K. Nishida, An Architecture of a Data Flow Machine and its Evalua-
tion, Proc. of Compcon 84, pp. 486-90, IEEE, 1984.

E.Spertus, S. Copen Goldstein, Klaus Erik Schauser, Thorsten von Eicken, David E. Culler, Wil-
liam J. Dally, Evaluation of Mechanismsfor Fine-Grained Parallel Programsin the J-Machine and
the CM-5, Proc. 20th Annual Symposium on Computer Architecture, May 1993, 302-313

von Eicken, T.; Culler, D.E.; Goldstein, S.C.; Schauser, K.E., Active messages. a mechanism for
integrated communication and computation, Proc. of 19th Annual International Symposium on
Computer Architecture, old Coast, Queensland, Australia, 19-21 May 1992, pp. 256-66

Historical References

Parallel computer architecture has a long, rich, and varied history that is deeply interwoven with advances in
the underlying processor, memory, and network technologies. The first blossoming of parallel architectures
occurs around 1960. Thisis a point where transistors have replaced tubes and other complicated and constrain-
ing logic technologies. Processors are smaller and more manageable. A relatively cheap, inexpensive storage
technology exists (core memory), and computer architectures are settling down into meaningful “families.”
Small-scale shared-memory multiprocessors took on an important commercial role at this point with the incep-
tion of what we call mainframes today, including the Burroughs B5000[LoKi61] and D825[And*62] and the
IBM System 360 model 65 and 67[Pad81]. Indeed, support for multiprocessor configurations was one of the
key extensions in the evolution of the 360 architecture to System 370. These included atomic memory opera

9/10/97

DRAFT: Parallel Computer Architecture 81

Introduction

tions and interprocessor interrupts. In the scientific computing area, shared-memory multiprocessors were also
common. The CDC 6600 provided an asymmetric shared-memory organization to connect multiple periphera
processors with the central processor, and adual CPU configuration of this machine was produced. The origins
of message-passing machines can be seen as the RW400, introduced in 1960[Por60]. Data parallel machines
also emerged, with the design of the Solomon computer[Bal* 62,Sl0*62].

Up through the late 60s there was tremendous innovation in the use of parallelism within the processor through
pipelining and replication of function units to obtain a far greater range of performance within a family than
could be obtained by simply increasing the clock rate. It was argued that these efforts were reaching a point of
diminishing returns and a major research project got underway involving the University of Illinois and Bur-
roughs to design and build a 64 processor SIMD machine, called Illiac IV[Bou*67], based on the earlier
Solomon work (and in spite of Amdahl’s arguments to the contrary[Amdh67]). This project was very ambi-
tious, involving research in the basic hardware technologies, architecture, I/0O devices, operating systems, pro-
gramming languages, and applications. By the time a scaled-down, 16 processor system was working in 1975,
the computer industry had undergone massive structural change.

First, the concept of storage as asimple linear array of moderately slow physical devices had been revolution-
ized, first with the idea of virtual memory and then with the concept of caching. Work on Multics and its prede-
cessors, e.g., Atlasand CTSS, separated the concept of the user address space from the physical memory of the
machine. This required maintaining a short list of recent trandations, aTLB, in order to obtain reasonable per-
formance. Maurice Wilkes, the designer of EDSAC, saw this as a powerful technique for organizing the
addressable storage itself, giving rise to what we now call the cache. This proved an interesting example of
locality triumphing over parallelism. The introduction of caches into the 360/85 yielded higher performance
than the 360/91, which had a faster clock rate, faster memory, and elaborate pipelined instruction execution
with dynamic scheduling. The use of caches was commerciaized in the IBM 360/185, but this raised a serious
difficulty for the 1/O controllers aswell as the additional processors. If addresses were cached and therefore not
bound to a particular memory location, how was an access from another processor or controller to locate the
valid data? One solution was to maintain a directory of the location of each cache line. An idea that has
regained importance in recent years.

Second, storage technology itself underwent a revolution with semiconductor memories replacing core memo-
ries. Initially, this technology was most applicable to small cache memories. Other machines, such asthe CDC
7600, ssimply provided a separate, small, fast explicitly addressed memory. Third, integrated circuits took hold.
The combined result was that uniprocessor systems enjoyed a dramatic advance in performance, which miti-
gated much of the added value of paralelism in the llliac IV system, with its inferior technological and archi-
tectural base. Pipelined vector processing in the CDC STAR-100 addressed the class of numerical
computations that Illiac was intended to solve, but eliminated the difficult data movement operations. The final
straw was the introduction of the Cray-1 system, with an astounding 80 MHz clock rate owing to exquisite cir-
cuit design and the use of what we now call a RISC instruction set, augmented with vector operations using
vector registers and offering high peak rate with very low start-up cost. The use of simple vector processing
coupled with fast, expensive ECL circuits was to dominate high performance computing for the next 15 years.

A fourth dramatic change occurred in the early 70s, however, with the introduction of microprocessors.
Although the performance of the early microprocessors was quite low, the improvements were dramatic as bit-
slice designs gave way to 4-hit, 8-bit, 16-bit and full-word designs. The potential of this technology motivated
amajor research effort at Carnegie-Mellon University to design a large shared memory multiprocessor using
the LSI-11 version of the popular PDP-11 minicomputer. This project went through two phases. First, C.mmp
connected 16 processors through a specially design circuit-switched cross-bar to a collection of memories and
I/O devices, much like the dancehall design in Figure 1-19a] Wul* 75]. Second, CM* sought to build a hundred

82

DRAFT: Parallel Computer Architecture 9/10/97

References

processor system by connecting 14-node clusters with local memory through a packet-switched network in a
NUMA configuration[Swa* 77a,Swa77b], asin Figure 1-19b.

This trend toward systems constructed from many, small microprocessors literally exploded in the early to mid
80s. This resulted in the emergence of severa disparate factions. On the shared memory side, it was observed
that a confluence of caches and properties of busses made modest multiprocessors very attractive. Busses have
limited bandwidth, but are a broadcast medium. Caches filter bandwidth and provide a intermediary between
the processor and the memory system. Research at Berkeley [Goo83,Hell*86] introduced extensions of the
basic bus protocol that allowed the caches to maintain a consistent state. This direction was picked up by sev-
eral small companies, including Synapse[Nes85], Sequent[Rod85], Encore[Bel85,Sha85], Flex|Mate85] and
others, as the 32-bit microprocessor made its debut and the vast personal computer industry took off. A decade
later this general approach dominates the server and high-end workstation market and is taking hold in the PC
servers and the desktop. The approach experienced a temporary set back as very fast RISC microprocessors
took away the performance edge of multiple slower processors. Although the RISC micros were well suited to
multiprocessor design, their bandwidth demands severely limited scaling until a new generation of shared bus
designs emerged in the early 90s.

Simultaneously, the message passing direction took off with two major research efforts. At CalTech a project
was started to construct a 64-processor system using i8086/8087 microprocessors assembled in a hypercube
configuration[Sei85,AtSe88]. From this base-line severa further designs were pursued at CalTech and
JPL[Fox*88] and at least two companies pushed the approach into commercialization, Intel with the iPSC
serieq[] and Ametek. A somewhat more aggressive approach was widely promoted by the INMOS corporation
in England in the form of the Transputer, which integrated four communication channels directly onto the
microprocessor. This approach was also followed by nCUBE, with a series of very large scale message passing
machines. Intel carried the commodity processor approach forward, replacing the 180386 with the faster 1860,
then replacing the network with a fast grid-based interconnect in the Delta]] and adding dedicated message
processors in the Paragon. Meiko moved away from the transputer to the i860 in their computing surface. IBM
also investigated an i860-based design in Vulcan.

Data parallel systems also took off in the early 80s, after a period of relative quiet. This included Batcher’'s
M PP system developed by Goodyear for image processing and the Connection Machine promoted by Hillisfor
Al Applicationg/Hill85]. The key enhancement was the provision of a general purpose interconnect to prob-
lems demanding other than simple grid-based communication. These ideas saw commercialization with the
emergence of Thinking Machines Corporation, first with the CM-1 which was close to Hillis' original concep-
tions and the CM-2 which incorporated a large number of bit-parallel floating-point units. In addition, MAS-
PAR and Wavetracer carried the bit-serial, or dightly wider organization forward in cost-effective systems.

A more formal development of highly regular parallel systems emerged in the early 80s as systolic arrays, gen-
erally under the assumption that alarge number of very simple processing elements would fit on a single chip.
It was envisioned that these would provide cheap, high performance special-purpose add-ons to conventional
computer systems. To some extent these ideas have been employed in programming data parallel machines.
The iIWARP project at CMU produced a more general, smaller scale building block which has been devel oped
further in conjunction with Intel. These ideas have also found their way into fast graphics, compression, and
rendering chips.

Thetechnological possibilities of the VLS| revolution also prompted the investigation of more radical architec-
tural concepts, including dataflow architectures]Den80,Arv*83,Gur*85], which integrated the network very
closely with the instruction scheduling mechanism of the processor. It was argued that very fast dynamic
scheduling throughout the machine would hide the long communication latency and synchronization costs of a

9/10/97

DRAFT: Parallel Computer Architecture 83

Introduction

large machine and thereby vastly simplify programming. The evolution of these ideas tended to converge with
the evolution of message passing architectures, in the form of message driven computation [Dal 93]

Large scale shared-memory designs took off as well. IBM pursued a high profile research effort with the RP-
3[Pfi*85] which sought to connect alarge number of early RISC processors, the 801, through a butterfly net-
work. This was based on the NYU Ultracomputer work|[Gott* 83], which was particularly novel for its use of
combining operations. BBN developed two large scale designs, the BBN Butterfly using Motorola 68000 pro-
cessors and the TC2000[Bro*] using the 88100s. These efforts prompted a very broad investigation of the pos-
sibility of providing cache-coherent shared memory in a scalable setting. The Dash project at Stanford sought
to provide afully cache coherent distributed shared memory by maintaining a directory containing the disposi-
tion of every cache block[LLJ*92,Len*92]. SCI represented an effort to standardize an interconnect and cache-
coherency protocol[|IEEE93]. The Alewife project at MIT sought to minimize the hardware support for shared
memory[Aga*94], which was pushed further by researchers ar WisconsinfWoo*93]. The Kendall Square
Research KSR1[Fra93,Saa93] goes even further and allows the home location of data in memory to migrate.
Alternatively, the Denelcor HEP attempted to hide the cost of remote memory latency by interleaving many
independent threads on each processor.

The 90s have exhibited the beginnings of a dramatic convergence among these various factions. This conver-
gence is driven by many factors. One is clearly that al of the approach have clear common aspects. They all
require afast, high quality interconnect. They all profit from avoiding latency where possible and reducing the
absolute latency when it does occur. They all benefit from hiding as much of the communication cost as possi-
ble, where it does occur. They all must support various forms of synchronization. We have seen the shared
memory work explicit seek to better integrate message passing in Alewife] Aga* 94] and Flash [Flash-ISCA94],
to obtain better performance where the regularity of the application can provide large transfers. We have seen
data parallel designs incorporate complete commaodity processors in the CM-5[Lei*92], allowing very simple
processing of messages at user level, which provides much better efficiency for Message Driven computing and
shared memory[VvEi*92,Spe*93]. There remains the additional support for fast global synchronization. We
have seen fast global synchronization, message queues, and latency hiding techniques developed in a NUMA
shared memory context in the Cray T3D[Kesc93,Koe* 94] and the message passing support in the Melko CS-
2[Bar*94,HoMc93] provides direct virtual memory to virtual memory transfers within the user address space.
The new element that continues to separate the factions is the use of complete commaodity workstation nodes,
as in the SP-1, SP-2 and various workstation clusters using merging high bandwidth networks, such as
ATM.[And*94,Kun*91,Pfi95]. The costs of weaker integration into the memory system, imperfect network
reliability, and general purpose system requirements have tended to keep these systems more closely aligned
with traditional message passing, athough the future devel opments are far from clear.

84

DRAFT: Parallel Computer Architecture 9/10/97

Exercises

1.7 EXxercises

1.1 Computethe annua growth rate in number of transistors, die size, and clock rate by fitting an
exponential to the technology leaders using available datainTable 1-1.

1.2 Compute the annual performance growth rates for each of the benchmarks shown in Table 1-
1. Comment on the differences that you observe

Table 1-1 Performance of leading workstations

Year Machine | Specint | SpecFP | Linpack | n=1000 | Peak FP
Sun 4/260 1987 9 6 11 11 33
MIPS M/120 1988 13 10.2 21 48 6.7
MIPS M/2000 1989 18 21 39 7.9 10

IBM RS6000/540 | 1990 24 44 19 50 60

HP 9000/750 1991 51 101 24 47 66

DEC AlphaAXP 1992 80 180 30 107 150
DEC 7000/610 1993 132.6 200.1 44 156 200
AlphaServer 2100 | 1994 200 291 43 129 190

Generally, in evaluating performance trade-offs we will evaluate the improvement in perfor-
mance, or speedup, due to some enhancement. Formally,

Time,; Performance,;
Speedup due to enhancement E = Cwithout £ _ Ewith E

Timey; g Performance,ino g

In particular, we will often refer to the speedup as a function of the machine paralld, e.g., the
number of processors.

1.3 Suppose you are given a program which does a fixed amount of work and some fraction s of
that work must be done sequentially. The remaining portion of the work is perfectly parallel-
izableon P processors. Assuming T, isthe time taken on one processor, derive aformulafor
Tpthe time taken on P processors. Use this to get a formula giving an upper bound on the
potential speedup on P processors. (This is a variant of what is often called Amdahl’'s
Law[Amd67].) Explain why it is an upper bound?

1.4 Given a histogram of available parallelism such as that shown in Figure 1-7, where f; isthe
fraction of cycleson anideal machineinwhich i instructionsissue, derive ageneralization of
Amdahl’slaw to estimate the potential speedup on a k -issue superscalar machine. Apply your
formulathe histogram datain Figure 1-7 to produce the speedup curve shown in that figure.

1.5 Locate the current TPC performance data on the web and compare the mix of system config-
urations, performance, and speedups obtained on those machines with the data presented in
Figure 1-4.

Programming Models

1.6 In message passing models each process is provided with a special variable or function that
gives its unique number or rank among the set of processes executing a program. Most
shared-memory programming systems provide a fetch&inc operation, which reads the value
of alocation and atomically increments the location. Write a little pseudo-code to show how

9/10/97

DRAFT: Parallel Computer Architecture 85

Introduction

to use fetch& add to assign each process a unique number. Can you determine the number of
processes comprising a shared memory parallel program in asimilar way?

1.7 To move an n-byte message along H links in an unloaded store-and-forward network takes
time H\—;‘-V+ (H-1)R, where W isthe raw link bandwidth, and R isthe routing delay per hop.
In a network with cut-through routing this takes time V—r:/+ (H-1)R. Consider an 8x8 grid
consisting of 40 MBY/s links and routers with 250ns of delay. What is the minimum, maxi-

mum, and average time to move a 64 byte message through the network? A 246 byte mes-
sage?
1.8 Consider a ssimple 2D finite difference scheme where at each step every point in the matrix
updated by a weighted average of its four neighbors,
Ali, j1 = Al j] =w(A[i =1, j] + Ali + 1, j] + Ali, j - 1] + A[i, j +1])
All the values are 64-hit floating point numbers. Assuming one element per processor and
1024x1024 elements, how much data must be communicated per step? Explain how this computation

could be mapped onto 64 processors so as to minimize the data traffic. Compute how much data must be
communicated per step.

Latency and bandwidth

1.9 Consider the simple pipelined component described in Example 1-2. Suppose that the appli-
cation alternates beween bursts of m independent operations on the component and phases of
computation lasting T ns that do not use the component. Develop an expression describing
the execution time of the program based on these parameters. Compare this with the unpipe-
lined and fully pipelined bounds. At what points to you get the maximum discrepancy
between the models? How largeisit as afraction of overa execution time?

1.10 Show that Equation 1.4 follows from Equation 1.3.
1.11 What isthe x-intercept of the linein Equation 1.3?

If we consider loading a cache line from memory the transfer time is the time to actually transmit
the data across the bus. The start-up includes the time to obtain access to the bus, convey the
address, access the memory, and possibly to place the data in the cache before responding to the
processor. However, in a modern processor with dynamic instruction scheduling, the overhead
may include only the portion spent accessing the cache to detect the miss and placing the request
on the bus. The memory access portion contributes to latency, which can potentially be hidden by
the overlap with execution of instructions that do not depend on the result of the load.

1.12 Suppose we have a machine with a 64-bit wide bus running at 40 MHz. It takes 2 bus cycles
to arbitrate for the bus and present the address. The cache line size is 32 bytes and the mem-
ory accesstimeis 100ns. What is the latency for aread miss? What bandwidth is obtained on
this transfer?

1.13 Suppose this 32-byte line is transferred to another processor and the communication archi-
tecture imposes a start-up cost of 2us and data transfer bandwidth of 20MB/s. What is the
total latency of the remote operation?

If we consider sending an n-byte message to another processor, we may use the same model. The
start-up can be thought of asthe time for a zero length message; it includes the software overhead

86 DRAFT: Parallel Computer Architecture 9/10/97

Exercises

on the two processors, the cost of accessing the network interface, and the time to actually cross
the network. The transfer time is usually determined by the point along the path with the least
bandwidth, i.e., the bottleneck.

1.14 Suppose we have a machine with a message start-up of 100us and a asymptotic peak band-
width of 80MB/s. At what size message is half of the peak bandwidth obtained?

1.15 Derive a general formulafor the “half-power point” in terms of the start-up cost and peak
bandwidth.

The model makes certain basic trade-offs clear. For example, longer transfers take more time, but
obtain higher bandwidth because the start-up cost is amortized over more data movement. This
observation can help guide design trade-offs, at least up to a point where the collection of data
transfers interact to increase the start-up cost or reduce the effective bandwidth.

In some cases we will use the model in Equation 1.6 for estimating data transfer performance
based on design parameters, asin the examples above. In other cases, we will use it as an empiri-
cal tool and fit measurements to aline to determine the effective start-up and peak bandwidth of a
portion of a system. Observe, for example, that if data undergoes a series of copies as part of a
transfer

1.16 Assuming that before transmitting amessage the data must be copied into abuffer. The basic
message timeis asin Exercise 1.14, but the copy is performed at a cost of 5 cycles per 32-bit
words on a 100 MHz machine. Given an equation for the expected user-level message time.
How does the cost of a copy compare with afixed cost of, say, entering the operating system.

1.17 Consider a machine running at 100 MIPS on some workload with the following mix: 50%
ALU, 20% loads, 10% stores, 10% branches. Suppose the instruction miss rate is 1%, the
datamissrate is 5%, the cache line size is 32 bytes. For the purpose of this calculation, treat a
store miss as requiring two cache line transfers, one to load the newly update line and one to
replace the dirty line. If the machine provides a 250 MB/s bus, how many processors can it
accommodate at 50% of peak bus bandwidth? What is the bandwidth demand of each proces-
sor?

The scenario is Exercise 1.17 is alittle rosy because it looks only at the sum of the average band-
widths, which is why we left 50% headroom on the bus. In fact, what happens as the bus
approaches saturation is that it takes longer to obtain access for the bus, so it looks to the proces-
sor asif the memory system is slower. The effect isto slow down all of the processorsin the sys-
tem, thereby reducing their bandwidth demand. Let’s try a analogous calculation from the other
direction.

1.18 Assumetheinstruction mix and missrateasin Exercise 1.17, but ignorethe MIPS, since that
depends on the performance of the memory system. Assume instead that the processor run as
100 MHz and has an ideal CPI (with an perfect memory system). The unloaded cache miss
penalty is 20 cycles. You can ignore the write-back for stores. (As a starter, you might want to
compute the MIPS rate for this new machine.) Assume that the memory system, i.e., the bus
and the memory controller is utilized throughout the miss. What is the utilization of the mem-
ory system, U, , with asingle processor? From this result, estimate the number of processors
that could be supported before the processor demand would exceed the available bus band-
width.

9/10/97

DRAFT: Parallel Computer Architecture 87

Introduction

1.19 Of course, no matter how many processors you place on the bus, they will never exceed the
available bandwidth. Explains what happens to processor performance in response to bus
contention. Can you formalize your observations?

88 DRAFT: Parallel Computer Architecture 9/10/97

Introduction

CHAPTER 2

Paralldl Programs

Morgan Kaufmann ispleased to present material from a preliminary draft of Parallel Computer Architecture; the
material is(c) Copyright 1996 M organ Kaufmann Publishers. Thismaterial may not beused or distributed for any
commercial purpose without the expresswritten consent of M organ Kaufmann Publishers. Please notethat this
material isadraft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changesor alterationsin thefinal edition.

21

I ntroduction

To understand and evaluate design decisions in a parallel machine, we must have an idea of the
software that runs on the machine. Understanding program behavior led to some of the most
important advances in uniprocessors, including memory hierarchies and instruction set design. It
is all the more important in multiprocessors, both because of the increase in degrees of freedom
and because of the much greater performance penalties caused by to mismatches between appli-
cations and systems.

Understanding parallel software is important for algorithm designers, for programmers, and for
architects. As algorithm designers, it helps us focus on designing algorithms that can be run
effectively in parallel on rea systems. As programmers, it helps us understand the key perfor-
mance issues and obtain the best performance from a system. And as architects, it hel ps us under-

9/10/97

DRAFT: Parallel Computer Architecture 89

Parallel Programs

2.2

stand the workloads we are designing against and their important degrees of freedom. Parallel
software and its implications will be the focus of the next three chapters of this book. This chap-
ter describes the process of creating parallel programs in the magjor programming models. The
next chapter focuses on the performance issues that must be addressed in this process, exploring
some of the key interactions between parallel applications and architectures. And the following
chapter relies on this understanding of software and interactions to develop guidelines for using
parallel workloads to evaluate architectural tradeoffs. In addition to architects, the materia in
these chaptersis useful for users of parallel machines as well: thefirst two chapters for program-
mers and algorithm designers, and the third for users making decisions about what machines to
procure. However, the major focus is on issues that architects should understand before they get
into the nuts and bolts of machine design and architectural tradeoffs, so let uslook at it from this
perspective.

As architects of sequential machines, we generally take programs for granted: Thefield is mature
and there is a large base of programs than can be (or must be) viewed as fixed. We optimize the
machine design against the requirements of these programs. Although we recognize that pro-
grammers may further optimize their code as caches become larger or floating-point support is
improved, we usually evaluate new designs without anticipating such software changes. Compil-
ers may evolve along with the architecture, but the source program is till treated as fixed. In par-
alel architecture, there is a much stronger and more dynamic interaction between the evolution
of machine designs and that of parallel software. Since parallel computing is all about perfor-
mance, programming tends to be oriented towards taking advantage of what machines provide.
Parallelism offers a new degree of freedom—the number of processors—and higher costs for
data access and coordination, giving the programmer a wide scope for software optimizations.
Even as architects, we therefore need to open up the application “black box”. Understanding the
important aspects of the process of creating parallel software, the focus of this chapter, helps us
appreciate the role and limitations of the architecture. The deeper look at performance issuesin
the next chapter will shed greater light on hardware-software tradeoffs.

Even after a problem and a good sequentia agorithm for it are determined, there is a substantial
processinvolved in arriving at a parallel program and the execution characteristicsthat it offersto
amultiprocessor architecture. This chapter presents general principles of the parallelization pro-
cess, and illustrates them with real examples. The chapter begins by introducing four actual prob-
lemsthat serve as case studies throughout the next two chapters. Then, it describes the four major
steps in creating a parallel program—using the case studies to illustrate—followed by examples
of how asimple parallel program might be written in each of the major programming models. As
discussed in Chapter 1, the dominant models from a programming perspective narrow down to
three: the data parallel model, a shared address space, and message passing between private
address spaces. This chapter illustrates the primitives provided by these models and how they
might be used, but is not concerned much with performance. After the performance issues in the
parallelization process are understood in the next chapter, the four application case studies will
be treated in more detail to create high-performance versions of them.

Parallel Application Case Studies

We saw in the previous chapter that multiprocessors are used for a wide range of applications—
from multiprogramming and commercial computing to so-called “grand challenge” scientific
problems—and that the most demanding of these applications for high-end systems tend to be

90

DRAFT: Parallel Computer Architecture 9/10/97

Parallel Application Case Studies

221

from scientific and engineering computing. Of the four case studies we refer to throughout this
chapter and the next, two are from scientific computing, one is from commercial computing and
one from computer graphics. Besides being from different application domains, the case studies
are chosen to represent a range of important behaviors found in other parallel programs as well.

Of the two scientific applications, one simulates the motion of ocean currents by discretizing the
problem on a set of regular grids and solving a system of equations on the grids. This technique
of discretizing equations on grids is very common in scientific computing, and leads to a set of
very common communication patterns. The second case study represents another major form of
scientific computing, in which rather than discretizing the domain on a grid the computational
domain is represented as a large number of bodies that interact with one another and move
around as a result of these interactions. These so-called N-body problems are common in many
areas such as simulating galaxies in astrophysics (our specific case study), simulating proteins
and other moleculesin chemistry and biology, and simulating €l ectromagnetic interactions. Asin
many other areas, hierarchical algorithms for solving these problems have become very popular.
Hierarchical N-body algorithms, such as the one in our case study, have aso been used to solve
important problems in computer graphics and some particularly difficult types of equation sys-
tems. Unlike the first case study, this one leads to irregular, long-range and unpredictable com-
munication.

The third case study is from computer graphics, a very important consumer of moderate-scale
multiprocessors. It traverses a three-dimensional scene and highly irregular and unpredictable
ways, and rendersit into a two-dimensional image for display. The last case study represents the
increasingly important class of commercia applications that analyze the huge volumes of data
being produced by our information society to discover useful knowledge, categories and trends.
These information processing applications tend to be 1/0 intensive, so parallelizing the 1/O activ-
ity effectively is very important. The first three case studies are part of a benchmark suite
[SWG92] that iswidely used in architectural evaluations in the literature, so there is a wealth of
detailed information available about them. They will be used to illustrate architectural tradeoffs
in this book as well.

Simulating Ocean Currents

To model the climate of the earth, it isimportant to understand how the atmosphere interacts with
the oceans that occupy three fourths of the earth’s surface. This case study simulates the motion
of water currents in the ocean. These currents develop and evolve under the influence of several
physical forces, including atmospheric effects, wind, and friction with the ocean floor. Near the
ocean wallsthereis additional “vertical” friction as well, which leads to the devel opment of eddy
currents. The goal of this particular application case study is to simulate these eddy currents over
time, and understand their interactions with the mean ocean flow.

Good models for ocean behavior are complicated: Predicting the state of the ocean at any instant
requires the solution of complex systems of equations, which can only be performed numerically
by computer. We are, however, interested in the behavior of the currents over time. The actual
physical problem is continuous in both space (the ocean basin) and time, but to enable computer
simulation we discretize it along both dimensions. To discretize space, we model the ocean basin
asagrid of equally spaced points. Every important variable—such as pressure, velocity, and var-
ious currents—has a value at each grid point in this discretization. This particular application
uses not athree-dimensional grid but a set of two-dimensional, horizontal cross-sections through

9/10/97

DRAFT: Parallel Computer Architecture 91

Parallel Programs

the ocean basin, each represented by a two-dimensional grid of points (see Figure 2-1). For sim-

O00O0O O0O0O00O0O0
O0O0OO0O 00000 O0
O0O0O0O O0OO0O0O0O0O0
O00O0O O0O0O00O0O0
O00O0O O0O0O00O0O0
O00O0O O0O0O00O0O0
O0O0OO0O 00000 O0
O0O0O0O O0OO0O0O0O0O0
O00O0O O0O0O00O0O0
O00O0O O0O0O00O0O0

(a) Cross-sections (b) Spatial discretization of across-section

Figure 2-1 Horizontal cross-sections through an ocean basin, and their spatial discretization into regular grids.

plicity, the ocean is modeled as a rectangular basin and the grid points are assumed to be equally
spaced. Each variable is therefore represented by a separate two-dimensional array for each
cross-section through the ocean. For the time dimension, we discretize time into a series of finite
time-steps. The equations of motion are solved at al the grid points in one time-step, the state of
the variables is updated as a result, and the equations of motion are solved again for the next
time-step, and so on repeatedly.

Every time-step itself consists of several computational phases. Many of these are used to set up
values for the different variables at al the grid points using the results from the previous time-
step. Then there are phases in which the system of equations governing the ocean circulation are
actually solved. All the phases, including the solver, involve sweeping through all points of the
relevant arrays and manipulating their values. The solver phases are somewhat more complex, as
we shall see when we discuss this case study in more detail in the next chapter.

The more grid points we use in each dimension to represent our fixed-size ocean, the finer the
spatial resolution of our discretization and the more accurate our simulation. For an ocean such
as the Atlantic, with its roughly 2000km-x-2000km span, using a grid of 100-x-100 points
implies a distance of 20km between points in each dimension. Thisis not a very fine resolution,
so we would like to use many more grid points. Similarly, shorter physical intervals between
time-steps lead to greater simulation accuracy. For example, to simulate five years of ocean
movement updating the state every eight hours we would need about 5500 time-steps.

The computational demands for high accuracy are large, and the need for multiprocessing is
clear. Fortunately, the application also naturally affords alot of concurrency: many of the set-up
phases in a time-step are independent of one another and therefore can be done in paralel, and
the processing of different grid pointsin each phase or grid computation can itself be donein par-
alel. For example, we might assign different parts of each ocean cross-section to different pro-
cessors, and have the processors perform their parts of each phase of computation (adata-parallel
formulation).

92

DRAFT: Parallel Computer Architecture 9/10/97

Parallel Application Case Studies

2.2.2 Simulating the Evolution of Galaxies

Our second case study is also from scientific computing. It seeks to understand the evolution of
stars in a system of galaxies over time. For example, we may want to study what happens when
gaaxies collide, or how a random collection of stars folds into a defined galactic shape. This
problem involves simulating the motion of a number of bodies (here stars) moving under forces
exerted on each by all the others, an n-body problem. The computation is discretized in space by
treating each star as a separate body, or by sampling to use one body to represent many stars.
Here again, we discretize the computation in time and simulate the motion of the galaxies for
many time-steps. In each time-step, we compute the gravitational forces exerted on each star by
al the others and update the position, velocity and other attributes of that star.

Computing the forces among stars is the most expensive part of atime-step. A simple method to

compute forces is to calculate pairwise interactions among all stars. This has O(n®) computa-
tional complexity for n stars, and is therefore prohibitive for the millions of stars that we would
like to smulate. However, by taking advantage of insights into the force laws, smarter hierarchi-
cal agorithms are able to reduce the complexity to O(n log n). This makes it feasible to smulate
problems with millions of stars in reasonable time, but only by using powerful multiprocessors.
Thebasic insight that the hierarchical algorithms use isthat since the strength of the gravitational
m;m,
r2
weaker and therefore do not need to be computed as accurately as those of starsthat are close by.
Thus, if agroup of starsisfar enough away from a given star, then their effect on the star does not
have to be computed individually; as far as that star is concerned, they can be approximated as a
single star at their center of mass without much loss in accuracy (Figure 2-2). The further away

interaction falls off with distance as G , the influences of stars that are further away are

(o]
Star too close to 00
roximate 0,0 o° o| Larger group far
ap ..--""""lo g0 0 enough away to
cemmmt 7T 0 0 o o approximate
------- °© oo

o--e: "
Star onwhichforces go Small group far enough away to
are being computed approximate by center of mass

Figure 2-2 Theinsight used by hierarchical methods for n-body problems.

A group of bodies that is far enough away from a given body may be approximated by the center of mass of the group. The further
apart the bodies, the larger the group that may be thus approximated.

the stars from a given star, the larger the group that can be thus approximated. In fact, the strength
of many physical interactions falls off with distance, so hierarchical methods are becoming
increasingly popular in many areas of computing.

The particular hierarchical force-calculation algorithm used in our case study is the Barnes-Hut
algorithm. The case study is called Barnes-Hut in the literature, and we shall use this name for it
aswell. We shall see how the algorithm works in Section 3.6.2. Since galaxies are denser in some
regions and sparser in others, the distribution of starsin spaceis highly irregular. The distribution

9/10/97

DRAFT: Parallel Computer Architecture 93

Parallel Programs

223

224

also changes with time as the galaxy evolves. The nature of the hierarchy implies that stars in
denser regions interact with more other stars and centers of mass—and hence have more work
associated with them—than stars in sparser regions. There is ample concurrency across stars
within a time-step, but given the irregular and dynamically changing nature the challenge is to
exploit it efficiently on aparallel architecture.

Visualizing Complex Scenes using Ray Tracing

Our third case study is the visualization of complex scenes in computer graphics. A common
technique used to render such scenes into imagesis ray tracing. The sceneis represented as a set
of objects in three-dimensional space, and the image being rendered is represented as a two-
dimensional array of pixels (picture elements) whose color, opacity and brightness values are to
be computed. The pixels taken together represent the image, and the resolution of the image is
determined by the distance between pixelsin each dimension. The scene is rendered as seen from
a specific viewpoint or position of the eye. Rays are shot from that viewpoint through every pixel
in the image plane and into the scene. The algorithm traces the paths of these rays—computing
their reflection, refraction, and lighting interactions as they strike and reflect off objects—and
thus computes values for the color and brightness of the corresponding pixels. There is obvious
parallelism across the rays shot through different pixels. This application will be referred to as
Raytrace.

Mining Data for Associations

Information processing is rapidly becoming amajor marketplace for parallel systems. Businesses
are acquiring a lot of data about customers and products, and devoting a lot of computational
power to automatically extracting useful information or “knowledge” from these data. Examples
from a customer database might include determining the buying patterns of demographic groups
or segmenting customers according to relationships in their buying patterns. This process is
called data mining. It differs from standard database queries in that its goal is to identify implicit
trends and segmentations, rather than simply look up the data requested by a direct, explicit
query. For example, finding all customers who have bought cat food in the last week is not data
mining; however, segmenting customers according to relationships in their age group, their
monthly income, and their preferences in pet food, cars and kitchen utensilsis.

A particular, quite directed type of datamining is mining for associations. Here, the goal isto dis-
cover relationships (associations) among the information related to different customers and their
transactions, and to generate rules for the inference of customer behavior. For example, the data-
base may store for every transaction the list of items purchased in that transaction. The goal of
the mining may be to determine associations between sets of commonly purchased items that
tend to be purchased together; for example, the conditional probability P(S;|S;) that a certain set
of items S isfound in atransaction given that a different set of items S, isfound in that transac-
tion, where S; and S, are sets of items that occur often in transactions.

Consider the problem a little more concretely. We are given a database in which the records cor-
respond to customer purchase transactions, as described above. Each transaction has a transac-
tion identifier and a set of attributes or items, for example the items purchased. The first goal in
mining for associations is to examine the database and determine which sets of k items, say, are
found to occur together in more than a given threshold fraction of the transactions. A set of items
(of any size) that occur together in atransaction is called an itemset, and an itemset that is found

94

DRAFT: Parallel Computer Architecture 9/10/97

The Parallelization Process

2.3

in more than that threshold percentage of transactions is called a large itemset. Once the large
itemsets of size k are found—together with their frequencies of occurrence in the database of
transactions—determining the association rules among them is quite easy. The problem we con-
sider therefore focuses on discovering the large itemsets of size k and their frequencies.

The data in the database may be in main memory, or more commonly on disk. A simple way to
solve the problem is to first determine the large itemsets of size one. From these, a set of candi-
date itemsets of size two items can be constructed—using the basic insight that if an itemset is
large then all its subsets must also be large—and their frequency of occurrence in the transaction
database counted. Thisresultsin alist of large itemsets of size two. The processis repeated until
we obtain the large itemsets of size k. Thereis concurrency in examining large itemsets of size k-
1 to determine candidate itemsets of size k, and in counting the number of transactions in the
database that contain each of the candidate itemsets.

The Parallelization Process

The four case studies—Ocean, Barnes-Hut, Raytrace and Data Mining—offer abundant concur-
rency, and will help illustrate the process of creating effective parallel programs in this chapter
and the next. For concreteness, we will assume that the sequential algorithm that we are to make
parallel is given to us, perhaps as a description or as a sequential program. In many cases, asin
these case studies, the best sequential algorithm for a problem lends itself easily to paralleliza-
tion; in others, it may not afford enough parallelism and afundamentally different algorithm may
be required. The rich field of parallel agorithm design is outside the scope of this book. How-
ever, thereisin all cases asignificant process of creating agood parallel program that implements
the chosen (sequential) algorithm, and we must understand this process in order to program par-
allel machines effectively and evaluate architectures against parallel programs.

At ahigh level, the job of parallelization involves identifying the work that can be done in paral-
lel, determining how to distribute the work and perhaps the data among the processing nodes, and
managing the necessary data access, communication and synchronization. Note that work
includes computation, data access, and input/output activity. The goal is to obtain high perfor-
mance while keeping programming effort and the resource requirements of the program low. In
particular, we would like to obtain good speedup over the best sequential program that solves the
same problem. This requires that we ensure a balanced distribution of work among processors,
reduce the amount of interprocessor communication which is expensive, and keep the overheads
of communication, synchronization and parallelism management |ow.

The steps in the process of creating a parallel program may be performed either by the program-
mer or by one of the many layers of system software that intervene between the programmer and
the architecture. These layers include the compiler, runtime system, and operating system. In a
perfect world, system software would allow users to write programs in the form they find most
convenient (for example, as sequential programs in a high-level language or as an even higher-
level specification of the problem), and would automatically perform the transformation into effi-
cient parallel programs and executions. While much research is being conducted in parallelizing
compiler technology and in programming languages that make this easier for compiler and runt-
ime systems, the goals are very ambitious and have not yet been achieved. In practice today, the
vast majority of the processis still the responsibility of the programmer, with perhaps some help
from the compiler and runtime system. Regardless of how the responsibility is divided among

9/10/97

DRAFT: Parallel Computer Architecture 95

Parallel Programs

231

these parallelizing agents, the issues and tradeoffs are similar and it is important that we under-
stand them. For concreteness, we shall assume for the most part that the programmer has to make
all the decisions.

Let us now examine the parallelization process in amore structured way, by looking at the actual
steps in it. Each step will address a subset of the issues needed to obtain good performance.
Theseissueswill be discussed in detail in the next chapter, and only mentioned briefly here.

Stepsin the Process

To understand the steps in creating aparallel program, let usfirst define three few important con-
cepts: tasks, processes and processors. A task is an arbitrarily defined piece of the work done by
the program. It is the smallest unit of concurrency that the parallel program can exploit; i.e., an
individual task is executed by only one processor, and concurrency is exploited across tasks. In
the Ocean application we can think of asingle grid point in each phase of computation as being a
task, or arow of grid points, or any arbitrary subset of a grid. We could even consider an entire
grid computation to be a single task, in which case parallelism is exploited only across indepen-
dent grid computations. In Barnes-Hut a task may be a particle, in Raytrace aray or a group of
rays, and in Data Mining it may be checking a single transaction for the occurrence of an itemset.
What exactly constitutes a task is not prescribed by the underlying sequential program; it is a
choice of the parallelizing agent, though it usually matches some natural granularity of work in
the sequential program structure. If the amount of work a task performsis small, it is called a
fine-grained task; otherwise, it is called coarse-grained.

A process (referred to interchangeably hereafter as a thread) is an abstract entity that performs
tasks.! A parallel program is composed of multiple cooperating processes, each of which per-
forms a subset of the tasks in the program. Tasks are assighed to processes by some assignment
mechanism. For example, if the computation for each row in agrid in Ocean is viewed as atask,
then a simple assignment mechanism may be to give an equal number of adjacent rows to each
process, thus dividing the ocean cross section into as many horizontal slices as there are pro-
cesses. In data mining, the assignment may be determined by which portions of the database are
assigned to each process, and by how the itemsets within a candidate list are assigned to pro-
cesses to ook up the database. Processes may need to communicate and synchronize with one
another to perform their assigned tasks. Finally, the way processes perform their assigned tasksis
by executing them on the physical processorsin the machine.

It isimportant to understand the difference between processes and processors from a paralleliza-
tion perspective. While processors are physical resources, processes provide a convenient way of
abstracting or virtualizing a multiprocessor: We initially write parallel programs in terms of pro-
cesses not physical processors; mapping processes to processors is a subsequent step. The num-
ber of processes does not have to be the same as the number of processors available to the
program. If there are more processes, they are multiplexed onto the available processors; if there
are fewer processes, then some processors will remainidle.

1. In Chapter 1 we used the correct operating systems definition of a process: an address space and one or
more threads of control that share that address space. Thus, processes and threads are distinguished in that
definition. To simplify our discussion of parallel programming in this chapter, we do not make this distinc-
tion but assume that a process has only one thread of control.

96

DRAFT: Parallel Computer Architecture 9/10/97

The Parallelization Process

Partitioning

—_ T

e 2 R

C O A C

- :

P % ' S ‘

_ g_>© = _S — I ‘ _

| O M A '

T - E T

=3 '

o] o]

N - N

tial Parallel
C%erﬂgl?a&ion Tasks Processes Program

Figure 2-3 Stepin parallelization, and the relationships among tasks, processes and processors.

OZ—T1vUuU>

Py | P1
P, — P3
Processors

The decomposition and assignment phases are together called partitioning. The orchestration phase coordinates data access, com-

muni cation and synchronization among processes, and the mapping phase maps them to physical processors.

Given these concepts, the job of creating a parallel program from a sequential one consists of

four steps, illustrated in Figure 2-3:

1. Decomposition of the computation into tasks,
2. Assignment of tasks to processes,

3. Orchestration of the necessary data access, communication and synchronization among pro-

cesses, and
4. Mapping or binding of processes to processors.

Together, decomposition and assignment are called partitioning, since they divide the work done
by the program among the cooperating processes. Let us examine the steps and their individual

goals alittle further.

Decomposition

Decomposition means breaking up the computation into a collection of tasks. For example, trac-
ing asingle ray in Raytrace may be atask, or performing a particular computation on an individ-
ua grid point in Ocean. In general, tasks may become available dynamically as the program
executes, and the number of tasks available at atime may vary over the execution of the program.
The maximum number of tasks available at a time provides an upper bound on the number of
processes (and hence processors) that can be used effectively at that time. Hence, the major goal
in decomposition isto expose enough concurrency to keep the processes busy at all times, yet not
so much that the overhead of managing the tasks becomes substantial compared to the useful

work done.

9/10/97 DRAFT: Parallel Computer Architecture

97

Parallel Programs

Limited concurrency isthe most fundamental limitation on the speedup achievable through paral -
lelism, not just the fundamental concurrency in the underlying problem but also how much of this
concurrency is exposed in the decomposition. The impact of available concurrency is codified in
one of the few “laws’ of parallel computing, called Amdahl’s Law. If some portions of a pro-
gram'’s execution don’t have as much concurrency as the number of processors used, then some
processors will have to be idle for those portions and speedup will be suboptimal. To see thisin
its simplest form, consider what happens if a fraction s of a program’s execution time on a uni-
processor is inherently sequential; that is, it cannot be parallelized. Even if the rest of the pro-
gram is parallelized to run on alarge number of processors in infinitesimal time, this sequential
time will remain. The overall execution time of the parallel program will be at least s, normalized
to atotal sequential time of 1, and the speedup limited to 1/s. For example, if s=0.2 (20% of the
program’s execution is sequential), the maximum speedup availableis 1/0.2 or 5 regardless of the
number of processors used, even if weignore all other sources of overhead.

Example 2-1 Consider a simple example program with two phases. In the first phase, a single
operation is performed independently on all points of a two-dimensional n-by-n
grid, asin Ocean. In the second, the sum of the n? grid point values is computed. If
we have p processors, we can assign n2/p points to each processor and complete the
first phase in parallel in time n2/p. In the second phase, each processor can add each
of its assigned n2/p valuesinto aglobal sum variable. What is the problem with this
assignment, and how can we expose maore concurrency?

Answer The problem is that the accumulations into the global sum must be done one at a
time, or serialized, to avoid corrupting the sum value by having two processors try
to modify it simultaneously (see mutual exclusion in Section 2.4.5). Thus, the

second phaseis effectively serial and takes n® time regardless of p. Thetotal timein
parallel isn?/p + n?, compared to a sequential time of 2n2, so the speedup is at most

2
22n or ZTpl which is at best 2 even if a very large number of processors is
", o2
p
used.

We can expose more concurrency by using a little trick. Instead of summing each
value directly into the global sum, seridizing al the summing, we divide the
second phase into two phases. In the new second phase, a process sumsits assigned
values independently into a private sum. Then, in the third phase, processes sum
their private sums into the global sum. The second phase is now fully paralel; the
third phase is serialized as before, but there are only p operations in it, not n. The

2

total parallel timeisn?p + n?/p + p, and the speedup is at best p x Jfnis

2n +p2

98 DRAFT: Parallel Computer Architecture 9/10/97

The Parallelization Process

large relative to p, this speedup limit is amost linear in the number of processors
used. Figure 2-4 illustrates the improvement and the impact of limited concurrency.

(8) One processor

1
n? 2
2 F ” .
5 (b) p processors, n“ operations serialized
5
Q
c
Q
(&)
(]
5
s 14
<
o nZ/ n2
; p
P (c) p processors, p operations serialized
- 77‘
2@@@ :
nfp np P Time

Figure 2-4 Illustration of the impact of limited concurrency.

The x-axis is time, and the y-axis is the amount of work available (exposed by the decomposition) to be done in parallel at a given
time. (a) shows the profile for asingle processor. (b) showsthe original casein the example, which isdivided into two Phases: onefully

concurrent, and one fully serialized. (c) shows the improved version, which is divided into three phases: the first two

ully concurrent,

and the last fully serialized but with alot lesswork in'it (O(p) rather than O(n)).

More generally, given a decomposition and a problem size, we can construct a concurrency pro-
file which depicts how many operations (or tasks) are available to be performed concurrently in
the application at a given time. The concurrency profile is afunction of the problem, the decom-
position and the problem size but is independent of the number of processors, effectively assum-
ing that an infinite number of processorsis available. It is also independent of the assignment or
orchestration. These concurrency profiles may be easy to analyze (as we shall see for matrix fac-
torization in Exercise 2.4) or they may be quite irregular. For example, Figure 2-5 shows a con-
currency profile of a parallel event-driven simulation for the synthesis of digital logic systems.
The X-axisistime, measured in clock cycles of the circuit being simulated. The Y-axis or amount
of concurrency isthe number of logic gatesin the circuit that are ready to be evaluated at a given
time, which isafunction of the circuit, the values of itsinputs, and time. There is awide range of
unpredictable concurrency across clock cycles, and some cycles with almost no concurrency.

The area under the curve in the concurrency profile is the total amount of work done, i.e. the
number of operations or tasks computed, or the “time” taken on a single processor. It’s horizontal
extent isalower bound on the “time” that it would take to run the best parallel program given that
decomposition, assuming an infinitely large number of processors. The area divided by the hori-

9/10/97

DRAFT: Parallel Computer Architecture 99

Parallel Programs

1400
o)
T 1200
—
3
2 1000
S
800
600
400
200
0
o O~ O M M O ;LW g MO < ©O© < 0o M N Nm
N 4 < 0 4 < 0 4 < 0 O N © 0o M O o M
— N N N O MmO MO F < < 0 .0 0 0 ©O© o M~ N~
Clock Cycle Number

Figure 2-5 Concurrency profile for a distributed-time, discrete-event logic simulator.

The circuit being simulated is a simple MIPS R6000 microprocessor. The y-axis shows the number of logic elements available for
evaluation in agiven clock cycle.

zontal extent therefore gives us a limit on the achievable speedup with unlimited number of pro-
cessors, which is thus ssimply the average concurrency available in the application over time. A
rewording of Amdahl’s law may therefore be:

AreaUnder ConcurencyProfile

<
Speedup < Horizontal ExtentofConcurrencyProfile

Thus, if f,, be the number of X-axis points in the concurrency profile that have concurrency Kk,
then we can write Amdahl’s Law as:

Speedup(p) < (EQ 2.1)

Itis easy to seethat if the total work z f .k isnormalized to 1 and afraction s of thisis serial,
k=1

then the speedup with an infinite number of processorsis limited by 1 , and that with p pro-
cessorsis limited by 1—5 . In fact, Amdahl’s law can be applied to any overhead of paral-
S+ =

lelism, not just limited concurrency, that is not aleviated by using more processors. For now, it
quantifies the importance of exposing enough concurrency as a first step in creating a parallel
program.

100

DRAFT: Parallel Computer Architecture 9/10/97

The Parallelization Process

Assignment

Assignment means specifying the mechanism by which tasks will be distributed among pro-
cesses. For example, which processis responsible for computing forces on which starsin Barnes-
Hut, and which process will count occurrences of which itemsets and in which parts of the data-
basein Data Mining? The primary performance goals of assignment are to balance the workload
among processes, to reduce inter process communication, and to reduce the runtime overheads of
managing the assignment. Balancing the workload is often referred to as load balancing. The
workload to be balanced includes computation, input/output and data access or communication,
and programs that are not balance these well among processes are said to be load imbalanced.

Achieving these performance goal's simultaneously can appear intimidating. However, most pro-
grams lend themselves to a fairly structured approach to partitioning (decomposition and assign-
ment). For example, programs are often structured in phases, and candidate tasks for
decomposition within a phase are often easily identified as seen in the case studies. The appropri-
ate assignment of tasksis often discernible either by inspection of the code or from a higher-level
understanding of the application. And where this is not so, well-known heuristic techniques are
often applicable. If the assignment is completely determined at the beginning of the program—or
just after reading and analyzing the input—and does not change thereafter, it is called a static or
predetermined assignment; if the assignment of work to processesis determined at runtime as the
program executes—perhaps to react to load imbalances—it is called a dynamic assignment. We
shall see examples of both. Note that this use of static isalittle different than the “compile-time’
meaning typically used in computer science. Compile-time assignment that does not change at
runtime would indeed be static, but the term is more general here.

Decomposition and assignment are the major algorithmic steps in parallelization. They are usu-
ally independent of the underlying architecture and programming model, although sometimes the
cost and complexity of using certain primitives on a system can impact decomposition and
assignment decisions. As architects, we assume that the programs that will run on our machines
are reasonably partitioned. There is nothing we can do if a computation is not parallel enough or
not balanced across processes, and little we may be ableto do if it overwhelms the machine with
communication. As programmers, we usually focus on decomposition and assignment first, inde-
pendent of the programming model or architecture, though in some cases the properties of the
latter may cause usto revisit our partitioning strategy.

Orchestration

This is the step where the architecture and programming model play alarge role, as well as the
programming language itself. To execute their assigned tasks, processes need mechanisms to
name and access data, to exchange data (communicate) with other processes, and to synchronize
with one another. Orchestration uses the available mechanisms to accomplish these goals cor-
rectly and efficiently. The choices made in orchestration are much more dependent on the pro-
gramming model, and on the efficiencies with which the primitives of the programming model
and communi cation abstraction are supported, than the choices made in the previous steps. Some
questions in orchestration include how to organize data structures and schedule tasks to exploit
locality, whether to communicate implicitly or explicitly and in small or large messages, and how
exactly to organize and express interprocess communication and synchronization. Orchestration
also includes scheduling the tasks assigned to a process temporally, i.e. deciding the order in
which they are executed. The programming language is important both because thisis the step in

9/10/97

DRAFT: Parallel Computer Architecture 101

Parallel Programs

232

which the program is actually written and because some of the above tradeoffs in orchestration
are influenced strongly by available language mechanisms and their costs.

The major performance goals in orchestration are reducing the cost of the communication and
synchronization as seen by the processors, preserving locality of data reference, scheduling tasks
so that those on which many other tasks depend are completed early, and reducing the overheads
of parallelism management. The job of architects is to provide the appropriate primitives with
efficiencies that simplify successful orchestration. We shall discuss the major aspects of orches-
tration further when we see how programs are actually written.

Mapping

The cooperating processes that result from the decomposition, assignment and orchestration
steps constitute a full-fledged parallel program on modern systems. The program may control the
mapping of processes to processors, but if not the operating system will take care of it, providing
a parallel execution. Mapping tends to be fairly specific to the system or programming environ-
ment. In the ssimplest case, the processors in the machine are partitioned into fixed subsets, possi-
bly the entire machine, and only a single program runs at atimein asubset. Thisis called space-
sharing. The program can bind or pin processes to processors to ensure that they do not migrate
during the execution, or can even control exactly which processor a process runs on so as to pre-
serve locality of communication in the network topology. Strict space-sharing schemes, together
with some simple mechanisms for time-sharing a subset among multiple applications, have so far
been typical of large-scale multiprocessors.

At the other extreme, the operating system may dynamically control which process runs where
and when—without allowing the user any control over the mapping—to achieve better resource
sharing and utilization. Each processor may use the usual multiprogrammed scheduling criteria
to manage processes from the same or from different programs, and processes may be moved
around among processors as the schedul er dictates. The operating system may extend the unipro-
cessor scheduling criteriato include multiprocessor-specific issues. In fact, most modern systems
fall somewhere between the above two extremes: The user may ask the system to preserve certain
properties, giving the user program some control over the mapping, but the operating system is
allowed to change the mapping dynamically for effective resource management.

Mapping and associated resource management issues in multiprogrammed systems are active
areas of research. However, our goal hereisto understand parallel programming initsbasic form,
so for simplicity we assume that a single paralel program has complete control over the
resources of the machine. We also assume that the number of processes equals the number of pro-
cessors, and neither changes during the execution of the program. By default, the operating sys-
tem will place one process on every processor in no particular order. Processes are assumed not
to migrate from one processor to ancther during execution. For this reason, we use the terms
“process’ and “processor” interchangeably in the rest of the chapter.

Parallelizing Computation ver sus Data

The view of the parallelization process described above has been centered on computation, or
work, rather than on data. It isthe computation that is decomposed and assigned. However, due to
the communication abstraction or performance considerations, we may be responsible for
decomposing and assigning data to processes as well. In fact, in many important classes of prob-

102

DRAFT: Parallel Computer Architecture 9/10/97

The Parallelization Process

233

lems the decomposition of work and data are so strongly related that they are difficult or even
unnecessary to distinguish. Ocean is a good example: Each cross-sectional grid through the
ocean is represented as an array, and we can view the parallelization as decomposing the data in
each array and assigning parts of it to processes. The process that is assigned a portion of an array
will then be responsible for the computation associated with that portion, a so-called owner com-
putes arrangement. A similar situation exists in data mining, where we can view the database as
being decomposed and assigned; of course, here there is also the question of assigning the item-
sets to processes. Several language systems, including the High Performance Fortran standard
[KLS+94, HPF93], alow the programmer to specify the decomposition and assignment of data
structures; the assignment of computation then follows the assignment of data in an owner com-
putes manner. However, the distinction between computation and data is stronger in many other
applications, including the Barnes-Hut and Raytrace case studies as we shall see. Since the com-
putation-centric view is more general, we shall retain this view and consider data management to
be part of the orchestration step.

Goals of the Parallelization Process

As stated previoudly, the major goal of using a parallel machine is to improve performance by
obtaining speedup over the best uniprocessor execution. Each of the steps in creating a parallel
program has aroleto play in achieving that overall goal, and each has its own performance goals.

Table 2-1 Stepsin the Paralelization Process and Their Goals

Architecture-
Step dependent? Major Performance Goals
Decomposition Mostly no Expose enough concurrency, but not too much
] Balance workload
Assignment Mostly no o
Reduce communication volume
Reduce non-inherent communication via data locality
(see next chapter)
Orchestration Yes Reduce cost of comm/synch as seen by processor
Reduce serialization of shared resources
Schedul e tasks to satisfy dependences early
. Put related processes on the same processor if necessary
Mapping Yes . Lo
Exploit locality in network topology

These are summarized in Table 2-1, and we shall discuss them in more detail in the next chapter.

Creating an effective parallel program requires evaluating cost as well as performance. In addi-
tion to the dollar cost of the machine itself, we must consider the resource requirements of the
program on the architecture and the effort it takes to develop a satisfactory program. While costs
and their impact are often more difficult to quantify than performance, they are very important
and we must not lose sight of them; in fact, we may need to compromise performance to reduce
them. As algorithm designers, we should favor high-performance solutions that keep the resource
reguirements of the algorithm small and that don’t require inordinate programming effort. As
architects, we should try to design high-performance systems that, in addition to being low-cost,
reduce programming effort and facilitate resource-efficient algorithms. For example, an architec-
ture that delivers gradually improving performance with increased programming effort may be

9/10/97

DRAFT: Parallel Computer Architecture 103

Parallel Programs

24

preferable to one that is capable of ultimately delivering better performance but only with inordi-
nate programming effort.

Having understood the basic process and its goals, let us apply it to asimple but detailed example
and see what the resulting parallel programs look like in the three major modern programming
models introduced in Chapter 1: shared address space, message passing, and data parallel. We
shall focus here on illustrating programs and programming primitives, not so much on perfor-
mance.

Parallelization of an Example Program

241

The four case studies introduced at the beginning of the chapter all lead to parallel programs that
are too complex and too long to serve as useful sample programs. Instead, this section presents a
simplified version of apiece or kernel of Ocean: its equation solver. It uses the equation solver to
dig deeper and illustrate how to implement a parallel program using the three programming mod-
els. Except for the data parallel version, which necessarily uses a high-level data parallel lan-
guage, the parallel programs are not written in an aesthetically pleasing language that relies on
software layers to hide the orchestration and communication abstraction from the programmer.
Rather, they are written in C or Pascal-like pseudocode augmented with simple extensions for
parallelism, thus exposing the basic communication and synchronization primitives that a shared
address space or message passing communication abstraction must provide. Standard sequential
languages augmented with primitives for parallelism also reflect the state of most real parallel
programming today.

A Simple Example: The Equation Solver Kernel

The equation solver kernel solves a simple partial differential equation on a grid, using what is
referred to as afinite differencing method. It operates on aregular, two-dimensional grid or array
of (n+2)-by-(n+2) elements, such as a single horizontal cross-section of the ocean basin in
Ocean. The border rows and columns of the grid contain boundary values that do not change,
while the interior n-by-n points are updated by the solver starting from their initial values. The
computation proceeds over a number of sweeps. In each sweep, it operates on al the elements of
the grid, for each element replacing its value with aweighted average of itself and its four nearest
neighbor elements (above, below, |eft and right, see Figure 2-6). The updates are donein-placein
the grid, so a point sees the new values of the points above and to the left of it, and the old values
of the points below it and to its right. This form of update is called the Gauss-Seidel method.
During each sweep the kernel also computes the average difference of an updated element from
its previous value. If this average difference over all elementsis smaller than a predefined “toler-
ance” parameter, the solution is said to have converged and the solver exits at the end of the
sweep. Otherwise, it performs another sweep and tests for convergence again. The sequential
pseudocode is shown in Figure 2-7. Let us now go through the steps to convert this simple equa-
tion solver to a parallel program for each programming model. The decomposition and assign-
ment are essentially the same for all three models, so these steps are examined them in a general
context. Once we enter the orchestration phase, the discussion will be organized explicitly by
programming maodel.

104

DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

O O 0O 0O O o0 0o O o O

O O O 0O 0O o o o o o

6000000 O0O0oOo Expression for updating each interior point:
0O 0 O0O0©®O0O0O0O0O O - o o
o o o O-+ © 0 0 0 O Alij1=0.2* (A[i,] +A[|_,j_-1] +A[I-l,J].+
0o 000600 O0O0oO0 AL+ +AlI+L])
O 0O 0O 0O O 0O o0 O o o

O O O 0O 0O o o o o o

O O 0O 0O O o0 0o O o O

O O O 0O 0O o o O o o

Figure 2-6 Nearest-neighbor update of agrid point in the simple equation solver.

The black point isA[i,j] in the two-dimensional array that represents the grid, and is updated using itself and the four shaded points
that are its nearest neighbors according to the equation at the right of the figure.

2.4.2 Decomposition

For programs that are structured in successive loops or loop nests, a simple way to identify con-
currency isto start from the loop structureitself. We examine the individual 1oops or loop nestsin
the program one at a time, see if their iterations can be performed in paralel, and determine
whether this exposes enough concurrency. We can then look for concurrency across loops or take
a different approach if necessary. Let us follow this program structure based approach in
Figure 2-7.

Each iteration of the outermost loop, beginning at line 15, sweeps through the entire grid. These
iterations clearly are not independent, since data that are modified in one iteration are accessed in
the next. Consider the loop nest inlines 17-24, and ignore the lines containing di f f . Look at the
inner loop first (the j loop starting on line 18). Each iteration of this loop reads the grid point
(A[i,j-1]) that was written in the previous iteration. The iterations are therefore sequentialy
dependent, and we call this a sequential loop. The outer loop of this nest is also sequential, since
the elements in row i-1 were written in the previous (i-11) iteration of this loop. So this simple
analysis of existing loops and their dependences uncovers no concurrency in this case.

In general, an alternative to relying on program structure to find concurrency is to go back to the
fundamental dependencesin the underlying algorithms used, regardless of program or loop struc-
ture. In the equation solver, we might look at the fundamental data dependences at the granularity
of individua grid points. Since the computation proceeds from left to right and top to bottom in
the grid, computing a particular grid point in the sequential program uses the updated val ues of
the grid points directly above and to the left. This dependence pattern is shown in Figure 2-8. The
result is that the elements along a given anti-diagonal (south-west to north-east) have no depen-
dences among them and can be computed in paralel, while the points in the next anti-diagonal
depend on some pointsin the previous one. From this diagram, we can observe that of the O(n?)

9/10/97

DRAFT: Parallel Computer Architecture 105

Parallel Programs

1. int n; [* size of matrix: n-by-n elements*/

2. float **A diff = 0;

3. main()

4. begin

5. read(n) ; /* read input parameter: matrix size*/
6. A — malloc (a 2-d array of size n+2 by n+2 doubl es);

7. initialize(A; /* initialize the matrix A somehow */

8. Sol ve (A); /* call the routine to solve equation*/
9. end nain

10. procedure Solve (A) /* solve the equation system*/

11. float **A /* Aisan n+2 by n+2 array*/

12. begin

13. int i, j, done = O;

14. float diff =0, tenp;

15. while (!done) do [* outermost loop over sweeps */

16. diff =0; [* initialize maximum differenceto 0 */
17. for i « 1ton do [* sweep over non-border points of grid */
18. for j « 1tondo

19. temp = Ai,j]; /* save old value of element */

20. Ai,jl « 0.2* (Ai,j] + Ai,j-1 + Ai-1,j] +
21. AliLj+1] + Ai+1,j1); [* compute average */
22. diff += abs(Ai,j] - tenp);

23. end for

24. end for

25. if (diff/(n*n) < TQAL) then done = 1;

26. end while

27. end procedure

Figure 2-7 Pseudocode describing the sequentia equation solver kernel.

The main body of work to be done in each iteration is in the nested for loop in lines 17 to 23. Thisis what we would like to parallel-
1Ze.
work involved in each sweep, there a sequential dependence proportional to n along the diagonal
and inherent concurrency proportional to n.

Suppose we decide to decompose the work into individual grid points, so updating a single grid
point is atask. There are several ways to exploit the concurrency this exposes. Let us examine a
few. First, we can leave the loop structure of the program asit is, and insert point-to-point syn-
chronization to ensure that a grid point has been produced in the current sweep before it is used
by the points to the right of or below it. Thus, different loop nests and even different sweeps
might be in progress simultaneously on different elements, as long as the element-level depen-
dences are not violated. But the overhead of this synchronization at grid-point level may be too

106 DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

Figure 2-8 Dependences and concurrency in the Gauss-Seidel equation solver computation.

The horizontal and vertical lines with arrows indicate dependences, while the anti-diagonal, dashed lines connect points with no
dependences among them and that can be computed in parallel.

high. Second, we can change the loop structure, and have the first for loop (line 17) be over anti-
diagonals and the inner for loop be over elements within an anti-diagonal. The inner loop can
now be executed completely in paralel, with global synchronization between iterations of the
outer for loop to preserve dependences conservatively across anti-diagonals. Communication will
be orchestrated very differently in the two cases, particularly if communication is explicit. How-
ever, this approach also has problems. Global synchronization is still very frequent: once per
anti-diagonal. Also, the number of iterations in the parallel (inner) loop changes with successive
outer loop iterations, causing load imbalances among processors especialy in the shorter anti-
diagonals. Because of the frequency of synchronization, the load imbalances, and the program-
ming complexity, neither of these approaches is used much on modern architectures.

The third and most common approach is based on exploiting knowledge of the problem beyond
the sequential program itself. The order in which the grid points are updated in the sequential
program (left to right and top to bottom) is not fundamental to the Gauss-Seidel solution method;
it is simply one possible ordering that is convenient to program sequentially. Since the Gauss-
Seidel method is not an exact solution method (unlike Gaussian elimination) but rather iterates
until convergence, we can update the grid points in a different order as long as we use updated
values for grid points frequently enough.® One such ordering that is used often for parallel ver-
sionsis called red-black ordering. The idea here isto separate the grid points into alternating red
points and black points as on a checkerboard (Figure 2-9), so that no red point is adjacent to a
black point or vice versa. Since each point reads only its four nearest neighbors, it is clear that to

1. Even if we don’t use updated values from the current while loop iteration for any grid points, and we
aways use the values as they were at the end of the previous while loop iteration, the system will still con-
verge, only much slower. Thisis called Jacobi rather than Gauss-Seidel iteration.

9/10/97

DRAFT: Parallel Computer Architecture 107

Parallel Programs

© red point
@ Dblack point

OCe0 e 0e0e0 e
00 0 06000 e O
OCe0 e 0eo0e0 e
000 0000600
ooooc»*eoooo
00 0 0600 0e 0
OO0 e 0oeo0e0 e
00 0 06000 e O
OCe0 e 0e0e0 e
00 0 06000 e O

Figure 2-9 Red-black ordering for the equation solver.

The sweep over the grid is broken up into two sub-sweeps: The first computes all the red E,Oi nts, and the second all the black points.

Slnce red points depend only on black points and vice versa, there are no dependences wit

in a sub-sweep.

compute ared point we do not need the updated value of any other red point, but only the updated
values of the above and left black points (in a standard sweep), and vice versa. We can therefore
divide a grid sweep into two phases: first computing all red points and then computing all black
points. Within each phase there are no dependences among grid points, so we can compute all

2 2
% red pointsin parallel, then synchronize globally, and then compute all % black pointsin par-

allel. Global synchronization is conservative and can be replaced by point-to-point synchroniza-
tion at the level of grid points—since not all black points need to wait for all red points to be
computed—but it is convenient.

The red-black ordering is different from our origina sequentia ordering, and can therefore both
converge in fewer or more sweeps as well as produce different final values for the grid points
(though still within the convergence tolerance). Note that the black points will see the updated
values of al their (red) neighbors in the current sweep, not just the ones to the left and above.
Whether the new order is sequentially better or worse than the old depends on the problem. The
red-black order also has the advantage that the values produced and convergence properties are
independent of the number of processors used, since there are no dependences within a phase. If
the sequential program itself uses ared-black ordering then parallelism does not change the prop-
ertiesat all.

The solver used in Ocean in fact uses a red-black ordering, as we shall see later. However, red-
black ordering produces a longer kernel of code than is appropriate for illustration here. Let us
therefore examine a simpler but still common asynchronous method that does not separate points
into red and black. Globa synchronization is used between grid sweeps as above, and the loop
structure for a sweep is not changed from the top-to-bottom, left-to-right order. Instead, within a
sweep a process simply updates the values of al its assigned grid points, accessing its nearest

108

DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

neighbors whether or not they have been updated in the current sweep by their assigned processes
or not. That is, it ignores dependences among grid points within a sweep. When only asingle pro-
cess is used, this defaults to the original sequentia ordering. When multiple processes are used,
the ordering is unpredictable; it depends on the assignment of points to processes, the number of
processes used, and how quickly different processes execute at runtime. The execution is no
longer deterministic, and the number of sweeps required to converge may depend on the number
of processors used; however, for most reasonable assignments the number of sweeps will not
vary much.

If we choose a decomposition into individual inner loop iterations (grid points), we can express
the program by writing lines 15 to 26 of Figure 2-7 as shown in Figure 2-10. All that we have

15. while (!done) do * a sequential loop*/
16. diff =0;

17. for_all i « 1to n do [* aparallel loop nest */
18. for_all j « 1ton do

19. tenp = Ali,jl;

20. Ai,jl « 0.2* (Ai,j] +Ai,j-1 + Ai-1,j] +
21. Ai,j+1] + Ai+1,j]);

22. diff += abs(Ai,j] - tenp);

23. end for_all

24. end for_all

25. if (diff/(n*n) < TA) then done = 1,

26. end while

Figure 2-10 Parallel equation solver kernel with decomposition into elements and no explicit assignment.

Since both for loops are made parallel by using for_all instead of for, the decomposition isinto individual grid elements. Other than
this change, the code is the same as the sequential code.

done isreplace the keyword f or in the parallel loopswithf or _al I .Afor_al | loop smply
tells the underlying software/hardware system that al iterations of the loop can be executed in
parallel without dependences, but says nothing about assignment. A loop nest with both nesting
levelsbeing f or _al | meansthat all iterationsin the loop nest (n*n or n2 here) can be executed
in parallel. The system can orchestrate the parallelism in any way it chooses; the program does
not take a position on this. All it assumesisthat thereisanimplicit global synchronization after a
for_all loopnest.

In fact, we can decompose the computation into not just individual iterations as above but any
aggregated groups of iterations we desire. Notice that decomposing the computation corresponds
very closely to decomposing the grid itself. Suppose now that we wanted to decompose into rows
of elements instead, so that the work for an entire row is an indivisible task which must be
assigned to the same process. We could express this by making the inner loop on line 18 a
sequential loop, changing itsf or _al | back to af or, but leaving the loop over rows on line 17
as a pardlel for_al |l loop. The paralelism, or degree of concurrency, exploited under this
decomposition is reduced from nZ inherent in the problem to n: Instead of n2 independent tasks of
duration one unit each, we now have n independent tasks of duration n units each. If each task

9/10/97

DRAFT: Parallel Computer Architecture 109

Parallel Programs

243

executed on a different processor, we would have approximately 2n communication operations
(accesses to data computed by other tasks) for n points.

Let us proceed past decomposition and see how we might assign rows to processes explicitly,
using a row-based decomposition.

Assignment

The simplest option is a static (predetermined) assignment in which each processor is responsible
for a contiguous block of rows, as shown in Figure 2-11. Row i is assigned to process H}J .

Alternative static assignments to this so-called block assignment are also possible, such as a
cyclic assignment in which rows are interleaved among processes (process i is assigned rows i,
i + P, and so on). We might also consider a dynamic assignment, where each process repeatedly
grabs the next available (not yet computed) row after it finishes with arow task, so it is not prede-
termined which process computes which rows. For now, we will work with the static block
assignment. This simple partitioning of the problem exhibits good load balance across processes
as long as the number of rows is divisible by the number of processes, since the work per row is
uniform. Observe that the static assignments have further reduced the parallelism or degree of
concurrency, from n to p, and the block assignment has reduced the communication required by
assigning adjacent rows to the same processor. The communication to computation ratio is now

ly o2,
only O

PO

P1

P2

P4

@ © Cjlee® |0 @ 0|0 O O
Qe olee® /0 ®@ 0|0 O O
© G el e /|0 ®@ 0|0 O O
@ 0 G|l e |0 @ 0|0 O O
Q@ o|lee |0 @ 0|0 O O
O o @@ /0 ®@ 0|0 O O
® 0O 0|l ® /|0 ®@ 0|0 O O
@e@eo|lee® /0 @ 0|0 OO
©C @@ /|0 @ 0|0 O O
®@ O 9|l ® /0 ® |0 O O

Figure 2-11 A simple assignment for the parallel equation solver.

Each of the four processorsis assigned a contiguous, equal number of rows of the grid. In each sweep, it will perform the work
needed to update the elements of its assigned rows.

Given this decomposition and assignment, we are ready to dig into the orchestration phase. This
requires that we pin down the programming model. We begin with a high level, data parallel
model. Then, we examine the two major programming models that this and other models might
compile down to: a shared address space and explicit message passing.

110

DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

244

245

Orchestration under the Data Parallel M odéel

The data parallel model is convenient for the equation solver kernel, sinceit is natural to view the
computation as a single thread of control performing global transformations on alarge array data
structure, just as we have done above [Hil85,HiS86]. Computation and data are quite inter-
changeable, a simple decomposition and assignment of the dataleads to good load balance across
processes, and the appropriate assignments are very regular in shape and can be described by
simple primitives. Pseudocode for the data-parallel equation solver is shown in Figure 2-12. We
assume that global declarations (outside any procedure) describe shared data, and al other data
are private to a process. Dynamically allocated shared data, such as the array A, are alocated
withaG_MALLOC (global mal | oc) cal rather than aregular mal | oc. Other than this, the main
differences from the sequential program are the use of an DECOWP statement, the use of
for_all loopsinstead of f or loops, the use of aprivate mydi f f variable per process, and the
use of a REDUCE statement. We have already seen that for_all loops specify that the iterations
can be performed in parallel. The DECOVP statement has a two-fold purpose. First, it specifies
the assignment of the iterations to processes (DECOMP isin this sense an unfortunate choice of
word). Here, it is a [BLOCK, *, npr ocs] assignment, which means that the first dimension
(rows) is partitioned into contiguous pieces among the nprocs processes, and the second dimen-
sion is not partitioned at all. Specifying [CYCLI C, *, npr ocs] would have implied a cyclic or
interleaved partitioning of rows among nprocs processes, specifying [BLOCK, BLOCK, npr ocs]
would have implied a subblock decomposition, and specifying [*, CYCLI C, npr ocs] would
have implied an interleaved partitioning of columns. The second and related purpose of DECOVP
isthat it also specifies how the grid data should be distributed among memories on a distributed-
memory machine (thisis restricted to be the same as the assignment in most current data-parallel
languages, following the owner computes rule, which works well in this example).

Thenydi f f variableis used to allow each processto first independently compute the sum of the
difference values for its assigned grid points. Then, the REDUCE statement directs the system to
add al their partial mydi f f valuestogether into the shared di f f variable. The reduction opera-
tion may be implemented in alibrary in a manner best suited to the underlying architecture.

While the data parallel programming model iswell-suited to specifying partitioning and data dis-
tribution for regular computations on large arrays of data, such as the equation solver kernel or
the Ocean application, the desirable properties do not hold true for more irregular applications,
particularly those in which the distribution of work among tasks or the communication pattern
changes unpredictably with time. For example, think of the stars in Barnes-Hut or the rays in
Raytrace. Let us look at the more flexible, lower-level programming models in which processes
have their own individual threads of control and communicate with each other when they please.

Orchestration under the Shared Address Space M odel

In a shared address space we can simply declare the matrix A as a single shared array—as we did
in the data parallel model—and processes can reference the parts of it they need using loads and
stores with exactly the same array indices as in a sequential program. Communication will be
generated implicitly as necessary. With explicit parallel processes, we how need mechanisms to
create the processes, coordinate them through synchronization, and control the assignment of

9/10/97

DRAFT: Parallel Computer Architecture 111

Parallel Programs

1. int n, nprocs; [* grid size (n+2-by-n+2) and number of processes*/
float **A, diff = O;

3. main()

4. begin

5. read(n); read(nprocs);; /* read input grid size and number of processes*/
6. A « GMLLCC (a 2-d array of size n+2 by n+2 doubl es);

7. initialize(A; /* initialize the matrix A somehow */

8. Sol ve (A); /* call the routine to solve equation*/

9. end nmain

10. procedure Sol ve(A) /* solve the equation system*/

11. float **A /* Aisan n+2 by n+2 array*/

12. begin

13. int i, j, done = O;
14. float nydiff = 0, tenp;
l4a. DEQOWP A/ BLOXK *];

15. while (!done) do [* outermost loop over sweeps */

16. nydiff = 0; /* initialize maximum difference to 0 */
17. for_all i « 1to n do [* sweep over non-border points of grid */
18. for_all j « 1ton do

19. tenp = Ali,jl; * save old value of element */

20. Ai,jl « 0.2* (Ai,j] +Ai,j-1 + Ai-1,j] +
21. AliLj+1] + Ai+1,j1); [* compute average */
22. nydi ff += abs(Ali,j] - tenp);

23. end for_all

24. end for_all

24a. REDUCE (nydi ff, diff, ADD);

25. if (diff/(n*n) < TAQ.) then done = 1;

26. end while
27.end procedure

Figure 2-12 Pseudocode describing the data-parallel equation solver.

Differences from the sequential code are shown in italicized bold font. The decomposition is still into individual elements, as indi-
cated by the nested for_all loop. The assignment, indicated by the unfortunately labelled DECOM P statement, isinto blocks of con-
tI%UOUS rows (the first or column dimension is partitioned into blocks, and the second or row dimension is not partitioned). The
REDUCE statement sums the locally computed mydiffsinto aglobal diff value. The while loop is still serial.

112 DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

work to processes. The primitives we use are typical of low-level programming environments
such as parmacs [L O+87], and are summarized in Table 2-2.

Table 2-2 Key Shared Address Space Primitives

Name Syntax Function
R Create p processes that start executing at
CREATE TE(p, proc, args) procedure pr oc with arguments ar gs.
G_MALLOC G MALLOC(si ze) Allocate shared data of si ze bytes
LOCK LOCK(nane) Acquire mutually exclusive access
UNLOCK UNLOCK(narre) Release mutually exclusive access
Global synchronization among nunber
BARRIER BARR ER(nane, nunber) processes: None gets past BARRIER until
nunber have arrived
WAIT_FOR_END WAl T_FCR_END(nunber) Wait for nunber processes to terminate
. while (!flag); or Wiait for f | ag to be set (spin or block):
wait for flag . . e
WAl T(f1 ag) for point-to-point event synchronization.
flag = 1; or Set f | ag; wakes up process spinning or
set flag h
SI QNAL(f 1 ag) blocked on f | ag, if any

Pseudocode for the parallel equation solver in a shared address space is shown in Figure 2-13.
The special primitives for parallelism are shown in italicized bold font. They are typically imple-
mented as library calls or macros, each of which expands to a number of instructions that accom-
plish its goal. Although the code for the Solve procedure is remarkably similar to the sequential
version, let’'s go through it one step at atime.

A single processis first started up by the operating system to execute the program, starting from
the procedure called main. Let's call it the main process. It reads the input, which specifies the
size of the grid A (recall that input n denctes an (n+2) -by-(n+2) grid of which n-by-n pointsare
updated by the solver). It then alocates the grid A as a two-dimensional array in the shared
address space using the G MALLOC call, and initializes the grid. The G_ MALLOC call is similar
to ausual nal | oc cal—used in the C programming language to allocate data dynamically in
the program’s heap storage—and it returns a pointer to the allocated data. However, it allocates
the datain a shared region of the heap, so they can be accessed and modified by any process. For
datathat are not dynamically allocated on the heap, different systems make different assumptions
about what is shared and what is private to a process. Let us assume that all “global” datain the
sequential C programming sense—i.e. data declared outside any procedure, such asnpr ocs and
n in Figure 2-13—are shared. Data on a procedure’s stack (such as nymi n, nymax, nydi f f,
tenp,i andj) are private to a process that executes the procedure, as are data allocated with a
regular mal | oc call (and data that are explicitly declared to be private, not used in this pro-
gram).

Having allocated data and initialized the grid, the program is ready to start solving the system. It
therefore creates (nprocs- 1) “worker” processes, which begin executing at the procedure
called Solve. The main process then a so calls the Solve procedure, so that all npr ocs processes

9/10/97

DRAFT: Parallel Computer Architecture 113

Parallel Programs

1. int n, nprocs; /* matrix dimension and number of processors to be used */
2a. float **A, diff; /*Aisglobal (shared) array representing the grid */

[* diff is global (shared) maximum differencein current sweep */
2b. LOCKDEQ diff _I ock); /* declaration of lock to enforce mutual exclusion */
2c. BARDEC (barl); [* barrier declaration for global synchronization between sweeps*/
3. main()
4. begin
5. read(n); read(nprocs); /* read input matrix size and number of processes*/
6 A « G MLLCC (a two-di mensional array of size n+2 by n+2 doubl es);
7. initialize(A; [* initialize A in an unspecified way*/
8a. CREATE (nprocs-1, Solve, A);
8 Sol ve(A); /* main process becomes a worker too*/
8b. WAl T_FOR_END, /* wait for all child processes created to terminate */

9. end nuin

10. procedure Sol ve(A)

11. float **A I* Aisentire n+2-by-n+2 shared array, as in the sequential program*/
12. begin

13. int i,j, pid, done = 0;

14. float tenp, nydiff = O; [* private variables/

14a. int mymin <« 1 + (pid * n/nprocs); /* assume that nis exactly divisible by */
14b. int nmymax — nmymn + n/nprocs - 1; * nprocs for simplicity here*/

15. while (!done) do /* outer loop over all diagonal elements*/

16. mydiff =diff = 0; /* set global diff to O (okay for all to do it) */

17. for i « mymin to mymax do [* for each of my rows*/

18. for j « 1to n do [* for all elementsin that row */

19. temp = Ali,j];

20. Ali,jl =0.2* (Ali,j] + Ali,j-1] + Ali-1,j] +

21. Ali,j+1] + Ali+1,j]);

22. mydi ff += abs(Ali,j] - tenp);

23. endf or

24. endf or

25a. LOCK(diff_lock); * update global diff if necessary */

25b. diff += nydiff;

25c. UNLOCK(diff_l ock);

25d. BARRI ER(barl, nprocs); /* ensure all have got here before checking if done*/

25e. if (diff/(n*n) < TOL) then done = 1; /* checkconvergence; all get same answer*/
25f. BARRI ER(barl, nprocs); /* see Exercisec */

26. endwhile

27.end procedure

Figure 2-13 Pseudocode describing the parallel equation solver in a shared address space.

Line numbers followed by a letter denote lines that were not present in the sequential version. The numbers are chosen to match the

line or control structure in the sequential code with which the new lines are most closely related. The design of the data structures

does not have to change from the sequential program. Processes are created with the CREATE call, and the main process waits for

them to terminate at the end of the program with the WAIT_FOR_END call. The decomposition is into rows, since the inner loop is

unmodified, and the outer |oop specifies the assignment of rows o processes. Barriers are used to separate sweeps (Ianc_i to separate

me c?ng/glr%_e#ce tqgtb 1I‘rom further modification of the global diff variable), and locks are used to provide mutually exclusive accessto
eglol iff variable.

114 DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

enter the procedure in parallel as equal partners. All created processes execute the same code
image until they exit from the program and terminate. This does not mean that they proceed in
lock-step or even execute the same instructions, since in general they may follow different con-
trol paths through the code. That is, we use a structured, single-program-multiple-data style of
programming. Control over the assignment of work to processes—and which data they access—
is maintained by afew private variables that acquire different values for different processes (e.g.
myni n and nymax), and by simple manipulations of loop control variables. For example, we
assume that every process upon creation obtains a unique process identifier (pi d) between 0 and
nprocs-1inits private address space, and in lines 12-13 uses this pid to determine which rows
are assigned to it. Processes synchronize through calls to synchronization primitives. We shall
discuss these primitives shortly

We assume for simplicity that the total number of rows n is an integer multiple of the number of
processes npr ocs, so that every process is assigned the same number of rows. Each process cal-
culates the indices of the first and last rows of its assigned block in the private variables mymi n
and my max. It then proceeds to the actual solution loop.

The outermost while loop (line 21) is still over successive grid sweeps. Although the iterations of
this loop proceed sequentially, each iteration or sweep is itself executed in parallel by al pro-
cesses. The decision of whether to execute the next iteration of this loop is taken separately by
each process (by setting the done variable and computing the whi | e (! done) condition)
even though each will make the same decision: The redundant work performed hereis very small
compared to the cost of communicating a completion flag or the diff value.

The code that performs the actual updates (lines 19-22) is essentialy identical to that in the
sequentia program. Other than the bounds in the loop control statements, used for assignment,
the only difference is that each process maintains its own private variable ny di f f . This private
variable keeps track of the total difference between new and old values for only its assigned grid
points. It is accumulated it once into the shared di f f variable at the end of the sweep, rather
than adding directly into the shared variable for every grid point. In addition to the seriaization
and concurrency reason discussed in Section 2.3.1, all processes repeatedly modifying and read-
ing the same shared variable causes a lot of expensive communication, so we do not want to do
this once per grid point.

The interesting aspect of the rest of the program (line 23 onward) is synchronization, both mutual
exclusion and event synchronization, so the rest of the discussion will focus on it. First, the accu-
mulations into the shared variable by different processes have to be mutually exclusive. To see
why, consider the sequence of instructions that a processor executes to add itsnydi f f variable
(maintained say in register r 2) into the shared di f f variable; i.e. to execute the source state-
mentdi ff += mydiff:

| oad the value of diff into register rl
add the register r2 to register rl
store the value of register rl1 into diff

Suppose the valuein the variable di f f is 0 to begin with, and the value of mydi f f in each pro-
cessis 1. After two processes have executed this code we would expect the value in di f f to be

9/10/97

DRAFT: Parallel Computer Architecture 115

Parallel Programs

2. However, it may turn out to be 1 instead if the processes happen to execute their operationsin
the interleaved order shown below.

Pl P2
ri—diff {PlgetsOinitsri}
ri—diff {P2 also gets 0}
ri —rl+r2 {P1lsetsitsrito 1}
ri —rl+r2 {P2 setsitsrlto 1}
diff «rl {P1setscell _costto 1}
diff <ril {P2 also setscell_cost to 1}

This is not what we intended. The problem is that a process (here P2) may be able to read the
value of the logically shared di f f between the time that another process (P1) reads it and writes
it back. To prohibit this interleaving of operations, we would like the sets of operations from dif-
ferent processes to execute atomically (mutually exclusively) with respect to one another. The set
of operations we want to execute atomically or mutually exclusively is called a critical section.:
Once a process starts to execute the first of its three instructions above (its critical section), no
other process can execute any of the instructions in its corresponding critical section until the
former process has completed the last instruction in the critical section. The LOCK-UNLOCK pair
around line 25b achieves mutual exclusion.

A lock, such ascel | _I ock, can be viewed as a shared token that confers an exclusive right.
Acquiring the lock through the LOCK primitive gives a process the right to execute the critical
section. The process that holds the lock freesit when it has completed the critical section by issu-
ing an UNLOCK command. At this point, the lock is either free for another process to acquire or
be granted, depending on the implementation. The LOCK and UNL OCK primitives must be imple-
mented in a way that guarantees mutual exclusion. Our LOCK primitive takes as argument the
name of the lock being used. Associating names with locks alows us to use different locks to
protect unrelated critical sections, reducing contention and serialization.

Locks are expensive, and even agiven lock can cause contention and serialization if multiple pro-
cessestry to accessit at the sametime. Thisis another reason to use aprivate nydi f f variableto
reduce accesses to the shared variable. This technique is used in many operations called reduc-
tions (implemented by the REDUCE operation in the data parallel program). A reduction is a situ-
ation in which many processes (all, in aglobal reduction) perform associative operations (such as
addition, taking the maximum, etc.) on the same logically shared data. Associativity implies that
the order of the operations does not matter. Floating point operations, such as the ones here, are
strictly speaking not associative, since how rounding errors accumulate depends on the order of
operations. However, the effects are small and we usually ignore them, especialy in iterative cal-
culations that are anyway approximations.

Once aprocess has added itsrmydi f f into theglobal di f f , it waitsuntil all processes have done
so and the value contained in di ff is indeed the total difference over al grid points. This
requires global event synchronization implemented here with a BARRI ER. A barrier operation

116

DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

takes as an argument the name of the barrier and the number of processes involved in the syn-
chronization, and is issued by all those processes. Its semantics are as follows. When a process
calsthe barrier, it registers the fact that it has reached that point in the program. The processis
not allowed to proceed past the barrier call until the specified number of processes participating
in the barrier have issued the barrier operation. That is, the semantics of BARRI ER(nan®, p)
are; wait until p processes get here and only then proceed.

Barriers are often used to separate distinct phases of computation in a program. For example, in
the Barnes-Hut galaxy simulation we use a barrier between updating the positions of the stars at
the end of one time-step and using them to compute forces at the beginning of the next one, and
in data mining we may use a barrier between counting occurrences of candidate itemsets and
using the resulting large itemsets to generate the next list of candidates. Since they implement all-
to-all event synchronization, barriers are usually a conservative way of preserving dependences,
usualy, not al operations (or processes) after the barrier actually need to wait for al operations
before the barrier. More specific, point-to-point or group event synchronization would enable
some processes to get past their synchronization event earlier; however, from a programming
viewpoint it is often more convenient to use a single barrier than to orchestrate the actual depen-
dences through point-to-point synchronization.

When point-to-point synchronization is needed, one way to orchestrate it in a shared address
space is with wait and signal operations on semaphores, with which we are familiar from operat-
ing systems. A more common way is by using normal shared variables as synchronization flags,
as shown in Figure 2-14. Since P1 simply spins around in a tight while loop for something to

Pl P2
A=1;
a while (flag is 0) do nothing; b: flag = 1;
print A;

Figure 2-14 Point-to-point event synchronization using flags.

Suppose we want to ensure that a process P1 does not get past a certain point (say @) in the program until some other process P2 has
already reached another point (say b). Assume that the variable flag (and A) was initialized to O before the processes arrive at this sce-
nario. 1f P1 getsto statement aafter P2 has already executed statement b, P1 will simply ?ass point a If, on the other hand, P2 has not
et executed b, then P1 will remain in the “idle” while loop until P2 reaches b and setstlag to 1, at which point P1 will exit theidle
oop and proceed. If we assume that the writes by P2 are seen by P1 in the order in which they are performed, then this synchroniza-
tion will ensure that P1 prints the value 1 for A.

happen, keeping the processor busy during this time, we call this spin-waiting or busy-waiting.
Recall that in the case of a semaphore the waiting process does not spin and consume processor
resources but rather blocks (suspends) itself, and is awoken when the other process signals the
semaphore.

In event synchronization among subsets of processes, or group event synchronization, one or
more processes may act as producers and one or more as consumers. Group event synchroniza-
tion can be orchestrated either using ordinary shared variables as flags or by using barriers among
subsets of processes.

9/10/97 DRAFT: Parallel Computer Architecture 117

Parallel Programs

Once it is past the barrier, a process reads the value of di f f and examines whether the average
difference over al grid points (di f f / (n*n)) isless than the error tolerance used to determine
convergence. If so, it sets the done flag to exit from the while loop; if not, it goes on to perform
another sweep.

Finally, the WAIT_FOR_END called by the main process at the end of the program (line 11) isa
particular form of all-to-one synchronization. Through it, the main process waits for al the
worker processes it created to terminate. The other processes do not call WAIT _FOR_END, but
implicitly participate in the synchronization by terminating when they exit the Solve procedure
that was their entry point into the program.

In summary, for this simple equation solver the parallel program in a shared address space is not
too different in structure from the sequential program. The major differences are in the control
flowm—which are implemented by changing the bounds on some loops—in creating processes and
in the use of simple and generic synchronization primitives. The body of the computational loop
is unchanged, as are the major data structures and references to them. Given a strategy for
decomposition, assignment and synchronization, inserting the necessary primitives and making
the necessary modifications is quite mechanical in this example. Changes to decomposition and
assignment are also easy to incorporate. While many simple programs have this property in a
shared address space we will see later that more substantial changes are needed as we seek to
obtain higher and higher parallel performance, and also as we address more complex parallel pro-
grams.

118

DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

Example 2-2

Answer

How would the code for the shared address space paralel version of the eguation
solver change if we retained the same decomposition into rows but changed to a
cyclic or interleaved assignment of rows to processes?

Figure 2-15 shows the relevant pseudocode. All we have changed in the code is the

17. for i ~ pid+l to n by nprocs do /*for myinterleaved set of rows*/
18. for j « 1to n do /* for all elementsin that row */
19. temp = Ali,j];

20. Ali,j] = 0.2 * (Ali,j] + Ali,j-1] + Ali-1,j] +
21. Ali,j+1] + Ali+1,j]1);

22. nydi ff += abs(Ali,j] - temp);

23. endf or

24. endf or

Figure 2-15 Cyclic assignment of row-based solver in a shared address space.

All that changes in the code from the block assignment of rows in Figure 2-13 isfirst for statement in line 17. The data structures or
accesses to them do not have to be changed.

control arithmetic in line 17. The same global data structure is used with the same
indexing, and al the rest of the parallel program stays exactly the same.

2.4.6 Orchestration under the M essage Passing M odel

We now examine a possible implementation of the parallel solver using explicit message passing
between private address spaces, employing the same decomposition and assignment as before.
Since we no longer have a shared address space, we cannot simply declare the matrix A to be
shared and have processes reference parts of it as they would in a sequential program. Rather, the
logical data structure A must be represented by smaller data structures, which are allocated
among the private address spaces of the cooperating processes in accordance with the assignment
of work. The process that is assigned a block of rows allocates those rows as a sub-grid in its
local address space.

The message-passing program shown in Figure 2-16 is structurally very similar to the shared
address space program in Figure 2-13 (more complex programs will revea further differencesin
the next chapter, see Section 3.7). Here too, a main process is started by the operating system
when the program executable is invoked, and this main process creates (npr ocs- 1) other pro-
cesses to collaborate with it. We assume that every created process acquires a process identifier
pid between 0 and npr ocs- 1, and that the CREATE call allows us to communicate the pro-
gram’s input parameters (n and npr ocs) to the address space of each process.! The outermost

1. Andternative organization is to use what is called a “hostless’ model, in which there is no single main
process. The number of processes to be used is specified to the system when the program is invoked. The
system then starts up that many processes and distributes the code to the relevant processing nodes. Thereis
no need for a CREATE primitive in the program itself, every process reads the program inputs (n and
npr ocs) separately, though processes still acquire unique user-level pi d’s.

9/10/97

DRAFT: Parallel Computer Architecture 119

Parallel Programs

1. int pid, n, nprocs; [* processid, matrix dimension and number of processorsto be used */
2. float **nyA

3. main()

4. begin

5. read(n); read(nprocs); /* read input matrix size and number of processes*/
8a. CREATE (nprocs-1 processes that start at procedure Solve);

8b. Sol ve(); /* main process becomes a worker too*/

8c. WAl T_FOR_END, /* wait for all child processes created to terminate */

9. end nmain

10. procedure Sol ve()

11. begin

13. int i,j, pid, nn = n/nprocs, done = O;

14. float tenp, tenpdiff, nydiff = O; [* private variables/

6. nmyA — nmalloc(a 2-d array of size [n/nprocs + 2] by n+2);/* myassigned rowsof A*/
7. initialize(nyA); /* initialize my rows of A, in an unspecified way*/

15. whil e (!done) do

16. mydi ff = 0; /* set local diff to0*/

16a.if (pid !'= 0) then SENX &wyA[1, 0], n*si zeof (fl oat), pi d-1, ROW;

16b. if (pid = nprocs-1) then SENX &wA[n’, 0], n*si zeof (fl oat), pi d+1, ROW;

16¢c. if (pid != 0) then RECEI VH &yA[0, 0], n*si zeof (fl oat), pi d-1, ROWN ;

16d. if (pid != nprocs-1) then RECElI VE &wyA[n' +1, 0], n*si zeof (fl oat), pi d+1, ROW ;
/* border rows of neighbors have now been copied into myA[0,*] and myA[n’+1,*] */

17. for i « 1ton do [* for each of my rows*/
18. for j « 1to n do [* for all elementsin that row */
19. tenp = nyAli,jl;
20. AL, 1 7 0.2 % (nyA[iLj] + nyAli,j-1] + nyA[i-1,j] +
21. nyAli,j+1] + nyAli+1,j]);
22. nmydi ff += abs(nmyAli,j] - temp);
23. endf or
24. endf or
/* communicate local diff values and obtain determine if done; can be replaced by reduction and broadcast */
25a. if (pid !'=0) then /* process 0 holds global total diff*/
25h. SEND(nydi ff, sizeof (float), 0, Dl FF);
25c. RECEI VE(nydi ff, si zeof (fl oat), 0, DONE) ;
25d. else
25e. for i « 1 to nprocs-1 do [* for each of my rows*/
25f . RECEI VE(t enpdi f f, si zeof (fl oat), *, DONE) ;
25g. nydi ff += tenpdiff; /* accumulate into total */
25h. endf or
25i . for i « 1 to nprocs-1 do [* for each of my rows*/
25j . SENIX done, si zeof (int), i, DONE);
25k. endf or
25l. endif
26. if (nydiff/(n*n) < TOL) then done = 1;
27. endwhile

28. end procedure

Figure 2-16 Pseudocode describing parallel equation solver with explicit message-passing.

Now the meaning of the data structures and the indexing of them changesin going to the parallel code. Each process has its own myA

data structure that repi 1 par 1d, and r
rid. The communication isall contained in lines

the logical overall

resents its assigned part of the grid, and myAQ g] referenced by different processes refers to different parts of

a-d and 25 a-f. No locks or barriers are needed, since the syn-

chronization is implicit in the send-receive pairs. Several extralines of code are added to orchestrate the communication with simple

sends and receives.

120

DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

loop of the Sol ve routine (line 15) till iterates over grid sweeps until convergence. In every
iteration a process performs the computation for its assigned rows and communicates as neces-
sary. The mgjor differences are in the data structures used to represent the logically shared matrix
A and in how interprocess communication isimplemented. We shall focus on these differences.

Instead of representing the matrix to be factored as asingle global (n+2)-by-(n+2) array A, each
process in the message-passing program allocates an array called my A of size (nprocs/n +
2) -by-(nprocs/n + 2) in its private address space. This array represents its assigned
npr ocs/ n rows of the logically shared matrix A, plus two rows at the edges to hold the bound-
ary data from its neighboring partitions. The boundary rows from its neighbors must be commu-
nicated to it explicitly and copied into these extra or ghost rows. Ghost rows are used because
without them the communicated data would have to received into separate one-dimensional
arrays with different names created specialy for this purpose, which would complicate the refer-
encing of the data when they are read in the inner loop (lines 20-21). Communicated data have to
be copied into the receiver's private address space anyway, so programming is made easier by
extending the existing data structure rather than allocating new ones.

Recall from Chapter 1 that both communication and synchronization in a message passing pro-
gram are based on two primitives: SEND and RECEI VE. The program event that initiates data
transfer is the SEND operation, unlike in a shared address space where data transfer is usually ini-
tiated by the consumer or receiver using aload instruction. When a message arrives at the desti-
nation processor, it is either kept in the network queue or temporarily stored in a system buffer
until a process running on the destination processor posts a RECEI VE for it. With a RECEI VE,
a process reads an incoming message from the network or system buffer into a designated portion
of the private (application) address space. A RECEI VE does not in itself cause any data to be
transferred across the network.

Our simple SEND and RECEIVE primitives assume that the data being transferred are in a con-
tiguous region of the virtual address space. The arguments in our simple SEND call are the start
address—in the sending processor’s private address space—of the data to be sent, the size of the
message in bytes, the pid of the destination process—which we must be able to name now, unlike
in a shared address space—and an optional tag or type associated with the message for matching
a the receiver. The arguments to the RECEI VE call are a local address at which to place the
received data, the size of the message, the sender’s process id, and the optional message tag or
type. The sender’sid and the tag, if present, are used to perform a match with the messages that
have arrived and are in the system buffer, to see which one corresponds to the receive. Either or
both of these fields may be wild-cards, in which case they will match a message from any source
process or with any tag, respectively. SEND and RECEI VE primitives are usually implemented in
a library on a specific architecture, just like BARRI ER and LOCK in a shared address space. A
full set of message passing primitives commonly used in real programs is part of a standard
called the Message Passing Interface (MPI), described at different levels of detail in [Pac96,
MPI93, GLS94]. A significant extension is transfers of non-contiguous regions of memory, either
with regular stride—such as every tenth word in between addresses a and b, or four words every
sixth word—or by using index arrays to specify unstructured addresses from which to gather
data on the sending side or to which to scatter data on the receiving side. Another is a large
degree of flexibility in specifying tags to match messages and in the potential complexity of a
match. For example, processes may be divided into groups that communicate certain types of
messages only to each other, and collective communication operations may be provided as
described below.

9/10/97

DRAFT: Parallel Computer Architecture 121

Parallel Programs

Semantically, the smplest forms of SEND and RECEIVE we can use in our program are the so
called synchronous forms. A synchronous SEND returns control to the calling process only when
it is clear that the corresponding RECEIVE has been performed. A synchronous RECEIVE
returns control when the data have been received into the destination buffer. Using synchronous
messages, our implementation of the communication in lines 16a-d is actually deadlocked. All
processors do their SEND first and stall until the corresponding receive is performed, so none
will ever get to actually perform their RECEIVE! In general, synchronous message passing can
easily deadlock on pairwise exchanges of data if we are not careful. One way to avoid this prob-
lem is to have every aternate processor do its SENDs first followed by its RECEIVES, and the
others start do their RECEIVEs first followed by their SENDs. The aternative is to use different
semantic flavors of send and receive, as we will see shortly.

The communication isdone al at once at the beginning of each iteration, rather than element-by-
element as needed in a shared address space. It could be done element by element, but the over-
head of send and receive operations is usually too large to make this approach perform reason-
ably. Asaresult, unlike in the shared address space version there is no computational asynchrony
in the message-passing program: Even though one process updates its boundary rows while its
neighbor is computing in the same sweep, the neighbor is guaranteed not see the updates in the
current sweep since they are not in its address space. A process therefore sees the values in its
neighbors' boundary rows as they were at the end of the previous sweep, which may cause more
sweeps to be needed for convergence as per our earlier discussion (red-black ordering would
have been particularly useful here).

Once a process has received its neighbors boundary rows into its ghost rows, it can update its
assigned points using code almost exactly like that in the sequential and shared address space
programs. Although we use a different name (myA) for a process'slocal array than the A used in
the sequential and shared address space programs, this is just to distinguish it from the logically
shared entire grid A which is here only conceptual; we could just as well have used the nameA).
The loop bounds are different, extending from 1 to npr ocs/ n (substituted by n’ in the code)
rather than 0 to n- 1 as in the sequential program or mynmi n to nymax in the shared address
space program. In fact, the indices used to reference ny A are local indices, which are different
than the global indices that would be used if the entire logically shared grid A could be referenced
asasingle shared array. That is, themyA[1, j] reference by different processes refers to differ-
ent rows of the logically shared grid A. The use of local index spaces can be somewhat more
tricky in cases where a global index must also be used explicitly, as seen in Exercise 2.4.

Synchronization, including the accumulation of private mydi f f variablesinto alogically shared
di ff variable and the evaluation of the done condition, is performed very differently here than
in a shared address space. Given our simple synchronous sends and receives which block the
issuing process until they complete, the send-receive match encapsul ates a synchronization event,
and no specia operations (like locks and barriers) or additional variables are needed to orches-
trate mutual exclusion or event synchronization. Consider mutual exclusion. The logically shared
di ff variable must be allocated in some process's private address space (here process 0). The
identity of this process must be known to all the others. Every process sendsitsmydi f f valueto
process 0, which receives them all and adds them to the logically shared global di f f . Since only
it can manipulate this logically shared variable mutual exclusion and serialization are natural and
no locks are needed. In fact, process 0 can simply use its own nydi f f variable as the global
diff.

122

DRAFT: Parallel Computer Architecture 9/10/97

Parallelization of an Example Program

Now consider the global event synchronization for determining the done condition. Once it has
received the nydi f f values from all the other processes and accumulated them, it sends the
accumulated value to al the other processes, which are waiting for it with receive cals. Thereis
no need for a barrier since the completion of the receive implies that al processes's nydi f f s
have been accumulated since process 0 has sent out the result. The processes then compute the
done condition to determine whether or not to proceed with another sweep. We could instead
have had process 0 alone compute the done condition and then send the done variable, not the
di ff value, to the others, saving the redundant calculation of the done condition. We could, of
course, implement lock and barrier calls using messages if that is more convenient for program-
ming, athough that may lead to request-reply communication and more round-trip messages.
More complex send-receive semantics than the synchronous ones we have used here may require
additional synchronization beyond the messages themselves, as we shall see.

Notice that the code for the accumulation and done condition evaluation communication has
expanded to several lines when using only point-to-point SENDs and RECEIV ESs as communica-
tion operations. In practice, programming environments would provide library functions like
REDUCE (accumulate values from private variables in multiple processes to asingle variable in
a given process) and BROADCAST (send from one process to all processes) to the programmer
which the application processes could use directly to simplify the codein these stylized situa-
tions. Using these, lines 25a through 25b in Figure 2-16 can be replaced by the two lines in
Figure 2-17. The system may provide special support to improve the performance of these and
other collective communication operations (such as multicast from one to several or even several
to several processes, or all-to-all communication in which every process transfers data to every
other process), for example by reducing the software overhead at the sender to that of a single
message, or they may be built on top of the usual point to point send and receive in user-level
libraries for programming convenience only.

/* communicate local diff values and determine if done, using reduction and broadcast */
25b. REDUCE 0, mydi ff, si zeof (fl oat), ADD) ;
25c. if (pid == 0) then
25i . if (mydiff/(n*n) < TOL) then done = 1,
26. endi f
25k. BROADCAST(0, done, si zeof (i nt), DONE) ;

Figure 2-17 Accumulation and convergence determination in the solver using REDUCE and BROADCAST instead of SEND and

The first argument to the REDUCE call is the destination process. All but this process will do a send to this process in the implementa-

tion of RE

while this process will do a receive. The next argument is the private variable to be reduced from (in al other pro-

cesses than the destination) and to (in the destination process), and the third argument is the size of this variable. The last argument is
the function to be performed on the variables in the reduction. Similarly, the first argument of the BROADCAST call is the sender; this
process does a send and all others do areceive. The second argument is the variable to be broadcast and received into, and the third is
Itssize. Thefinal argument is the optional message type.

Finally, we said earlier that send and receive operations come in different semantic flavors,
which we could use to solve our deadlock problem. Let us examine this alittle further. The main
axis along which these flavors differ is their completion semantics; i.e. when they return control
to the user process that issued the send or receive. These semantics affect when the data struc-
tures or buffers they use can be reused without compromising correctness. There are two major
kinds of send/receive—synchronous and asynchronous. Within the class of asynchronous mes-

9/10/97

DRAFT: Parallel Computer Architecture 123

Parallel Programs

sages, there are two major kinds: blocking and non-blocking. Let us examine these and see how
they might be used in our program.

Synchronous sends and receives are what we assumed above, since they have the simplest seman-
tics for a programmer. A synchronous send returns control to the calling process only when the
corresponding synchronous receive at the destination end has completed successfully and
returned an acknowledgment to the sender. Until the acknowledgment is received, the sending
process is suspended and cannot execute any code that follows the send. Receipt of the acknowl-
edgment implies that the receiver has retrieved the entire message from the system buffer into
application space. Thus, the completion of the send guarantees (barring hardware errors) that the
message has been successfully received, and that all associated data structures and buffers can be
reused.

A blocking asynchronous send returns control to the calling process when the message has been
taken from the sending application’s source data structure and is therefore in the care of the sys-
tem. This means that when control is returned, the sending process can modify the source data
structure without affecting that message. Compared to a synchronous send, this allows the send-
ing process to resume sooner, but the return of control does not guarantee that the message will
actually be delivered to the appropriate process. Obtaining such a guarantee would require addi-
tional handshaking. A blocking asynchronous receive is similar in that it returns control to the
calling process only when the data it is receiving have been successfully removed from the sys-
tem buffer and placed at the designated application address. Once it returns, the application can
immediately use the data in the specified application buffer. Unlike a synchronous receive, a
blocking receive does not send an acknowledgment to the sender.

The nonblocking asynchronous send and receive allow the greatest overlap between computation
and message passing by returning control most quickly to the calling process. A nonblocking
send returns control immediately. A nonblocking receive returns control after simply posting the
intent to receive; the actual receipt of the message and placement into a specified application data
structure or buffer is performed asynchronously at an undetermined time by the system, on the
basis of the posted receive. In both the nonblocking send and receive, however, the return of con-
trol does not imply anything about the state of the message or the application data structures it
uses, o it is the user’s responsibility to determine that state when necessary. The state can be
determined through separate calls to primitives that probe (query) the state. Nonblocking mes-
sages are thus typically used in a two-phase manner: first the send/receive operation itself, and
then the probes. The probes—which must be provided by the message-passing library—might
either block until the desired state is observed, or might return control immediately and simply
report what state was observed.

Which kind of send/receive semantics we choose depends on how the program uses its data struc-
tures, and on how much we want to optimize performance over ease of programming and porta-
bility to systems with other semantics. The semantics mostly affects event synchronization, since
mutual exclusion falls out naturaly from having only private address spaces. In the equation
solver example, using asynchronous sends would avoid the deadlock problem since processes
would proceed past the send and to the receive. However, if we used nonblocking asynchronous
receives, we would have to use a probe before actually using the data specified in the receive.

124

DRAFT: Parallel Computer Architecture 9/10/97

Concluding Remarks

2.5

Note that a blocking send/receive is equivalent to a nonblocking send/receive followed immedi-
ately by ablocking probe.

Table 2-3 Some Basic Message Passing Primitives.

Name Syntax Function

CREATE CREATE(pr ocedur e) Create process that starts at pr ocedur e
Globa synchronization among nunber

BARR ER BARRI ER(nane, nunber) processes: None gets past BARRIER until
nunber have arrived

WAl T_FCR_END WAl T_FCR_END(nunber) Wait for nunber processesto terminate

SEND SEND(src_addr, size, Send si ze bytes starting at sr c_addr

dest, tag) to the dest process, witht ag identifier

Receive amessage with the t ag identifier
from the src process, and put si ze bytes
of it into buffer starting at buf f er _addr

RECE! VE(buf f er _addr,

RECEl VE .
size, src, tag)

Check if message with identifier tag has
been sent to process dest (only for asyn-
chronous message passing, and meaning
depends on semantics discussed above)

SEND_PRCBE SEND PROBE(tag, dest)

Check if message with identifier tag has
been received from process src (only for
asynchronous message passing, and mean-
ing depends on semantics)

RECV_PRCBE RECV_PRCBE(tag, src)

We leaveit as an exercise to transform the message passing version to use a cyclic assignment, as
was done for the shared address space version in Example 2-2. The point to observe in that case
isthat while the two message-passing versions will look syntactically similar, the meaning of the
my A data structure will be completely different. In one caseit is a section of the global array and
in the other is a set of widely separated rows. Only by careful inspection of the data structures
and communication patterns can one determine how a given message-passing version corre-
sponds to the original sequential program.

Concluding Remarks

Starting from a sequential application, the process of parallelizing the application is quite struc-
tured: We decompose the work into tasks, assign the tasks to processes, orchestrate data access,
communication and synchronization among processes, and optionally map processes to proces-
sors. For many applications, including the simple equation solver used in this chapter, the initial
decomposition and assignment are similar or identical regardless of whether a shared address
space or message passing programming model is used. The differences are in orchestration, par-
ticularly in the way data structures are organized and accessed and the way communication and
synchronization are performed. A shared address space allows us to use the same major data
structures as in a sequential program: Communication is implicit through data accesses, and the
decomposition of datais not required for correctness. In the message passing case we must syn-
thesize the logically shared data structure from per-process private data structures. Communica-
tion is explicit, explicit decomposition of data among private address spaces (processes) is
necessary, and processes must be able to name one another to communicate. On the other hand,

9/10/97

DRAFT: Parallel Computer Architecture 125

Parallel Programs

while a shared address space program requires additional synchronization primitives separate
from the loads and stores used for implicit communication, synchronization is bundled into the
explicit send and receive communication in many forms of message passing. As we examine the
parallelization of more complex parallel applications such as the four case studies introduced in
this chapter, we will understand the implications of these differences for ease of programming
and for performance.

The parallel versions of the simple equation solver that we described here were purely to illus-
trate programming primitives. While we did not use versions that clearly will perform terribly
(e.g. we reduced communication by using a block rather than cyclic assignment of rows, and we
reduced both communication and synchronization dramatically by first accumulating into local
mydi f f sand only theninto aglobal di f f), they can use improvement. We shall see how in the
next chapter, as we turn our attention to the performance issuesin paralel programming and how
positions taken on these issues affect the workload presented to the architecture.

2.6 References

[GPAQ] Green, S.A. and Paddon, D.J. A highly flexible multiprocessor solution for ray tracing. The Visual
Computer, vol. 6, 1990, pp. 62-73.

[KLS+94] C.Koebel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel, The High Performance Fortran
Handbook. MIT Press, 1994.

[HPF93 High Performance Fortran Forum. High Performance Fortran Language Specification. Scientific
Programming, vol. 2, pp. 1-270, 1993.

[Hil185] Hillis, W.D. The Connection Machine. MIT Press, 1985.

[HiS86] Hillis, W.D. and Steele, G.L. Data Parallel Algorithms. Communications of the ACM, 29(12), pp.
1170-1183, December 1986.

[KG+94] Kumar, V., Gupta, A., Grama, A. and Karypis, G. Paralel Computing. <<xxx>>

[LO+87] Lusk, EW., Overbeek, R. et a. Portable Programs for Parallel Processors. Holt, Rinehart and
Winston, Inc. 1987.

[MPI93] Message Passing Interface Forum. Document for a Standard Message-Passing I nterface. Techni-
cal Report CS-93-214, Computer Science Department, University of Tennessee, Knoxville, No-
vember 1993,

[Pac96] Pacheco, Peter. Parallel Programming with MPI. Morgan Kaufman Publishers, 1996.

[Piess8] Pierce, Paul. The NX/2 Operating System. Proceedings of the Third Conference on Hypercube
Concurrent Computers and Applications, pp. 384--390, January, 1988.

[GLS94] Gropp, W., Lusk, E. and Skjellum, A. Using MPI: Portable Parallel Programming with the Mes-
sage-Passing Interface. MIT Press, 1994.

[RSL93] Rinard, M.C., Scales, D.J. and Lam, M.S. Jade: A High-Level, Machine-Independent Language
for Parallel Programming. |EEE Computer, June 1993.

[SGLY4] Singh, J.P., Gupta, A. and Levoy, M. Paralld Visuaization Algorithms: Performance and Archi-
tectural Implications. |EEE Compulter, vol. 27, no. 6, June 1994.

[SH+95] Singh, J.P., Holt, C., Totsuka, T., Gupta, A. and Hennessy, J.L. Load balancing and data locality
in Hierarchial N-body Methods: Barnes-Hut, Fast Multipole and Radiosity. Journal of Parallel and
Distributed Computing, 1995 <<complete citation>>.

[SWG92] Singh, J.P., Weber, W-D., and Gupta, A. SPLASH: The Stanford ParalleL. Applicationsfor Shared

126

DRAFT: Parallel Computer Architecture 9/10/97

Exercises

Memory. Computer Architecture News, vol. 20, no. 1, pp. 5-44, March 1992.

2.7 Exercises

2.1 Short Answer Questions:
a. Describe two examples where the a good parallel agorithm must be based on a serial

algorithm that is different than the best serial algorithm, since the latter does not afford
enough concurrency.

. Which of the case study applications that we have described (Ocean, Barnes-Hut, Ray-

trace) do you think are amenable to decomposing data rather than computation and using
an owner computes rulein parallelization? What do you think would be the problem(s)
with using a strict data distribution and owner computes rule in the others?

2.2 <2.4.5>There are two dominant models for how parent and children processes relate to each
other in a shared address space. In the heavyweight UNIX process fork model, when a pro-
cess creates another, the child gets a private copy of the parent’s image: that is, if the parent
had allocated a variable x, then the child also finds a variable x in its address space which is
initialized to the value that the parent had for x when it created the child; however, any modi-
fications that either process makes subsequently are to its own copy of x and are not visible to
the other process. In the lightweight threads model, the child process or thread gets a pointer
to the parent’s image, so that it and the parent now see the same storage location for x. All
data that any process or thread allocates are shared in this model, except those that are on a
procedure’s stack.

a. Consider the problem of a process having to reference its process identifier procid in vari-

ous parts of aprogram, in different routinesin a call chain from the routine at which the
process begins execution. How would you implement thisin the first case? In the second?
Do you need private data per process, or could you do this with al data being globally
shared?

. A program written in the former (fork) model may rely on the fact that a child process

getsits own private copies of the parents’ data structures. What changes would you make
to port the program to the latter (threads) model for data structuresthat are (i) only read by
processes after the creation of the child, (ii) are both read and written? What performance
issues might arise in designing the data structures (you will be better equipped to answer
this part of the question after reading the next few chapters)?

2.3 Synchronization.
a. Theclassic bounded buffer problem provides an example of point-to-point event synchro-

nization. Two processes communicate through afinite buffer. One process—the pro-
ducer—adds data items to a buffer when it is not full, and another—the consumer—reads
dataitems from the buffer when it is not empty. If the consumer finds the buffer empty, it
must wait till the producer inserts an item. When the producer isready to insert an item, it
checksto seeif the buffer isfull, in which case it must wait till the consumer removes
something from the buffer. If the buffer is empty when the producer tries to add an item,
depending on the implementation the consumer may be waiting for notification, so the
producer may need to notify the consumer. Can you implement a bounded buffer with
only point-to-point event synchronization, or do you need mutual exclusion as well.
Design an implementation, including pseudocode.

9/10/97

DRAFT: Parallel Computer Architecture 127

Parallel Programs

b. Why wouldn’t we use spinning for interprocess synchronization in uniprocessor operating
systems? What do you think are the tradeoffs between blocking and spinning on a multi-
processor?

¢. Inthe shared address space parallel equation solver (Figure 2-13 on page 114), why do we
need the second barrier at the end of awhileloop iteration (line 25f)? Can you eliminate it
without inserting any other synchronization, but perhaps modifying when certain opera-
tions are performed? Think about all possible scenarios.

2.4 Do LU factorization as an exercise. Describe, give a simple contiguous decomposition and

assignment, draw concurrency profile, estimate speedup assuming ho communication over-
heads, and ask to implement in a shared address space and in message passing. Modify the
message-passing pseudocode to implement an interleaved assignment. Use both synchronous
and asynchronous (blocking) sends and receives. Then interleaving in both directions, do the
same.

2.5 More synchronization. Suppose that a system supporting a shared address space did not sup-

port barriers but only semaphores. Event synchronization would have to be constructed
through semaphores or ordinary flags. To coordinate P1 indicating to P2 that it has reached
point a (so that P2 can proceed past point b where it was waiting) using semaphores, P1 per-
forms a wait (also called P or down) operation on a semaphore when it reaches point a, and
P2 performs asignal (or V or up) operation on the same semaphore when it reaches point b. I
P1 getsto a before P2 getsto b, P1 suspends itself and is awoken by P2's signal operation.

a. How might you orchestrate the synchronization in LU factorization with (i) flags and (ii)
semaphores replacing the barriers. Could you use point-to-point or group event synchro-
nization instead of global event synchronization?

b. Answer the same for the equation solver example.

2.6 Other than the above “broadcast” approach, LU factorization can also be paralelized in a

form that is more aggressive in exploiting the available concurrency. We call this form the

pipelined form of parallelization, since an element is computed from the producing process to

a consumer in pipelined form via other consumers, which use the element as they communi-

cateit in the pipeline.

a. Write shared-address-space pseudocode, at asimilar level of detail as Figure 2-13 on
page 114, for aversion that implements pipelined parallelism at the granularity of individ-
ual elements (as described briefly in Section 2.4.2). Show all synchronization necessary.
Do you need barriers?

b. Write message-passing pseudocode at the level of detail of Figure 2-16 on page 120 for
the above pipelined case. Assume that the only communication primitives you have are
synchronous and asynchronous (blocking and nonblocking) sends and receives. Which
versions of send and receive would you use, and why wouldn’t you choose the others?

c. Discussthe tradeoffs (programming difficulty and likely performance differences) in pro-
gramming the shared address space and message-passing versions.

d. Discussthe tradeoffs in programming the loop-based versus pipelined parallelism

2.7 Multicast (sending a message from one process to a named list of other processes) is a useful

mechanism for communicating among subsets of processes.

a. How would you implement the message-passing, interleaved assignment version of LU
factorization with multicast rather than broadcast? Write pseudocode, and compare the
programming ease of the two versions.

b. Which do you think will perform better and why?

128

DRAFT: Parallel Computer Architecture 9/10/97

Exercises

¢. What other “group communication” primitives other than multicast do you think might be
useful for amessage passing system to support? Give examples of computations in which
they might be used.

9/10/97 DRAFT: Parallel Computer Architecture 129

Parallel Programs

130 DRAFT: Parallel Computer Architecture 9/10/97

Introduction

CHAPTER 3

Programming for Performance

Morgan Kaufmann ispleased to present material from a preliminary draft of Parallel Computer Architecture; the
material is(c) Copyright 1996 Morgan Kaufmann Publishers. Thismaterial may not be used or distributed for any
commercial purpose without the expresswritten consent of Morgan Kaufmann Publishers. Please note that this

material isadraft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changes or alterationsin thefinal edition.

31

I ntroduction

The goal of using multiprocessors is to obtain high performance. Having understood concretely
how the decomposition, assignment and orchestration of a parallel program are incorporated in
the code that runs on the machine, we are ready to examine the key factors that limit parallel per-
formance, and understand how they are addressed in a wide range of problems. We will see how
decisions made in different steps of the programming process affect the runtime characteristics
presented to the architecture, as well as how the characteristics of the architecture influence pro-
gramming decisions. Understanding programming techniques and these interdependencies is
important not just for paralel software designers but also for architects. Besides helping us
understand parallel programs as workloads for the systems we build, it also helps us appreciate
hardware-software tradeoffs; that is, in what aspects of programmability and performance can the
architecture be of assistance, and what aspects are best left to software. The interdependencies of
program and system are more fluid, more complex and have far greater performance impact in

9/10/97

DRAFT: Parallel Computer Architecture 131

Programming for Performance

multiprocessors than in uniprocessors; hence, this understanding is very important to our goal of
designing high-performance systems that reduce cost and programming effort. We will carry it
forward with us throughout the book, starting with concrete guidelines for workload-driven
architectural evaluation in the next chapter.

The space of performance issues and techniquesin parallel software is very rich: Different goals
trade off with one another, and techniques that further one goal may cause us to revisit the tech-
niques used to address another. This is what makes the creation of parallel software so interest-
ing. As in uniprocessors, most performance issues can be addressed either by algorithmic and
programming techniques in software or by architectural techniques or both. The focus of this
chapter is on the issues and on software techniques. Architectural techniques, sometimes hinted
at here, are the subject of the rest of the book.

While there are several interacting performance issues to contend with, they are not all dealt with
at once. The process of creating a high-performance program is one of successive refinement. As
discussed in Chapter 2, the partitioning steps—decomposition and assignment—are largely inde-
pendent of the underlying architecture or communication abstraction, and concern themselves
with major agorithmic issues that depend only on the inherent properties of the problem. In par-
ticular, these steps view the multiprocessor as simply a set of processors that communicate with
one another. Their goal is to resolve the tension between balancing the workload across pro-
cesses, reducing interprocess communication, and reducing the extra work needed to compute
and manage the partitioning. We focus our attention first on addressing these partitioning issues.

Next, we open up the architecture and examine the new performance issues it raises for the
orchestration and mapping steps. Opening up the architecture means recognizing two facts. The
first fact is that a multiprocessor is not only a collection of processors but also a collection of
memories, one that an individual processor can view as an extended memory hierarchy. The man-
agement of datain these memory hierarchies can cause more datato be transferred across the net-
work than the inherent communication mandated by the partitioning of the work among
processes in the parallel program. The actual communication that occurs therefore depends not
only on the partitioning but also on how the program’s access patterns and locality of data refer-
ence interact with the organization and management of the extended memory hierarchy. The sec-
ond fact is that the cost of communication as seen by the processor—and hence the contribution
of communication to the execution time of the program—depends not only on the amount of
communication but also on how it is structured to interact with the architecture. The relationship
between communication, data locality and the extended memory hierarchy is discussed in
Section 3.3. Then, Section 3.4 examines the software techniques to address the major perfor-
mance issues in orchestration and mapping: techniques for reducing the extra communication by
exploiting data locality in the extended memory hierarchy, and techniques for structuring com-
munication to reduce its cost.

Of course, the architectural interactions and communication costs that we must deal with in
orchestration sometimes cause us to go back and revise our partitioning methods, which is an
important part of the refinement in paralel programming. While there are interactions and
tradeoffs among all the performance issues we discuss, the chapter discusses each independently
as far as possible and identifies tradeoffs as they are encountered. Examples are drawn from the
four case study applications throughout, and the impact of some individual programming tech-
niques illustrated through measurements on a particular cache-coherent machine with physically
distributed memory, the Silicon Graphics Origin2000, which is described in detail in
Chapter 8.The equation solver kernel is aso carried through the discussion, and the performance

132

DRAFT: Parallel Computer Architecture 9/10/97

Partitioning for Performance

3.2

techniques are applied to it as relevant, so by the end of the discussion we will have created a
high-performance parallel version of the solver.

As we go through the discussion of performance issues, we will develop simple analytical mod-
els for the speedup of a parallel program, and illustrate how each performance issue affects the
speedup equation. However, from an architectural perspective, amore concrete way of looking at
performance is to examine the different components of execution time as seen by an individual
processor in a machine; i.e. how much time the processor spends executing instructions, access-
ing data in the extended memory hierarchy, and waiting for synchronization events to occur. In
fact, these components of execution time can be mapped directly to the performance factors that
software must address in the steps of creating a parallel program. Examining this view of perfor-
mance helps us understand very concretely what a parallel execution looks like as a workload
presented to the architecture, and the mapping helps us understand how programming techniques
can alter this profile. Together, they will help us learn how to use programs to evaluate architec-
tural tradeoffsin the next chapter. This view and mapping are discussed in Section 3.5.

Once we have understood the performance issues and techniques, we will be ready to do what we
wanted to all along: understand how to create high-performance parallel versions of complex,
realistic applications, namely, the four case studies. Section 3.6 applies the parallelization pro-
cess and the performance techniques to each case study in turn, illustrating how the techniques
are employed together and the range of resulting execution characteristics presented to an archi-
tecture, reflected in varying profiles of execution time. We will aso finaly be ready to fully
understand the implications of realistic applications and programming techniques for tradeoffs
between the two major lower-level programming models: a shared address space and explicit
message passing. The tradeoffs of interest are both in ease of programming and in performance,
and will be discussed in Section 3.7. Let us begin with the algorithmic performance issuesin the
decomposition and assignment steps.

Partitioning for Performance

For these steps, we can view the machine as simply a set of cooperating processors, largely ignor-
ing its programming model and organization. All we know at this stage is that communication
between processorsis expensive. The three primary algorithmic issues are:

* balancing the workload and reducing the time spent waiting at synchronization events
* reducing communication, and
* reducing the extra work done to determine and manage a good assignment.

Unfortunately, even the three primary algorithmic goals are at odds with one another and must be
traded off. A singular goal of minimizing communication would be satisfied by running the pro-
gram on a single processor, as long as the necessary data fit in the local memory, but this would
yield the ultimate load imbalance. On the other hand, near perfect load balance could be
achieved, at a tremendous communication and task management penalty, by making each primi-
tive operation in the program atask and assigning tasks randomly. And in many complex applica
tions load balance and communication can be improved by spending more time determining a
good assignment (extra work). The goal of decomposition and assignment is to achieve a good
compromise between these conflicting demands. Fortunately, success is often not so difficult in
practice, as we shall see. Throughout our discussion of performance issues, the four case studies

9/10/97

DRAFT: Parallel Computer Architecture 133

Programming for Performance

321

from Chapter 2 will be used to illustrate issues and techniques. They will later be presented as
complete case studies addressing all the performance issues in Section 3.6. For each issue, we
will also see how it is applied to the simple equation solver kernel from Chapter 2, resulting at
the end in a high performance version.

L oad Balance and Synchronization Wait Time

In its simplest form, balancing the workload means ensuring that every processor does the same
amount of work. It extends exposing enough concurrency—which we saw earlier—with proper
assignment and reduced serialization, and gives the following simple limit on potential speedup:

Seguential Work
max Work on any Processor

Speedupproblem(p) S

Work, in this context, should be interpreted liberally, because what matters is not just how many
calculations are done but the time spent doing them, which involves data accesses and communi-
cation aswell.

In fact, load balancing is alittle more complicated than simply equalizing work. Not only should
different processors do the same amount of work, but they should be working at the same time.
The extreme point would be if the work were evenly divided among processes but only one pro-
cesswere active at atime, so there would be no speedup at all! The real goal of load balanceisto
minimize the time processes spend waiting at synchronization points, including an implicit one at
the end of the program. This also involves minimizing the serialization of processes due to either
mutual exclusion (waiting to enter critical sections) or dependences. The assignment step should
ensure that reduced serialization is possible, and orchestration should ensure that it happens.

There are four parts to balancing the workload and reducing synchronization wait time:

¢ Identifying enough concurrency in decomposition, and overcoming Amdahl’s Law.
¢ Deciding how to manage the concurrency (statically or dynamically).

* Determining the granularity at which to exploit the concurrency.

* Reducing serialization and synchronization cost.

This section examines some techniques for each, using examples from the four case studies and
other applications as well.

I dentifying Enough Concurrency: Data and Function Parallelism

We saw in the equation solver that concurrency may be found by examining the loops of a pro-
gram or by looking more deeply at the fundamental dependences. Parallelizing loops usually
leads to similar (not necessarily identical) operation sequences or functions being performed on
elements of alarge data structure(s). Thisis called data parallelism, and is a more general form
of the parallelism that inspired data parallel architectures discussed in Chapter 1. Computing
forces on different particlesin Barnes-Hut is another example.

In addition to data parallelism, applications often exhibit function parallelism as well: Entirely
different calculations are performed concurrently on either the same or different data. Function
parallelismis often referred to as control parallelism or task parallelism, though these are over-
loaded terms. For example, setting up an equation system for the solver in Ocean requires many

134

DRAFT: Parallel Computer Architecture 9/10/97

Partitioning for Performance

different computations on ocean cross-sections, each using afew cross-sectiona grids. Analyzing
dependences at the grid or array level reveals that several of these computations are independent
of one another and can be performed in paralel. Pipelining is another form of function parallel-
ism in which different sub-operations or stages of the pipeline are performed concurrently. In
encoding a sequence of video frames, each block of each frame passes through several stages:
pre-filtering, convolution from the time to the frequency domain, quantization, entropy coding,
etc. There is pipeline paralelism across these stages (for example a few processes could be
assigned to each stage and operate concurrently), as well as data parallelism between frames,
among blocks in a frame, and within an operation on a block.

Function parallelism and data parallelism are often available together in an application, and pro-
vide a hierarchy of levels of parallelism from which we must choose (e.g. function parallelism
across grid computations and data parallelism within grid computations in Ocean). Orthogonal
levels of parallelism are found in many other applications as well; for example, applications that
routewiresin VLS| circuits exhibit parallelism across the wires to be routed, across the segments
within awire, and across the many routes evaluated for each segment (see Figure 3-1).

Wy W, W3
Wire
Parallelism

Wire W, expands to segments

S21 S22 S c\§24 S25 S Soqren
men
/ c\‘ / Parallelism

Segment S; expands to routes

D = B N

Figure 3-1 Thethree axes of parallelismin aVLSI wire routing application.

The degree of available function parallelism is usually modest and does not grow much with the
size of the problem being solved. The degree of data parallelism, on the other hand, usually
grows with data set size. Function parallelism is also often more difficult to exploit in aload bal-
anced way, since different functions involve different amounts of work. Most parallel programs
that run on large-scale machines are data parallel according to our loose definition of the term,
and function parallelism is used mainly to reduce the amount of global synchronization required
between data parallel computations (asillustrated in Ocean, in Section 3.6.1).

By identifying the different types of concurrency in an application we often find much more than
we need. The next step in decomposition is to restrict the available concurrency by determining

9/10/97

DRAFT: Parallel Computer Architecture 135

Programming for Performance

the granularity of tasks. However, the choice of task size also depends on how we expect to man-
age the concurrency, so we discuss this next.

Determining How to Manage Concurrency: Static ver sus Dynamic Assignment

A key issue in exploiting concurrency is whether a good load balance can be obtained by a static
or predetermined assignment, introduced in the previous chapter, or whether more dynamic
means are required. A static assignment istypically an algorithmic mapping of tasksto processes,
as in the simple equation solver kernel discussed in the previous chapter. Exactly which tasks
(grid points or rows) are assigned to which processes may depend on the problem size, the num-
ber of processes, and other parameters, but the assignment does not adapt at runtime to other
environmental considerations. Since the assignment is predetermined, static techniques do not
incur much task management overhead at runtime. However, to achieve good load balance they
require that the work in each task be predictable enough, or that there be so many tasks that the
statistics of large numbers ensure a balanced distribution, with pseudo-random assignment. In
addition to the program itself, it is also important that other environmental conditions such as
interference from other applications not perturb the relationships among processors limiting the
robustness of static load balancing.

Dynamic techniques adapt to |oad imbalances at runtime. They come in two forms. In semi-static
techniques the assignment for a phase of computation is determined algorithmically before that
phase, but assignments are recomputed periodically to restore load balance based on profiles of
the actual workload distribution gathered at runtime. That is, we profile (measure) the work that
each task does in one phase, and use that as an estimate of the work associated with it in the next
phase. This repartitioning technique is used to assign stars to processes in Barnes-Hut
(Section 3.6.2), by recomputing the assignment between time-steps of the galaxy’s evolution.
The galaxy evolves slowly, so the workload distribution among stars does not change much
between successive time-steps. Figure 3-2(a) illustrates the advantage of semi-static partitioning

[~—@—=Origin semi-static =——0rigin with stealing
|==@—mChallenge semi-static| Bl Challenge with stealing|
== == Origin static Origin, no stealing

$2— Challenge static

H -~ Challenge, no stealing

Figure 3-2 Illustration of the performance impact of dynamic partitioning for load balance.

The graph on the left shows the speedups of the Barnes-Hut application with and without semi-static partitioni n?, and the graph on the
right shows the speedups of Raytrace with and without task stealing. Even in these applications that have alot of parallelism, dynamic
partitioning is important for improving load balance over static partitioning.

136

DRAFT: Parallel Computer Architecture 9/10/97

Partitioning for Performance

over astatic assignment of particlesto processors, for a512K particle execution measured on the
Origin2000. It isclear that the performance difference grows with the number of processors used.

The second dynamic technique, dynamic tasking, is used to handle the cases where either the
work distribution or the system environment is too unpredictable even to periodically recompute
a load balanced assignment.! For example, in Raytrace the work associated with each ray is
impossible to predict, and even if the rendering is repeated from different viewpoints the change
in viewpoints may not be gradual. The dynamic tasking approach divides the computation into
tasks and maintains a pool of available tasks. Each process repeatedly takes a task from the pool
and executes it—possibly inserting new tasks into the pool—until there are no tasks left. Of
course, the management of the task pool must preserve the dependences among tasks, for exam-
ple by inserting atask only when it is ready for execution. Since dynamic tasking iswidely used,
let us look at some specific techniques to implement the task pool. Figure 3-2(b) illustrates the
advantage of dynamic tasking over a static assignment of rays to processors in the Raytrace
application, for the balls data set measured on the Origin2000.

A simple example of dynamic tasking in a shared address space is self-scheduling of a parallel
loop. The loop counter is a shared variable accessed by all the processes that execute iterations of
the loop. Processes obtain aloop iteration by incrementing the counter (atomically), execute the
iteration, and access the counter again, until no iterations remain. The task size can be increased
by taking multiple iterations at atime, i.e., adding a larger value to the shared loop counter. In
guided self-scheduling [AiN88] processes start by taking large chunks and taper down the chunk
size as the loop progresses, hoping to reduce the number of accesses to the shared counter with-
out compromising load balance.

More genera dynamic task pools are usually implemented by a collection of queues, into which
tasks are inserted and from which tasks are removed and executed by processes. This may be a
single centralized queue or a set of distributed queues, typically one per process, as shown in
Figure 3-3. A centralized queue is simpler, but has the disadvantage that every process accesses
the same task queue, potentially increasing communication and causing processors to contend for
gueue access. Maodifications to the queue (enqueuing or dequeuing tasks) must be mutually
exclusive, further increasing contention and causing serialization. Unless tasks are large and
there are few queue accesses relative to computation, a centralized queue can quickly become a
performance bottleneck as the number of processors increases.

With distributed queues, every processis initially assigned a set of tasksin its local queue. This
initial assignment may be done intelligently to reduce interprocess communication providing
more control than self-scheduling and centralized queues. A process removes and executes tasks
from its local queue as far as possible. If it creates tasks it inserts them in its local queue. When
there are no more tasks in its local queue it queries other processes’ queues to obtain tasks from
them, a mechanism known as task stealing. Because task stealing implies communication and
can generate contention, several interesting issues arise in implementing stealing; for example,

1. Theapplicability of static or semi-static assignment depends not only on the computational properties of
the program but also on its interactions with the memory and communication systems and on the predict-
ability of the execution environment. For example, differencesin memory or communication stall time (due
to cache misses, page faults or contention) can cause imbalances observed at synchronization points even
when the workload is computationally load balanced. Static assignment may also not be appropriate for
time-shared or heterogeneous systems.

9/10/97

DRAFT: Parallel Computer Architecture 137

Programming for Performance

ﬁl]ggtot%ws Poinserts Pjinserts Pyinserts Psinserts
\ |/ b b
Q Qo Q1 Qo Q3
/'\ othersmay/l/>’,':___|_---~‘“. | |
steal » - RN
all remove tasks Py removes P;removes P,removes Psremoves
(a) Centralized task queue (b) Distributed task queues (one per process)

Figure 3-3 Implementing adynamic task pool with a system of task queues.

how to minimize stealing, whom to steal from, how many and which tasksto steal at atime, and
so on. Stealing also introduces the important issue of termination detection: How do we decide
when to stop searching for tasks to steal and assume that they’re all done, given that tasks gener-
ate other tasks that are dynamically inserted in the queues? Simple heuristic solutions to this
problem work well in practice, although arobust solution can be quite subtle and communication
intensive [DS68,CM88]. Task queues are used in both a shared address space, where the queues
are shared data structures that are manipulated using locks, as well as with explicit message pass-
ing where the owners of queues service requests for them.

While dynamic techniques generally provide good load balancing despite unpredictability or
environmental conditions, they make task management more expensive. Dynamic tasking tech-
niques also compromise the explicit control over which tasks are executed by which processes,
thus potentially increasing communication and compromising data locality. Static techniques are
therefore usually preferable when they can provide good load balance given both application and
environment.

Deter mining the Granularity of Tasks

If there are no load imbalances due to dependences among tasks (for example, if all tasks to be
executed are available at the beginning of a phase of computation) then the maximum load
imbalance possible with a task-queue strategy is equal to the granularity of the largest task. By
granularity we mean the amount of work associated with a task, measured by the number of
instructions or—more appropriatel y—the execution time. The genera rule for choosing a granu-
larity at which to actually exploit concurrency is that fine-grained or small tasks have the poten-
tial for better load balance (there are more tasks to divide among processes and hence more
concurrency), but they lead to higher task management overhead, more contention and more
interprocessor communication than coarse-grained or large tasks. Let us see why, first in the con-
text of dynamic task queuing where the definitions and tradeoffs are clearer.

138

DRAFT: Parallel Computer Architecture 9/10/97

Partitioning for Performance

Task Granularity with Dynamic Task Queueing: Here, atask is explicitly defined as an entry
placed on atask queue, so task granularity is the work associated with such an entry. The larger
task management (queue manipulation) overhead with small tasks is clear: At least with a cen-
tralized queue, the more frequent need for queue access generally leads to greater contention as
well. Finally, breaking up atask into two smaller tasks might cause the two tasks to be executed
on different processors, thus increasing communication if the subtasks access the same logically
shared data.

Task Granularity with Static Assignment: With static assignment, it is less clear what one
should call atask or a unit of concurrency. For example, in the equation solver is atask a group
of rows, asingle row, or an individual element? We can think of atask asthe largest unit of work
such that even if the assignment of tasks to processes is changed, the code that implements atask
need not change. With static assignment, task size has amuch smaller effect on task management
overhead compared to dynamic task-queueing, since there are no queue accesses. Communica-
tion and contention are affected by the assignment of tasks to processors, not their size. The
major impact of task size is usualy on load imbalance and on exploiting data locality in proces-
sor caches.

Reducing Serialization

Finally, to reduce serialization at synchronization points—whether due to mutual exclusion or
dependences among tasks—we must be careful about how we assign tasks and also how we
orchestrate synchronization and schedul e tasks. For event synchronization, an example of exces-
sive seriaization is the use of more conservative synchronization than necessary, such as barriers
instead of point-to-point or group synchronization. Even if point-to-point synchronization is
used, it may preserve data dependences at a coarser grain than necessary; for example, a process
waits for another to produce awhole row of amatrix when the actual dependences are at the level
of individual matrix elements. However, finer-grained synchronization is often more complex to
program and implies the execution of more synchronization operations (say one per word rather
than one per larger data structure), the overhead of which may turn out to be more expensive than
the savingsin serialization. As usual, tradeoffs abound.

For mutual exclusion, we can reduce serialization by using separate locks for separate data items,
and making the critical sections protected by locks smaller and less frequent if possible. Consider
the former technique. In a database application, we may want to lock when we update certain
fields of records that are assigned to different processes. The question is how to organize the
locking. Should we use one lock per process, one per record, or one per field? The finer the gran-
ularity the lower the contention but the greater the space overhead and the less frequent the reuse
of locks. An intermediate solution is to use a fixed number of locks and share them among
records using a simple hashing function from records to locks. Another way to reduce serializa-
tion is to stagger the critical sectionsin time, i.e. arrange the computation so multiple processes
do not try to access the same lock at the same time.

Implementing task queues provides an interesting example of making critical sections smaller
and also less frequent. Suppose each process adds a task to the queue, then searches the queue for
another task with a particular characteristic, and then remove this | atter task from the queue. The
task insertion and deletion may need to be mutually exclusive, but the searching of the queue
does not. Thus, instead of using asingle critical section for the whole sequence of operations, we

9/10/97

DRAFT: Parallel Computer Architecture 139

Programming for Performance

322

can break it up into two critical sections (insertion and deletion) and non-mutually-exclusive
code to search the list in between.

More generaly, checking (reading) the state of a protected data structure usually does not have to
be done with mutual exclusion, only modifying the data structure does. If the common caseisto
check but not have to modify, as for the tasks we search through in the task queue, we can check
without locking, and then lock and re-check (to ensure the state hasn’t changed) within the criti-
cal section only if the first check returns the appropriate condition. Also, instead of using asingle
lock for the entire queue, we can use alock per queue element so elements in different parts of
the queue can be inserted or deleted in parallel (without serialization). As with event synchroni-
zation, the correct tradeoffs in performance and programming ease depend on the costs and ben-
efits of the choices on a system.

We can extend our simple limit on speedup to reflect both load imbal ance and time spent waiting
at synchronization points as follows:

ential Work
Speedl'lpproblem(p) < Sequent

max(Work + Synch Wait Time)

In general, the different aspects of balancing the workload are the responsibility of software:
Thereis not much an architecture can do about a program that does not have enough concurrency
or isnot load balanced. However, an architecture can help in some ways. First, it can provide effi-
cient support for load balancing techniques such as task stealing that are used widely by parallel
software (applications, libraries and operating systems). Task queues have two important archi-
tectural implications. First, an access to a remote task queue is usually a probe or query, involv-
ing a small amount of data transfer and perhaps mutual exclusion. The more efficiently fine-
grained communication and low-overhead, mutually exclusive access to data are supported, the
smaller we can make our tasks and thusimprove load balance. Second, the architecture can make
it easy to name or access the logically shared data that a stolen task needs. Third, the architecture
can provide efficient support for point-to-point synchronization, so there is more incentive to use
them instead of conservative barriers and hence achieve better 1oad balance.

Reducing Inherent Communication

Load balancing by itself is conceptually quite easy as long as the application affords enough con-
currency: We can simply make tasks small and use dynamic tasking. Perhaps the most important
tradeoff with load balance is reducing interprocessor communication. Decomposing a problem
into multiple tasks usually means that there will be communication among tasks. If these tasks
are assigned to different processes, we incur communication among processes and hence proces-
sors. We focus here on reducing communication that isinherent to the parallel program—i.e. one
process produces data that another needs—while still preserving load balance, retaining our view
of the machine as a set of cooperating processors. We will see in Section 3.3 that in areal system
communication occurs for other reasons as well.

The impact of communication is best estimated not by the absolute amount of communication
but by a quantity called the communication to computation ratio. Thisis defined as the amount of
communication (in bytes, say) divided by the computation time, or by the number of instructions
executed. For example, a gigabyte of communication has a much greater impact on the execution
time and communication bandwidth requirements of an application if the time required for the

140

DRAFT: Parallel Computer Architecture 9/10/97

Partitioning for Performance

application to execute is 1 second than if it is 1 hour! The communication to computation ratio
may be computed as a per-process humber, or accumulated over all processes.

The inherent communication to computation ratio is primarily controlled by the assignment of
tasks to processes. To reduce communication, we should try to ensure that tasks that access the
same data or need to communicate alot are assigned to the same process. For example, in adata-
base application, communication would be reduced if queries and updates that access the same
database records are assigned to the same process.

One partitioning principle that has worked very well for load balancing and communication vol-
ume in practice is domain decomposition. It wasinitially used in data-parallel scientific computa-
tions such as Ocean, but has since been found applicable to many other areas. If the data set on
which the application operates can be viewed as a physical domain—for example, the grid repre-
senting an ocean cross-section in Ocean, the space containing a galaxy in Barnes-Hut, or the
image for graphics or video applications—then it is often the case that a point in the domain
either requires information directly from only a small localized region around that point, or
requires long-range information but the requirements fall off with distance from the point. We
saw an example of the latter in Barnes-Hut. For the former, algorithms for motion estimation in
video encoding and decoding examine only areas of a scene that are close to the current pixel,
and a point in the equation solver kernel needs to access only its four nearest neighbor points
directly. The goa of partitioning in these casesis to give every process a contiguous region of the
domain while of course retaining load balance, and to shape the domain so that most of the pro-
cess's information requirements are satisfied within its assigned partition. As Figure 3-4 shows,
in many such cases the communication requirements for a process grow proportionally to the size
of a partition’s boundary, while computation grows proportionaly to the size of its entire parti-
tion. The communication to computation ratio is thus a surface area to volume ratio in three
dimensions, and perimeter to areain two dimensions. Like load balance in data parallel computa-
tion, it can be reduced by either increasing the data set size (n?in the figure) or reducing the num-
ber of processors (p).

n n
P
Po | PL| P | Ps = —=
000000000
ceeeee00O0
Pa Ps Ps P XXX XX XX Xe
n] ceeeeeeeon| N
ceeeeeee0|P
Pg | Po | Po| Pu ceeeeeee0o0
000000000
~— 000000000
Pio| Piz| Pis| Pis ©C00000000

Figure 3-4 The perimeter to area relationship of communication to computation in atwo-dimensional domain decomposition.

The example shown is for an algorithm with localized, nearest-neighbor information exchange like the simple equation solver ker-
nel. Every point on the grid needs information from its four nearest neighbors. Thus, the darker, internal points in processor Pyg's
partition do not need to{fommunicate directly with any points outside the partition. Computation for processor P is thus pgppor-
tional to the sum of all 6 points, while communication is proportional to the number of lighter, boundary points, whichis4— .

p

9/10/97 DRAFT: Parallel Computer Architecture 141

Programming for Performance

Of course, the ideal shape for a domain decomposition is application-dependent, depending pri-
marily on theinformation requirements of and work associated with the pointsin the domain. For
the eguation solver kernel in Chapter 2, we chose to partition the grid into blocks of contiguous
rows. Figure 3-5 shows that partitioning the grid into square-like subgrids leads to alower inher-
ent communication-to-computation ratio. The impact becomes greater as the number of proces-
sors increases relative to the grid size. We shall therefore carry forward this partitioning into
square subgrids (or simply “subgrids’) as we continue to discuss performance. As a simple exer-
n

75 n
P | PL| P | P

Py | Ps | Ps | Py

n
o Pg | Py | Po| Pu

Ppo| P3| Pu| Pis

Figure 3-5 Choosing among domain decompositions for asimple nearest-neighbor computation on aregular two-dimensional grid.

Since the work per grid point is uniform, equally sized partitions yield good load balance. But we still have choices. We might parti-
tion the elements of the grid into either strips of contiguous rows (right) or block-structured partitions that are as close to square as
4xn/.Jp

n2/ p

possible (left). The perimeter-to-area (and hence communication to computation) ratio in the block decomposition caseis

4x./p 2xn _2xp

or , while that in strip decompositionis —— or B As p increases, block decomposition incurs less inherent communi-

n n’/p

cation for the same computation than strip decomposition.

cise, think about what the communication to computation ratio would be if we assigned rows to
processes in an interleaved or cyclic fashion instead (row i assigned to processi mod nprocs).

How do we find a suitable domain decomposition that is |oad balanced and also keeps communi-
cation low? There are several ways, depending on the nature and predictability of the computa-
tion:

e Satically, by inspection, as in the equation solver kernel and in Ocean. This requires predict-
ability and usually leads to regularly shaped partitions, asin Figures 3-4 and 3-5.

e Satically, by analysis. The computation and communication characteristics may depend on
the input presented to the program at runtime, thus requiring an analysis of the input. How-
ever, the partitioning may need to be done only once after the input analysis—before the
actual computation starts—so we still consider it static. Partitioning sparse matrix computa-
tions used in aerospace and automobile simulations is an example: The matrix structure is
fixed, but is highly irregular and requires sophisticated graph partitioning. In data mining, we
may divide the database of transactions statically among processors, but a balanced assign-
ment of itemsets to processes requires some analysis since the work associated with different
itemsetsisnot equal. A simple static assignment of itemsets aswell as the database by inspec-
tion keeps communication low, but does not provide load balance.

142 DRAFT: Parallel Computer Architecture 9/10/97

Partitioning for Performance

e Semi-statically (with periodic repartitioning). This was discussed earlier for applications like
Barnes-Hut whose characteristics change with time but slowly. Domain decomposition is still
important to reduce communication, and we will see the profiling-based Barnes-Hut example
in Section 3.6.2.

e Satically or semi-statically, with dynamic task stealing. Even when the computation is highly
unpredictable and dynamic task stealing must be used, domain decomposition may be useful
ininitially assigning tasks to processes. Raytrace is an example. Here there are two domains:
the three-dimensional scene being rendered, and the two-dimensional image plane. Since the
natural tasks are rays shot through the image plane, it is much easier to manage domain
decomposition of that plane than of the scene itself. We decompose the image domain just
like the grid in the equation solver kernel (Figure 3-4), with image pixels corresponding to
grid points, and initially assign rays to the corresponding processes. Processes then steal rays
(pixels) or group of rays for load balancing. The initial domain decomposition is useful
because rays shot through adjacent pixels tend to access much of the same scene data.

Of course, partitioning into a contiguous subdomain per processor is not always appropriate for
high performance in all applications. We shall see examples in matrix factorization in
Exercise 3.3, and in a radiosity application from computer graphics in Chapter 4. Different
phases of the same application may also call for different decompositions. The range of tech-
niquesis very large, but common principles like domain decomposition can be found. For exam-
ple, even when stealing tasks for load balancing in very dynamic applications, we can reduce
communication by searching other queues in the same order every time, or by preferentially
stealing large tasks or several tasks at once to reduce the number of times we have to access non-
local queues.

In addition to reducing communication volume, it is aso important to keep communication bal-
anced among processors, not just computation. Since communication is expensive, imbalancesin
communication can translate directly to imbalancesin execution time among processors. Overall,
whether tradeoffs should be resolved in favor of load balance or communication volume depends
on the cost of communication on a given system. Including communication as an explicit perfor-
mance cost refines our basic speedup limit to:
uential Work
SpeedUp y; op em(P) < max(Work + S/Sne(?h. Wait Time + Comm. Cost)

What we have done in this expression is separated out communication from work. Work now
means instructions executed plus local data access costs.

The amount of communication in parallel programs clearly has important implications for archi-
tecture. In fact, architects examine the needs of applications to determine what latencies and
bandwidths of communication are worth spending extra money for (see Exercise 3.8); for exam-
ple, the bandwidth provided by a machine can usually be increased by throwing hardware (and
hence money) at the problem, but this is only worthwhile if applications will exercise the
increased bandwidth. As architects, we assume that the programs delivered to us are reasonable
in their load balance and their communication demands, and strive to make them perform better
by providing the necessary support. Let us now examine the last of the algorithmic issues that we
can resolve in partitioning itself, without much attention to the underlying architecture.

9/10/97

DRAFT: Parallel Computer Architecture 143

Programming for Performance

3.23

324

Reducing the Extra Work

The discussion of domain decomposition above shows that when a computation isirregular, com-
puting a good assignment that both provides load balance and reduces communication can be
quite expensive. This extrawork is not required in a sequential execution, and is an overhead of
parallelism. Consider the sparse matrix example discussed above as an example of static parti-
tioning by analysis. The matrix can be represented as a graph, such that each node represents a
row or column of the matrix and an edge exists between two nodesi and j if the matrix entry (i)
is nonzero. The goal in partitioning is to assign each process a set of nodes such that the number
of edges that cross partition boundaries is minimized and the computation is also load balanced.
Many techniques have been developed for this; the ones that result in a better balance between
load balance and communication require more time to compute the graph partitioning. We shall
see another examplein the Barnes-Hut case study in Section 3.6.2.

Another example of extrawork is computing data values redundantly rather than having one pro-
cess compute them and communi cate them to the others, which may be a favorable tradeoff when
the cost of communication is high. Examples include all processes computing their own copy of
the same shading table in computer graphics applications, or of trigonometric tablesin scientific
computations. If the redundant computation can be performed while the processor is otherwise
idle due to load imbalance, its cost can be hidden.

Finally, many aspects of orchestrating parallel programs—such as creating processes, managing
dynamic tasking, distributing code and data throughout the machine, executing synchronization
operations and paralelism control instructions, structuring communication appropriately for a
machine, packing/unpacking data to and from communication messages—involve extrawork as
well. For example, the cost of creating processes is what causes us to create them once up front
and have them execute tasks until the program terminates, rather than have processes be created
and terminated as parallel sections of code are encountered by a single main thread of computa
tion (a fork-join approach, which is sometimes used with lightweight threads instead of pro-
cesses). In Data Mining, we will see that substantial extra work done to transform the database
pays off in reducing communication, synchronization, and expensive input/output activity.

We must consider the tradeoffs between extra work, load balance, and communication carefully
when making our partitioning decisions. The architecture can help reduce extra work by making
communication and task management more efficient, and hence reducing the need for extrawork.
Based only on these a gorithmic issues, the speedup limit can now be refined to:

Sequential Work
max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedupproblem(p) < (EQ 3.1)

Summary

The analysis of parallel algorithms requires a characterization of a multiprocessor and a charac-
terization of the parallel algorithm. Historically, the analysis of paralel algorithms has focussed
on algorithmic aspects like partitioning, and has not taken architectural interactions into account.
In fact, the most common model used to characterize a multiprocessor for algorithm analysis has
been the Parallel Random Access Memory (PRAM) model [FoW78]. In its most basic form, the
PRAM model assumes that data access is free, regardless of whether it islocal or involves com-

144

DRAFT: Parallel Computer Architecture 9/10/97

Data Access and Communication in a Multi-Memory System

3.3

munication. That is, communication cost is zero in the above speedup expression (Equation 3.1),
and work istreated simply as instructions executed:

Sequential Instructions
max (Instructions + Synch Wait Time + ExtraInstructions)

Speedup-PRAM ;o em(P) < (EQ3.2)

A natural way to think of a PRAM machine is as a shared address space machine in which all
data access is free. The performance factors that matter in parallel algorithm analysis using the
PRAM are load balance and extra work. The goal of algorithm development for PRAMs is to
expose enough concurrency so the workload may be well balanced, without needing too much
extrawork.

While the PRAM model is useful in discovering the concurrency available in an algorithm, which
isthefirst step in parallelization, it is clearly unrealistic for modeling performance on real paral-
lel systems. This is because communication, which it ignores, can easily dominate the cost of a
parallel execution in modern systems. In fact, analyzing algorithms while ignoring communica-
tion can easily lead to a poor choice of decomposition and assignment, to say nothing of orches-
tration. More recent models have been developed to include communication costs as explicit
parameters that algorithm designers can use [Val90, CKP+93]. We will return to this issue after
we have obtained a better understanding of communication costs.

The treatment of communication costs in the above discussion has been limited for two reasons
when it comes to dealing with real systems. First, communication inherent to the paralel pro-
gram and its partitioning is not the only form of communication that isimportant: There may be
substantial non-inherent or artifactual communication that is caused by interactions of the pro-
gram with the architecture on which it runs. Thus, we have not yet modeled the amount of com-
munication generated by a parallel program satisfactorily. Second, the “communication cost”
term in the equations above is not only determined by the amount of communication caused,
whether inherent or artifactual, but also by the costs of the basic communication operationsin the
machine, the structure of the communication in the program, and how the two interact. Both arti-
factual communication and communication structure are important performance issues that are
usually addressed in the orchestration step since they are architecture-dependent. To understand
them, and hence open up the communication cost term, we first need a deeper understanding of
some critical interactions of architectures with software.

Data Access and Communication in a Multi-Memory System

331

In our discussion of partitioning, we have viewed a multiprocessor as a collection of cooperating
processors. However, multiprocessor systems are also multi-memory, multi-cache systems, and
the role of these components is essential to performance. The role is essential regardless of pro-
gramming model, though the latter may influence what the specific performance issues are. The
rest of the performance issues for parallel programs have primarily to do with accessing data in
this multi-memory system, so it is useful for usto now take a different view of a multiprocessor.

A Multiprocessor asan Extended M emory Hierarchy

From an individual processor’s perspective, we can view al the memory of the machine, includ-
ing the caches of other processors, as forming levels of an extended memory hierarchy. The com-

9/10/97

DRAFT: Parallel Computer Architecture 145

Programming for Performance

munication architecture glues together the parts of the hierarchy that are on different nodes. Just
as interactions with levels of the memory hierarchy (for example cache size, associativity, block
size) can cause the transfer of more data between levels than is inherently necessary for the pro-
gram in a uniprocessor system, so also interactions with the extended memory hierarchy can
cause more communication (transfer of data across the network) in multiprocessors than is inher-
ently necessary to satisfy the processesin aparallel program. Since communication is expensive,
it is particularly important that we exploit datalocality in the extended hierarchy, both to improve
node performance and to reduce the extra communication between nodes.

Even in uniprocessor systems, a processor’s performance depends heavily on the performance of
the memory hierarchy. Cache effects are so important that it hardly makes sense to talk about per-
formance without taking caches into account. We can look at the performance of a processor in
terms of the time needed to complete a program, which has two components: the time the proces-
sor is busy executing instructions and the time it spends waiting for data from the memory sys-
tem.

Timeprog(l) = Busy(1) + DataAccess(1) (EQ 3.3)

As architects, we often normalize this formula by dividing each term by the number of instruc-
tions and measuring time in clock cycles. We then have a convenient, machine-oriented metric of
performance, cycles per instruction (CPl), which is composed of an ideal CPI plus the average
number of stall cycles per instruction. On a modern microprocessor capable of issuing four
instructions per cycle, dependences within the program might limit the average issue rate to, say,
2.5 ingtructions per cycle, or an ideal CPI of 0.4. If only 1% of these instructions cause a cache
miss, and a cache miss causes the processor to stall for 80 cycles, on average, then these stalls
will account for an additional 0.8 cycles per instruction. The processor will be busy doing “ use-
ful” work only one-third of itstime! Of course, the other two-thirds of thetimeisin fact useful. It
is the time spent communicating with memory to access data. Recognizing this data access cost,
we may elect to optimize either the program or the machine to perform the data access more effi-
ciently. For example, we may change how we access the data to enhance temporal or spatial
locality or we might provide a bigger cache or latency tolerance mechanisms.

An idealized view of this extended hierarchy would be a hierarchy of local caches connected to a
single “remote” memory at the next level. In reality the picture is a bit more complex. Even on
machines with centralized shared memories, beyond the local caches is a multi-banked memory
as well as the caches of other processors. With physically distributed memories, a part of the
main memory too islocal, alarger part is remote, and what is remote to one processor islocal to
another. The difference in programming models reflects a difference in how certain levels of the
hierarchy are managed. We take for granted that the registers in the processor are managed
explicitly, but by the compiler. We also take for granted that the first couple of levels of caches
are managed transparently by the hardware. In the shared address space model, data movement
between the remote level and the local node is managed transparently as well. The message pass-
ing model has this movement managed explicitly by the program. Regardless of the management,
levels of the hierarchy that are closer to the processor provide higher bandwidth and lower
latency accessto data. We can improve data access performance either by improving the architec-
ture of the extended memory hierarchy, or by improving the locality in the program.

Exploiting locality exposes atradeoff with parallelism similar to reducing communication. Paral-
lelism may cause more processors to access and draw toward them the same data, while locality

146

DRAFT: Parallel Computer Architecture 9/10/97

Data Access and Communication in a Multi-Memory System

332

from a processor’s perspective desires that data stay close to it. A high performance parallel pro-
gram needs to obtain performance out of each individual processor—by exploiting locality in the
extended memory hierarchy—as well as being well-parallelized.

Artifactual Communication in the Extended Memory Hierarchy

Data accesses that are not satisfied in the local (on-node) portion of the extended memory hierar-
chy generate communication. Inherent communication can be seen as part of this The data
moves from one processor, through the memory hierarchy in some manner, to another processor,
regardless of whether it does this through explicit messages or reads and writes. However, the
amount of communication that occurs in an execution of the program is usually greater than the
inherent interprocess communication. The additional communication is an artifact of how the
program is actually implemented and how it interacts with the machine’s extended memory hier-
archy. There are many sources of this artifactual communication:

Poor allocation of data. Data accessed by one node may happen to be allocated in the local
memory of another. Accesses to remote data involve communication, even if the datais not
updated by other nodes. Such transfer can be eliminated by a better assignment or better dis-
tribution of data, or reduced by replicating the data when it is accessed.

Unnecessary data in a transfer. More data than needed may be communicated in atransfer.
For example, areceiver may not use all the datain a message: It may have been easier to send
extra data conservatively than determine exactly what to send. Similarly, if dataistransferred
implicitly in units larger than aword, e.g. cache blocks, part of the block may not be used by
the requester. This artifactual communication can be eliminated with smaller transfers.

Unnecessary transfers due to system granularities. In cache-coherent machines, data may be
kept coherent at a granularity larger than a single word, which may lead to extra communica-
tion to keep data coherent as we shall seein later chapters.

Redundant communication of data. Data may be communicated multiple times, for example,
every time the value changes, but only the last value may actually be used. On the other hand,
data may be communicated to a process that already has the latest values, again because it
was too difficult to determine this.

Finite replication capacity. The capacity for replication on anode is finite—whether it be in
the cache or the main memory—so data that has been already communicated to a process
may be replaced from itslocal memory system and hence need to be transferred again even if
it has not since been modified.

In contrast, inherent communication is that which would occur with unlimited capacity for repli-
cation, transfers as small as necessary, and perfect knowledge of what logically shared data has
been updated. We will understand some of the sources of artifactual communication better when
we get deeper into architecture. Let uslook alittle further at the last source of artifactual commu-
nication—finite replication capacity—which has particularly far-reaching consequences.

Artifactual Communication and Replication: The Working Set Per spective

The relationship between finite replication capacity and artifactual communication is quite fun-
damental in parallel systems, just like the relationship between cache size and memory traffic in
uniprocessors. It isamost inappropriate to speak of the amount of communication without refer-
ence to replication capacity. The extended memory hierarchy perspectiveis useful in viewing this

9/10/97

DRAFT: Parallel Computer Architecture 147

Programming for Performance

relationship. We may view our generic multiprocessor as a hierarchy with three levels: Loca
cacheisinexpensive to access, local memory is more expensive, and any remote memory is much
more expensive. We can think of any level as acache, whether it is actually managed like a hard-
ware cache or by software. Then, we can then classify the “misses’ at any level, which generate
traffic to the next level, just as we do for uniprocessors. A fraction of the traffic at any level is
cold-start, resulting from the first time data is accessed by the processor. This component, aso
called compulsory traffic in uniprocessors, is independent of cache size. Such cold start misses
are a concern in performing cache simulations, but diminish in importance as programs run
longer. Then there is traffic due to capacity misses, which clearly decrease with increases in
cache size. A third fraction of traffic may be conflict misses, which are reduced by greater asso-
ciativity in the replication store, a greater number of blocks, or changing the data access pattern.
These three types of misses or traffic are called the three C's in uniprocessor architecture (cold
start or compulsory, capacity, conflict). The new form of traffic in multiprocessorsisafourth C, a
communication miss, caused by the inherent communication between processors or some of the
sources of artifactual communication discussed above. Like cold start misses, communication
misses do not diminish with cache size. Each of these components of traffic may be helped or
hurt by large granularities of data transfer depending on spatial locality.

If we were to determine the traffic resulting from each type of miss for a parallel program as we
increased the replication capacity (or cache size), we could expect to obtain a curve such as
shown in Figure 3-6. The curve has a small number of knees or points of inflection. These knees
correspond to the working sets of the algorithm relevant to that level of the hierarchy.! For the
first-level cache, they are the working sets of the algorithm itself; for others they depend on how
references have been filtered by other levels of the hierarchy and on how the levels are managed.
We speak of this curve for afirst-level cache (assumed fully associative with a one-word block
size) as the working set curve for the algorithm.

Traffic resulting from any of these types of misses may cause communication across the
machine's interconnection network, for example if the backing storage happensto be in aremote
node. Similarly, any type of miss may contribute to local traffic and data access cost. Thus, we
might expect that many of the techniques used to reduce artifactual communication are similar to
those used to exploit locality in uniprocessors, with some additiona ones. Inherent communica-
tion misses almost always generate actual communication in the machine (though sometimes
they may not if the data needed happens to have become local in the meanwhile, as we shall see),
and can only be reduced by changing the sharing patterns in the algorithm. In addition, we are
strongly motivated to reduce the artifactual communication that arises either due to transfer size
or dueto limited replication capacity, which we can do by exploiting spatial and temporal locality
in aprocess's data accesses in the extended hierarchy. Changing the orchestration and assignment
can dramatically change locality characteristics, including the shape of the working set curve.

For a given amount of communication, its cost as seen by the processor is also affected by how
the communication is structured. By structure we mean whether messages are large or small, how

1. The working set model of program behavior [Den68] is based on the temporal locality exhibited by the
data referencing patterns of programs. Under this model, a program—or a process in a parallel program—
has a set of data that it reuses substantially for a period of time, before moving on to other data. The shifts
between one set of data and another may be abrupt or gradual. In either case, thereis at most times a “work-
ing set” of data that a processor should be able to maintain in afast level of the memory hierarchy, to use
that level effectively.

148

DRAFT: Parallel Computer Architecture 9/10/97

Orchestration for Performance

First working set

/ Total traffic

apacity-generated Traffic
(including conflicts) Second working set

72222227

Other Capacity-independent Communication

Data Traffic

N

Inherent Communication
XXX XXX XXX XXX XX

Cold-start (Compulsory) Traffic

Replication Capacity (Cache Size)

Figure 3-6 The datatraffic between acache (replication store) and the rest of the system, and its components as a function of cache

size.

The points of inflection in the total traffic curve indicate the working sets of the program.

34

bursty the communication is, whether communication cost can be overlapped with other compu-
tation or communication—all of which are addressed in the orchestration step—and how well the
communication patterns match the topology of the interconnection network, which is addressed
in the mapping step. Reducing the amount of communication—inherent or artifactual—is impor-
tant because it reduces the demand placed on both the system and the programmer to reduce cost.
Having understood the machine as an extended hierarchy and the major issues this raises, let us
see how to address these architecture-related performance issues at the next level in software;
that is, how to program for performance once partitioning issues are resolved.

Orchestration for Performance

341

We begin by discussing how we might exploit temporal and spatial locality to reduce the amount
of artifactual communication, and then move on to structuring communication—inherent or arti-
factual—to reduce cost.

Reducing Artifactual Communication

In the message passing model both communication and replication are explicit, so even artifac-
tual communication is explicitly coded in program messages. In a shared address space, artifac-
tual communication is more interesting architecturally since it occurs transparently due to
interactions between the program and the machine organization; in particular, the finite cache
size and the granularities at which data are allocated, communicated and kept coherent. We there-
fore use a shared address space to illustrate issues in exploiting locality, both to improve node
performance and to reduce artifactual communication.

9/10/97

DRAFT: Parallel Computer Architecture 149

Programming for Performance

Example 3-1

Answer

Exploiting Temporal Locality

A program is said to exhibit temporal locality if tends to access the same memory location
repeatedly in a short time-frame. Given a memory hierarchy, the goa in exploiting temporal
locality isto structure an algorithm so that its working sets map well to the sizes of the different
levels of the hierarchy. For a programmer, this typically means keeping working sets small with-
out losing performance for other reasons. Working sets can be reduced by several techniques.
One is the same technique that reduces inherent communication—assigning tasks that tend to
access the same data to the same process—which further illustrates the relationship between
communication and locality. Once assignment is done, a process's assigned computation can be
organized so that tasks that access the same data are scheduled close to one another in time, and
so that we reuse a set of data as much as possible before moving on to other data, rather than
moving on and coming back.

When multiple data structures are accessed in the same phase of a computation, we must decide
which are the most important candidates for exploiting temporal locality. Since communication is
more expensive than local access, we might prefer to exploit temporal locality on nonlocal rather
than local data. Consider a database application in which a process wants to compare al its
records of a certain type with all the records of other processes. There are two choices here: (i)
for each of its own records, the process can sweep through all other (nonlocal) records and com-
pare, and (ii) for each nonlocal record, the process can sweep through its own records and com-
pare. The latter exploits temporal locality on nonlocal data, and is therefore likely to yield better
overall performance.

To what extent is temporal locality exploited in the equation solver kernel. How
might the temporal locality be increased?

The equation solver kernel traverses only a single data structure. A typica grid
element in the interior of aprocess's partition is accessed at least five times by that
process during each sweep: at least once to compute its own new value, and once
each to compute the new values of its four nearest neighbors. If a process sweeps
through its partition of the grid in row-major order (i.e. row by row and left to right
within each row, see Figure 3-7(a)) then reuse of A[i,j] is guaranteed across the
updates of the three elements in the same row that touch it: Afi,j-1], A[i,j] and
Ali,j+1]. However, between the times that the new values for Afi,j] and Afi+1,j]
are computed, three whole subrows of elements in that process's partition are
accessed by that process. If the three subrows don't fit together in the cache, then
Ali,j] will no longer be in the cache when it is accessed again to compute Ali+1,j].
If the backing store for these data in the cache is nonloca, artifactual
communication will result. The problem can be fixed by changing the order in
which elements are computed, as shown in Figure 3-7(b). Essentially, a process
proceeds left-to-right not for the length of a whole subrow of its partition, but only
a certain length B, before it moves on to the corresponding portion of the next
subrow. It performsits sweep in sub-sweeps over B-by-B blocks of its partition. The

150

DRAFT: Parallel Computer Architecture 9/10/97

Orchestration for Performance

OO O0OO0OO0OO0O OO0OO0OO0OO0O O OO0

O 00O OO O0OOO OO 000 OO0 O O 00 O OO0 OO0 000
O 00O 0O O0OOOO OO O00O0 oo O 0O O O O O O O O 00O
0[0G-0-C-0-0C-0-O G- |0 0 O 0| 0C-O-a D OO £-» |00
O| &o -8 -0-@ ~e-@- G- |00 O 0| &0C-fr » /& C-ar®) OO0
O|lee-0-9"0-0 ¢ 0o »|o0o0 Oo0|&C-or) &G -er > 00
o| kw6 0" 0 w- e-a-» |00 ool|l&6-o > &G- o oo
o| o et G 0w O > (oo oo oo
o) (e }e) 0o 00
o) 00 0o 00
o) 00 0o 00
o) 00 00 00
o) 00 0o 00
O 00O OO OO OOOO0OO0O0 OO0 0O OO O OO OO O 000
O O O O 0O OO OO O o o oo OO0 O O O o0 OO O O O O00O0
(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B=4

Figure 3-7 Blocking to exploit temporal locality in the equation solver kernel.

The figures show the access patterns for a process traversing its partition during a sweep, with the arrow-headed lines showing the
order in which grid points are updated. Updating the subrow of bold elements requires accessing that subrow as well as the two sub-
rows of shaded elements. Uﬂdatlng the first element of the next (shaded) subrow requires accessing the first element of the bold sub-

row again, but these three wi!

ole subrows have been accessed since the last time that first bold element was accessed.

block size B is chosen so that at least three B-length rows of a partition fit in the
cache.

This technique of structuring computation so that it accesses a subset of datathat fitsin alevel of
the hierarchy, uses those data as much as possible, and then moves on to the next such set of data,
is called blocking. In the particular example above, the reduction in miss rate due to blocking is
only asmall constant factor (about a factor of two). The reduction is only seen when a subrow of
a process's partition of a grid itself does not fit in the cache, so blocking is not always useful.
However, blocking is used very often in linear algebra computations like matrix multiplication or
matrix factorization, where O(nk+ 1) computation is performed on a data set of size O(nk), so each
data item is accessed O(n) times. Using blocking effectively with B-by-B blocks in these cases
can reduce the miss rate by a factor of B, as we shall see in Exercise 3.5, which is particularly
important since much of the data accessed is nonlocal. Not surprisingly, many of the same types
of restructuring are used to improve temporal locality in a sequential program as well; for exam-
ple, blocking is critical for high performance in sequential matrix computations. Techniques for
temporal locality can be used at any level of the hierarchy where data are replicated—including
main memory—and for both explicit or implicit replication.

Since temporal locality affects replication, the locality and referencing patterns of applications
have important implications for determining which programming model and communication
abstraction a system should support. We shall return to this issue in Section 3.7. The sizes and
scaling of working sets have obvious implications for the amounts of replication capacity needed
at different levels of the memory hierarchy, and the number of levels that make sensein this hier-
archy. In a shared address space, together with their compositions (whether they hold local or
remote data or both), working set sizes also help determine whether it is useful to replicate com-
municated data in main memory as well or simply rely on caches, and if so how this should be
done. In message passing, they help us determine what data to replicate and how to manage the

9/10/97

DRAFT: Parallel Computer Architecture 151

Programming for Performance

replication so as not to fill memory with replicated data. Of courseiit is not only the working sets
of individual applications that matter, but those of the entire workloads and the operating system
that run on the machine. For hardware caches, the size of cache needed to hold a working set
depends on its organization (associativity and block size) as well.

Exploiting Spatial L ocality

A level of the extended memory hierarchy exchanges data with the next level at a certain granu-
larity or transfer size. This granularity may be fixed (for example, a cache block or a page of
main memory) or flexible (for example, explicit user-controlled messages or user-defined
objects). It usually becomes larger as we go further away from the processor, since the latency
and fixed startup overhead of each transfer becomes greater and should be amortized over a
larger amount of data. To exploit a large granularity of communication or data transfer, we
should organize our code and data structures to exploit spatial locality.! Not doing so can lead to
artifactual communication if the transfer is to or from a remote node and is implicit (at some
fixed granularity), or to more costly communication even if the transfer is explicit (since either
smaller messages may have to be sent or the data may have to be made contiguous before they
are sent). As in uniprocessors, poor spatial locality can aso lead to a high frequency of TLB
mi Sses.

In a shared address space, in addition to the granularity of communication, artifactual communi-
cation can also be generated by mismatches of spatial locality with two other important granular-
ities. One is the granularity of allocation, which is the granularity at which data are allocated in
the local memory or replication store (e.g. a page in main memory, or acache block in the cache).
Given a set of data structures, this determines the granularity at which the data can be distributed
among physical main memories; that is, we cannot allocate a part of a page in one node's mem-
ory and another part of the page in another node’s memory. For example, if two words that are
mostly accessed by two different processors fall on the same page, then unless data are replicated
in multiple main memories that page may be allocated in only one processor’s local memory;
capacity or conflict cache misses to that word by the other processor will generate communica-
tion. The other important granularity is the granularity of coherence, which we will discuss in
Chapter 5. We will see that unrelated words that happen to fall on the same unit of coherencein a
coherent shared address space can also cause artifactual communication.

The techniques used for all these aspects of spatial locality in a shared address space are similar
to those used on a uniprocessor, with one new aspect: We should try to keep the data accessed by
a given processor close together (contiguous) in the address space, and unrelated data accessed
by different processors apart. Spatial locality issues in a shared address space are best examined
in the context of particular architectural styles, and we shall do so in Chapters 5 and 8. Here, for
illustration, we look at one example: how data may be restructured to interact better with the
granularity of allocation in the equation solver kernel.

1. The principle of spatia locality statesthat if a given memory location is referenced now, then it islikely
that memory locations close to it will be referenced in the near future.lt should be clear that what is called
spatial locality at the granularity of individual words can also be viewed as temporal locality at the granular-
ity of cache blocks; that is, if a cache block is accessed now, then it (another datum on it) is likely to be
accessed in the near future.

152

DRAFT: Parallel Computer Architecture 9/10/97

Orchestration for Performance

Example 3-2

Answer

Consider a shared address space system in which main memory is physicaly
distributed among the nodes, and in which the granularity of allocation in main
memory is a page (4 KB, say). Now consider the grid used in the equation solver
kernel. What is the problem created by the granularity of allocation, and how might
it be addressed?

The natural data structure with which to represent a two-dimensiona grid in a
shared address space, as in a sequential program, is a two-dimensional array. In a
typical programming language, a two-dimensional array data structure is alocated
in either a“row-major” or “column-major” way.! The gray arrows in Figure 3-8(a)
show the contiguity of virtual addresses in arow-mgjor allocation, which isthe one
we assume. While atwo-dimensional shared array has the programming advantage

Contiguity in memory layout

Page straddles Cache block Page does
fron bourc®s sraddespariion osae ootk s
memory well y boundaries within a partition
a) Two-dimensional array a) Four-dimensional array
Two-d al Four-d al

Figure 3-8 Two-dimensional and Four-dimensional arrays used to represent atwo-dimensional grid in a shared address space.

of being the same data structure used in a sequentia program, it interacts poorly

1. Consider the array as being a two-dimensional grid, with the first dimension specifying the row number
in the grid and the second dimension the column number. Row-major allocation means that all elementsin
the first row are contiguousin the virtual address space, followed by all the elements in the second row, etc.
The C programming language, which we assume here, isarow-major language (FORTRAN, for example, is
column-major).

9/10/97

DRAFT: Parallel Computer Architecture 153

Programming for Performance

with the granularity of allocation on a machine with physically distributed memory
(and with other granularities as well, as we shall seein Chapter 5).

Consider the partition of processor P5 in Figure 3-8(a). An important working set
for the processor isits entire partition, which it streams through in every sweep and
reuses across sweeps. If its partition does not fit in its local cache hierarchy, we
would like it to be alocated in local memory so that the misses can be satisfied
locally. The problem isthat consecutive subrows of this partition are not contiguous
with one another in the address space, but are separated by the length of an entire
row of the grid (which contains subrows of other partitions). This makes it
impossible to distribute data appropriately across main memories if a subrow of a
partition is either smaller than a page, or not amultiple of the page size, or not well
aligned to page boundaries. Subrows from two (or more) adjacent partitions will
fall on the same page, which at best will be allocated in the local memory of one of
those processors. If a processor’s partition does not fit in its cache, or it incurs
conflict misses, it may have to communicate every timeit accesses agrid element in
its own partition that happens to be allocated nonlocally.

The solution in this case is to use a higher-dimensional array to represent the two-
dimensiona grid. The most common example is afour-dimensiona array, in which
case the processes are arranged conceptually in atwo-dimensional grid of partitions
as seen in Figure 3-8. The first two indices specify the partition or process being
referred to, and the last two represent the subrow and subcolumn numbers within
that partition. For example, if the size of the entire grid is 1024-by-1024 elements,
and there are 16 processors, then each partition will be a subgrid of size

1024 _ by — 13—%1 or 256-by-256 elements. In the four-dimensional representation,

J16

the array will be of size 4-by-4-by-256-by-256 elements. The key property of these
higher-dimensiona representations is that each processor's 256-by-256 element
partition is now contiguous in the address space (see the contiguity in the virtual
memory layout in Figure 3-8(b)). The data distribution problem can now occur only
at the end points of entire partitions, rather than of each subrow, and does not occur
at al if the data structure is aligned to a page boundary. However, it is substantially
more complicated to write code using the higher-dimensional arrays, particularly
for array indexing of neighboring process's partitions in the case of the nearest-
neighbor computation.

More complex applications and data structures illustrate more significant tradeoffs in data struc-
ture design for spatial locality, aswe shall seein later chapters.

The spatial locality in processes’ access patterns, and how they scale with the problem size and
number of processors, affects the desirable sizes for various granularities in a shared address
space: alocation, transfer and coherence. It also affects the importance of providing support tai-
lored toward small versus large messages in message passing systems. Amortizing hardware and
transfer cost pushes us toward large granularities, but too large granularities can cause perfor-
mance problems, many of them specific to multiprocessors. Finaly, since conflict misses can
generate artifactual communication when the backing store is nonlocal, multiprocessors push us
toward higher associativity for caches. There are many cost, performance and programmability
tradeoffs concerning support for data locality in multiprocessors—as we shall see in subsequent
chapters—and our choices are best guided by the behavior of applications.

154

DRAFT: Parallel Computer Architecture 9/10/97

Orchestration for Performance

Finally, there are often interesting tradeoffs among algorithmic goals such as minimizing inher-
ent communication, implementation issues, and architectural interactions that generate artifactual
communication, suggesting that careful examination of tradeoffsis needed to obtain the best per-
formance on a given architecture. Let usillustrate using the equation solver kernel.

[=8—Rows

3 oo o
215 e ~M=Rows-rr
? = e
Processors
(8) Ocean with 514-by-514 grids (b) Equation solver kernel with 12K-by-12K grid

Figure 3-9 Theimpact of data structuring and spatial datalocality on performance.

All measurements are on the SGI Origin2000. 2D and 4D imply two- and four-dimensional data structures, respectively, with sub-
block assignment. Rows uses the two-dimensional array with strip assignment into chunks of rows. In the right graPh, the postfix rr
means that pages of data are distributed round-robin among physical memories. Without rr, it means that pages are placed in the local
memor% of the processor to which their datais assigned, as far as possible. We see from &a% that the rowwise strip assignment outper-
formsthe 2D strip assignment due to spatial locality interactions with long cache blocks (128 bytes on the Origin2000), and even allit-
tle better than the 4D array block assignment due to poor spatial locality in the latter in accessing border elements at column-oriented
partition boundaries. The right graph shows that in all partitioning schemes proper data distribution in main memory is important to
performance, though least successful for the 2D array subblock partitions. In the best case, we see superlinear speedups once there are
enough processors that the size of a processor’s partition of the grid (its important working set) fits into its cache.

Example 3-3 Given the performance issues discussed so far, should we choose to partition the
equation solver kernel into square-like blocks or into contiguous strips of rows?

Answer If we only consider inherent communication, we aready know that a block domain
decomposition is better than partitioning into contiguous strips of rows (see
Figure 3-5 on page 142). However, a strip decomposition has the advantage that it
keeps a partition wholly contiguous in the address space even with the simpler, two-
dimensional array representation. Hence, it does not suffer problems related to the
interactions of spatial locality with machine granularities, such as the granularity of
allocation as discussed above. This particular interaction in the block case can of
course be solved by using a higher-dimensiona array representation. However, a
more difficult interaction to solve is with the granularity of communication. In a
subblock assignment, consider a neighbor element from another partition at a
column-oriented partition boundary. If the granularity of communication is large,
then when a process references this element from its neighbor’s partition it will
fetch not only that element but also anumber of other elementsthat are on the same
unit of communication. These other elements are not neighbors of the fetching
process's partition, regardless of whether a two-dimensional or four-dimensional

9/10/97 DRAFT: Parallel Computer Architecture 155

Programming for Performance

representation is used, so they are usel ess and waste communication bandwidth (see
Figure 3-10). With a partitioning into strips of rows, a referenced element still

Good spatial locality on

© 0 o o0 o0 0 0 0o nonlocal accesses
e 0 o[B8V o o

®|C-0"-0-0- SR RICREL SR KN
<o-"5 -0 0 -0 o ero» |0 o . .
O S o Poor spatial locality on
I S > OJnonlocalaccesses
%9 6-0"®-0-@- 6| @ O
* OO --0-6--0C-0-C > B 7772

OO0OO0OO0O O0O0OO0OO0O0O0
@0 ©@ @0 @0 0

@ O
©® O
@ O
@ O
@ O

@ @ © © © © @ ¢ ©o ©o
0O 0O O 0O o O o0 0 O O

Figure 3-10 Spatial locality in accesses to nonlocal datain the equation solver kernel.

The shaded points are the nonlocal points that the processor owning the partition accesses. The hatched rectangles are cache blocks,
showing good spatial locality along the row boundary but poor aong the column.

causes other elements from its row to be fetched, but now these elements are indeed
neighbors of the fetching process's partition. They are useful, and in fact the large
granularity of communication resultsin avaluable prefetching effect. Overal, there
are many combinations of application and machine parameters for which the
performance losses in block partitioning owing to artifactual communication will
dominate the performance benefits from reduced inherent communication, so that a
strip partitioning will perform better than a block partitioning on areal system. We
might imagine that it should most often perform better when a two-dimensional
array is used in the block case, but it may also do so in some cases when a four-
dimensional array is used (there is not motivation to use a four-dimensional array
with a strip partitioning). Thus, artifactual communication may cause us to go back
and revise our partitioning method from block to strip. Figure 3-9(a) illustrates this
effect for the Ocean application, and Figure 3-9(b) uses the equation solver kernel
with a larger grid size to aso illustrate the impact of data placement. Note that a
strip decomposition into columns rather than rows will yield the worst of both
worlds when data are laid out in memory in row-major order.

3.4.2 Structuring Communication to Reduce Cost

Whether communication is inherent or artifactual, how much a given communi cation-to-compu-
tation ratio contributes to execution time is determined by how the communication is organized
or structured into messages. A small communication-to-computation ratio may have a much
greater impact on execution time than alargeratio if the structure of the latter interacts much bet-
ter with the system. This is an important issue in obtaining good performance from a real
machine, and is the last major performance issue we examine. Let us begin by seeing what the
structure of communication means.

156 DRAFT: Parallel Computer Architecture 9/10/97

Orchestration for Performance

In Chapter 1, we introduced a model for the cost of communication as seen by a processor given
a frequency of program initiated communication operations or messages (initiated explicit mes-
sages or loads and stores). Combining equations 1.5 and 1.6, that model for the cost Cis:

= _Length ion—
C = fregx gjverhead + Delay + Bandwi dih + Contention Overla;%
or
n.,/m
C=fx B)+| + 5 +tc—overlap% (EQ 3.4)
where

f isthe frequency of communication messages in the program.
n. isthe total amount of data communicated by the program.
m is the number of message, so n/m is the average length of a message.

o isthe combined overhead of handling the initiation and reception of a message at the send-
ing and receiving processors, assuming no contention with other activities.

| isthe delay for thefirst bit of the message to reach the destination processor or memory,
which includes the delay through the assists and network interfaces as well as the network
latency or transit latency in the network fabric itself (a more detailed model might separate
the two out). It assumes no contention.

B is the point-to-point bandwidth of communication afforded for the transfer by the commu-
nication path, excluding the processor overhead; i.e. the rate at which the rest of the message
dataarrives at the destination after thefirst bit, assuming no contention. It is the inverse of the
overall occupancy discussed in Chapter 1. It may be limited by the network links, the network
interface or the communication assist.

t; isthetimeinduced by contention for resources with other activities.

overlap isthe amount of the communication cost that can be overlapped with computation or
other communication, i.e that is not in the critical path of a processor’s execution.

This expression for communication cost can be substituted into the speedup equation we devel-
oped earlier (Equation 3.1 on page 144), to yield our final expression for speedup. The portion of
the cost expression inside the parenthesesis our cost model for a single data one-way message. It
assumes the “cut-through” or pipelined rather than store-and-forward transmission of modern
multiprocessor networks. If messages are round-trip, we must make the appropriate adjustments.
in addition to reducing communication volume (ng) our goals in structuring communication may
include (i) reducing communication overhead (m* o), (ii) reducing latency (m*1), (iii) reducing
contention (n*t.), and (iv) overlapping communication with computation or other communica-
tion to hideits latency. Let us discuss programming techniques for addressing each of the issues.

Reducing Over head

Since the overhead o associated with initiating or processing a message is usually fixed by hard-
ware or system software, the way to reduce communication overhead is to make messages fewer
in number and hence larger, i.e. to reduce the message frequency® Explicitly initiated communi-
cation allows greater flexibility in specifying the sizes of messages; see the SEND primitive
described in Section 2.4.6 in the previous chapter. On the other hand, implicit communication

9/10/97

DRAFT: Parallel Computer Architecture 157

Programming for Performance

through loads and stores does not afford the program direct control, and the system must take
responsibility for coalescing the loads and stores into larger messages if necessary.

Making messages larger is easy in applications that have regular data access and communication
patterns. For example, in the message passing equation solver example partitioned into rows we
sent an entire row of data in a single message. But it can be difficult in applications that have
irregular and unpredictable communication patterns, such as Barnes-Hut or Raytrace. Aswe shall
see in Section 3.7, it may require changes to the parallel algorithm, and extra work to determine
which data to coalesce, resulting in a tradeoff between the cost of this computation and the sav-
ings in overhead. Some computation may be needed to determine what data should be sent, and
the data may have to be gathered and packed into a message at the sender and unpacked and scat-
tered into appropriate memory locations at the receiver.

Reducing Delay

Delay through the assist and network interface can be reduced by optimizing those components.
Consider the network transit delay or the delay through the network itself. In the absence of con-
tention and with our pipelined network assumption, the transit delay | of a bit through the net-
work itself can be expressed as h*t;,, where h is the number of “hops’ between adjacent network
nodes that the message traverses, t;, isthe delay or latency for asingle bit of datato traverseasin-
gle network hop, including the link and the router or switch. Like o above, t;, is determined by the
system, and the program must focus on reducing the f and h components of the f*h* t,, delay cost.
(In store-and-forward networks, t, would be the time for the entire message to traverse a hop, not
just asingle hit.)

The number of hops h can be reduced by mapping processes to processors so that the topology of
interprocess communication in the application exploits locality in the physical topology of the
network. How well this can be done in general depends on application and on the structure and
richness of the network topology; for example, the nearest-neighbor equation solver kernel (and
the Ocean application) would map very well onto a mesh-connected multiprocessor but not onto
a unidirectional ring topology. Our other example applications are more irregular in their com-
munication patterns. We shall see several different topologies used in real machines and discuss
their tradeoffs in Chapter 10.

There has been a lot of research in mapping algorithms to network topologies, since it was
thought that as the number of processors p became large poor mappings would cause the latency
due to the h*t;, term to dominate the cost of messages. How important topology actualy isin
practice depends on severa factors: (i) how large the t;, term is relative to the overhead o of get-
ting a message into and out of the network, (ii) the number of processing nodes on the machine,
which determines the maximum number of hops h for a given topology, and (iii) whether the
machine is used to run a single application at a time in “batch” mode or is multiprogrammed
among applications. It turns out that network topology is not considered as important on modern
machines as it once was, because of the characteristics of the machines along all three axes: over-
head dominates hop latency (especially in machines that do not provide hardware support for a
shared address space), the number of nodes is usually not very large, and the machines are often

1. Some explicit message passing systems provide different types of messages with different costs and
functionalities among which a program can choose.

158

DRAFT: Parallel Computer Architecture 9/10/97

Orchestration for Performance

used as general-purpose, multiprogrammed servers. Topology-oriented design might not be very
useful in multiprogrammed systems, since the operating system controls resource alocation
dynamically and might transparently change the mapping of processes to processors at runtime.
For these reasons, the mapping step of parallelization receives considerably less attention than
decomposition, assignment and orchestration. However, this may change again as technology
and machine architecture evolve. Let us now look at contention, the third major cost issue in
communication.

Reducing Contention

The communication systems of multiprocessors consist of many resources, including network
links and switches, communication controllers, memory systems and network interfaces. All of
these resources have a nonzero occupancy, or time for which they are occupied servicing a given
transaction. Another way of saying this is that they have finite bandwidth (or rate, which is the
reciprocal of occupancy) for servicing transactions. If several messages contend for a resource,
some of them will have to wait while others are serviced, thus increasing message latency and
reducing the bandwidth available to any single message. Resource occupancy contributes to mes-
sage cost even when there is no contention, since the time taken to pass through resource is part
of the delay or overhead, but it can also cause contention.

Contention is a particularly insidious performance problem, for several reasons. First, it is easy to
ignore when writing a parallel program, particularly if it is caused by artifactual communication.
Second, its effect on performance can be dramatic. If p processors contend for a resource of
occupancy X, the first to obtain the resource incurs a latency of x due to that resource, while the
last incurs at least p*x. In addition to large stall times for processors, these differences in wait
time across processors can aso lead to large load imbalances and synchronization wait times.
Thus, the contention caused by the occupancy of a resource can be much more dangerous than
just the latency it contributes in uncontended cases. The third reason is that contention for one
resource can hold up other resources, thus stalling transactions that don’t even need the resource
that is the source of the contention. Thisis similar to how contention for a single-lane exit off a
multi-lane highway causes congestion on the entire stretch of highway. The resulting congestion
also affects cars that don't need that exit but want to keep going on the highway, since they may
be stuck behind carsthat do need that exit. The resulting backup of cars covers up other unrelated
resources (previous exits), making them inaccessible and ultimately clogging up the highway.
Bad cases of contention can quickly saturate the entire communication architecture. The final
reason is related: The cause of contention is particularly difficult to identify, since the effects
might be felt at very different pointsin the program than the original cause, particularly commu-
nication isimplicit.

Like bandwidth, contention in a network can also be viewed as being of two types: at links or
switches within the network, called network contention, and at the end-points or processing
nodes, called end-point contention. Network contention, like latency, can be reduced by mapping
processes and scheduling the communication appropriately in the network topology. End-point
contention occurs when many processors need to communicate with the same processing node at
the same time (or when communication transactions interfere with local memory references).
When this contention becomes severe, we call that processing node or resource a hot spot. Let us
examine a simple example of how a hot spot may be formed, and how it might be alleviated in
software.

9/10/97

DRAFT: Parallel Computer Architecture 159

Programming for Performance

Recall the case of processes want to accumulate their partial sums into a global sum, as in our
equation solver kernel. The resulting contention for the global sum can be reduced by using tree-
structured communication rather than having all processes send their updates to the owning node
directly. Figure 3-11 shows the structure of such many-to-one communication using a binary fan-
in tree. The nodes of this tree, which is often called a software combining tree, are the participat-
ing processes. A leaf process sends its update up to its parent, which combines its children’s
updates with its own and sends the combined update up to its parent, and so on till the updates
reach the root (the process that holds the global sum) in log,p steps. A similar fan-out tree can be
used to send data from one to many processes. Similar tree-based approaches are used to design

contention little contention
.- N

‘N

Flat Tree Structured

Figure 3-11 Two ways of structuring many-to-one communication: flat, and tree-structured in abinary fan-in tree.

Note that the destination processor may received up to p-1 messages at atime in the flat case, while no processor is the destination of
more than two messages in the binary tree.

scalable synchronization primitives like locks and barriers that often experience a lot of conten-
tion, aswewill seein later chapters, aswell aslibrary routinesfor other communication patterns.

In general, two principles for aleviating contention are to avoid having too many processes com-
municate with the same process at the same time, and to stagger messages to the same destination
so as not to overwhelm the destination or the resources along the way. Contention is often caused
when communication is bursty (i.e. the program spends some time not communicating much and
then suddenly goes through a burst of communication), and staggering reduces burstiness. How-
ever, this must be traded off with making messages large, which tends to increase burstiness.
Finally, having discussed overhead, latency, and contention, let uslook at the last of the commu-
nication cost issues.

Overlapping Communication with Computation or Other Communication

Despite efforts to reduce overhead and delay, the technology trends discussed in Chapter 1 sug-
gest that the end-to-end the communication cost as seen by a processor is likely to remain very
large in processor cycles. Already, it isin the hundreds of processor cycles even on machines that
provide full hardware support for a shared address space and use high-speed networks, and is at
least an order of magnitude higher on current message passing machines due to the higher over-
head term o. If the processor were to remain idle (stalled) while incurring this cost for every word
of data communicated, only programs with an extremely low ratio of communication to compu-
tation would yield effective paralel performance. Programs that communicate a lot must there-
fore find ways to hide the cost of communication from the process's critical path by overlapping

160

DRAFT: Parallel Computer Architecture 9/10/97

Performance Factors from the Processors’ Perspective

35

it with computation or other communication as much as possible, and systems must provide the
necessary support.

Techniques to hide communication cost come in different, often complementary flavors, and we
shall spend a whole chapter on them. One approach is simply to make messages larger, thus
incurring the latency of the first word but hiding that of subsequent words through pipelined
transfer of the large message. Another, which we can call precommunication, is to initiate the
communication much before the data are actually needed, so that by the time the data are needed
they arelikely to have already arrived. A third is to perform the communication where it naturally
belongs in the program, but hide its cost by finding something else for the processor to do from
later in the same process (computation or other communication) while the communication isin
progress. A fourth, called multithreading is to switch to a different thread or process when one
encounters a communication event. While the specific techniques and mechanisms depend on the
communication abstraction and the approach taken, they all fundamentally require the program
to have extra concurrency (also called slackness) beyond the number of processors used, so that
independent work can be found to overlap with the communication.

Much of the focus in parallel architecture has in fact been on reducing communication cost as
seen by the processor: reducing communication overhead and latency, increasing bandwidth, and
providing mechanisms to alleviate contention and overlap communication with computation or
other communication. Many of the later chapters will therefore devote alot of attention to cover-
ing these issues—including the design of node to network interfaces and communication proto-
cols and controllers that minimize both software and hardware overhead (Chapter 7, 8 and 9), the
design of network topologies, primitive operations and routing strategies that are well-suited to
the communication patterns of applications (Chapter 10), and the design of mechanisms to hide
communication cost from the processor (Chapter 11). The architectural methods are usually
expensive, so it isimportant that they can be used effectively by real programs and that their per-
formance benefits justify their costs.

Per for mance Factor s from the Processor s' Per spective

To understand the impact of different performance factors in a parallel program, it is useful to
look from an individual processor’s viewpoint at the different components of time spent execut-
ing the program; i.e. how much time the processor spends in different activities as it executes
instructions and accesses data in the extended memory hierarchy. These different components of
time can be related quite directly to the software performance issues studied in this chapter, help-
ing us relate software techniques to hardware performance. This view aso helps us understand
what a parallel execution looks like as a workload presented to the architecture, and will be use-
ful when we discuss workload-driven architectural evaluation in the next chapter.

In Equation 3.3, we described the time spent executing a sequential program on a uniprocessor as
the sum of the time actually executing instructions (busy) and the time stalled on the memory
system (data-local), where the latter is a“non-ideal” factor that reduces performance. Figure 3-
12(a) shows a profile of a hypothetical sequential program. In this case, about 80% of the execu-
tion timeis spent performing instructions, which can be reduced only by improving the algorithm
or the processor. The other 20% is spent stalled on the memory system, which can be improved
by improving locality or the memory system.

9/10/97

DRAFT: Parallel Computer Architecture 161

Programming for Performance

Time

In multiprocessors we can take a similar view, though there are more such non-ideal factors. This
view cuts across programming models: for example, being stalled waiting for a receive to com-
pleteisrealy very much like being stalled waiting for a remote read to complete or a synchroni-
zation event to occur. If the same program is parallelized and run on a four-processor machine,
the execution time profile of the four processors might look like that in Figure 3-12(b). The figure

100 — 100 —

Time

75— 75—

Bl Bl % % % %
1 1 “ N H
PO P1l P2 P3
(a) Sequential (b) Paralel with four processors

Data-local
"""l Busy-overhead

Bl Busy-ussul

Figure 3-12 Components of execution time from the perspective of an individual processor.

B Synchronization
KKK Dataremote

assumes a global synchronization point at the end of the program, so that all processes terminate
at the same time. Note that the parallel execution time (55 sec) is greater than one-fourth of the
sequential execution time (100 sec); that is, we have obtained a speedup of only l%) or 1.8
instead of the four-fold speedup for which we may have hoped. Why this is the case, and what
specific software or programming factors contribute to it can be determined by examining the
components of parallel execution time from the perspective of an individual processor. These are:

Busy-useful: thisis the time that the processor spends executing instructions that would have
been executed in the sequential program as well. Assuming a deterministic parallel program1
that is derived directly from the sequential algorithm, the sum of the busy-useful timesfor all
processorsis equal to the busy-useful time for the sequential execution. (Thisistrue at |east
for processors that execute a single instruction per cycle; attributing cycles of execution time
to busy-useful or other categories is more complex when processors issue multiple instruc-

162

DRAFT: Parallel Computer Architecture 9/10/97

Performance Factors from the Processors’ Perspective

tions per cycle, since different cycles may execute different numbers of instructions and a
given stall cycle may be attributable to different causes. We will discuss this further in
Chapter 11 when we present execution time breakdowns for superscalar processors.)

Busy-overhead: the time that the processor spends executing instructions that are not needed
in the sequential program, but only in the parallel program. This corresponds directly to the
extrawork donein the parallel program.

Data-local: the time the processor is stalled waiting for a data reference it issued to be satis-
fied by the memory system on its own processing node; that is, waiting for a reference that
does not require communication with other nodes.

Data-remote: thetime it is stalled waiting for data to be communicated to or from another
(remote) processing node, whether due to inherent or artifactual communication. This repre-
sents the cost of communication as seen by the processor.

Synchronization: the time it spends waiting for another process to signal the occurrence of an
event that will alow it to proceed. This includes the load imbalance and seriaization in the
program, as well as the time spent actually executing synchronization operations and access-
ing synchronization variables. Whileit is waiting, the processor could be repeatedly polling a
variable until that variable changes val ue—thus executing instructions—or it could be stalled,
depending on how synchronization isimplemented.t

The synchronization, busy-overhead and data-remote components are not found in a sequential
program running on a uniprocessor, and are overheads introduced by paralelism. As we have
seen, while inherent communication is mostly included in the data-remote component, some
(usualy very small) part of it might show up as data-local time aswell. For example, datathat is
assigned to the local memory of a processor P might be updated by another processor Q, but
asynchronously returned to P's memory (due to replacement from Q, say) before P referencesit.
Finally, the data-local component is interesting, since it is a performance overhead in both the
sequential and parallel cases. While the other overheads tend to increase with the number of pro-
cessors for a fixed problem, this component may decrease. This is because the processor is
responsible for only a portion of the overall calculation, so it may only access a fraction of the
data that the sequential program does and thus obtain better local cache and memory behavior. If
the data-local overhead reduces enough, it can give rise to superlinear speedups even for deter-

1. A parallel algorithm is deterministic if the result it yields for a given input data set are always the same
independent of the number of processes used or the relative timings of events. More generally, we may con-
sider whether al the intermediate calculations in the algorithm are deterministic. A non-deterministic algo-
rithm is one in which the result and the work done by the algorithm to arrive at the result depend on the
number of processes and relative event timing. An exampleisaparallel search through a graph, which stops
as soon as any path taken through the graph finds a solution. Non-deterministic algorithms complicate our
simple model of where time goes, since the parallel program may do less useful work than the sequential
program to arrive at the answer. Such situations can lead to superlinear speedup, i.e., speedup greater than
the factor by which the number of processorsisincreased. However, not al forms of non-determinism have
such beneficial results. Deterministic programs can also lead to superlinear speedups due to greater memory
system overheads in the sequential program than ain aparallel execution, aswe shall see.

1. Synchronization introduces components of time that overlap with other categories. For example, thetime
to satisfy the processor’sfirst access to the synchronization variable for the current synchronization event, or
the time spent actually communicating the occurrence of the synchronization event, may be included either
in synchronization time or in the relevant data access category. We include it in the latter. Also, if a proces-
sor executes instructions to poll a synchronization variable while waiting for an event to occur, that time
may be defined as busy-overhead or as synchronization. We include it in synchronization time, since it is
essentially load imbalance.

9/10/97

DRAFT: Parallel Computer Architecture 163

Programming for Performance

ministic parallel programs. Figure 3-13 summarizes the correspondences between parallelization

Parallelization Sep(s) Performance I ssue Processor Time Component
Decomp./Assign./Orch. Load Imbalance and Synch-wait
Synchronization
Decomp./Assign. ExtraWork i — Busy-overhead
Decomp./Assign. Inherent Comm. Volume o - Data-remote
Orch. Artifactual Comm. and Locality Data-local

Orch./Mapping Communication Structure

Figure 3-13 Mapping between parallelization issues and processor-centric components of execution time.

Bold lines depict direct relationships, while dotted lines depict side-effect contributions. On the left are shown the parallelization
step in which the issues are mostly addressed.

issues, the steps in which they are mostly addressed, and processor-centric components of execu-
tiontime.

Using these components, we may further refine our model of speedup for a fixed problem asfol-
lows, once again assuming a global synchronization at the end of the execution (otherwise we
would take the maximum over processes in the denominator instead of taking the time profile of
any single process):

Busy (1) + Datdyoe, (1)
eedu = {EQ 3.5
Sp pprob(p) Buwuseful (p) + Dataiocal (p) + SynCh(p) + Data'remote(p) + Busyoverhead(b)Q :

Our goal in addressing the performance issues has been to keep the termsin the denominator low
and thus minimize the parallel execution time. As we have seen, both the programmer and the
architecture have their roles to play. Thereislittle the architecture can do to help if the program is
poorly load balanced or if there is an inordinate amount of extrawork. However, the architecture
can reduce the incentive for creating such ill-behaved parallel programs by making communica-
tion and synchronization more efficient. The architecture can also reduce the artifactual commu-
nication incurred, provide convenient naming so that flexible assignment mechanisms can be
easily employed, and make it possible to hide the cost of communication by overlapping it with
useful computation.

3.6 TheParallel Application Case Studies: An In-Depth L ook

Having discussed the magjor performance issues for parallel programsin a general context, and
having applied them to the simple equation solver kernel, we are finally ready to examine what
we really wanted to do all along in software: to achieve good parallel performance on more real-
istic applications on real multiprocessors. In particular, we are now ready to return to the four
application case studies that motivated usto study parallel software in the previous chapter, apply

164 DRAFT: Parallel Computer Architecture 9/10/97

The Parallel Application Case Studies: An In-Depth Look

361

the four steps of the parallelization process to each case study, and at each step address the major
performance issues that arisein it. In the process, we can understand and respond to the tradeoffs
that arise among the different performance issues, as well as between performance and ease of
programming. Thiswill not only make our understanding of parallel software and tradeoffs more
concrete, but will also help us see the types of workload characteristics that different applications
present to a parallel architecture. Understanding the relationship between parallel applications,
software techniques and workload characteristics will be very important as we go forward
through the rest of the book.

Parallel applications come in various shapes and sizes, with very different characteristics and
very different tradeoffs among the major performance issues. Our four case studies provide an
interesting though necessarily very restricted cross-section through the application space. In
examining how to parallelize, and particularly orchestrate, them for good performance, we shall
focus for concreteness on a specific architectural style: a cache-coherent shared address space
multiprocessor with main memory physically distributed among the processing nodes.

The discussion of each application is divided into four subsections. The first describes in more
detail the sequential algorithms and the major data structures used. The second describes the par-
titioning of the application, i.e. the decomposition of the computation and its assignment to pro-
cesses, addressing the algorithmic performance issues of load balance, communication volume
and the overhead of computing the assignment. The third subsection is devoted to orchestration:
it describes the spatial and temporal locality in the program, as well as the synchronization used
and the amount of work done between synchronization points. The fourth discusses mapping to a
network topology. Finally, for illustration we present the components of execution time as
obtained for areal execution (using aparticular problem size) on a particular machine of the cho-
sen style: a 16-processor Silicon Graphics Origin2000. While the level of detail at which we treat
the case studies may appear high in some places, these details will be important in explaining the
experimental results we shall obtain in later chapters using these applications.

Ocean

Ocean, which simulates currents in an ocean basin, resembles many important applications in
computational fluid dynamics. At each horizontal cross-section through the ocean basin, several
different variables are modeled, including the current itself and the temperature, pressure, and
friction. Each variable is discretized and represented by a regular, uniform two-dimensional grid
of size n+2-by-n+2 points (n+2 is used instead of n so that the number of internal, non-border
points that are actually computed in the equation solver is n-by-n). In al, about twenty-five dif-
ferent grid data structures are used by the application.

The Sequential Algorithm

After the currents at each cross-section are initialized, the outermost loop of the application pro-
ceeds over a large, user-defined number of time-steps. Every time-step first sets up and then
solves partial differential equations on the grids. A time step consists of thirty three different grid
computations, each involving one or a small number of grids (variables). Typical grid computa-
tions include adding together scalar multiples of afew grids and storing the result in another grid
(e.g. A = a,B+a,C-03D), performing a single nearest-neighbor averaging sweep over agrid and
storing the result in another grid, and solving a system of partial differential equations on a grid
using an iterative method.

9/10/97

DRAFT: Parallel Computer Architecture 165

Programming for Performance

The iterative equation solver used is the multigrid method. Thisis a complex but efficient variant
of the equation solver kernel we have discussed so far. In the simple solver, each iteration is a
sweep over the entire n-by-n grid (ignoring the border columns and rows). A multigrid solver, on
the other hand, performs sweeps over a hierarchy of grids. The origina n-by-n grid is the finest-
resolution grid in the hierarchy; the grid at each coarser level removes every alternate grid point

in each dimension, resulting in grids of size g—by—g, E—by—g, and so on. The first sweep of

the solver traverses the finest grid, and successive sweeps are performed on coarser or finer grids
depending on the error computed in the previous sweep, terminating when the system converges
within a user-defined tolerance. To keep the computation deterministic and make it more effi-
cient, ared-black ordering is used (see Section 2.4.2 on page 105).

Decomposition and Assignment

Ocean affords concurrency at two levels within a time-step: across some grid computations
(function parallelism), and within a grid computation (data parallelism). Little or no concurrency
is avail able across successive time-steps. Concurrency across grid computations is discovered by
writing down which grids each computation reads and writes, and analyzing the dependences
among them at this level. The resulting dependence structure and concurrency are depicted in
Figure 3-14. Clearly, there is not enough concurrency across grid computations—i.e. not enough
vertical sections—to occupy more than afew processors. We must therefore exploit the data par-
alelism within a grid computation as well, and we need to decide what combination of function
and data parallelism is best.

There are several reasons why we choose to have all processes collaborate on each grid computa-
tion, rather than divide the processes among the available concurrent grid computations and use
both levels of parallelism; i.e. why we concentrate on data parallelism. Combined data and func-
tion parallelism would increase the size of each process's partition of a grid, and hence reduce
communi cation-to-computation ratio. However, the work associated with different grid computa-
tionsis very varied and depends on problem size in different ways, which complicates load bal-
anced assignment. Second, since several different computations in a time-step access the same
grid, for communication and data locality reasons we would not like the same grid to be parti-
tioned in different ways among processes in different computations. Third, all the grid computa-
tions are fully data parallel and al grid points in a given computation do the same amount of
work except at the borders, so we can statically assign grid points to processes using the data-par-
alel-only approach. Nonetheless, knowing which grid computations are independent is useful
because it allows processes to avoid synchronizing between them.

The inherent communication issues are clearly very similar to those in the simple equation
solver, so we use a block-structured domain decomposition of each grid. There is one complica
tion—a tradeoff between locality and load balance related to the elements at the border of the
entire grid. The internal n-by-n elements do similar work and are divided equally among all pro-
cesses. Complete load balancing demands that border elements, which often do less work, aso
be divided equally among processors. However, communication and data locality suggest that
border elements should be assigned to the processors that own the nearest internal elements. We
follow the latter strategy, incurring a slight load imbalance.

Finally, let us examine the multigrid equation solver. The grids at all levels of the multigrid hier-
archy are partitioned in the same block-structured domain decomposition. However, the number

166

DRAFT: Parallel Computer Architecture 9/10/97

The Parallel Application Case Studies: An In-Depth Look

[ARTIST: thisfigure
isugly inits current

form. Anything you

can do to beautify

would be great. The
ideaisto have boxes

that each represent

a computation. Each row
represents a computational
phase. Boxesthat arein the
same horizontal row (phase)
are independent of

one ancther. The ones

in the same vertical
“column” are dependent,
i.e. each depends on the
one above it. | show

these dependences by
putting them in the

same column, but

the dependences could

also be shown with arrows
connecting the boxes

(or ovals or whatever

you choose to use).
Showing the dependences
among the computations
isthe main point

of the figure.]

Put Laplacian Put Laplacian
of ¥1in w1, | of ¥3inwi,

Add f values to columns
of W1,andW1,

Put Jacobians of (W1, T,),
(W1, Ty)in W5, W5,

.COP&TL T3
into Yam

Put computed ¥,
values in W3

Put Jacobian of

(W2,

W3) in W6

Initialize
a and b

Put Laplacian of
M . Tam INW7;3

Put Laplacian of
W71,3 in W41,3

Put Laplacian of
W41‘3 in W71’3

Compute ¥ = ¥ + c)¥
and now WY are mamtalned in

note: ¥
\s malnxj’1

Use ¥ and @ to update

'4—’1 and l'I'Ig

Update streamfunction running sums and determine whether to end program

spanning phases demarcate threads of dependence.

Figure 3-14 Ocean: The phasesin atime-step and the dependences among grid computations.

Note: Horizontal lines represent synchronization points among all processes, and vertical lines

Each box is a grid computation. Computations in the same row are independent, while those in the same column are dependent.

of grid points per processor decreases as we go to coarser levels of the hierarchy. At the highest
log p of thelog n possible levels, there will beless grid points than the p processors, so some pro-
cessors will remain idle. Fortunately, relatively little time is spent at these load-imbalanced lev-
els. The ratio of communication to computation also increases at higher levels, since there are
fewer points per processor. This illustrates the importance of measuring speedups relative to the
best sequential algorithm (here multigrid, for example): A classical, non-hierarchical iterative
solver on the original grid would likely yield better self-relative speedups (relative to a single
processor performing the same computation) than the multigrid solver, but the multigrid solver is
far more efficient sequentially and overall. In general, less efficient sequential algorithms often
yield better self-relative “ speedups”

Orchestration

Here we are mostly concerned with artifactual communication and data locality, and with the
orchestration of synchronization. Let us consider issues related to spatial locality first, then tem-
poral locality, and finally synchronization.

Spatial Locality: Within agrid computation, the issues related to spatial locality are very similar
to those discussed for the simple equation solver kernel in Section 3.4.1, and we use four-dimen-
sional array data structuresto represent the grids. Thisresultsin very good spatial locality, partic-

9/10/97

DRAFT: Parallel Computer Architecture 167

Programming for Performance

ularly on local data. Accesses to nonlocal data (the elements at the boundaries of neighboring
partitions) yield good spatial locality along row-oriented partition boundaries, and poor locality
(hence fragmentation) along column-oriented boundaries. There are two major differences
between the simple solver and the complete Ocean application inissues related to spatial locality.
The first is that because Ocean involves thirty-three different grid computations in every time-
step, each involving one or more out of twenty-five different grids, we experience many conflict
misses across grids. While we alleviate this by ensuring that the dimensions of the arrays that we
alocate are not powers of two (even if the program uses power-of-two grids), it is difficult to lay
different grids out relative to one another to minimizes conflict misses. The second difference has
to do with the multigrid solver. The fact that a process's partition has fewer grid points at higher
levels of the grid hierarchy makes it more difficult to allocate data appropriately at page granular-
ity and reduces spatial locality, despite the use of four-dimensional arrays.

Working Setsand Temporal L ocality: Ocean has a complicated working set hierarchy, with six
working sets. These first three are due to the use of near-neighbor computations, including the
multigrid solver, and are similar to those for the ssmple equation solver kernel. The first is cap-
tured when the cache is large enough to hold a few grid elements, so that an element that is
accessed as the right neighbor for another element is reused to compute itself and also as the left
neighbor for the next element. The second working set comprises a couple of subrows of a pro-
cess's partition. When the process returns from one subrow to the beginning of the next in a near-
neighbor computation, it can reuse the elements of the previous subrow. The rest of the working
sets are not well defined as single working sets, and lead to a curve without sharp knees. The
third constitutes a process's entire partition of a grid used in the multigrid solver. This could be
the partition at any level of the multigrid hierarchy at which the process tends to iterate, so it is
not really a single working set. The fourth consists of the sum of a process's subgrids at several
successive levels of the grid hierarchy within which it tends to iterate (in the extreme, this
becomes all levels of the grid hierarchy). The fifth working set allows one to exploit reuse on a
grid across grid computations or even phases; thus, it is large enough to hold a process's partition
of several grids. Thelast holds al the datathat a processisassigned in every grid, so that all these
data can be reused across times-steps.

The working sets that are most important to performance are the first three or four, depending on
how the multigrid solver behaves. The largest among these grow linearly with the size of the data
set per process. This growth rate is common in scientific applications that repeatedly stream
through their data sets, so with large problems some important working sets do not fit in the local
caches. Note that with proper data placement the working sets for a process consist mostly of
local rather than communicated data. The little reuse that nonlocal data afford is captured by the
first two working sets.

Synchronization: Ocean uses two types of synchronization. First, global barriers are used to
synchronize all processes between computational phases (the horizontal linesin Figure 3-14), as
well between iterations of the multigrid equation solver. Between severa of the phases we could
replace the barriers with finer-grained point-to-point synchronization at element level to obtain
some overlap across phases; however, the overlap islikely to be too small to justify the overhead
of many more synchronization operations and the programming complexity. Second, locks are
used to provide mutual exclusion for global reductions. The work between synchronization
pointsis very large, typically proportional to the size of a processor’s partition of agrid.

168

DRAFT: Parallel Computer Architecture 9/10/97

The Parallel Application Case Studies: An In-Depth Look

Mapping

Given the near-neighbor communication pattern, we would like to map processes to processors
such that processes whose partitions are adjacent to each other in the grid run on processors that
are adjacent to each other in the network topology. Our subgrid partitioning of two-dimensional

6

5
4
O
@3
£
=
2
1
0

“ M L~ o o

—

0 Data
'm Synch
@ Busy

OData
mSynch
BBusy

grids clearly maps very well to a two-dimensional mesh network.

® 1w~ o < ® v ~ o o -« o ~
d4 d Hd4 A4 N N N N N ™ - e - N

~ o o

=

-
o~

™
~

0
=

Process

Process
(a) Four-dimensional arrays (a) Two-dimensional arrays

Figure 3-15 Execution time breakdowns for Ocean on a 32-processor Origin2000.

The size of each grid is 1030-by-1030, and the convergence tolerance is 103, The use of four-dimensional arrays to represent the two-

dimensional arrays to represent the two-dimensional grids clearly reduces the time spent stalled on the memory

system (including

communication). This data wait time is very small because a processor’s partition of the grids it uses at atime fit very comfortably in
the large 4MB second-level caches in this machine. With smaller caches, or much bigger grids, the time spent stalled waiting for
(local) data would have been much larger.

In summary, Ocean is agood representative of many computational fluid dynamics computations
n
Jp
lem with n-by-n grids and p processors, load balance is good except when n is not large relative
to p, and the parald efficiency for a given number of processors increases with the grid size.
Since a processor streams through its portion of the grid in each grid computation, since only a
few instructions are executed per access to grid data during each sweep, and since thereis signif-
icant potential for conflict misses across grids, data distribution in main memory can be very

important on machines with physically distributed memory.

that use regular grids. The computation to communication ratio is proportional to for a prob-

Figure 3-15 shows the breakdown of execution time into busy, waiting at synchronization points,
and waiting for data accesses to complete for a particular execution of Ocean with 1030-by-1030
grids on a 32-processor SGI Origin2000 machine. Asin al our programs, mapping of processes
to processorsis not enforced by the program but is left to the system. This machine has very large
per-processor second-level caches (4MB), so with four-dimensional arrays each processor’s par-
tition tends to fit comfortably in its cache. The problem size is large enough relative to the num-
ber of processors that the inherent communication to computation ratio is quite low. The major
bottleneck is the time spent waiting at barriers. Smaller problems would stress communication
more, while larger problems and proper data distribution would put more stress on the local
memory system. With two-dimensional arrays, the story is clearly different. Conflict misses are
frequent, and with data being difficult to place appropriately in main memory, many of these
misses are not satisfied locally, leading to long latencies as well as contention.

9/10/97

DRAFT: Parallel Computer Architecture 169

Programming for Performance

3.6.2 Barnes-Hut

The galaxy simulation has far more irregular and dynamically changing behavior than Ocean.
The algorithm it uses for computing forces on the stars, the Barnes-Hut method, is an efficient
hierarchical method for solving the n-body problem in O(n log n) time. Recall that the n-body
problem is the problem of computing the influences that n bodies in a system exert on one
another.

The Sequential Algorithm

The galaxy simulation proceeds over hundreds of time-steps, each step computing the net force
on every body and thereby updating that body’s position and other attributes. Recall the insight

Build Tree
Compute
Compute
§ Forces moments of cells
1]
)
£
= Update
! Traversetree
Properties to compute forces

Figure 3-16 Flow of computation in the Barnes-Hut application.

that force calculation in the Barnes-Hut method is based on: If the magnitude of interaction
between bodies falls off rapidly with distance (asit doesin gravitation), then the effect of alarge
group of bodies may be approximated by a single equivalent body, if the group of bodies is far
enough away from the point at which the effect is being evaluated. The hierarchical application
of thisinsight implies that the farther away the bodies, the larger the group that can be approxi-
mated by a single body.

To facilitate a hierarchical approach, the Barnes-Hut algorithm represents the three-dimensional
space containing the galaxies as a tree, as follows. The root of the tree represents a space cell
containing all bodies in the system. Thetreeis built by adding bodiesinto the initially empty root
cell, and subdividing a cell into its eight children as soon as it contains more than a fixed number
of bodies (here ten). The result is an “oct-tree” whose internal nodes are cells and whose leaves
are individual bodies.! Empty cells resulting from a cell subdivision are ignored. The tree, and
the Barnes-Hut algorithm, is therefore adaptive in that it extends to more levels in regions that
have high body densities. While we use a three-dimensional problem, Figure 3-17 shows a small

1. Anoct-treeisatreein which every node has a maximum of eight children. In two dimensions, a quadtree
would be used, in which the maximum number of childrenisfour.

170

DRAFT: Parallel Computer Architecture 9/10/97

The Parallel Application Case Studies: An In-Depth Look

two-dimensional example domain and the corresponding “quadtree” for simplicity. The positions
of the bodies change across time-steps, so the tree has to be rebuilt every time-step. This results
in the overall computational structure shown in the right hand side of Figure 3-16, with most of
the time being spent in the force calculation phase.

(a) The Spatial Domain (b) Quadtree Representation

Figure 3-17 Barnes-Hut: A two-dimensional particle distribution and the corresponding quadtree.

Thetreeistraversed once per body to compute the net force acting on that body. The force-cal cu-
lation algorithm for abody starts at the root of the tree and conducts the following test recursively
for every cdll it visits. If the center of mass of the cell is far enough away from the body, the
entire subtree under that cell is approximated by a single body at the center of mass of the cell,
and the force this center of mass exerts on the body computed. If, however, the center of massis
not far enough away, the cell must be “opened” and each of its subcells visited. A cell is deter-
mined to be far enough away if the following condition is satisfied:

('-j <6, (EQ 3.6)

where | isthe length of aside of the cell, d is the distance of the body from the center of mass of
the cell, and O is a user-defined accuracy parameter (0 is usually between 0.5 and 1.2). In this
way, a body traverses deeper down those parts of the tree which represent space that is physically
close to it, and groups distant bodies at a hierarchy of length scales. Since the expected depth of
the tree is O(log n), and the number of bodies for which the tree is traversed is n, the expected
complexity of the algorithm is O(n log n). Actualy it is O(l n log n), since 6 determines the
number of tree cells touched at each level in atraversal.

Principal Data Structures

Conceptually, the main data structure in the application is the Barnes-Hut tree. The treeisimple-
mented in both the sequential and parallel programs with two arrays: an array of bodies and an
array of tree cells. Each body and cell is represented as a structure or record. The fields for a body
include its three-dimensional position, velocity and acceleration, aswell asits mass. A cell struc-
ture also has pointersto its children in the tree, and a three-dimensional center-of-mass. There is
also a separate array of pointers to bodies and one of pointers to cells. Every process owns an
equal contiguous chunk of pointersin these arrays, whichin every time-step are set to point to the

9/10/97

DRAFT: Parallel Computer Architecture 171

Programming for Performance

bodies and cells that are assigned to it in that time-step. The structure and partitioning of the tree
changes across time-steps as the galaxy evolves, the actual bodies and cells assigned to a process
are not contiguous in the body and cell arrays.

Decomposition and Assignment

Each of the phases within atime-step is executed in parallel, with global barrier synchronization
between phases. The natural unit of decomposition (task) in all phasesis a body, except in com-
puting the cell centers of mass, whereitisacell.

Unlike Ocean, which has a regular and predictable structure of both computation and communi-
cation, the Barnes-Hut application presents many challenges for effective assignment. First, the
non-uniformity of the galaxy implies that the amount of work per body and the communication
patterns are nonuniform, so a good assignment cannot be discovered by inspection. Second, the
distribution of bodies changes across time-steps, which means that no static assignment is likely
to work well. Third, since the information needs in force calculation fall off with distance equally
in al directions, reducing interprocess communication demands that partitions be spatially con-
tiguous and not biased in size toward any one direction. And fourth, the different phases in a
time-step have different distributions of work among the bodies/cells, and hence different pre-
ferred partitions. For example, the work in the update phase is uniform across all bodies, while
that in the force calculation phase clearly is not. Another challenge for good performance is that
the communi cation needed among processes is naturally fine-grained and irregular.

We focus our partitioning efforts on the force-calculation phase, since it is by far the most time-
consuming. The partitioning is not modified for other phases since (a) the overhead of doing so
(both in partitioning and in the loss of locality) outweighs the potential benefits, and (b) similar
partitions are likely to work well for tree building and moment calculation (though not for the
update phase).

As we have mentioned earlier in the chapter, we can use profiling-based semi-static partitioning
in this application, taking advantage of the fact that although the particle distribution at the end of
the ssimulation may be radically different from that at the beginning, it evolves slowly with time
does not change very much between two successive time-steps. As we perform the force calcula
tion phase in atime-step, we record the work done by every particle in that time-step (i.e. count
the number of interactionsit computes with other bodies or cells). We then use this work count as
a measure of the work associated with that particle in the next time-step. Work counting is very
cheap, sinceit only involvesincrementing alocal counter when an (expensive) interaction is per-
formed. Now we need to combine this load balancing method with assignment techniques that
also achieve the communication goal: keeping partitions contiguous in space and not biased in
size toward any one direction. We briefly discuss two techniques: the first because it is applicable
to many irregular problems and we shall refer to it again in Section 3.7; the second because it is
what our program uses.

The first technique, called orthogonal recursive bisection (ORB), preserves physical locality by
partitioning the domain space directly. The space is recursively subdivided into two subspaces
with equal cost, using the above load balancing measure, until there is one subspace per process
(see Figure 3-18(a)). Initially, all processes are associated with the entire domain space. Every
time a space is divided, half the processes associated with it are assigned to each of the subspaces
that result. The Cartesian direction in which division takes place is usually alternated with suc-

172

DRAFT: Parallel Computer Architecture 9/10/97

The Parallel Application Case Studies: An In-Depth Look

cessive divisions, and a parallel median finder is used to determine where to split the current sub-
space. A separate binary tree of depth log p is used to implement ORB. Details of using ORB for
this application can be found in [Sal90].

L] \d
R I A 22 23|26 21|
.' Tyee s . 21:24| 2528
. LI IR 201930 2
v ve - v
R ’ 171
. 161312
. » » 4 : M) * . "' M 5 1
.’."' A L d .
., . .

. . . . '. '. . ~ .{/AJQ&‘\ //‘ A‘m
. P1 P2 P3 P4 P5 P6 P7 P8
() ORB (b) Costzones

Figure 3-18 Partitioning schemes for Barnes-Hut: ORB and Costzones.

ORB partitions space directly by recursive bisection, while costzones partitions the tree. (b) shows both the partitioning of the tree as
well as how the resulting space is partitioned by costzones. Note that ORB leads to more regular (rectangular) partitions than cost-

Zones.

The second technique, called costzones, takes advantage of the fact that the Barnes-Hut algo-
rithm already has a representation of the spatial distribution of bodies encoded in its tree data
structure. Thus, we can partition this existing data structure itself and obtain the goal of partition-
ing space (see Figure 3-18(b)). Hereisahigh-level description. Every internal cell storesthetotal
cost associated with all the bodies it contains. The total work or cost in the system is divided
among processes so that every process has a contiguous, equal range or zone of work (for exam-
ple, atotal work of 1000 units would be split among 10 processes so that zone 1-100 units is
assigned to the first process, zone 101-200 to the second, and so on). Which cost zone abody in
the tree bel ongs to can be determined by the total cost of an inorder traversal of the tree up to that
body. Processes traverse the tree in parallel, picking up the bodies that belong in their cost zone.
Details can be found in [SH+95]. Costzones is much easier to implement than ORB. It also and
yields better overall performance in a shared address space, mostly because the time spent in the
partitioning phase itself is much smaller, illustrating the impact of extrawork.

Orchestration

Orchestration issues in Barnes-Hut reveal many differences from Ocean, illustrating that even
applications in scientific computing can have widely different behavioral characteristics of archi-
tectural interest.

Spatial Locality: While the shared address space makes it easy for a process to access the parts
of the shared tree that it needs in all the computational phases (see Section 3.7), data distribution
to keep a process's assigned bodies and cellsin itslocal main memory is not so easy asin Ocean.

9/10/97

DRAFT: Parallel Computer Architecture 173

Programming for Performance

First, data have to be redistributed dynamically as assignments change across time-steps, which
is expensive. Second, the logical granularity of data (a particle/cell) is much smaller than the
physical granularity of alocation (a page), and the fact that bodies/cells are spatially contiguous
in the arrays does not mean they are contiguous in physical space or assigned to the same pro-
cess. Fixing these problems requires overhauling the data structures that store bodies and célls:
using separate arrays or lists per process, that are modified across time-steps. Fortunately, thereis
enough temporal locality in the application that data distribution is not so important in a shared
address space (again unlike Ocean). Also, the vast majority of the cache misses are to data in
other processors' assigned partitions anyway, so data distribution itself wouldn’t help make them
local. We therefore simply distribute pages of shared data in a round-robin interleaved manner
among nodes, without attention to which node gets which pages.

While in Ocean long cache blocks improve local access performance limited only by partition
size, here multi-word cache blocks help exploit spatial locality only to the extent that reading a
particle’'s displacement or moment data involves reading several double-precision words of data.
Very long transfer granularities might cause more fragmentation than useful prefetch, for the
same reason that data distribution at page granularity is difficult: Unlike Ocean, locality of bod-
ies/cells in the data structures does not match that in physical space on which assignment is
based, so fetching data from more than one particle/cell upon a miss may be harmful rather than
beneficial.

Working Sets and Temporal Locality: The first working set in this program contains the data
used to compute forces between a single particle-particle or particle-cell pair. The interaction
with the next particle or cell in the traversal will reuse these data. The second working set is the
most important to performance. It consists of the data encountered in the entire tree traversal to
compute the force on a single particle. Because of the way partitioning is done, the traversal to
compute the forces on the next particle will reuse most of these data. As we go from particle to
particle, the composition of thisworking set changes slowly. However, the amount of reuseistre-
mendous, and the resulting working set is small even though overall a process accesses a very
large amount of data in irregular ways. Much of the data in this working set is from other pro-
cesses partitions, and most of these data are allocated nonlocally. Thus, it isthe temporal locality
exploited on shared (both local and nonlocal) data that is critical to the performance of the appli-
cation, unlike Ocean whereit is data distribution.

By the same reasoning that the complexity of the algorithm is O(12 n log n), the expected size of
this working set is proportional to O(i2 log n), even though the 8erall memory requirement of
the applicationiscloseto linear in n: Ehch particle accesses about this much data from the tree to
compute the force on it. The constant of proportionality is small, being the amount of data
accessed from each body or cell visited during force computation. Since this working set fits
comfortably in modern second-level caches, we do not replicate datain main memory. In Ocean
there were important working sets that grew linearly with the data set size, and we did not always
expect them to fit in the cache; however, even there we did not need replication in main memory
sinceif data were distributed appropriately then the data in these working sets were local.

Synchronization: Barriers are used to maintain dependences among bodies and cells across
some of the computational phases, such as between building the tree and using it to compute
forces. The unpredictable nature of the dependences makes it much more difficult to replace the
barriers by point-to-point body or cell level synchronization. The small nhumber of barriers used
in atime-step isindependent of problem size or number of processors.

174

DRAFT: Parallel Computer Architecture 9/10/97

The Parallel Application Case Studies: An In-Depth Look

3.6.3

Thereis no need for synchronization within the force computation phase itself. While communi-
cation and sharing patterns in the application are irregular, they are phase-structured. That is,
while a process reads particle and cell data from many other processes in the force calculation
phase, the fields of a particle structure that are written in this phase (the accelerations and vel oci-
ties) are not the same as those that are read in it (the displacements and masses). The displace-
ments are written only at the end of the update phase, and masses are not modified. However, in
other phases, the program uses both mutual exclusion with locks and point-to-point event syn-
chronization with flags in more interesting ways than Ocean. In the tree building phase, a process
that isready to add a particle to acell must first obtain mutually exclusive accessto the cell, since
other processes may want to read or modify the cell at the sametime. Thisisimplemented with a
lock per cell. The moment calculation phase is essentially an upward pass through the tree from
the leaves to the root, computing the moments of cells from those of their children. Point-to-point
event synchronization is implemented using flags to ensure that a parent does not read the
moment of its child until that child has been updated by al its children. This is an example of
multiple-producer, single-consumer group synchronization. There is no synchronization within
the update phase.

The work between synchronization points is large, particularly in the force computation and

update phases, where it is O%m%gr% and O(E), respectively. The need for locking cells in the

tree-building and center-of-mass phases causes the work between synchronization pointsin those
phases to be substantially smaller.

Mapping

Theirregular nature makes this application more difficult to map perfectly for network locality in
common networks such as meshes. The ORB partitioning scheme maps very naturally to ahyper-
cube topology (discussed in Chapter 10), but not so well to a mesh or other less richly intercon-
nected network. This property does not hold for costzones partitioning, which naturally mapsto a
one-dimensional array of processors but does not easily guarantee to keep communication local
even in such a network.

In summary, the Barnes-Hut application has irregular, fine-grained, time-varying communication
and data access patterns that are becoming increasingly prevalent even in scientific computing as
we try to model more complex natural phenomena. Successful partitioning techniques for it are
not obvious by inspection of the code, and require the use of insights from the application
domain. These insights allow us to avoid using fully dynamic assignment methods such as task
queues and stealing.

Figure 3-19 shows the breakdowns of execution time for this application. Load balance is quite
good with a static partitioning of the array of bodiesto processors, precisely because thereislittle
relationship between their location in the array and in physical space. However, the data access
cost is high, sincethereisalot of inherent and artifactual communication. Semi-static, costzones
partitioning reduces this data access overhead substantially without compromising load balance.

Raytrace

Recall that in ray tracing rays are shot through the pixels in an image plane into a three-dimen-
sional scene, and the paths of the raystraced as they bounce around to compute a color and opac-

9/10/97

DRAFT: Parallel Computer Architecture 175

Programming for Performance

225

@25

@ Data
@ Synch @ 20
i@ Busy

!

Process Process

0~
N«

~ o ”

—
N

(a) Static assignment of bodies (8) Semi-static, costzones assignment

Figure 3-19 Execution time breakdown for Barnes-Hut with 512K bodies on the Origin2000.

The particular static assignment of bodies used is quite randomized, so given the large number of bodies relative to processors the
workload evens out due to the law of large numbers. The bigger problem with the static assignment is that because it is eff.ectlvelx
randomized the particles assigned to a processor are not close together in space so the communication to computation ratio is muc

larger. Thisisw

data wait time is much smaller in the semi-static scheme. If we had assigned contiguous areas of space to pro-

cesses statically, data wait time would be small but load imbalance and hence synchronization wait time would be large. Even with
the current static assignment, there is no guarantee that the assignment will remain load balanced as the galaxy evolves over time.

ity for the corresponding pixels. The algorithm uses a hierarchical representation of space called
a Hierarchical Uniform Grid (HUG), which is similar in structure to the octree used by the Bar-
nes-Hut application. The root of the tree represents the entire space enclosing the scene, and the
leaves hold alinked list of the object primitives that fall in them (the maximum number of primi-
tives per leaf is also defined by the user). The hierarchical grid or tree makes it efficient to skip
empty regions of space when tracing aray, and quickly find the next interesting cell.

Sequential Algorithm

For agiven viewpoint, the sequential algorithm fires one ray into the scene through every pixel in
theimage plane. These initial rays are called primary rays. At thefirst object that aray encounters
(found by traversing the hierarchical uniform grid), it isfirst reflected toward every light source
to determine whether it isin shadow from that light source. If it isn’t, the contribution of the light
source to its color and brightness is computed. The ray is also reflected from and refracted
through the object as appropriate. Each reflection and refraction spawns a new ray, which under-
goes the same procedure recursively for every object that it encounters. Thus, each primary ray
generates a tree of rays. Rays are terminated either when they leave the volume enclosing the
scene or according to some user-defined criterion (such as the maximum number of levels
alowed in aray tree). Ray tracing, and computer graphics in general, affords severa tradeoffs
between execution time and image quality, and many algorithmic optimizations have been devel -
oped to improve performance without compromising image quality much.

Decomposition and Assignment

There are two natural approaches to exploiting parallelism in ray tracing. One is to divide the
space and hence the objects in the scene among processes, and have a process compute the inter-
actions for rays that occur within its space. The unit of decomposition here is a subspace. When a
ray leaves a process's subspace, it will be handled by the next process whose subspace it enters.
Thisis called a scene-oriented approach. The alternate, ray-oriented approach is to divide pixels

176

DRAFT: Parallel Computer Architecture 9/10/97

The Parallel Application Case Studies: An In-Depth Look

in the image plane among processes. A process is responsible for the rays that are fired through
its assigned pixels, and follows a ray in its path through the entire scene, computing the interac-
tions of the entire ray tree which that ray generates. The unit of decomposition hereis a primary
ray. It can be made finer by allowing different processes to process rays generated by the same
primary ray (i.e. from the same ray tree) if necessary. The scene-oriented approach preserves
more locality in the scene data, since a process only touches the scene data that are in its sub-
space and the rays that enter that subspace. However, the ray-oriented approach is much easier to
implement with low overhead, particularly starting from a sequential program, since rays can be
processed independently without synchronization and the scene data are read-only. This program
therefore uses a ray-oriented approach. The degree of concurrency for an-by-n plane of pixelsis
O(n?), and is usually ample.

Unfortunately, a static subblock partitioning of the image plane would not be load balanced.
Rays from different parts of the image plane might encounter very different numbers of reflec-
tions and hence very different amounts of work. The distribution of work is highly unpredictable,
so we use a distributed task queueing system (one queue per processor) with task stealing for
load balancing.

Consider communication. Since the scene data are read-only, thereis no inherent communication
on these data. If we replicated the entire scene on every node, there would be no communication
except dueto task stealing. However this approach does not allow us to render a scene larger than
what fits in a single processor’s memory. Other than task stealing, communication is generated
because only 1/p of the scene is alocated locally and a process accesses the scene widely and
unpredictably. To reduce this artifactual communication, we would like processes to reuse scene
data as much as possible, rather than access the entire scene randomly. For this, we can exploit
spatial coherencein ray tracing: Because of the way light isreflected and refracted, rays that pass
through adjacent pixels from the same viewpoint are likely to traverse similar parts of the scene
and be reflected in similar ways. This suggests that we should use domain decomposition on the
image plane to assign pixels to task queues initially. Since the adjacency or spatial coherence of
rays works in al directions in the image plane, block-oriented decomposition works well. This
also reduces the communication of image pixels themselves.

Given p processors, the image plane is partitioned into p rectangular blocks of size as close to
equal as possible. Every image block or partition is further subdivided into fixed sized square
image tiles, which are the units of task granularity and stealing (see Figure 3-20 for a four-pro-
cess example). These tile tasks are initialy inserted into the task queue of the processor that is
assigned that block. A processor ray traces the tiles in its block in scan-line order. When it is
done with its block, it steals tile tasks from other processors that are still busy. The choice of tile
size is a compromise between preserving locality and reducing the number of accesses to other
processors queues, both of which reduce communication, and keeping the task size small
enough to ensure good load balance. We could also initially assign tiles to processes in an inter-
leaved manner in both dimensions (called a scatter decomposition) to improve load balance in
theinitial assignment.

Orchestration

Given the above decomposition and assignment, let us examine spatial locality, temporal locality,
and synchronization.

9/10/97

DRAFT: Parallel Computer Architecture 177

Programming for Performance

A tile, the unit
of task stealing

A block, the unit
of partitioning

Figure 3-20 Image plane partitioning in Raytrace for four processors.

Spatial Locality: Most of the shared data accesses are to the scene data. However, because of
changing viewpoints and the fact that rays bounce about unpredictably, it isimpossible to divide
the scene into parts that are each accessed only (or even dominantly) by a single process. Also,
the scene data structures are naturally small and linked together with pointers, so it is very diffi-
cult to distribute them among memories at the granularity of pages. We therefore resort to using
a round-robin layout of the pages that hold scene data, to reduce contention. Image data are
small, and we try to allocate the few pages they fall on in different memories as well. The sub-
block partitioning described above preserves spatial locality at cache block granularity in the
image plane quite well, though it can lead to some false sharing at tile boundaries, particularly
with task stealing. A strip decomposition in rows of the image plane would be better from the
viewpoint of spatial locality, but would not exploit spatial coherence in the scene as well. Spatial
locality on scene datais not very high, and does not improve with larger scenes.

Temporal Locality: Because of the read-only nature of the scene data, if there were unlimited
capacity for replication then only the first reference to a nonlocally allocated datum would cause
communication. With finite replication capacity, on the other hand, data may be replaced and
have to be recommunicated. The domain decomposition and spatia coherence methods
described earlier enhance temporal locality on scene data and reduce the sizes of the working
sets. However, since the reference patterns are so unpredictable due to the bouncing of rays,
working sets are relatively large and ill-defined. Note that most of the scene data accessed and
hence the working sets are likely to be nonlocal. Nonetheless, this shared address space program
does not replicate data in main memory: The working sets are not sharp and replication in main
memory has acost, so it isunclear that the benefits outweigh the overheads.

Synchronization and Granularity: There is only a single barrier after an entire scene is ren-
dered and before it is displayed. Locks are used to protect task queues for task stealing, and also
for some global variablesthat track statistics for the program. The work between synchronization
pointsis the work associated with tiles of rays, which isusually quite large.

Mapping

Since Raytrace has very unpredictable access and communication patterns to scene data, the com-
munication is all but impossible to map effectively in this shared address space version. The fact
that the initial assignment of rays partitions the image into a two-dimensional grid of blocks, it
would be natural to map to a two-dimensional mesh network but the effect is not likely to be
large.

178

DRAFT: Parallel Computer Architecture 9/10/97

The Parallel Application Case Studies: An In-Depth Look

i

-
-

BData

@ 150
Bsynch o
£
BBusy iZ 100
H g EEE ggﬂg)
0
® w0 -« o ~ o o
- o~ el

~ o 0

“ o oL o~ o o ™
P

v o~ o
- oo

Process Process

Bpata
BSynch
E ! ‘ BBusy
™ wn ~ o
o~ o~ o~ o~

—

R B R RN ®

(a) With task stealing (a) Without task stealing

Figure 3-21 Execution time breakdowns for Raytrace with the balls data set on the Origin2000.

Task stealing is clearly very important for balancing the workload (and hence reducing synchronization wait time) in this highly

unpredictable application.

364

In summary, this application tends to have large working sets and relatively poor spatial locality,
but a low inherent communication to computation ratio. Figure 3-21 shows the breakdown of
execution time for the balls data set, illustrating the importance of task stealing in reducing load
imbalance. The extracommunication and synchronization incurred as aresult iswell worthwhile.

Data Mining

A key difference in the data mining application from the previous ones is that the data being
accessed and manipulated typically reside on disk rather than in memory. It is very important to
reduce the number of disk accesses, since their cost is very high, and aso to reduce the conten-
tion for adisk controller by different processors.

Recall the basic insight used in association mining from Section 2.2.4: If an itemset of sizek is
large, then all subsets of that itemset must also be large. For illustration, consider a database in
which there are fiveitems—A, B, C, D, and E—of which one or more may be present in a partic-
ular transaction. The items within atransaction are lexicographically sorted. Consider L, the list
of large itemsets of size 2. This list might be {AB, AC, AD, BC, BD, CD, DE}. The itemsets
within L, are also lexicographically sorted. Given this Lo, the list of itemsets that are candidates
for membership in L5 are obtained by performing a “join” operation on the itemsets in Lo; i.e.
taking pairs of itemsets in L, that share a common first item (say AB and AC), and combining
them into alexicographically sorted 3-itemset (here ABC). The resulting candidate list C5 in this
caseis{ABC, ABD, ACD, BCD}. Of these itemsetsin Cs, some may actually occur with enough
frequency to be placed in L3, and so on. In general, the join to obtain Cy from L,_; finds pairs of
itemsetsin L,_; whose first k-2 items are the same, and combines them to create a new item for
Cy. Itemsets of size k-1 that have common k-2 sized prefixes are said to form an equivalence class
(eg. {AB, AC, AD}, {BC, BD}, {CD} and {DE} in the example above). Only itemsets in the
same k-2 equivalence class need to be considered together to form C, from L_q, which greatly
reduces the number of pairwise itemset comparisons we need to do to determine Cy.

9/10/97

DRAFT: Parallel Computer Architecture 179

Programming for Performance

Sequential Algorithm

A simple sequential method for association mining is to first traverse the dataset and record the
frequencies of all itemsets of size one, thus determining L 1. From L4, we can construct the candi-
datelist C,, and then traverse the dataset again to find which entries of C, are large and should be
in L,. From L, we can construct Cs, and traverse the dataset to determine L3, and so on until we
have found L. While this method is simple, it requires reading all transactions in the database
from disk k times, which is expensive.

Thekey goalsin asequential algorithm are to reduce the amount of work done to compute candi-
date lists C, from lists of large itemsets L1, and especialy to reduce the number of times data
must be read from disk in determining the counts of itemsetsin a candidate list C,. (to determine
which itemsets should bein L). We have seen that equivalence classes can be used to achieve the
first goal. In fact, they can be used to construct a method that achieves both goals together. The
ideais to transform the way in which the data are stored in the database. Instead of storing trans-
actionsintheform{T,, A, B, D, ...}—where T, isthetransaction identifier and A, B, D areitems
in the transaction—we can keep in the database records of the form {IS,, T1, T2, T3, ...}, where
IS, isanitemset and T1, T2 etc. are transactions that contain that itemset. That is, there is a data-
base record per itemset rather than per transaction. If the large itemsets of size k-1 (L_;) that are
in the same k-2 equivalence class are identified, then computing the candidate list C, requires
only examining all pairs of these itemsets. If each itemset hasitslist of transactions attached to it,
as in the above representation, then the size of each resulting itemset in C, can be computed at
the same time as identifying the C itemset itself from a pair of L_q itemsets, by computing the
intersection of the transactions in their lists.

For example, suppose {AB, 1, 3,5, 8, 9} and {AC, 2, 3, 4, 8, 10} arelarge 2-itemsetsin the same
1-equivalence class (they each start with A), then the list of transactions that contain itemset ABC
is{3, 8}, so the occurrence count of itemset ABC is two. What this means is that once the data-
base is transposed and the 1-equivalence classes identified, the rest of the computation for a sin-
gle 1-equivalence class can be done to completion (i.e. al large k-itemsets found) before
considering any data from other 1-equivalence classes. If a 1-equivalence class fitsin main mem-
ory, then after the transposition of the database a given data item needs to be read from disk only
once, greatly reducing the number of expensive I/O accesses.

Decomposition and Assignment

The two sequential methods aso differ in their parallelization, with the latter method having
advantages in this respect as well. To parallelize the first method, we could first divide the data-
base among processors. At each step, a processor traverses only its local portion of the database
to determine partial occurrence counts for the candidate itemsets, incurring no communication or
nonlocal disk accesses in this phase. The partial counts are then merged into global counts to
determine which of the candidates are large. Thus, in parallel this method requires not only mul-
tiple passes over the database but aso requires interprocessor communication and synchroniza-
tion at the end of every pass.

In the second method, the equivalence classes that helped the sequential method reduce disk
accesses are very useful for parallelization as well. Since the computation on each 1-equivalence
classisindependent of the computation on any other, we can simply divide up the 1-equivalence
classes among processes which can thereafter proceed independently, without communication or

180

DRAFT: Parallel Computer Architecture 9/10/97

The Parallel Application Case Studies: An In-Depth Look

synchronization. The itemset lists (in the transformed format) corresponding to an equivalence
class can be stored on the local disk of the process to which the equivalence classis assigned, so
thereisno need for remote disk access after this point either. Asin the sequential algorithm, since
each process can complete the work on one of its assigned equivalence classes before proceeding
to the next one, hopefully each item from the local database should be read only once. The issue
is ensuring a load balanced assignment of equivalence classes to processes. A simple metric for
load balance is to assign equivalence classes based on the number of initial entriesin them. How-
ever, as the computation unfolds to compute k-itemsets, the amount of work is determined more
closely by the number of large itemsets that are generated at each step. Heuristic measures that
estimate this or some other more appropriate work metric can be used as well. Otherwise, one
may have to resort to dynamic tasking and task stealing, which can compromise much of the sim-
plicity of this method (e.g. that once processes are assigned their initial egquivalence classes they
do not have to communicate, synchronize, or perform remote disk access).

Thefirst step in this approach, of course, isto compute the 1-equivalence classes and the large 2-
itemsets in them, as a starting point for the parallel assignment. To compute the large 2-itemsets,
we are better off using the original form of the database rather than the transformed form, so we
do not transform the database yet (see Exercise 3.12). Every process sweeps over the transactions
initsloca portion of the database, and for each pair of itemsin atransaction increments alocal
counter for that item pair (the local counts can be maintained as a two-dimensional upper-trian-
gular array, with the indices being items). It is easy to compute 2-itemset counts directly, rather
than first make a pass to compute 1-itemset counts, construct the list of large 1-itemsets, and then
make another pass to compute 2-itemset counts. The local counts are then merged, involving
interprocess communication, and the large 2-itemsets determined from the resulting global
counts. These 2-itemsets are then partitioned into 1-equivalence classes, and assigned to pro-
cesses as described above.

The next step is to transform the database from the original {Ty, A, B, D, ...} organization by
transaction to the {IS,, T1, T2, T3, ...} organization by itemset, where the IS, are initially the 2-
itemsets. This can be done in two steps: alocal step and a communication step. In the local step,
a process constructs the partial transaction lists for large 2-itemsets from its local portion of the
database. Then, in the communication step a process (at least conceptualy) “sends’ the lists for
those 2-itemsets whose 1-equivalence classes are not assigned to it to the process to which they
are assigned, and “receives’ from other processes the lists for the equivalence classes that are
assigned to it. The incoming partial lists are merged into the local lists, preserving alexicograph-
icaly sorted order, after which the process holds the transformed database for its assigned equiv-
alence classes. It can now compute the k-itemsets step by step for each of its equivalence classes,
without any communication, synchronization or remote disk access. The communication step of
the transformation phase is usually the most expensive step in the algorithm. Finally, the results
for the large k-itemsets are available from the different processes.

Orchestration

Given this decomposition and assignment, et us examine spatial locality, temporal locality, and
synchronization.

Spatial Locality: Given the organization of the computation and the lexicographic sorting of the
itemsets and transactions, most of the traversal s through the data are simple front-to-back sweeps
and hence exhibit very good predictability and spatial locality. This is particularly important in

9/10/97

DRAFT: Parallel Computer Architecture 181

Programming for Performance

3.7

reading from disk, since it is important to amortize the high startup costs of a disk read over a
large amount of useful data read.

Temporal Locality: Proceeding over one equivalence class at a time is much like blocking,
although how successful it is depends on whether the data for that equivalence class fit in main
memory. As the computation for an equivalence class proceeds, the number of large itemsets
becomes smaller, so reuse in main memory is more likely to be exploited. Note that here we are
exploiting temporal locality in main memory rather than in the cache, athough the techniques
and goals are similar.

Synchronization: The major forms of synchronization are the reductions of partial occurrence
countsinto global countsin the first step of the algorithm (computing the large 2-itemsets), and a
barrier after this to begin the transformation phase. The reduction is required only for 2-itemsets,
since thereafter every process proceeds independently to compute the large k-itemsets in its
assigned equivalence classes. Further synchronization may be needed if dynamic task manage-
ment is used for load balancing.

This concludes our in-depth discussion of how the four case studies might actually be parallel-
ized. At least in the first three, we assumed a coherent shared address space programming model
in the discussion. Let us now see how the characteristics of these case studies and other applica-
tions influence the tradeoffs between the major programming models for multiprocessors.

Implications for Programming Models

We have seen in this and the previous chapter that while the decomposition and assignment of a
parallel program are often (but not always) independent of the programming model, the orches-
tration step is highly dependent on it. In Chapter 1, we learned about the fundamental design
issues that apply to any layer of the communication architecture, including the programming
model. We learned that the two major programming model s—a shared address space and explicit
message passing between private address spaces—are fundamentally distinguished by functional
differences such as naming, replication and synchronization, and that the positions taken on these
influence (and are influenced by) performance characteristics such as latency and bandwidth. At
that stage, we could only speak about these issues in the abstract, and could not appreciate the
interactions with applications and the implications for which programming models are preferable
under what circumstances. Now that we have an in-depth understanding of several interesting
parallel applications, and we understand the performance issues in orchestration, we are ready to
compare the programming modelsin light of application and performance characteristics.

We will use the application case studies to illustrate the issues. For a shared address space, we
assume that loads and stores to shared data are the only communication mechanisms exported to
the user, and we call this aload-store shared address space. Of course, in practice there is nothing
to stop a system from providing support for explicit messages as well as these primitives in a
shared address space model, but we ignore this possibility for now. The shared address space
model can be supported in a wide variety of ways at the communication abstraction and hard-
ware-software interface layers (recall the discussion of naming models at the end of Chapter 1)
with different granularities and different efficiencies for supporting communication, replication,
and coherence. These will be discussed in detail in Chapters 8 and 9. Here we focus on the most
common case, in which a cache-coherent shared address space is supported efficiently at fine

182

DRAFT: Parallel Computer Architecture 9/10/97

Implications for Programming Models

granularity; for example, with direct hardware support for a shared physical address space, as
well as for communication, replication, and coherence at the fixed granularity of cache blocks.
For both the shared address space and message passing model s, we assume that the programming
model is supported efficiently by the communication abstraction and the hardware-software
interface.

As programmers, the programming model is our window to the communication architecture. Dif-
ferences between programming models and how they are implemented have implicationsfor ease
of programming, for the structuring of communication, for performance, and for scalability. The
major aspects that distinguish the two programming models are functional aspects like naming,
replication and synchronization, organizational aspects like the granularity at which communica
tion is performed, and performance aspects such as end-point overhead of a communication
operation. Other performance aspects such as latency and bandwidth depend largely on the net-
work and network interface used, and can be assumed to be equivalent. In addition, there are dif-
ferences in hardware overhead and complexity required to support the abstractions efficiently,
and in the ease with which they allow us to reason about or predict performance. Let us examine
each of these aspects. The first three point to advantages of a load/store shared address space,
while the others favor explicit message passing.

Naming

We have already seen that a shared address space makes the naming of logically shared data
much easier for the programmer, since the naming model is similar to that on a uniprocessor.
Explicit messages are not necessary, and a process need not name other processes or know which
processing node currently owns the data. Having to know or determine which process's address
space datareside in and transfer data in explicit messagesis not difficult in applications with reg-
ular, statically predictable communication needs, such as the equation solver kernel and Ocean.
But it can be quite difficult, both algorithmically and for programming, in applications with irreg-
ular, unpredictable data needs. An example is Barnes-Hut, in which the parts of the tree that a
process needs to compute forces on its bodies are not statically predictable, and the ownership of
bodies and tree cells changes with time as the galaxy evolves, so knowing which processes to
obtain datafrom is not easy. Raytrace is another example, in which rays shot by a process bounce
unpredictably around scene data that are distributed among processors, so it is difficult to deter-
mine who owns the next set of data needed. These difficulties can of course be overcome in both
cases, but this requires either changing the algorithm substantially from the uniprocessor version
(for example, adding an extra time-step to compute who needs which data and transferring those
datato them in Barnes-Hut [Sal90], or using a scene-oriented rather than aray-oriented approach
in Raytrace, as discussed in Section 3.6.3) or emulating an application-specific shared address
space in software by hashing bodies, cells or scene data to processing nodes. We will discuss
these solutions further in Chapter 7 when we discuss the implications of message passing sys-
temsfor parallel software.

Replication

Several issues distinguish how replication of nonlocal data is managed on different system: (i)
who is responsible for doing the replication, i.e. for making local copies of the data? (ii) wherein
the local memory hierarchy is the replication done? (iii) at what granularity are data alocated in
the replication store? (iv) how are the values of replicated data kept coherent? (v) how is the
replacement of replicated data managed?

9/10/97

DRAFT: Parallel Computer Architecture 183

Programming for Performance

With the separate virtual address spaces of the message-passing abstraction, the only way to rep-
licate communicated data is to copy the data into a process's private address space explicitly in
the application program. The replicated data are explicitly renamed in the new process's private
address space, so the virtual and physical addresses may be different for the two processes and
their copies have nothing to do with each other as far as the system is concerned. Organization-
aly, dataare always replicated in main memory first (when the copies are allocated in the address
space), and only data from the local main memory enter the processor cache. The granularity of
alocation in the local memory is variable, and depends entirely on the user. Ensuring that the val-
ues of replicated data are kept up to date (coherent) must be done by the program through explicit
messages. We shall discuss replacement shortly.

We mentioned in Chapter 1 that in a shared address space, since nonlocal data are accessed
through ordinary processor loads and stores and communication is implicit, there are opportuni-
ties for the system to replicate data transparently to the user—without user intervention or
explicit renaming of data—just as caches do in uniprocessors. This opens up awide range of pos-
sibilities. For example, in the shared physical address space system we assume, nonlocal data
enter the processor’'s cache subsystem upon reference by a load or store instruction, without
being replicated in main memory. Replication happens very close to the processor and at the rel-
atively fine granularity of cache blocks, and data are kept coherent by hardware. Other systems
may replicate data transparently in main memory—either at cache block granularity through
additional hardware support or at page or object granularity through system software—and may
preserve coherence through a variety of methods and granularities that we shall discuss in
Chapter 9. Still other systems may choose not to support transparent replication and/or coher-
ence, leaving them to the user.

Finally, let us examine the replacement of localy replicated data due to finite capacity. How
replacement is managed has implications for the amount of communicated data that needs to be
replicated at alevel of the memory hierarchy. For example, hardware caches manage replacement
automatically and dynamically with every reference and at a fine spatial granularity, so that the
cache needs to be only as large as the active working set of the workload (replication at coarser
spatial granularities may cause fragmentation and hence increase the replication capacity
needed). When replication is managed by the user program, as in message passing, it is difficult
to manage replacement this dynamically. It can of course be done, for example by maintaining a
cache data structure in local memory and using it to emulate a hardware cache for communi cated
data. However, this complicates programming and is expensive: The software cache must be
looked up in software on every referenceto seeif avalid copy aready exists there; if it does not,
the address must be checked to see whether the datum islocally allocated or a message should be
generated.

Typically, message-passing programs manage replacement less dynamically. Loca copies of
communicated data are allowed to accumulate in local memory, and are flushed out explicitly at
certain points in the program, typically when it can be determined that they are not needed for
some time. This can require substantially more memory overhead for replication in some applica
tions such as Barnes-Hut and Raytrace. For read-only data, like the scenein Raytrace many mes-
sage passing programs simply replicate the entire data set on every processing node, solving the
naming problem and almost eliminating communication, but also eliminating the ability to run
larger problems on larger systems. In the Barnes-Hut application, while one approach emulates a
shared address space and aso a cache for replication—"flushing” the cache at phase bound-
aries—in the other approach a process first replicates locally all the data it needs to compute
forces on al its assigned bodies, and only then begins to compute forces. While this means there

184

DRAFT: Parallel Computer Architecture 9/10/97

Implications for Programming Models

is no communication during the force calculation phase, the amount of data replicated in main
memory is much larger than the process's assigned partition, and certainly much larger than the
active working set which is the data needed to compute forces on only one particle
(Section 3.6.2). This active working set in a shared address space typically fits in the processor
cache, so there is not need for replication in main memory at all. In message passing, the large
amount of replication limits the scalability of the approach.

Overhead and Granularity of Communication

The overheads of initiating and receiving communication are greatly influenced by the extent to
which the necessary tasks can be performed by hardware rather than being del egated to software,
particularly the operating system. Aswe saw in Chapter 1, in a shared physical address space the
underlying uniprocessor hardware mechanisms suffice for address translation and protection,
since the shared address space is simply alarge flat address space. Simply doing address tranda-
tion in hardware as opposed to doing it in software for remote references was found to improve
Barnes-Hut performance by about 20% in one set of experiments [ScL94]. The other major task
is buffer management: incoming and outgoing communications need to be temporarily buffered
in the network interface, to allow multiple communications to be in progress simultaneously and
to stage data through a communication pipeline. Communication at the fixed granularity of cache
blocks makes it easy to manage buffers very efficiently in hardware. These factors combine to
keep the overhead of communicating each cache block quite low (afew cycles to a few tens of
cycles, depending on the implementation and integration of the communication assist).

In message-passing systems, local references are just loads and stores and thus incur no more
overhead than on a uniprocessor. Communication messages, as we know, are much more flexible.
They aretypically of avariety of possible types (see Section 2.4.6 and the tag matching discussed
in Chapter 1), of arbitrary lengths, and between arbitrary address spaces. The variety of types
requires software overhead to decode the type of message and execute the corresponding handler
routine at the sending or receiving end. The flexible message length, together with the use of
asynchronous and nonblocking messages, complicates buffer management, so that the operating
system must often be invoked to temporarily store messages. Finaly, sending explicit messages
between arbitrary address spaces requires that the operating system on a node intervene to pro-
vide protection. The software overhead needed to handle buffer management and protection can
be substantial, particularly when the operating system must be invoked. A lot of recent design
effort has focused on streamlined network interfaces and message-passing mechanisms, which
have significantly reduced per-message overheads. These will be discussed in Chapter 7. How-
ever, theissues of flexibility and protection remain, and the overheads are likely to remain several
times as large as those of |oad-store shared address space interfaces. Thus, explicit message-pass-
ing isnot likely to sustain as fine a granularity of communication as a hardware-supported shared
address space.

These three issues—naming, replication, and communication overhead—have pointed to the
advantages of an efficiently supported shared address space from the perspective of creating a
parale program: The burdens of naming and often replication/coherence are on the system
rather than the program, and communication need not be structured in large messages to amortize
overhead but can be done naturally through loads and stores. The next four issues, however, indi-
cate advantages of explicit communication.

9/10/97

DRAFT: Parallel Computer Architecture 185

Programming for Performance

Block Data Transfer

Implicit communication through loads and stores in a cache-coherent shared address space typi-
cally causes a message to be generated per reference that requires communication. The commu-
nication is usually initiated by the process that needs the data, and we call it receiver-initiated.
Each communication brings in a fixed, usually small amount of data: a cache block in our hard-
ware cache-coherent system. While the hardware support provides efficient fine-grained commu-
nication, communicating one cache block at atime is not the most efficient way to communicate
alarge chunk of data from one processor to another. We would rather amortize the overhead and
latency by communicating the data in a single message or a group of large messages. Explicit
communication, as in message passing, allows greater flexibility in choosing the sizes of mes-
sages and also in choosing whether communication is receiver-initiated or sender-initiated.
Explicit communication can be added to a shared address space naming model, and it is also pos-
sible for the system to make communication coarser-grained transparently underneath a load-
store programming model in some cases of predictable communication. However, the natural
communication structure promoted by a shared address space is fine-grained and usually
receiver-initiated. The advantages of block transfer are somewhat complicated by the availability
of alternative latency tolerance techniques, as we shall seein Chapter 11, but it clearly does have
advantages.

Synchronization

The fact that synchronization can be contained in the (explicit) communication itself in message
passing, while it is usually explicit and separate from data communication in a shared address
space is an advantage of the former model. However, the advantage becomes less significant
when asynchronous message passing is used and separate synchronization must be employed to
preserve correctness.

Hardware Cost and Design Complexity

The hardware cost and design time required to efficiently support the desirable features of a
shared address space above are greater those required to support a message-passing abstraction.
Since all transactions on the memory bus must be observed to determine when nonlocal cache
misses occur, at least some functionality of the communication assist be integrated quite closely
into the processing node. A system with transparent replication and coherence in hardware
caches requires further hardware support and the implementation of fairly complex coherence
protocols. On the other hand, in the message-passing abstraction the assist does not need to see
memory references, and can be less closely integrated on the 1/0 bus. The actual tradeoffsin cost
and complexity for supporting the different abstractions will become clear in Chapters 5, 7 and 8.

Cost and complexity, however, are more complicated issues than simply assist hardware cost and
design time. For example, if the amount of replication needed in message-passing programs is
indeed larger than that needed in a cache-coherent shared address space (due to differences in
how replacement is managed, as discussed earlier, or due to replication of the operating system),
then the memory required for this replication should be compared to the hardware cost of sup-
porting a shared address space. The same goes for the recurring cost of developing effective pro-
grams on amachine. Cost and price are also determined largely by volume in practice.

186

DRAFT: Parallel Computer Architecture 9/10/97

Implications for Programming Models

Performance M odel

In designing parallel programs for an architecture, we would like to have at least a rough perfor-
mance model that we can use to predict whether one implementation of a program will be better
than another and to guide the structure of communication. There are two aspects to a perfor-
mance model: modeling the cost of primitive events of different types—e.g. communication mes-
sages—and modeling the occurrence of these events in a parallel program (e.g. how often they
occur, in how bursty a manner, etc.). The former is usually not very difficult, and we have seen a
simple model of communication cost in this chapter. The latter can be quite difficult, especially
when the programs are complex and irregular, and it is this that distinguishes the performance
modeling ease of a shared address space from that of message passing. This aspect is signifi-
cantly easier when the important events are explicitly identified than when they are not. Thus, the
message passing abstraction has a reasonably good performance model, since all communication
is explicit. The performance guidelines for a programmer are at least clear: messages are expen-
sive; send them infrequently. In a shared address space, particularly a cache-coherent one, perfor-
mance modeling is complicated by the same property that makes developing a program easier:
Naming, replication and coherence are al implicit, so it is difficult to determine how much com-
munication occurs and when. Artifactual communication is also implicit and is particularly diffi-
cult to predict (consider cache mapping conflicts that generate communication!), so the resulting
programming guideline is much more vague: try to exploit tempora and spatial locality and use
data layout when necessary to keep communication levels low. The problem is similar to how
implicit caching can make performance difficult to predict even on a uniprocessor, thus compli-
cating the use of the simple von Neumann model of a computer which assumes that all memory
references have equal cost. However, it is of much greater magnitude here since the cost of com-
munication is much greater than that of local memory access on a uniprocessor.

In summary, the major potential advantages of implicit communication in the shared address
space abstraction are programming ease and performance in the presence of fine-grained data
sharing. The major potential advantages of explicit communication, as in message passing, are
the benefits of block data transfer, the fact that synchronization is subsumed in message passing,
the better performance guidelines and prediction ability, and the ease of building machines.

Given these tradeoffs, the questions that an architect has to answer are:

Isit worthwhile to provide hardware support for a shared address space (i.e. transparent nam-
ing), or isit easy enough to manage all communication explicitly?

If a shared address space is worthwhile, isit aso worthwhile to provide hardware support for
transparent replication and coherence?

If the answer to either of the above questionsis yes, then is the implicit communication
enough or should there also be support for explicit message passing among processing nodes
that can be used when desired (this raises a host of questions about how the two abstractions
should be integrated), which will be discussed further in Chapter 11.

The answers to these questions depend both on application characteristics and on cost. Affirma-
tive answersto any of the questions naturally lead to other questions regarding how efficiently the
feature should be supported, which raise other sets of cost, performance and programming
tradeoffs that will become clearer as we proceed through the book. Experience shows that as
applications become more complex, the usefulness of transparent naming and replication
increases, which argues for supporting a shared address space abstraction. However, with com-

9/10/97

DRAFT: Parallel Computer Architecture 187

Programming for Performance

3.8

munication naturally being fine-grained, and large granularities of communication and coherence
causing performance problems, supporting a shared address space effectively requires an aggres-
sive communication architecture.

Concluding Remarks

The characteristics of parallel programs have important implications for the design of multipro-
cessor architectures. Certain key observations about program behavior led to some of the most
important advances in uniprocessor computing: The recognition of temporal and spatial locality
in program access patterns led to the design of caches, and an analysis of instruction usage led to
reduced instruction set computing. In multiprocessors, the performance penalties for mismatches
between application requirements and what the architecture provides are much larger, so it is all
the more important that we understand the parallel programs and other workloads that are going
to run on these machines. This chapter, together with the previous one, has focussed on providing
this understanding.

Historically, many different parallel architectural genres led to many different programming
styles and very little portability. Today, the architectural convergence has led to common ground
for the devel opment of portable software environments and programming languages. The way we
think about the parallelization process and the key performance issues is largely similar in both
the shared address space and message passing programming models, although the specific granu-
larities, performance characteristics and orchestration techniques are different. While we can
analyze the tradeoffs between the shared address space and message passing programming mod-
els, both are flourishing in different portions of the architectural design space.

Another effect of architectural convergence has been a clearer articulation of the performance
issues against which software must be designed. Historically, the major focus of theoretical par-
alel algorithm development has been the PRAM model discussed in Section 3.2.4, which
ignores data access and communication cost and considers only load balance and extra work
(some variants of the PRAM model some serialization when different processorstry to accessthe
same dataword). Thisis very useful in understanding the inherent concurrency in an application,
which isthefirst conceptua step; however, it does not take important realities of modern systems
into account, such as the fact that data access and communication costs can easily dominate exe-
cution time. Historically, communication has been treated separately, and the major focus in its
treatment has been mapping the communication to different network topologies. With a clearer
understanding of the importance of communication and the important costs in a communication
transaction on modern machines, two things have happened. First, models that help analyze com-
munication cost and structure communication have been developed, such as the bulk synchro-
nous programming (BSP) model [Val90] and the LogP model [CKP+93], with the hope of
replacing the PRAM as the de facto model used for parallel algorithm analysis. These models
strive to expose the important costs associated with a communication event—such as latency,
bandwidth, overhead—as we have done in this chapter, allowing an algorithm designer to factor
them into the comparative analysis of parallel algorithms. The BSP model aso provides aframe-
work that can be used to reason about communication and parallel performance. Second, the
emphasis in modeling communication cost has shifted to the cost of communication at the end
points, so the number of messages and contention at the end points have become more important
than mapping to network topologies. In fact, both the BSP and LogP models ignore network
topology completely, modeling network latency as afixed parameter!

188

DRAFT: Parallel Computer Architecture 9/10/97

References

3.9

Models such as BSP and L ogP are important steps toward a realistic architectural model against
which to design and analyze parallel agorithms. By changing the values of the key parametersin
these models, we may be able to determine how an agorithm would perform across a range of
architectures, and how it might be best structured for different architectures or for portable per-
formance. However, much more difficult than modeling the architecture as a set of parametersis
modeling the behavior of the algorithm or application, which is the other side of the modeling
equation [SRG94]: What is the communication to computation ratio for irregular applications,
how does it change with replication capacity, how do the access patterns interact with the granu-
larities of the extended memory hierarchy, how bursty is the communication and how can this be
incorporated into the performance model. Modeling techniques that can capture these character-
istics for realistic applications and integrate them into the use of BSP or LogP have yet to be
developed.

This chapter has discussed some of the key performance properties of parallel programs and their
interactions with basic provisions of a multiprocessor’'s memory and communications architec-
ture. These properties include load balance; the communication to computation ratio; aspects of
orchestrating communication that affect communication cost; data locality and its interactions
with replication capacity and the granularities of allocation, transfer and perhaps coherence to
generate artifactual communication; and the implications for communication abstractions that a
machine must support. We have seen that the performance issues trade off with one another, and
that the art of producing a good parallel program is to obtain the right compromise between the
conflicting demands. Performance enhancement techniques can take considerable programming
effort, depending on both the application and the system, and the extent and manner in which dif-
ferent techniques are incorporated can greatly affect the characteristics of the workload presented
to the architecture. Programming for performance is aso a process of successive refinement,
where decisions made in the early steps may have to be revisited based on system or program
characteristics discovered in later steps. We have examined the four application case studies that
were introduced in Chapter 2 in depth, and seen how these issues play out in them. We shall
encounter several of these performance issues again in more detail as we consider architectural
design options, tradeoffs and evaluation in the rest of the book. However, with the knowledge of
parallel programs that we have developed, we are now ready to understand how to use the pro-
grams as workloads to evaluate parallel architectures and tradeoffs.

References

[AINSS]

[AC+95]

[Bu+92]

[CM8S]
[CKP+93]

[Da+87]

Alexander Aiken and Alexandru Nicolau. Optimal Loop Parallelization. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation, pp. 308-317,
1988.

Remzi H. Arpaci, David E. Culler, Arvind Krishnamurthy, Steve G. Steinberg and Katherine
Yelick. Empirical Evaluation of the Cray-T3D: A Compiler Perspective. Proceedings of the
Twenty-second International Symposium on Computer Architecture, pp. 320-331, June 1995.

Burkhardt, H. et a, Overview of the KSR-1 Computer System. Technical Report KSR-TR-
9202001, Kendall Square Research, Boston, February 1992.

Chandy, K.M. and Misra, J. Parallel Program Design: A Foundation. Addison Wesley, 1988.

David Culler et a. LogP: Toward aredlistic model of paralel computation. In Proceedings of the
Principles and Practice of Parallel Processing, pages 1-12, 1993.

Dally, W.J. et al. The JMachine: A Fine-grained Concurrent Computer. Proceedings of the IFIPS

9/10/97

DRAFT: Parallel Computer Architecture 189

Programming for Performance

[Den68]
[DS68]
[Fow?7]
[GP90]

[Hil85]
[HiS86]

[HoC92]

[KG+94]

[Lei+92]

[LLJ+O3]

[LO+87]

[NWDO3]

[Piess]
[Sal90]
[WaS93]

[SWW94]

[ScLo4]
[SGLY4]

[SH-+95]

World Computer Congress, pp. 1147-1153, 1989.

Denning, P.J. The Working Set Model for Program Behavior. Communications of the ACM, vol.
11, no. 5, May 1968, pp. 323-333.

Dijkstra, E.W. and Sholten, C.S. Termination Detection for Diffusing Computations. Information
Processing Letters 1, pp. 1-4.

S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proceedings of the Tenth
ACM Symposium on Theory of Computing, May 1978.

Green, S.A. and Paddon, D.J. A highly flexible multiprocessor solution for ray tracing. The Visual
Computer, vol. 6, 1990, pp. 62-73.

Hillis, W.D. The Connection Machine. MIT Press, 1985.

Hillis, W.D. and Steele, G.L. Data Parallel Algorithms. Communications of the ACM, 29(12), pp.
1170-1183, December 1986.

Hockney, R. W., and <<xxx>>. Comparison of Communications on the Intel iPSC/860 and
Touchstone Delta. Parallel Computing, 18, pp. 1067-1072, 1992.

V. Kumar, A.Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and
Analysis of Algorithms, The Benjamin/Cummings Publishing Company, Inc., Redwood City,
CA, 1994.

Charles E. Leiserson, Z.S. Abuhamdeh, D. C. Douglas, C.R. Feynmann, M.N. Ganmukhi, J.V.
Hill, W.D. Hillis, B.C. Kuszmaul, M. St. Pierre, D.S. Wells, M.C. Wong, S'W Yang and R. Zak.
The Network Architecture of the Connection Machine CM-5. In Proceedings of the Symposium
on Paralel Algorithmsand Architectures, pp. 272-285, June 1992.

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop Gupta, and
John Hennessy. The DASH Prototype: Logic Overhead and Performance. IEEE Transactions on
Parallel and Distributed Systems, 4(1):41-61, January 1993.

Lusk, E.W., Overbeek, R. et a. Portable Programs for Parallel Processors. Holt, Rinehart and
Winston, Inc. 1987.

Noakes, M.D., Wallach, D.A., and Dally, W.J. The }Machine Multicomputer: An Architectural
Evaluation. Proceedings of the Twentieth International Symposium on Computer Architecture,
May 1993, pp. 224-235.

Pierce, Paul. The NX/2 Operating System. Proceedings of the Third Conference on Hypercube
Concurrent Computers and Applications, pp. 384--390, January, 1988.

Salmon, J. Parallel Hierarchical N-body Methods. Ph.D. Thesis, California Institute of Technolo-
ay, 1990.

Warren, Michael S. and Salmon, John K. A Parallel Hashed Oct-Tree N-Body Algorithm. Pro-
ceedings of Supercomputing'93, IEEE Computer Society, pp. 12-21, 1993.

Samon, JK., Warren, M.S. and Winckelmans, G.S. Fast parallel treecodes for gravitational and
fluid dynamical N-body problems. Intl. Journa of Supercomputer Applications, vol. 8, pp. 129 -
142, 1994.

D. J. Scalesand M. S. Lam. Proceedings of the First Symposium on Operating System Design and
Implementation, November, 1994.

Singh, J.P., Gupta, A. and Levoy, M. Paralld Visualization Algorithms: Performance and Archi-
tectural Implications. |EEE Compulter, vol. 27, no. 6, June 1994.

Singh, J.P., Holt, C., Totsuka, T., Gupta, A. and Hennessy, J.L. Load balancing and data locality

in Hierarchial N-body Methods: Barnes-Hut, Fast Multipole and Radiosity. Journal of Parallel and
Distributed Computing, 1995 <<complete citation>>.

190

DRAFT: Parallel Computer Architecture 9/10/97

Exercises

[SIG+93]

[SRG94]

[SWG91]

[Val9o]

3.10

Singh, J.P., JoeT., Gupta, A. and Hennessy, J. An Empirical Comparison of the KSR-1 and DASH
Multiprocessors. Proceedings of Supercomputing’ 93, November 1993.

Jaswinder Pal Singh, Edward Rothberg and Anoop Gupta. Modeling Communication in Parallel
Algorithms: A Fruitful Interaction Between Theory and Systems? In Proceedings of the Tenth An-
nual ACM Symposium on Parallel Algorithms and Architectures, 1994.

Singh, J.P., Weber, W-D., and Gupta, A. SPLASH: The Stanford ParalleL Applicationsfor Shared
Memory. Computer Architecture News, vol. 20, no. 1, pp. 5-44, March 1992.

LedieG. Valiant. A Bridging Model for Parallel Computation. Communications of the ACM, vol.
33, no. 8, August 1990, pp. 103-111.

Exercises

3.1 Short Answer Questions:

a. For which of the applicationsthat we have described (Ocean, Galaxy, Raytrace) can we be
described to have followed this view of decomposing data rather than computation and
using an owner-computes rule in our parallelization? What would be the problem(s) with
using a strict data distribution and owner-computes rule in the others? How would you
address the problem(s)?

b. What are the advantages and disadvantages of using distributed task queues (as opposed
to aglobal task queue) to implement load balancing?

c. Do small tasks inherently increase communication, contention and task management
overhead?

d. Draw one arc from each kind of memory system traffic below (the list on the left) to the
solution technique (on the right) that isthe most effective way to reduce that source of traf-
fic in amachine that supports a shared address space with physically distributed memory.

Kinds of Memory System Traffic Solution Techniques

Cold-Start Traffic Large Cache Sizes

Inherent Communication Data Placement

Extra Data Communication on a Miss Algorithm Reorganization
Capacity-Generated Communication Larger Cache Block Size
Capacity-Generated Local Traffic Data Structure Reorganization

e. Under what conditions would the sum of busy-useful time across processes (in the execu-
tion time) not equal the busy-useful time for the sequential program, assuming both the
sequentia and parallel programs are deterministic? Provide examples.

3.2 Levelsof paraleism.

a. Asan example of hierarchical parallelism, consider an algorithm frequently used in medi-
cal diagnosis and economic forecasting. The agorithm propagates information through a
network or graph, such asthe onein Figure 3-22. Every node represents a matrix of val-
ues. The arcs correspond to dependences between nodes, and are the channels along
which information must flow. The algorithm starts from the nodes at the bottom of the
graph and works upward, performing matrix operations at every node encountered along
the way. It affords parallelism at least two levels: Nodes that do not have an ancestor-
descendent relationship in the traversal can be computed in paralel, and the matrix com-
putations within a node can be parallelized as well. How would you parallelize this algo-
rithm? What are the tradeoffs that are most important?

9/10/97

DRAFT: Parallel Computer Architecture 191

Programming for Performance

1. Update matrix \
with incoming data

2. Perform matrix-
vector multiply
to compute

outgoing data

Figure 3-22 Levelsof paralelismin agraph computation.

The work within a graph node is shown in the expanded node o the left.

b. Levelsof parallelism in locusroute. What are the tradeoffs in determining which level to
pick. What parameters affect your decision? What you would you pick for this case: 30
wires, 24 processors, 5 segments per wire, 10 routes per segment, each route evaluation
takes same amount of time? If you had to pick one and be tied to it for all cases, which
would you pick (you can make and state reasonabl e assumptions to guide your answer)?

3.3 LU factorization.

a. Analyze the load balance and communication volume for both cases of broadcast based
LU with row decomposition: block assignment and interleaved assignment.

b. What if we used a two-dimensional scatter decomposition at the granularity of individual
elements. Analyze the load balance and communication volume.

c. Discuss the tradeoffs (programming difficulty and likely performance differences) in pro-
gramming the different versions in the different communication abstractions. Would you
expect one to always be better?

d. Canyou think of a better decomposition and assignment? Discuss.

e. Analyzethe load balance and communication volume for a pipelined implementation in a
2-d scatter decomposition of elements.
f. Discussthe tradeoffsin the performance of the broadcast versus pipelined versions.
3.4 If Eisthe set of sections of the algorithm that are enhanced through parallelism, f isthe frac-
tion of the sequential execution time taken up by the K enhanced section when run on a uni-

processor, and s is the speedup obtained through parallelism on the K" enhanced section,
derive an expression for the overall speedup obtained. Apply it to the broadcast approach for

192 DRAFT: Parallel Computer Architecture 9/10/97

Exercises

LU factorization at element granularity. Draw a rough concurrency profile for the computa-
tion (a graph showing the amount of concurrency versus time, where the unit of timeisalog-
ical operation, say updating an interior active element, performed on one or more processors.
Assume a 100-by-100 element matrix. Estimate the speedup, ignoring memory referencing
and communication costs.

3.5 We have discussed the technique of blocking that iswidely used in linear algebra algorithms

to exploit temporal locality (see Section 3.4.1). Consider a sequential LU factorization pro-
gram as described in this chapter. Compute the read miss rate on a system with a cache size of
16KB and a matrix size of 1024-by-1024. Ignore cache conflicts, and count only access to
matrix elements. Now imagine that LU factorization is blocked for temporal locality, and
compute the miss rate for a sequential implementation (this may be best done after reading
the section describing the LU factorization program in the next chapter). Assume ablock size
of 32-by-32 elements, and that the update to a B-by-B block takes B3 operations and B2 cache
misses. Assume no reuse of blocks across block operations. If read misses cost 50 cycles,
what is the performance difference between the two versions (counting operations as defined
above and ignoring write accesses).

3.6 It was mentioned in the chapter that termination detection is an interesting aspect of task

stealing. Consider a task stealing scenario in which processes produce tasks as the computa-
tion is ongoing. Design a good tasking method (where to take tasks from, how to put tasks
into the pool, etc.) and think of some good termination detection heuristics. Perform worst-
case complexity analysis for the number of messages needed by the termination detection
methods you consider. Which one would you use in practice? Write pseudocode for one that
is guaranteed to work and should yield good performance

3.7 Consider transposing a matrix in parallel, from a source matrix to a destination matrix, i.e.

B[i.j] =A[.i].

a. How might you partition the two matrices among processes? Discuss some possibilities
and the tradeoffs. Does it matter whether you are programming a shared address space or
message passing machine?

b. Why is the interprocess communication in a matrix transpose called al-to-all personal-
ized communication?

¢. Write simple pseudocode for the parallel matrix transposition in a shared address space
and in message passing (just the loops that implement the transpose). What are the major
performance issues you consider in each case, other than inherent communication and
load balance, and how do you address them?

d. Isthere any benefit to blocking the parallel matrix transpose? Under what conditions, and
how would you block it (no need to write out the full code)? What, if anything, is the dif-
ference between blocking here and in LU factorization?

3.8 The communication needs of applications, even expressed in terms of bytes per instruction,

can help us do back-of-the-envel ope calculations to determine the impact of increased band-
width or reduced latency. For example, a Fast Fourier Transform (FFT) isan agorithm that is
widely used in digital signa processing and climate modeling applications. A simple parallel
FFT on n data points has a per-process computation cost of O(n log n/ p), and per-process
communication volume of O(n/p), where p isthe number of processes. The communication to
computation ratio is therefore O(L/log n). Suppose for simplicity that all the constants in the
above expressions are unity, and that we are performing an n=1M (or 22°) point FFT on
p=1024 processes. L et the average communication latency for a word of data (a point in the
FFT) be 200 processor cycles, and let the communication bandwidth between any node and
the network be 100M B/sec. Assume no load imbalance or synchronization costs.

9/10/97

DRAFT: Parallel Computer Architecture 193

Programming for Performance

a. With no latency hidden, for what fraction of the execution time is a process stalled due to
communication latency?

b. What would be the impact on execution time of halving the communication latency?
¢. What are the node-to-network bandwidth requirements without latency hiding?

d. What are the node-to-network bandwidth requirements assuming all latency is hidden,
and does the machine satisfy them?

3.9 What kind of data (local, nonlocal, or both) constitute the relevant working set in: (i) main
memory in a message-passing abstraction, (ii) processor cache in a message-passing abstrac-
tion, (iii) processor cache in cache-coherent shared address space abstraction.

3.10 Implement areduction and abroadcast. First an O(p) linear method, thenan O(log p) i.e. tree
based, method. Do this both for a shared address space and for message-passing.

3.11 After the assignment of tasksto processors, thereisstill theissue of scheduling the tasks that
aprocessisassigned to run in some temporal order. What are the major issuesinvolved here?
Which are the same as on uniprocessor programs, and which are different? Construct exam-
plesthat highlight the impact of poor scheduling in the different cases.

3.12 Inthe data mining case study, why are 2-itemsets computed from the original format of the
database rather than the transformed format?

3.13 You have been given the job of creating a word count program for a major book publisher.
You will be working on a shared-memory multiprocessor with 32 processing elements. Your
only stated interface is “get_words’ which returns an array of the book’s next 1000 words to
be counted. The main work each processor will do should look like this:

whi | e(get _words(word)) {
for (i=0; i<1000; i++) {
if word[i] is in list
increnent its count
el se
add word to |ist

}

/* Once all words have been | ogged,
the list should printed out */

Using pseudocode, create a detailed description of the control flow and data structures that
you will use for this program. Your method should attempt to minimize space, synchroniza-
tion overhead, and memory latency. This problem allows you a lot of flexibility, so state all
assumptions and design decisions.

194

DRAFT: Parallel Computer Architecture 9/10/97

Introduction

CHAPTER 4

Workload-Driven Evauation

Morgan Kaufmann ispleased to present material from a preliminary draft of Parallel Computer Architecture; the
material is(c) Copyright 1996 Morgan Kaufmann Publishers. Thismaterial may not be used or distributed for any
commercial purpose without the expresswritten consent of Morgan Kaufmann Publishers. Please note that this
material isadraft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changes or alterationsin thefinal edition.

4.1

I ntroduction

The field of computer architecture is becoming increasingly quantitative. Design features are
adopted only after detailed evaluations of tradeoffs. Once systems are built, they are evaluated
and compared both by architects to understand their tradeoffs and by users to make procurement
decisions. In uniprocessor design, with arich base of existing machines and widely used applica-
tions, the process of evaluating tradeoffs is one of careful extrapolation from known quantities.
Isolated performance characteristics of the machines can be obtained from microbenchmarks,
small programs that stress a particular machine feature. Popular workloads are codified in stan-
dard benchmarks suites, such as the Standard Performance Evaluation Corporation (SPEC)
benchmark suite [SPE89] for engineering workloads, and measurements are made on a range of
existing design alternatives. Based on these measurements, assessments of emerging technology,
and expected changes in requirements, designers propose new aternatives. The ones that appear
promising are typically evaluated through simulation. First, a simulator, a program that simulates

9/10/97

DRAFT: Parallel Computer Architecture 195

Workload-Driven Evaluation

the design with and without the proposed feature of interest, is written. Then a number of pro-
grams, or multiprogrammed workloads, representative of those that are likely to run on the
machine are chosen. These workloads are run through the simulator and the performance impact
of the feature determined. This, together with the estimated cost of the feature in hardware and
design time, determines whether the feature will be included. Simulators are written to be flexi-
ble, so organizational and performance parameters can be varied to understand their impact as
well.

Good workload-driven evaluation is a difficult and time consuming process, even for uniproces-
sor systems. The workloads need to be renewed as technology and usage patterns change. Indus-
try-standard benchmark suites are revised every few years. In particular, the input data sets used
for the programs affect many of the key interactions with the systems, and determine whether or
not the important features of the system are stressed. For example, to take into account the huge
increases in processor speeds and changes in cache sizes, a mgor change from SPEC92 to
SPEC95 was the use of larger input data sets to stress the memory system. Accurate simulators
are costly to develop and verify, and the simulation runs consume huge amounts of computing
time. However, these efforts are well rewarded, because good evaluation yields good design.

As multiprocessor architecture has matured and greater continuity has been established from one
generation of machines to the next, a similar quantitative approach has been adopted. Whereas
early parallel machines were in many cases like bold works of art, relying heavily on the
designer’sintuition, modern design involves considerable evaluation of proposed design features.
Here too, workloads are used to evaluate real machines as well as to extrapolate to proposed
designs and explore tradeoffs through software simulation. For multiprocessors, the workloads of
interest are either parallel programs or multiprogrammed mixes of sequential and parallel pro-
grams. Evaluation is a critical part of the new, engineering approach to multiprocessor architec-
ture; it is very important that we understand the key issues in it before we go forward into the
core of multiprocessor architecture and our own evaluation of tradeoffs in this book.

Unfortunately, the job of workload-driven evaluation for multiprocessor architecture is even
more difficult than for uniprocessors, for several reasons.

Immaturity of parallel applications It is not easy to obtain “representative” workloads for
multiprocessors, both because their use is relatively immature and because several new
behavioral axes arise to be exercised.

Immaturity of parallel programming languages The software model for parallel program-
ming has not stabilized, and programs written assuming different models can have very dif-
ferent behavior.

Sensitivity of behavioral differences Different workloads, and even different decisions made
in paralelizing the same sequential workload, can present vastly different execution charac-
teristics to the architecture.

New degrees of freedom There are several new degrees of freedom in the architecture. The
most obvious is the number of processors. Others include the organizational and performance
parameters of the extended memory hierarchy, particularly the communication architecture.
Together with the degrees of freedom of the workload (i.e. application parameters) and the
underlying uniprocessor node, these parameters lead to a very large design space for experi-
mentation, particularly when evaluating an idea or tradeoff in a general context rather than
evaluating a fixed machine. The high cost of communication makes performance much more

196

DRAFT: Parallel Computer Architecture 9/10/97

Introduction

sensitive to interactions among al these degrees of freedom than it isin uniprocessors, mak-
ing it al the more important that we understand how to navigate the large parameter space.

Limitations of simulation Simulating multiprocessors in software to evaluate design decisions
is more resource intensive than simulating uniprocessors. Multiprocessor simulations con-
sume alot of memory and time, and unfortunately do not speed up very well when parallel-
ized themselves. Thus, although the design space we wish to explore is larger, the space that
we can actually explore is often much smaller. We have to make careful tradeoffs in deciding
which parts of the space to simulate.

Our understanding of parallel programs from Chapters 2 and 3 will be critical in dealing with
these issues. Throughout this chapter, we will learn that effective evaluation requires understand-
ing the important properties of both workloads and architectures, as well as how these properties
interact. In particular, the relationships among application parameters and the number of proces-
sors determine fundamental program properties such as communication to computation ratio,
load balance, and temporal and spatial locality. These properties interact with parameters of the
extended memory hierarchy to influence performance, in application-dependent and often dra-
matic ways (see Figure 4-1). Given a workload, choosing parameter values and understanding

== Origin-512K
3 Origin-64K

N=1026
N=514

Processors

~B_N=258
—48—N=130

—&8—0rigin-16K
~=Jt~ Challenge-512K
Challenge-16K

~ o o © o o

Processors

(a) Ocean on Origin2000

(b) Barnes-Hut on two machines

Figure 4-1 Impact of problem size on parallel performance.

For many applications
number of processors.
lem sizes.

:

like Ocean on the |eft), the effect is dramatic, at least until the problem size becomes large enough for the
or others, like the Barnes-Hut galaxy simulation on the right, the effect is much smaller for interesting prob-

their scaling relationships and interactionsis a crucial aspect of workload-driven evaluation, with
far-reaching implications for evaluating both real machines and architectural tradeoffs. It affects
the experiments we design for adequate coverage as well as the conclusions of our evaluations,
and helps us restrict the number of experiments or parameter combinations we must examine.

An important goal of this chapter is to highlight the key interactions of workload properties and
these parameters or sizes, illustrate their significance and point out the important pitfalls. While
thereisno universal formulafor evaluation, the chapter articulates a methodol ogy for both evalu-
ating real machines and assessing tradeoffs through simulation This methodology is followed in
severa illustrative evaluations throughout the book. It isimportant that we not only perform good

9/10/97

DRAFT: Parallel Computer Architecture 197

Workload-Driven Evaluation

4.2

evaluations ourselves, but also understand the limitations of our own and other people's studies
so we can keep them in perspective as we make architectural decisions.

The chapter begins by discussing the fundamental issue of scaling workload parameters as the
number of processors or size of the system increases, and the implications for performance met-
rics and the behavioral characteristics of programs. The interactions with parameters of the
extended memory hierarchy and how they should be incorporated into the actual design of exper-
iments will be discussed in the next two sections, which examine the two major types of evalua-
tions.

Section 4.3 outlines a methodology for evaluating areal machine. Thisinvolves first understand-
ing the types of benchmarks we might use and their roles in such evaluation—including
microbenchmarks, kernels, applications, and multiprogrammed workloads—as well as desirable
criteria for choosing them. Then, given a workload we examine how to choose its parameters to
evaluate a machine, illustrating the important considerations and providing examples of how
inappropriate or limited choices may lead us to incorrect conclusions. The section ends with a
summary of the roles of various metrics that we might use to interpret and present results.

Section 4.4 extends this methodological discussion to the more challenging problem of evaluat-
ing an architectural tradeoff in a more general context through simulation. Having understood
how to perform workload-driven evaluation, in Section 4.5 provide the methodologically relevant
characteristics of the workloads used in the illustrative evaluations presented in the book. Some
important publicly available workload suites for parallel computing and their philosophies are
described in APPENDIX A.

Scaling Wor kloads and M achines

Suppose we have chosen a parallel program as a workload, and we want to use it to evaluate a
machine. For a parallel machine, there are two things we might want to measure: the absolute
performance, and the performance improvement due to parallelism. The latter is typically mea-
sured as the speedup, which was defined in Chapter 1 (Section 1.2.1) as the absolute performance
achieved on p processors divided by that achieved on a single processor. Absolute performance
(together with cost) is most important to the end user or buyer of a machine. However, in itself it
does not tell us much about how much of the performance comes from the use of parallelism and
the effectiveness of the communication architecture rather than the performance of an underlying
single-processor node. Speedup tells us this, but with the caveat that it is easier to obtain good
speedup when the individual nodes have lower performance. Both are important, and both should
be measured.

Absolute performance is best measured as work done per unit of time. The amount of work to be
doneisusualy defined by the input configuration on which the program operates. Thisinput con-
figuration may either be available to the program up front, or it may specify a set of continuously
arriving inputs to a “server” application, such as a system that processes a bank’s transactions or
responds to inputs from sensors. For example, suppose the input configuration, and hence work,
iskept fixed across the set of experimentswe perform. We can then treat the work as a fixed point
of reference and define performance as the reciprocal of execution time. In some application
domains, users find it more convenient to have an explicit representation of work, and use a
work-per-unit-time metric even when the input configuration is fixed; for example in a transac-

198

DRAFT: Parallel Computer Architecture 9/10/97

Scaling Workloads and Machines

421

tion processing system it could be the number of transactions serviced per minute, in a sorting
application the number of keys sorted per second, and in a chemistry application the number of
bonds computed per second. It is important to realize that even though work is explicitly repre-
sented performance is measured with reference to a particular input configuration or amount of
work, and that these metrics are derived from measurements of execution time (together with the
number of application events of interest). Given afixed problem configuration, thereis no funda-
mental advantage to these metrics over execution time. In fact, we must be careful to ensure that
the measure of work being used isindeed ameaningful measure from the application perspective,
not something that one can cheat against. We shall discuss desirable properties of work metrics
further as we go aong, and return to some of the more detailed issues in metricsin Section 4.3.5.
For now, let us focus on evaluating the improvement in absolute performance due to parallelism,
i.e. dueto using p processors rather than one.

With execution time as our measure of performance, we saw in Chapter 1 that we could simply
run the program with the same input configuration on one and p processors, and measure the
T ime(1proc)

improvement or speedup as Time(p procs)

With operations per second, we can measure

OperationsPer Second(p procs)
OperationsPer Second(1proc)
performance on one processor; for example, it is more honest to use the performance of the best
sequential program running on one processor rather than the parallel program itself running on
one processor, apoint we shall return to in Section 4.3.5. But thisis quite easily addressed. Asthe
number of processorsis changed, we can simply run the problem on the different numbers of pro-

cessors and compute speedups accordingly. Why then all the fuss about scaling?

speedup as . There is a question about how we should measure

Why Worry about Scaling?

Unfortunately, there are several reasons why speedup measured on a fixed problem is limited as
the only way of evaluating the performance improvement due to parallelism across a range of
machine scales.

Suppose the fixed problem size we have chosen is relatively small, appropriate for evaluating a
machine with few processors and exercising their communication architectures. As we increase
the number of processors for the same problem size, the overheads due to parallelism (communi-
cation, load imbalance) increase relative to useful computation. There will come a point when the
problem size is unrealistically small to evaluate the machine at hand. The high overheads will
lead to uninterestingly small speedups, which reflect not so much the capabilities of the machine
as the fact that an inappropriate problem size was used (say one that does not have enough con-
currency for the large machine). In fact, there will come a point when using more processors does
not improve performance, and may even hurt it as the overheads begin to dominate useful work
(see Figure 4-2(a)). A user would not run this problem on amachine that large, so it is not appro-
priate for evaluating this machine. The same is true if the problem takes a very small amount of
time on the large machine.

On the other hand, suppose we choose a problem that is realisticaly large for a machine with
many processors. Now we might have the opposite problem in evaluating the performance
improvement due to parallelism. This problem may be too big for a single processor, in that it
may have data requirements that are far too large to fit in the memory of a single node. On some
machines it may not be runnable on a single processor; on others the uniprocessor execution will

9/10/97

DRAFT: Parallel Computer Architecture 199

Workload-Driven Evaluation

.
2 ——Ideal %5
E Ocean: 258-hy-258 2
015 K
[% 20
15 —A_Grid Solver: 12K-by-124
10 —8—Ideal
. 10
5 / 5
.
R 0
v B T
o | see oo uenra 28823
- M n s~ o - m o0~ o = Mo v ~N o oo Processors
Ll - = oo - N N N N N O
Processors
(@) Small Ocean problem (b) Superlinear speedup with big equation solver problem

Figure 4-2 Speedups on the SGI Origin2000 as the number of processors increases.

(a) shows the speedup for a small problem size in the Ocean application. The problem size is clearly very appropriate for a machine
with 8 or so processors. At alittle beyond 16 processors, the speedup has saturated and it is no longer clear that one would run this
problem size on this large a machine, And thisis clearly the wrong problem size to run on or evaluate a machine with 32 or more pro-
cessors, since we'd be better off running it on amachine with 8 or 16 processors! (IE) shows the speedup for the equation solver kernel

illustrating superlinear speedups when a processor’s working set fitsin cache by t

e time 16 processors are used, but does not fit and

performs poorly when fewer processors are used.

thrash severely to disk; and on still others the overflow data will be alocated in other node’'s
memoriesin the extended hierarchy, leading to alot of artifactual communication and hence poor
performance. When enough processors are used, the data will fit in their collective memories,
eliminating this artifactual communication if the data are distributed properly. The usual speedup
is augmented by the great reduction in this artifactual communication, and the result is a speedup
far beyond the number of processors used. Once this has happened, the increase in speedup will
behave in a more usual way as the number of processors is increased, but the overall speedup
over a uniprocessor is still superlinear in the number of processors. This situation holds for any
level of the memory hierarchy, not just main memory; for example, the aggregate cache capacity
of the machine grows as processors are added. An example using cache capacity isillustrated for
the equation solver kernel in Figure 4-2(b). This greatly superlinear speedup due to memory sys-
tem effects is not fake. Indeed, from a user's perspective the availability of more, distributed
memory is an important advantage of parallel systems over uniprocessor workstations, since it
enables them to run much larger problems and to run them much faster. However, the superlinear
speedup does not alow us to separate out the two effects, and as such does not help us evaluate
the effectiveness of the machine's communication architecture.

Finaly, using the same problem size (input configuration) as the number of processors is
changed often does not reflect realistic usage of the machine. Users often want to use more pow-
erful machines to solve larger problems rather than to solve the same problem faster. In these
cases, since problem size is changed together with machine size in practical use of the machines,
it should be changed when eval uating the machines aswell. Clearly, this has the potential to over-
come the above problems with evaluating the benefits of parallelism. Together with an apprecia-

200

DRAFT: Parallel Computer Architecture 9/10/97

Scaling Workloads and Machines

tion for how technology scales (for example, processor speeds relative to memory and network
speeds), understanding scaling and itsimplicationsis also very important for designing next-gen-
eration machines and determining appropriate resource distributions for them [RSG93].

We need well-defined scaling models for how problem size should be changed with machine
size, so that we can evaluate machines against these models. The measure of performance is
always work per unit of time. However, if the problem sizeis scaled the work done does not stay
constant, so we cannot simply compare execution times to determine speedup. Work must be rep-
resented and measured, and the question is how. We will discuss these issuesin this section, and
illustrate the implications of the scaling models for program characteristics such as the communi-
cation to computation ratio, load balance, and data locality in the extended memory hierarchy.
For simplicity, we focus on the case where the workload is a single parallel application, not a
multiprogrammed load. But first, we need to clearly define two terms that we have used infor-
mally so far: scaling a machine, and problem size.

Scaling a M achine means making it more (or less) powerful. This can be done by making any
component of the machine bigger, more sophisticated, or faster: the individual processors, the
caches, the memory, the communication architecture or the 1/0O system. Since our interest isin
parallelism, we define machine size as the number of processors. We assume that the individual
node, its local memory system, and the per-node communication capabilities remain the same as
we scale; scaling a machine up thus means adding more nodes, each identical to the ones already
present in the machine. For example, scaling a machine with p processors and p* m megabytes of
total memory by afactor of k results in a machine with k* p processors and k* p* m megabytes of
total memory.

Problem size refers to a specific problem instance or input configuration. It is usually specified
by avector of input parameters, not just a single parameter n (an n-by-n grid in Ocean or n parti-
cles in Barnes-Hut). For example, in Ocean, the problem size is specified by a vector V = (n, &,
At, T), where n is the grid size in each dimension (which specifies the spatial resolution of our
representation of the ocean), € is the error tolerance used to determine convergence of the multi-
grid equation solver, At is the temporal resolution, i.e. the physical time between time-steps, and
T isthe number of time-steps performed. In atransaction processing system, it is specified by the
number of terminals used, the rate at which users at the terminals issue transactions, the mix of
transactions, etc. Problem sizeis amagjor factor that determines the work done by the program.

Problem size should be distinguished from data set size. The data set size for a parallel program
is the amount of storage that would be needed to run the program, assuming no replication; i.e.
the amount of main memory that would be needed to fit the problem on asingle processor. Thisis
itself distinct from the actual memory usage of the program, which is the amount of memory used
by the parallel program including replication. The data set size typically depends on asmall num-
ber of program parameters, most notably the one above that is usually represented as n. In Ocean,
for example, the data set size is determined solely by n. The number of instructions and the exe-
cution time, however, are not, and depend on all the other problem size parameters as well. The
problem size vector will also cause the number of instructions issued (and the execution time) to
change. Thus, while the problem size vector V determines many important properties of the
application program—such asits data set size, the number of instructions it executes and its exe-
cution time—it is not identical to any one of these.

9/10/97

DRAFT: Parallel Computer Architecture 201

Workload-Driven Evaluation

4.2.2

4.2.3

Key Issuesin Scaling

Given these definitions, there are two major questions to address when scaling a problem to run
on alarger machine:

Under what constraints should the problem be scaled? To define a scaling model, some prop-
erty must be kept fixed as the machine scales. For example, we may scale so the data set size
per processor remains fixed, or the execution time, or the number of transactions executed per
second, or the number of particles or rows of amatrix assigned to each processor.

How should the problem be scaled? That is, how should the parameters in the problem-size
vector V be changed to meet the chosen constraints?

To simplify the discussion, we shall begin by pretending that the problem size is determined by a
single parameter n, and examine scaling models and their impact under this assumption. Later, in
Section 4.2.4, we shall examine the more subtle issue of scaling workload parameters relative to
one another.

Scaling Models

Many aspects of a problem and its execution may be used as the basis for scaling constraints. We
can divide them into two categories: user-oriented properties, and resource-oriented properties.
Examples of user-oriented properties that we might keep fixed as we scale are the number of par-
ticles per processor, the number of rows of a matrix per processor, the number of transactions
issued to the system per processor, or the number of 1/O operations performed per processor.
Examples of resource-oriented constraints are execution time and the total amount of memory
used per processor. Each of these defines a distinct scaling model, since the amount of work done
for a given number of processors is different when scaling is performed under different con-
straints. Whether user- or resource-oriented constraints are more appropriate, and which
resource- or user-oriented constraint is most useful, depends on the application domain. Our job,
or the job of people constructing benchmarks, isto ensure that the scaling constraints we use are
meaningful for the domain at hand. User-oriented constraints are usually much easier to follow
(e.g. simply change the number of particles linearly with the number of processors). However,
large-scale programs are in practice often run under tight resource constraints, and resource con-
straints are more universal across application domains (time is time and memory is memory,
regardless of whether the program deals with particles or matrices). We will therefore use
resource constraints to illustrate the effects of scaling models. Let us examine the three most pop-
ular resource-oriented models for the constraints under which an application should be scaled to
run on ak times larger machine:

Problem constrained (PC) scaling Here, the problem size is kept fixed, i.e. isnot scaled at al,
despite the concerns with a fixed problem size discussed earlier. The same input configuration
is used regardless of the number of processors on the machine.

Time constrained (TC) scaling Here, the wall-clock execution time needed to complete the
program is held fixed. The problem is scaled so that the new problem’s execution time on the
large machine isthe same as the old problem’s execution time on the small machine [Gus38].

Memory constrained (MC) scaling Here, the amount of main memory used per processor is

held fixed. The problem is scaled so that the new problem uses exactly k times as much main
memory (including data replication) as the old problem. Thus, if the old problem just fit in the

202

DRAFT: Parallel Computer Architecture 9/10/97

Scaling Workloads and Machines

memory of the small machine, then the new problem will just fit in the memory of the large
machine.

More speciaized models are more appropriate in some domains. For example, in its commercial
online transaction processing benchmark, the Transaction Processing Council (TPC, discussed
later) dictates a scaling rule in which the number of user terminals that generate transactions and
the size of the database are scaled proportionally with the “computing power” of the system
being evaluated, measured in a specific way. In this as well asin TC and MC scaling, scaling to
meet resource constraints often requires some experimentation to find the appropriate input, since
resource usage doesn’t usually scale cleanly with input parameters. Memory usage is sometimes
more predictable—especialy if there is no need for replication in main memory—»but it is diffi-
cult to predict the input configuration that would take the same execution time on 256 processors
that another input configuration took on 16. Let uslook at each of PC, TC and MC scaling alittle
further, and see what “work per unit of time” transates to under them.

Problem Constrained Scaling

The assumption in PC scaling is that a user wants to use the larger machine to solve the same
problem faster, rather than to solve alarger problem. Thisis not an unusual situation. For exam-
ple, if avideo compression algorithm currently handles only one frame per second, our goal in
using parallelism may not be to compress alarger image in one second, but rather to compress 30
frames per second and hence achieve rea-time compression for that frame size. As another
example, if aVL S routing tool takes a week to route a complex chip, we may be moreinterested
in using additional parallelism to reduce the routing time rather than to route a larger chip. How-
ever, aswe saw in Figure 4-2, the PC scaling model in general makes it difficult to keep achiev-
ing good speedups on larger machines. Since work remains fixed, we can use the formul ations of
the speedup metric that we discussed earlier:

_ Time(1 processors)
Speedupp(p processors) Time(p processon

Time constrained scaling

This model assumes that users have a certain amount of time that they can wait for a program to
execute regardless of the scale of machine being used, and they want to solve the largest possible
problem in that fixed amount of time (think of a user who can afford to buy eight hours of com-
puter time at a computer center, or one who iswilling to wait overnight for a run to complete but
needs to have the results ready to analyze the next morning). While in PC scaling the problem
sizeis kept fixed and the execution time varies, in TC scaling the problem size increases but the
execution time is kept fixed. Since performance is work divided by time, and since time stays
fixed as the system is scaled, speedup can be measured as the increase in the amount of work
donein that execution time;

Work(p processors)
Work(1 processor)

Speedup(p processors) =

The question is how to measure work. If we measure it as actual execution time on a single pro-
cessor, then we would have to run the larger (scaled) problem size on a single processor of the
machine to obtain the numerator. But this is fraught with the same thrashing difficulty as before,
either in the caches or in the main memory or both, and may frequently lead to superlinear speed-
ups. The desirable properties for awork metric are:

9/10/97

DRAFT: Parallel Computer Architecture 203

Workload-Driven Evaluation

Example 4-1

Answer

Ease of measurement and architectural independence The metric should be easy to measure
and as architecture-independent as possible. Ideally, it should be easily modeled with an ana-
lytical expression based only on the application, and we should not have to perform any addi-
tional experiments to measure the work in the scaled-up problem.

Linear scaling The measure of work should scale linearly with sequential time complexity of
the algorithm.

Why is the linear scaling property important for a work metric? lllustrate with an
example.

The linear scaling property isimportant if we want the ideal speedup to be linear in
the number of processors (ignoring computational non-determinism and memory
system artifacts that can make the speedup superlinear). To see this, suppose we use
as our work metric the number of rows n in the square matrices that we multiply in
matrix multiplication. Let us ignore memory system artifacts. |f the uniprocessor
problem has n, rows, then its execution “time” or the number of multiplication
operations it needs to execute will be proportional to ng . Thisis the problem size.
Since the problem is deterministic, ignoring memory system artifacts the best we
can hope p processors to do in the same time is ng x p operations, which
corresponds to [h x 3/p0-by- [hy x 3/p0 matrices, even if we assume no load
imbalance and no communication cost. If we measure work as the number of rows,
then the speedup even in this idealized case will be 3/p instead of p. Using the
number of pointsin the matrix (n?) asthe work metric also does not work from this
perspective, since it would result in an ideal time-constrained speedup of p2/3.

Theideal case for measuring work is ameasure that satisfies both the above conditions, andisan
intuitive parameter from auser’s perspective. For example, in sorting integer keys using a method
called radix sorting (discussed further in Section 4.5.1), the sequential complexity grows linearly
with the number of keysto be sorted, so we can use keys/second as the measure of performance.
However, such ameasure isdifficult to find in real applications, particularly when multiple appli-
cation parameters are scaled and affect execution time in different ways (see Section 4.2.4). So
what should we do?

If we can indeed find a single intuitive parameter that has the desirable properties, then we can
useit. If not, we can try to find a measure that can be easily computed from an intuitive parameter
and that scales linearly with the sequential complexity. The Linpack benchmark, which performs
matrix factorization, does this. It is known that when compiled well the benchmark should take
2n3

5 operations of a certain type to factorize an n-by-n matrix, and the rest of the operations are

either proportional to or completely dominated by these. This number of operations is easily
computed from the input matrix dimension n, clearly satisfies the linear scaling property, and
used as the measure of work.

Real applications are often more complex, since there are multiple parameters to be scaled. Even
so, aslong as we have awell-defined rule for scaling them together we may be able to construct a
measure of work that is linear in the combined effect of the parameters on sequential complexity.
However, such work counts may no longer be simple or intuitive to the user, and they require

204

DRAFT: Parallel Computer Architecture 9/10/97

Scaling Workloads and Machines

either the evaluator to know alot about the application or the benchmark provider to provide such
information. Also, in complex applications analytical predictions are usualy smplified (e.g. they
are average case, or they do not reflect “implementation” activities that can be quite significant),
so the actual growth rates of instructions or operations executed can be a little different than
expected.

If none of these mechanisms works, the most general technique isto actually run the best sequen-
tial algorithm on a uniprocessor with the base problem and with the scaled problem, and deter-
mine how some work measure has grown. If a certain type of high-level operation, such as a
particle-particle interaction, is known to always be directly proportional to the sequential com-
plexity, then we can count these operations. More generally, and what we recommend if possible,
is to measure the time taken to run the problem on a uniprocessor assuming that all memory ref-
erences are cache hits and take the same amount of time (say a single cycle), thus eliminating
artifacts due to the memory system. This work measure reflects what actually goes on when run-
ning the program, yet avoids the thrashing and superlinearity problems, and we call it the perfect-
memory execution time. Notice that it corresponds very closely to the sequential busy-useful time
introduced in Section 3.5. Many computers have system utilities that allow usto profile computa-
tions to obtain this perfect-memory execution time. If not, we must resort to measuring how
many times some high-level operation occurs.

Once we have a work measure, we can compute speedups as described above. However, deter-
mining the input configuration that yields the desired execution time may take some iterative
refinement.

Memory constrained scaling

Thismodel is motivated by the assumption that the user wantsto run the largest problem possible
without overflowing the machine's memory, regardless of execution time. For example, it might
be important for an astrophysicist to run an N-body simulation with the largest number of parti-
cles that the machine can accommodate, to increase the resolution with which the particles sam-
ple the universe. An improvement metric that has been used with MC scaling is scaled speedup,
which is defined as the speedup of the larger (scaled) problem on the larger machine, that is, it is
the ratio of the time that the scaled problem would take to run on a single processor to the time
that it takes on the scaled machine. Presenting scaled speedups under MC scaling is often attrac-
tive to vendors because such speedups tend to be high. This is because what we are really mea-
suring is the problem-constrained speedup on a very large problem, which tends to have a low
communication to computation ratio and abundant concurrency. In fact, the problem will very
likely not fit in a single node's memory and may take a very long time on a uniprocessor due to
thrashing (if it runs at al), so the measured scaled speedup is likely to be highly superlinear. The
scaled problem is not what we run on a uniprocessor anyway under this model, so thisis not an
appropriate speedup metric.

Under MC scaling, neither work nor execution time are held fixed. Using work divided by time
as the performance metric as always, we can define speedup as:

Work(p Cprocs) y Time(1 Cproc)

Speedupyc(p processors) = Timep Cprocs]” Work(1 Cproc)

I ncreasel nWork
Increasel nExecutionTime

9/10/97

DRAFT: Parallel Computer Architecture 205

Workload-Driven Evaluation

If the increase in execution time were only due to the increase in work and not due to overheads
of parallelism—and if there were no memory system artifacts, which are usually less likely under
MC scaling—the speedup would be p, which is what we want. Work is measured as discussed
above for TC scaling.

MC scaling is indeed what many users may want to do. Since data set size grows fastest under it
compared to other models, parallel overheads grow relatively slowly and speedups often tend to
be better than for other scaling models. However for many types of applications MC scaling leads
to a serious problem: The execution time—for the parallel execution—can become intolerably
large. This problem can occur in any application where the seria execution time grows more rap-
idly than the memory usage.

Example 4-2 Matrix factorization is a simple example in which the serial execution time grows
more rapidly than the memory usage (data set size). Show how MC scaling leads to
arapid increase in parallel execution time for this application.
Answer While the data-set size and memory usage for an n-by-n matrix grows as O(nz) in
matrix factorization, the execution time on a uniprocessor grows as O(n3). Assume
that a 10000-by-10000 matrix takes about 800 MB of memory and can be
factorized in 1 hour on a uniprocessor. Now consider a scaled machine consisting of
a thousand processors. On this machine, under MC scaling we can factorize a
320,000-by-320,000 matrix. However, the execution time of the parallel program
(even assuming perfect speedup) will now increase to about 32 hours. The user may
not be willing to wait this much longer.
Of the three models, time constrained scaling isincreasingly recognized as being the most gener-
aly viable. However, one cannot claim any model to be the most realistic for all applications and
al users. Different users have different goals, work under different constraints, and are in any
case unlikely to follow a given model very strictly. Nonetheless, for applications that don’t run
continuously these three models are useful, comprehensive tools for an analysis of scaled perfor-
mance. Let us now examine a simple example—the equation solver kernel from Chapter 2—to
see how it interacts with different scaling models and how they affect its architecturally relevant
behavioral characteristics.
Impact of Scaling M odels on the Equation Solver Kernel
For an n-by-n grid, the memory requirement of the simple equation solver is O(nz). Computa-
tional complexity is O(n?) times the number of iterations to convergence, which we conserva-
tively assume to be O(n) (the number of iterations taken for values to flow from one boundary to
the other). This leads to a sequential computational complexity of O(nd).
Execution Time and Memory Requirements Consider the execution time and memory require-
ments under the three scaling models, assuming “ speedups’ due to parallelism equal to p in all
Cases.
PC Scaling As the same n-by-n grid is divided among more processors p, the memory require-
ments per processor decrease linearly with p, as does the execution time assuming linear
speedup.
206 DRAFT: Parallel Computer Architecture 9/10/97

Scaling Workloads and Machines

TC Scaling By definition, the execution time stays the same. Assuming linear speedup, this
means that if the scaled grid size is k-by-k, then k3/p = n®, so k = n x 3/p.. The amount of memory
needed per processor is therefore k%/p = n/3/p , which diminishes as the cube root of the number
of processors.

MC Scaling By definition, the memory requirements per processor stay the same at O(n?) where
the base grid for the single processor execution is n-by-n. This means that the overall size of the

grid increases by afactor of p, so the scaled grid isnow n./p-by-n./p rather than n-by-n. Sinceit

now takes n./p iterations to converge, the sequential time complexity is O((n./p)®) . This means
that even assuming perfect speedup due to parallelism, the execution time of the scaled problem

ONn p Processors is o%ﬂ{'ﬁa or n3./p. Thus, the parallel execution time is greater than the

sequential execution time of the base problem by a factor of ./p, growing with the square root of
the number of processors. Even under the linear speedup assumption, a problem that took 1 hour
on one processor takes 32 hours on a 1024-processor machine under MC scaling.

For this simple equation solver, then, the execution time increases quickly under MC scaling, and
the memory requirements per processor decrease under TC scaling.

Execution Characteristics Let us consider the effects of different scaling models on the concur-
rency, communication-to-computation ratio, synchronization and 1/0 frequency, and temporal
and spatial locality. Let us examine each.

Concurrency. The concurrency in this kernel is proportional to the number of grid points. It
remains fixed at n? under PC scaling, grows proportionally to p under MC scaling, and grows
proportionally to p®67 under TC scaling.

Communication to computation ratio The communication to computation ratio is the perimeter to
area ratio of the grid partition assigned to each processor; that is, it is inversely proportional to
the square root of the number of points per processor. Under PC scaling, the ratio grows as vp.
Under MC scaling the size of a partition does not change, so neither does the communication to
computation ratio. Finally, under TC scaling, the size of a processor’s partition diminishes as the
cube root of the number of processors, so the ratio increases as the sixth root of p.

Synchronization and 1/0 Frequency The equation solver synchronizes at the end of every grid
sweep, to determine convergence. Suppose that it also performed I/O then, e.g. outputting the
maximum error at the end of each sweep. Under PC scaling, the work done by each processor in
a given sweep decreases linearly as the number of processors increases, so assuming linear
speedup the frequency of synchronization and 1/O grows linearly with p. Under MC scaling the
frequency remains fixed, and under TC scaling it increases as the cube root of p.

Working Set Sze (Temporal Locality) The size of the important working set in this solver is
exactly the size of a processor’s partition of the grid. Thus, it and the cache requirements dimin-
ish linearly with p under PC scaling, stay constant under MC scaling, and diminish as the cube
root of p under TC scaling. Thus, although the problem size grows under TC scaling, the working
set size of each processor diminishes.

9/10/97

DRAFT: Parallel Computer Architecture 207

Workload-Driven Evaluation

4.2.4

Soatial Locality Spatial locality is best within a processor’s partition and at row-oriented bound-
aries, and worst at column-oriented boundaries. Thus, it decreases as a processor’s partition
becomes smaller and column-oriented boundaries become larger relative to partition area. It
therefore remains just as good under MC scaling, decreases quickly under PC scaling, and
decreases less quickly under TC scaling.

Message Sze in Message Passing An individual message is likely to be a border row or column
of a processor’s partition which is the square root of partition size. Hence message size here
scales similarly to the communication to computation ratio.

It is clear from the above that we should expect the lowest parallelism overhead and highest
speedup as defined above under MC scaling, next under TC scaling, and that we should expect
speedups to degrade quite quickly under PC scaling, at least once the overheads start to become
significant relative to useful work. It isalso clear that the choice of application parameters as well
asthe scaling model affect architectural interactions with the extended memory hierarchy such as
spatial and temporal locality. Unless it is known that a particular scaling model is the right one
for an application, or that one is inappropriate, for al the reasons discussed in this section it is
appropriate to evaluate a machine under all three scaling models. We shall see the interactions
with architectural parameters and their importance for evaluation in more detail in the next cou-
ple of sections, where we discuss actual evaluations. First, let us take a brief look at the other
important but more subtle aspect of scaling: how to scale application parameters to meet the con-
straints of a given scaling model.

Scaling Workload Parameters

Let us now take away our simplifying assumption that a workload has only a single parameter.
For instance, the Ocean application has a vector of four parameters: n, €, At, T, that the simple
equation solver kernel does not expose. Scaling workload parameters is not an issue under PC
scaling. However, under TC or MC scaling, how should the parameters of a workload be scaled
to meet the prescribed time or memory constraints? The main point to be made here is that the
different parameters are often related to one another, and it may not make sense to scale only one
of them without scaling others, or to scale them independently. Each parameter may make its
own unigue contribution to a given execution characteristic (time, memory usage, communica-
tion to computation ratio, working sets, etc.). For example, in the Barnes-Hut application the exe-

cution time grows not just as nlogn but as ezim nlogn, where @ is the force-calculation accuracy

parameter and At is the physical interval between time-steps; both 8 and At should be scaled as n
changes. Even the ssimple equation solver kernel has another parameter €, which is the tolerance
used to determine convergence of the solver. Making this tolerance smaller—as should be done
asn scalesin areal application—increases the number of iterations needed for convergence, and
hence increases execution time without affecting memory requirements. Thusthe grid size, mem-
ory requirements and working set size would increase much more slowly under TC scaling, the
communication to computation ratio would increase more quickly, and the execution time would
increase more quickly under MC scaling. As architects using workloads, it is very important that
we understand the relationships among parameters from an application user’s viewpoint, and
scale the parameters in our evaluations according to this understanding. Otherwise we are liable
to arrive at incorrect architectural conclusions.

208

DRAFT: Parallel Computer Architecture 9/10/97

Evaluating a Real Machine

4.3

The actua relationships among parameters and the rules for scaling them depend on the domain
and the application. There are no universa rules, which makes good evaluation even more inter-
esting. For example, in scientific applications like Barnes-Hut and Ocean, the different applica-
tion parameters usually govern different sources of error in the accuracy with which a physical
phenomenon (such as galaxy evolution) is simulated; appropriate rules for scaling these parame-
terstogether are therefore driven by guidelines for scaling different types of error. Ideally, bench-
mark suites will describe the scaling rules—and may even encode them in the application,
leaving only one free parameter—so the architect does not have to worry about learning them.
Exercises 4.11 and 4.12 illustrate the importance of proper application scaling. We will see that
scaling parameters appropriately can often lead to quantitatively and sometimes even qualite-
tively different architectural results than scaling only the data set size parameter n.

Evaluating a Real Machine

431

Having understood the importance of scaling problem size with machine size, and the effects that
problem and machine size have on fundamental behavioral characteristics and architectural inter-
actions, we are now ready to develop specific guidelines for the two major types of workload-
driven evaluation: evaluating a real machine, and evaluating an architectural idea or tradeoff.
Evaluating a real machine isin many ways simpler: the machine characteristics and parameters
arefixed, and all we have to worry about is choosing appropriate workloads and workload param-
eters. When evaluating an architectural idea or tradeoff in a general context, organizational and
performance parameters of the architecture can become variable as well, and the evaluation is
usually done through simulation, so the set of issuesto consider becomes larger. This section pro-
vides a prescriptive template for evaluating a real machine. The use of microbenchmarks to iso-
late performance characteristics is discussed first. Then, we discuss the major issues in choosing
workloads for an evaluation. This is followed by guidelines for evaluating a machine once a
workload is chosen, first when the number of processorsis fixed, and then when it is alowed to
be varied. The section concludes with a discussion of appropriate metrics for measuring the per-
formance of amachine and for presenting the results of an evaluation. All these issuesin evaluat-
ing a real machine, discussed in this section, are relevant to evaluating an architectural idea or
tradeoff as well; the next section builds upon this discussion, covering the additional issues that
arise in the latter type of evaluation.

Perfor mance I solation using Microbenchmarks

As afirst step in evaluating a real machine, we might like to understand its basic performance
capabilities; that is, the performance characteristics of the primitive operations provided by the
programming model, communication abstraction, or hardware-software interface. Thisis usualy
done with small, specially written programs called microbenchmarks [SGC93], that are designed
to isolate these performance characteristics (latencies, bandwidths, overheads etc.).

Five types of microbenchmarks are used in parallel systems, the first three of which are used for
uniprocessor evaluation as well:

Processing microbenchmarks measure the performance of the processor on non memory-ref-
erencing operations such as arithmetic operations, logical operations and branches.

Local memory microbenchmarks detect the organization, latencies and bandwidths of the lev-
els of the cache hierarchy and main memory within the node, and measure the performance of

9/10/97

DRAFT: Parallel Computer Architecture 209

Workload-Driven Evaluation

local read and write operations satisfied at different levels, including those that cause TLB
misses and page faults.

Input-output microbenchmarks measure the characteristics of 1/0O operations such as disk
reads and writes of various strides and lengths.

Communication microbenchmarks measure data communication operations such as message
sends and receives or remote |oads and stores of different types, and

Synchronization microbenchmarks measure the performance of different types of synchroni-
zation operations such as locks and barriers.

The communication and synchronization microbenchmarks depend on the communication
abstraction or programming model used. They may involve one or a pair of processors— e.g. a
single remote read miss, a send-receive pair, or the acquisition of a free lock—or they may be
collective, such as broadcast, reduction, all-to-all communication, probabilistic communication
patterns, many processors contending for alock, or barriers. Different microbenchmarks may be
designed to stress uncontended latency, bandwidth, overhead and contention.

For measurement purposes, microbenchmarks are usually implemented as repeated sets of the

300
128K - 8M
250
200 The Microbenchmark
0
=
o 150 == 64K for times — 0t010,000 do
= 32K for i — OtoArraySize-1 by stride do
100
16K load A[i];
50
8K
0
© ~ [e°] [3N] N ~ X X X s
) N — o~ © N <) o~ ~
— wn ™ N —
— n
Stride

Figure 4-3 Results of amicrobenchmark experiment on a single processing node of the Cray T3D multiprocessor.

The microbenchmark consists of alarge number of loads from alocal array. The Y-axis shows the time per load in nanoseconds. The
X-axis isthe stride between successive loads in the loop, i.e, the difference in the addresses of the memory |ocations being accessed.
And the different curves correspond to the size of the array (ArraySize) being strided through. When ArraySize is less than 8KB, the
array fits in the processor cache so all loads are hits and take 6.67 ns to complete. For I_arﬁer arrays, we see the effects of cache
misses. The average access time is the weighted sum of hit and miss time, until there is an inflection when the stride is longer than a
cache block (32 words or 128 byt&s? and every reference misses. The next rise occurs due to some references causing page faullts,
with an inflection when the stride is |arge enough (16K B) for every consecutive reference does so. Thefinal rise is due to conflicts at
the memory banks in the 4-bank main memory, with an inflection at 64K stride when consecutive references hit the same bank.

primitive operations, e.g. ten thousand remote reads in arow. They often have simple parameters
that can be varied to obtain afuller characterization. For example, the number of processors used
may be a parameter to a microbenchmark that measures the performance of a collective commu-
nication operation among a group of processors. Similarly, the stride between consecutive reads
may be a parameter to a local memory microbenchmark, and may be set to ensure that subse-

210 DRAFT: Parallel Computer Architecture 9/10/97

Evaluating a Real Machine

4.3.2

guent reads map to the same cache block or that they fall on different pages. Figure 4-3 shows a
typical profile of a machine obtained using a local memory microbenchmark. As mentioned
above, the role of microbenchmarksisto isolate and understand the performance of basic system
capabilities. A more ambitious hope, not achieved so far, isthat if workloads can be characterized
as weighted sums of different primitive operations, then a machine's performance on a given
workload can be predicted from its performance on the corresponding microbenchmarks. We will
discuss more specific microbenchmarks when we measure real systemsin later chapters.

Having isolated the performance characteristics, the next step isto eval uate the machine on more
realistic workloads. There are three major axes we must navigate: the workloads, their problem
sizes, and the number of processors (or the machine size). Lower level machine parameters, such
as organizational granularities and the performance parameters of the communication architec-
ture, are fixed when evaluating a real machine. We begin by discussing the issues in choosing
workloads. Then, assuming that we have chosen a workload, we will examine how to evaluate a
machine with it. For simplicity, we will first assume that another axis, the number of processors,
is fixed as well, and use our understanding of parameter interactions to see how to choose prob-
lem sizes to evaluate the fixed-size machine. Finally, we will discuss varying the number of pro-
cessors as well, using the scaling models we have just devel oped.

Choosing Workloads

Beyond microbenchmarks, workloads or benchmarks used for evaluation can be divided into
three classes in increasing order of realism and complexity: kernels, applications, and multipro-
grammed workloads. Each has its own role, advantages and disadvantages.

Kernels These are well-defined parts of real applications, but are not complete applications them-
selves. They can range from simple kernels such as a parallel matrix transposition or a simple
near-neighbor grid sweep, to more complex, substantial kernels that dominate the execution
times of their applications. Examples of the latter from scientific computing include matrix fac-
torization and iterative methods to solve partial differential equations, such as our equation solver
kernel, while examples from information processing may include complex database queries used
in decision support applications or sorting a set of numbers in ascending order. Kernels expose
higher-level interactions that are not present in microbenchmarks, and as aresult lose a degree of
performance isolation. Their key property is that their performance-relevant characteristics—
communication to computation ratio, concurrency, and working sets, for example—can be easily
understood and often analytically determined, so that observed performance as a result of the
interactions can be easily explained in light of these characteristics.

Complete Applications Complete applications consist of multiple kernels, and exhibit higher-
level interactions among kernels that an individual kernel cannot reveal. The same large data
structures may be accessed in different ways by multiple kernels in an application, and different
data structures accessed by different kernels may interfere with one another in the memory sys-
tem. In addition, the data structures that are optimal for akernel in isolation may not be the best
ones to use in the complete application, which must strike a balance among the needs of its dif-
ferent parts. The same holds for partitioning techniques. If there are two independent kernels,
then we may decide to not partition each among all processes, but rather to share processes
among them. Different kernels that share a data structure may be partitioned in ways that strike a
between their different access patterns to the data, leading to the maximum overall locality. The
presence of multiple kernels in an application introduces many subtle interactions, and the per-

9/10/97

DRAFT: Parallel Computer Architecture 211

Workload-Driven Evaluation

formance-related characteristics of complete applications usually cannot be exactly determined
analytically.

Multiprogrammed Workl oads These consist of multiple sequential and parallel applications run-
ning together on the machine. The different applications may either time-share the machine or
space-share it (different applications running on digoint subsets of the machine’s processors) or
both, depending on the operating system’s multiprogramming policies. Just as whole applications
are complicated by higher level interactions among the kernels that comprise them, multipro-
grammed workloads involve complex interactions among whole applications themselves.

As we move from kernels to complete applications and multiprogrammed workloads, we gainin
realism, which is very important. However, we lose in our ability to describe the workloads con-
cisely, to explain and interpret the results unambiguously, and to isolate performance factors. In
the extreme, multiprogrammed workloads are difficult to design: Which applications should be
included in such a workload and in what proportion?. It is also difficult to obtain repeatable
results from multiprogrammed workloads due to subtle timing-dependent interactions with the
operating system. Each type of workload has its place. However, the higher-level interactions
exposed only by complete applications and multiprogrammed workloads, and the fact that they
are the workloads that will actually be run on the machine by users, make it important that we use
them to ultimately determine the overall performance of a machine, the value of an architectural
idea, or the result of a tradeoff. Let us examine some important issues in choosing such work-
loads (applications, multiprogrammed loads and even complex kernels) for an evaluation.

The desirable properties of a set of workloads are representativeness, coverage of behaviora
properties, and adequate concurrency.

Representativeness of Application Domains

If we are performing an evaluation as users looking to procure a machine, and we know that the
machine will be used to run only certain types of applications (say databases, transaction pro-
cessing, or ocean simulation), then this part of our job is easy. On the other hand, if our machine
may be used to run awide range of workloads, or if we are designers trying to evaluate amachine
to learn lessons for the next generation, we should choose a mix of workloads representative of a
wide range of domains. Some important domains for parallel computing today include scientific
applications that model physical phenomena; engineering applications such as those in com-
puter-aided design, digital signal processing, automobile crash simulation, and even simulations
used to evaluate architectural tradeoffs; graphics and visualization applications that render
scenes or volumes into images; media processing applications such as image, video and audio
analysis and processing, speech and handwriting recognition; information management applica-
tions such as databases and transaction processing; optimization applications such as crew sched-
uling for an airline and transport control; artificial intelligence applications such as expert
systems and robotics; multiprogrammed workloads; and the operating system itself, which is a
particularly complex parallel application.

Coverage of Behavioral Properties
Workloads may vary substantially in terms of the entire range of performance related characteris-

tics discussed in Chapter 3. Asaresult, amajor problem in evaluation isthat it is very easy to lie
with or be misled by workloads. For example, a study may choose workloads that stress the fea-

212

DRAFT: Parallel Computer Architecture 9/10/97

Evaluating a Real Machine

ture for which an architecture has an advantage (say communication latency), but do not exercis-
ing aspects it performs poorly (say contention or communication bandwidth). For general-
purpose evaluation, it isimportant that the workloads we choose taken together stress a range of
important performance characteristics. For example, we should choose workloads with low and
high communication to computation ratios, small and large working sets, regular and irregular
access patterns, and localized and collective communication. If we are interested in particular
architectural characteristics, such as aggregate bandwidth for all-to-all communication among
processors, then we should choose at least some workloads that stress those characteristics.

Also, redl parallel programs will not always be highly optimized for good performance along the
lines discussed in Chapter 3, not just for the specific machine at hand but even in more generic
ways. This may be either because the effort involved in optimizing programs is more than the
user iswilling to expend, or because the programs are generated with the help of automated tools.
The level of optimization can greatly affect important execution characteristics. In particular,
there are three important levels to consider:

Algorithmic The decomposition and assignment of tasks may be less than optimal, and certain
algorithmic enhancements for data locality such as blocking may not be implemented; for
example, strip-oriented versus block-oriented assignment for a grid computation (see
Section 2.4.3).

Data structuring The data structures used may not interact optimally with the architecture,
causing artifactual communication; for example, two-dimensional versus four-dimensional
arraysto represent atwo-dimensional grid in a shared address space (see Section 3.4.1).

Data layout, distribution and alignment Even if appropriate data structures are used, they
may not be distributed or aligned appropriately to pages or cache blocks, causing artifactual
communication in shared address space systems.

Where appropriate, we should therefore eval uate the robustness of machines or features to work-
loads with different levels of optimization.

Concurrency

The dominant performance bottleneck in a workload may be the computational load imbalance,
either inherent to the partitioning method or due to the way synchronization is orchestrated (e.g.
using barriersinstead of point to point synchronization). If thisistrue, then the workload may not
be appropriate for evaluating a maching’'s communication architecture, sincethereislittle that the
architecture can do about this bottleneck: Even great improvements in communication perfor-
mance may not affect overall performance much. While it is useful to know what kinds of work-
loads and problem sizes do not afford enough concurrency for the number of processors at
hand—since this may limit the applicability of a machine of that size—to evaluate communica-
tion architectures we should ensure that our workloads have adequate concurrency and load bal-
ance. A useful concept hereisthat of algorithmic speedup. Thisis the speedup—according to the
scaling model used—assuming that all memory references and communication operations take
zero time. By completely ignoring the performance impact of data access and communication,
algorithmic speedup measures the computational 1oad balance in the workload, together with the
extra work done in the parallel program. This highly idealized performance model is called a
PRAM or parald random access machine [FOW78] (albeit completely unredlitic, it hasin fact
traditionally been most widely used to evaluate the complexity of parallel algorithms). In general,
we should isolate performance limitations due to workload characteristics that a machine cannot

9/10/97

DRAFT: Parallel Computer Architecture 213

Workload-Driven Evaluation

4.3.3

do much about from those that it can. It is aso important that the workload take long enough to
run to be interesting on a machine of the size being evaluated, and be redlistic in this sense,
though this is often more a function of the input problem size than inherently of the workload
itself.

Many efforts have been made to define standard benchmark suites of parallel applications to
facilitate workload-driven architectural evaluation. They cover different application domains and
have different philosophies, and some of them are described in APPENDIX A. While the work-
loads that will be used for the illustrative evaluations in the book are a very limited set, we will
keep the above criteriain mind in choosing them. For now, let us assume that a parallel program
has been chosen as a workload, and see how we might use it to evaluate a real machine. We first
keep the number of processors fixed, which both simplifies the discussion and also exposes the
important interactions more cleanly. Then, we discuss varying the number of processors as well.

Evaluating a Fixed-Size Machine

Since the other major axes in evaluating a real machine (the programs in the workload and the
machine size) are fixed, the only variable here is the parameters the workload. In discussing the
implications of scaling models, we saw how these application parameters interact with the num-
ber of processors to affect some of the most important execution characteristics of the program.
While the number of processors is fixed here, changing problem size itself can dramatically
affect all these characteristics and hence the results of an evaluation. In fact, it may even change
the nature of the dominant bottleneck; i.e. whether it is communication, load imbalance or local
data access. Thisalready tellsusthat it isinsufficient to use only a single problem size in an eval-
uation, even when the number of processorsis fixed.

We can use our understanding of parameter implications to actually choose problem sizes for a
study, if we extend it to include not only behavioral characteristics of the program but also how
they interact with organizational parameters of the extended memory hierarchy. Our goal is to
obtain adequate coverage of realistic behaviors while at the same time restricting the number of
problem sizes we need. We do thisin a set of structured steps, in the process demonstrating the
pitfalls of choosing only asingle size or a narrow range of sizes. The simple equation solver ker-
nel will be used to illustrate the steps quantitatively, even though it is not a full-fledged workload.
For the quantitative illustration, let us assume that we are evaluating a cache-coherent shared
address space machine with 64 single-processor nodes, each with 1 MB of cache and 64MB of
main memory. The steps are as follows.

1.Appeal to higher powers. The high-level goals of the study may choose the problem sizes for
us. For example, we may know that users of the machine are interested in only a few specified
problem sizes. This simplifies our job, but is uncommon and not a general-purpose methodol ogy.
It does not apply to the equation solver kernel.

2. Determine a range of problem sizes. Knowledge of real usage may identify a range below
which problems are unrealistically small for the machine at hand and above which the execution
timeistoo large or users would not want to solve problems. Thistoo is not particularly useful for
the equation solver kernel. Having identified arange, we can go on to the next step.

3. Useinherent behavioral characteristics. Inherent behavioral characteristics help us choose
problem sizes within the selected range such as communication to computation ratio and load

214

DRAFT: Parallel Computer Architecture 9/10/97

Evaluating a Real Machine

Example 4-3

Answer

balance. Since the inherent communication to computation ratio usually decreases with increas-
ing data set size, large problems may not stress the communication architecture enough—at least
with inherent communication—while small problems may over-stress it unrepresentatively and
potentially hide other bottlenecks. Similarly, concurrency often increases with data set size, giv-
ing rise to atradeoff we must navigate: We would like to choose at |east some sizes that are large
enough to be load balanced but not so large that the inherent communication becomes too small.
The size of the problem relative to the number of processors may also affect the fractions of exe-
cution time spent in different phases of the application, which may have very different load bal-
ance, synchronization and communication characteristics. For example, in the Barnes-Hut
application case study smaller problems cause more of the time to be spent in the tree-building
phase, which doesn't parallelize very well and has much worse properties than the force-calcula-
tion phase which usually dominates in practice. We should be careful not to choose unrepresenta-
tive scenarios in this regard.

How would you use the above inherent behavioral characteristics to choose
problem sizes for the equation solver kernel ?

For this kernel, enough work and load balance might dictate that we have partitions
that are at least 32-by-32 points. For a machine with 64 (8x8) processors, this
means a total grid size of at least 256-by-256. This grid size requires the
communication of 4*32 or 128 grid elements in each iteration, for a computation of
32*32 or 1K poaints. At five floating point operations per point and 8 bytes per grid
point, thisis an inherent communication to computation ratio of one byte every five
floating point operations. Assuming a processor that can deliver 200 MFLOPS on
this calculation, thisimplies a bandwidth of 40MB/s. Thisis quite small for modern
multiprocessor networks, even despite its burstiness. Let us assume that below
5MB/s communication is asymptotically small for our system. Then, from the
viewpoint of inherent communication to computation ratio there is no need to run
problems larger than 256-by-256 points (only 64K* 8B or 512K B) per processor, or
2K by 2K grids overall.

Finally, we proceed to the most complex step:

4. Usetemporal and spatial locality interactions. These inherent characteristics vary smoothly
with problem size, so to deal with them alone we can pick a few sizes that span the interesting
spectrum. If their rate of change is very slow, we may not need to choose many sizes. Experience
shows that about three is a good number in most cases. For example, for the equation solver ker-
nel we might have chosen 256-by-256, 1K-by-1K, and 2K-by-2K grids. Unlike the previous
properties, the interactions of temporal and spatial locality with the architecture exhibit thresh-
oldsin their performance effects, including the generation of artifactual communication as prob-
lem size changes. We may need to extend our choice of problem sizes to obtain enough coverage
with respect to these thresholds. At the same time, the threshold nature can help us prune the
parameter space. Let uslook separately at effects related to temporal and spatial locality.

Temporal locality and working sets

Working sets fitting or not fitting in a local replication store can dramatically affect execution
characteristics such as local memory traffic and artifactual communication, even if the inherent

9/10/97

DRAFT: Parallel Computer Architecture 215

Workload-Driven Evaluation

communication and computational load balance do not change much. In applications like Ray-
trace, the important working sets are large and consist of data that are mostly assigned to remote
nodes, so artifactual communication due to limited replication capacity may dominate inherent
communication. Unlike inherent communication this tends to grow rather than diminish with
increasing problem size. We should include problem sizes that represent both sides of the thresh-
old (fitting and not fitting) for the important working sets, if these problem sizes are redlistic in
practice. In fact, when realistic for the application we should aso include a problem size that is
very large for the machine, e.g. such that it amost fills the memory. Large problems often exer-
cise architectural and operating system interactions that smaller problems do not, such as TLB
misses, page faults, and alarge amount of traffic due to cache capacity misses. The following ide-
alized example helpsillustrate how we might choose problem sizes based on working sets.

Example 4-4 Suppose that an application has the idealized miss rate versus cache size curve
shown in Figure 4-4(a) for a fixed problem size and number of processors, and for
the cache organization of our machine. If C isthe machine's cache size, how should

—_— . 100 —— — — EEEEEEEEE
) % of \ :
Miss working \ :
Ratio set that '
fitsin WS 3 WS 2\ WSl:
cache of \ '
sizeC .
; \ ;
! WS3 A s
. A | | | |
C P; P, P; P4
Cache Size Problem Size
@ (b)

Figure 4-4 Choosing problem sizes based on working sets fitting in the cache.

The graph on the left shows the working set curve (miss rate versus cache size) for a fixed problem size with our chosen number of
processors. C isthe cache size of our machine. This curve identifies three knees or working sets, two very sharply defined and one less
so. The graph on the right shows, for each of the working sets, a curve deﬁ_lctlng whether or not they fit in the cache of size C asthe

roblem size increases. A knee in a curve represents the problem size at which that working set no longer fits. We can see that a prob-
em of size P; fitsWS1 and WS2 but not WS3, problem P, fitsWS1 and part of WS2 but not WS3, P; fits WSL only, while P, does not
fit any working set in the cache.

this curve influence the choice of problem sizes used to evaluate the machine?

Answer We can see that for the problem size (and number of processors) shown, the first
working set fits in the cache of size C, the second fits only partialy, and the third
does not fit. Each of these working sets scales with problem size in its own way.
This scaling determines at what problem size that working set might no longer fit in
a cache of size C, and therefore what problem sizes we should choose to cover the

216 DRAFT: Parallel Computer Architecture 9/10/97

Evaluating a Real Machine

representative cases. In fact, if the curve truly consists of sharp knees, then we can
draw a different type of curve, this time one for each important working set. This
curve, shown in Figure 4-4(b), depicts whether or not that working set fits in our
cache of size C asthe problem size changes. If the problem size at which akneein
this curve occurs for an important working set is within the range of problem sizes
that we have aready determined to be redlistic, then we should ensure that we
include a problem size on each side of that knee. Otherwise, we should ignore the
unrealistic side. Not doing this may cause us to either missimportant effects related
to stressing the memory or communication architecture, or observe substantial
effects that are not representative of reality. The fact that the curves are flat on both
sides of aknee in this example meansthat if all we care about from the cache isthe
miss rate then we need to choose only one problem size on each side of each knee
for this purpose, and prune out the rest.t

We shall discuss the use of working sets in more detail when we examine choosing parameters
for asimulation study in the next section, where the cache size becomes a variable as well.

Example 4-5 How might working sets influence our choice of problem sizes for the equation
solver?
Answer The most important working sets for the equation solver are encountered when a

couple of subrows of a partition fit in the cache, and when a processor’s entire
partition fit in the cache. Both are very sharply defined in this simple kernel. Even
with the largest grid we chose based on inherent communication to computation
ratio (2K-by-2K), the data set size per processor is only 0.5MB, so both these
working sets fit comfortably in the cache (if a4-d array representation is used, there
are essentially no conflict misses). Two subrows not fitting in a IMB cache would
imply a subrow of 64K points, so atotal grid of 64*8 or 512K-by-512K points. This
isadata set of 32GB per processor, which is far too large to be realistic. However,
having the other important working set—the whole partition—not fit in a 1IMB
cacheisredligtic. It leadsto either alot of local memory traffic or alot of artifactual
communication, if data are not placed properly, and we would like to represent such
a situation. We can do this by choosing one problem size such that its working set
(here partition size) is larger than 1IMB per processor, e.g. 512 -by-512 points
(2MB) per processor or 4K-by-4K points overall. This does not come close to
filling the machine’'s memory, so we should choose one more problem size for that

1. Pruning a flat region of the miss rate curve is not necessarily appropriate if we aso care about other
aspects of cache behavior than miss rate which are also affected by cache size. We shall see an example
when we discuss tradeoffs among cache coherence protocols in Chapter 5.

9/10/97 DRAFT: Parallel Computer Architecture 217

Workload-Driven Evaluation

purpose, say 16K-by-16K points overall or 32MB per processor. We now have five
problem sizes: 256-by-256, 1K-by-1K, 2K-by-2K, 4K-by-4K and 16K-by-16K.

Spatial locality

Consider the equation solver again, and suppose that the data structure used to represent the grid
in a shared address space is atwo-dimensional array. A processor’s partition, which is its impor-
tant working set, may not remain in its cache across grid sweeps, due to either limited capacity or
cache conflicts which may be quite frequent now that the subrows of a partition are not contigu-
ous in the address space (the non-contiguity and its effects will be examined again in Chapters 5
and 8). If so, it isimportant that a processor’s partition be allocated in itslocal memory on adis-
tributed-memory machine. The granularity of allocation in main memory is a page, which istyp-
icaly 4-16KB. If the size of a subrow is less than the page size, proper allocation becomes very
difficult and there will be alot of artifactual communication. However, as soon as that threshold
in size is crossed, alocation is not a problem anymore and there is little artifactual communica-
tion. Both situations may be realistic, and we should try to represent both. If the page size is
4K B, then our first three problems have a subrow smaller than 4KB so they cannot be distributed
properly, while the last two have subrows greater than or equal to 4K so can be distributed well
provided the grid is aligned to a page boundary. We do not need to expand our set of problem
sizes for this purpose.

A more stark example of spatial locality interactions is found in a program and an architectural
interaction that we have not yet discussed. The program, called Radix, is a sorting program that
will be described later in this chapter, and the architectural interaction, called false sharing, will
be discussed in Chapter 5. However, we show the result to illustrate the importance of consider-
ing spatial interactions in our choice of problem sizes. Figure 4-5 shows how the miss rate for
this program running on a cache-coherent shared address space machine changes with cache
block size, for two different problem sizes n (sorting 256K integers and 1M integers) using the
same number of processors p. The false sharing component of the missrate leads to a lot of arti-
factual communication, and in this application can completely destroy performance. Clearly, for
the given cache block size on our machine, false sharing may or not destroy the performance of
radix sorting depending simply on the problem size we choose. It turns out that for a given cache
block size false sharing is terrible if the ratio of problem size to number of processorsis smaller
than a certain threshold, and almost non-existent if it is bigger. Some applications display these
threshold effects in spatial locality interactions with problem size, others do not. Identifying the
presence of such thresholds requires a deep enough understanding of the application’s locality
and its interaction with architectural parameters, and illustrates some of the subtleties in evalua-
tion.

The simple equation solver summarizes the dependence of most execution characteristics on
problem size, some exhibiting knees on threshold in interaction with architectural parameters and
some not. With n-by-n grids and p processes, if the ratio n/p islarge, communication to computa-
tionratio islow, the important working sets are unlikely to fit in the processor caches leading to a
high capacity miss rate, and spatial locality is good even with a two-dimensional array represen-
tation. The situation is completely the opposite when n/p is small: high communication to com-
putation ratio, poor spatial locality and false sharing, and few local capacity misses. The
dominant performance bottleneck thus changes from local access in one case to communication
in the other. Figure 4-6 illustrates these effects for the Ocean application as a whole, which uses
kernels similar to the equation solver.

218

DRAFT: Parallel Computer Architecture 9/10/97

Evaluating a Real Machine

0f
12% n=256K keys n=1M keys
10% -
[0}
T 8% -
T 6% -
-é 4% -
2% ~
0% -
0 © o T © © 0 © o T © ©
— M © N W — M © N W
- —

Line Size (bytes)
mcold+cap mtrue sharing Ofalse sharing

Figure 4-5 Impact of problem size and number of processors on the spatial locality behavior of Radix sorting.

The miss rate is broken down into cold/capacity misses, true sharing (inherent communication) misses, and misses due to false shar-
ing of data. Asthe block size increases for a given problem size and number of processors, there comes a point when the ratio men-
tioned in the text becomes smaller than the block size, and substantial false sharing is experienced. Thisis clearly athreshold effect,
and happens at different block sizes for different problem sizes. A similar effect would have been observed if the problem size were
kept constant and the number of processors changed.

128-by-128 grids 256-by-256 grids

o K
© O
]
T

o o
N b
I I

o
o
|

traffic (bytes/FLOP)
o
(e}

1 2 4 8 16 32 64 1 2 4 8 16 32 64
number of processors
mmremote Jlocal - true sharing

Figure 4-6 Effectsof problem size, number of processors and working set fitting in the cache.

The figure shows the effects on the memory behavior of the Ocean agPI_icati on in a shared address space, The traffic (in bytes a’P_er
floating point operation or FLOP) is broken down into cold/capacity traific, true sharing (inherent communication) traffic, and traffic
due to false sharing of data. The true sharing (inherent communication) traffic increases with the number of processors, and decreases
from the smaller problem to the larger. As the number of processors increases for a given problem size, the working set starts to fit in
the cache and a domination by local missesis replaced by a domination by gommunication. This change occurs at alarger number of
processors for the larger problem, since the working set is proportional to n“/p. If we focus on the 8-processor breakdown for the two

roblem sizes, we seethat for the small problem the traffic is dominantly remote (ﬁ' nce the working set fitsin the cache) while for the
arger problem it is dominantly local (since the working set does not fit in the cache),

While there are no absolute formulae for choosing problem sizes to evaluate a machine, and the
equation solver kernel isatrivial example, the above steps are useful guidelines. We should also

9/10/97 DRAFT: Parallel Computer Architecture 219

Workload-Driven Evaluation

434

4.3.5

ensure that the results we obtain for a machine are not due to artifacts that can be easily removed
in the program, including systematic cache conflict misses and some kinds of contention. These
may be useful for evaluating the robustness of the machine, but should not be the only situations
we evaluate. Despite the number of issues to consider, experience shows that the number of prob-
lems sizes needed to evaluate a fixed-size machine with an application is usually quite small. If
we are to compare two machines, it is useful to choose problem sizes that exercise the above sce-
narios on both machines.

Varying Machine Size

Now suppose we want to evaluate the machine as the number of processors changes. We have
already seen how we might scale the problem size, under different scaling models, and what met-
ricswe might use for performance improvement due to parallelism. The issue that remainsis how
to choose afixed problem size, at some machine size, as a starting point from which to scale. One
strategy is to start from the problem sizes we chose above for a fixed number of processors and
then scale them up or down according to the different scaling models. We may narrow down our
range of base problem sizes to three: a small, a medium and a large, which with three scaling
models will result in nine sets of performance data and speedup curves. However, it may require
care to ensure that the problem sizes, when scaled down, will stress the capabilities of smaller
machines.

A simpler strategy isto start with afew well-chosen problem sizes on a uniprocessor and scale up
from there under all three models. Here too, it is reasonable to choose three uniprocessor problem
sizes. The small problem should be such that its working set fits in the cache on a uniprocessor,
and its communication to computation ratio exercises the communication architecture even for a
relatively small number of processors. This problem will not be very useful under PC scaling on
large machines, but should remain fine under TC and at least MC scaling. The large problem
should be such that itsimportant working set does not fit in the cache on a uniprocessor, if thisis
realistic for the application. Under PC scaling the working set may fit at some point (if it shrinks
with increasing number of processors), while under MC scaling it is likely not to and to keep
generating capacity traffic. A reasonable choice for a large problem is one that fills most of the
memory on a single node, or takes a large amount of time on it. Thus, it will continue to almost
fill the memory even on large systems under MC scaling. The medium sized problem can be cho-
sen to be in between in some judicious way; if possible, even it should take a substantial amount
of time on the uniprocessor. The outstanding issue is how to explore PC scaling for problem sizes
that don't fit in a single node’'s memory. Here the solution is to simply choose such a problem
size, and measure speedup relative to a number of processors for which the problem fitsin mem-
ory.

Choosing Performance Metrics

In addition to choosing parameters, an important question in evaluating or comparing machines
is the metrics that should be chosen for the evaluation. Just asit is easy in parallel computing to
mislead by not choosing workloads and parameters appropriately, it is also easy to convey the
wrong impression by not measuring and presenting results in meaningful ways. In general, both
cost and performance are important metrics. In comparing two machines, it is not just their per-
formance that matters but also their cost. And in evaluating how well a machine scales as
resources (for example processors and memory) are added, it is not only how performance
increases that matters but also how cost increases. Even if speedup increases much less than lin-

220

DRAFT: Parallel Computer Architecture 9/10/97

Evaluating a Real Machine

early, if the cost of the resources needed to run the program don’t increase much more quickly
than that then it may indeed be cost-effective to use the larger machine [WH95]. Overall, some
measure of “ cost-performance” is more appropriate than simply performance. However, cost and
performance can be measured separately, and cost is very dependent on the marketplace. The
focus here is on metrics for measuring performance.

We have already discussed absolute performance and performance improvement due to parallel-
ism and argued that they are both useful metrics. Here, we first examine some subtler issuesin
using these metrics to evaluate and especially compare machines, and then understand the role of
other metrics that are based on processing rate (e.g. megaflops), resource utilization, and prob-
lem size. As we shall see, some metrics are clearly important and should always be presented,
whilethe utility of others depends on what we are after and the environment in which we operate.
After discussing metrics, we will discuss some general issues regarding the presentation of
resultsin Section 4.3.6. We focus on issues that pertain especially to multiprocessors.

Absolute Per formance

As discussed earlier, to a user of a system the absolute performance is the performance metric
that matters the most. Suppose that execution time is our absolute performance metric. Time can
be measured in different ways. First, thereis a choice between user time and wall-clock time for a
workload. User time is the time the machine spent executing code from the particular workload
or program in question, thus excluding system activity and other programs that might be time-
sharing the machine, while wall-clock time is the total elapsed time for the workload—including
al intervening activity—as measured by a clock hanging on the wall. Second, there is the issue
of whether to use the average or the maximum execution time over all processes of the program.

Since users ultimately care about wall-clock time, we must measure and present this when com-
paring systems. However, if other user programs—not just the operating system—interferewith a
program’s execution due to multiprogramming, then wall-clock time does not help understand
performance bottlenecks in the particular program of interest. Note that user time for that pro-
gram may also not be very useful in this case, since interleaved execution with unrelated pro-
cesses disrupts the memory system interactions of the program as well as its synchronization and
load balance behavior. We should therefore always present wall-clock time and describe the exe-
cution environment (batch or multiprogrammed), whether or not we present more detailed infor-
mation geared toward enhancing understanding.

Similarly, since a parallel program is not finished until the last process has terminated, it is the
time to this point that isimportant, not the average over processes. Of course, if we truly want to
understand performance bottlenecks we would like to see the execution profiles of al pro-
cesses—or a sample—broken down into different components of time (refer back to Figure 3-12
on page 162, for example). The components of execution time tell us why one system outper-
forms another, and also whether the workload is appropriate for the investigation under consider-
ation (e.g. is not limited by load imbalance).

Perfor mance | mprovement or Speedup

We have aready discussed the utility of both absolute performance and performance improve-
ment or speedup in obtaining insights into the performance of a parallel machine. The question

9/10/97

DRAFT: Parallel Computer Architecture 221

Workload-Driven Evaluation

that was left open in measuring speedup for any scaling model is what the denominator in the
speedup ratio—performance on one processor—should actually measure. There are four choices:

(2) Performance of the parallel program on one processor of the parallel machine

(2) Performance of a sequential implementation of the same algorithm on one processor of the
parallel machine

(3) Performance of the “best” sequentia algorithm and program for the same problem on one
processor of the parallel machine

(4) Performance of the “best” sequential program on an agreed-upon standard machine.

The difference between (1) and (2) is that the parallel program incurs overheads even when run
on auniprocessor, sinceit still executes synchronization, parallelism management instructions or
partitioning code, or tests to omit these. These overheads can sometimes be significant. The rea-
son that (2) and (3) are different is that the best sequential algorithm may not be possible or easy
to parallelize effectively, so the algorithm used in the parallel program may be different than the
best sequential algorithm.

Using performance as defined by (3) clearly leads to a better and more honest speedup metric
than (1) and (2). From an architect’s point of view, however, in many cases it may be okay to use
definition (2). Definition (4) fuses uniprocessor performance back into the picture, and thus
results in a comparison metric that is similar to absolute performance.

Processing Rate

A metric that is often quoted to characterize the performance of machines is the number of com-
puter operations that they execute per unit time (as opposed to operations that have meaning at
application level, such as transactions or chemical bonds). Classic examples are MFLOPS (mil-
lions of floating point operations per second) for numerically intensive programs and MIPS (mil-
lions of instructions per second) for general programs. Much has been written about why these
are not good general metrics for performance, even though they are popular in the marketing lit-
erature of vendors. The basic reason is that unless we have an unambiguous, machine-indepen-
dent measure of the number of FLOPs or instructions needed to solve a problem, these measures
can be artificialy inflated by using inferior, brute-force algorithms that perform many more
FLOPs and take much longer, but produce higher MFLOPS ratings. In fact, we can even inflate
the metric by artificialy inserting useless but cheap operations that don’t access memory). And if
the number of operations needed is unambiguously known, then using these rate-based metricsis
no different than using execution time. Other problems with MFLOPS, for example, include the
fact that different floating point operations have different costs, that even in FLOP-intensive
applications modern algorithms use smarter data structures that have many integer operations,
and that these metrics are burdened with a legacy of misuse (e.g. for publishing peak hardware
performance numbers). While MFLOPS and MIPS are in the best case useful for understanding
the basic hardware capabilities, we should be very wary of using them as the main indication of a
machine's performance.

Utilization
Architects sometimes measure success by how well (what fraction of the time) they are able to

keep their processing engines busy executing instructions rather than stalled due to various over-
heads. It should be clear by now, however, that processor utilization is not ametric of interest to a

222

DRAFT: Parallel Computer Architecture 9/10/97

Evaluating a Real Machine

user and not a good sole performance metric at all. It too can be arbitrarily inflated, is biased
toward slower processors, and does not say much about end performance or performance bottle-
necks. However, it may be useful as a starting point to decide whether to start looking more
deeply for performance problems in a program or machine. Similar arguments hold for the utili-
zation of other resources; utilization is useful in determining whether a machine design is bal-
anced among resources and where the bottlenecks are, but not useful for measuring and
comparing performance.

Size or Configuration

To compare two systems—or a system with and without a particular enhancement—as the num-
ber of processors changes, we could compare performance for a number of well-chosen problem
sizes and under different scaling models, using execution time and perhaps speedup as the met-
rics. However, the results obtained are still dependent on the base problem sizes chosen, and per-
forming the comparison may take alot of experiments. There is another performance metric that
isuseful for comparison in some such situations. It is based on the fact that for a given number of
processors the inherent overheads of parallelism—inherent communication, load imbalance and
synchronization—usually grow relative to useful computation as the problem size is made
smaller. From the perspective of evaluating a machine’s communication architecture, then, a use-
ful comparison metric as the number of processors increases is the smallest problem size that the
machine can run which still achieving a certain measure of parallel “goodness’.; for example, the
smallest problem that the machine can run with a specified “desirable” or “acceptable” parallel
efficiency, where parallel efficiency is defined as speedup divided by the number of processors.t
By keeping parallél efficiency fixed as the number of processors increases, in a sense this intro-
duces a new scaling model that we might call efficiency-constrained scaling, and with it a perfor-
mance metric which is the smallest problem size needed. Curves of problem size versus number
of processors that maintain a fixed paralel efficiency have been called isoefficiency curves
[KuG91].

By focusing on the smallest problem sizes that can deliver the desired parallel efficiency, this
metric stresses the performance of the mechanisms provided for parallelism, and is particularly
useful for comparison when the uniprocessor nodes in the systems being compared are equiva-
lent. However, it may fail when the dominant bottleneck in practice is artifactual communication
of atype that increases rather than reduces when smaller problems are run. An example is capac-
ity-induced communication due to nonlocal data in working sets not fitting in the cache. Also,
while it stresses communication performance it may not stress the local memory system perfor-
mance of a processing node. In itself, it does not provide for complete evaluation or comparison
of systems. Note that the a similar metric may be useful even when the number of processorsis
kept fixed and some other parameter like a latency or bandwidth is varied to understand its
impact on parallel performance.

1. Of course, the notion of a smallest problem is ill-defined when different application parameters can be
varied independently by a user, since the same execution time or memory usage may be achieved with dif-
ferent combinations of parameters which have different execution characteristics with regard to parallelism.
However, it is uniquely defined given a hard and fast scaling relationship among application parameters (see
Section 4.2), or if the user only has direct control over asingle parameter and the application automatically
scales other parameters appropriately.

9/10/97

DRAFT: Parallel Computer Architecture 223

Workload-Driven Evaluation

4.3.6

In summary, from auser’s point of view in comparing machines the performance metric of great-
est interest is wall-clock execution time (there are of course cost issues to consider). However,
from the viewpoint of an architect, a programmer trying to understand a program’s performance
or auser interested more generaly in the performance of amachine, it isbest to look at both exe-
cution time and speedup. Both these should be presented in the results of any study. Ideally exe-
cution time should be broken up into its mgjor components as discussed in Section 3.5. To
understand performance bottlenecks, it is very useful to see these component breakdowns on a
per-process basis or as some sort of statistic (beyond an average) over processes. In evaluating
the impact of changes to the communication architecture, or in comparing parallel machines
based on equivalent underlying nodes, size- or configuration-based metrics like the minimum
problem size need to achieve a certain goal can be very useful. Metrics like MFLOPS, MIPS and
processor utilization can be used for specialized purposes, but using them to truly represent per-
formance requires a lot of assumptions about the knowledge and integrity of the presenter, and
they are burdened with alegacy of misuse.

Presenting Results

Given a selected metric(s), there is the issue of how to summarize and finally present the results
of a study across a range of applications or workloads The key point here is that although aver-
ages and variances over workloads are a concise way to present results, they are not very mean-
ingful particularly for parallel architectures. We have seen the reasons for this: the vast difference
among applications with regard to parallel execution characteristics (and even the sharp varia-
tions with problem size etc. that we have discussed), the strong dependence of performance on
these characteristics, and the lack of a standard accepted suite of workloads that can be consid-
ered representative of general-purpose parallel computing. Uniprocessors suffer from some of
these problems too, but in much smaller degree. For parallel machines in particular, it is very
important to present performance results per application or workload.

An article written in humorous vein [Bai93] and subtitled “ Twelve Ways to Fool the Masses’
highlights some of these misleading practices that we should guard against. The twelve practices
listed are:

Compare 32-bit results to others’ 64-bit results The manipulation of 32-bit quantities (such as
“single-precision” floating point numbers), is faster than that of 64-bit quantities (“double-
precision” floating point), particularly on machines that do not have 64-bit wide data paths.

Present inner kernel results instead of the whole application An inner kernel can be heavily
optimized for parallelism or otherwise good performance, but what a user cares about is the
performance on the whole application. Amdahl’s Law quickly comesinto play here.

Use optimized assembly code and compare with others' Fortran or C codes.

Scale problem size with number of processors, but don't tell For example, speedup curves
under memory-constrained scaling usually look much better than with a constant problem
size.

Quote performance results linearly projected to a full system We could obtain results that
show 90% parallel efficiency on a machine with 8 processors (i.e. 7.2-fold speedup), and
project that we would also obtain 90% efficiency (57.6-fold speedup) with 64 processors.
However, thereislittle a priori reason to believe that this should be the case.

Compare with scalar, unoptimized, uniprocessor results on Crays At least in high-perfor-
mance scientific computing, the Cray supercomputers have long been the standard to com-

224

DRAFT: Parallel Computer Architecture 9/10/97

Evaluating an Architectural Idea or Tradeoff

4.4

pare against. We could therefore compare the performance of our 256-processor parallel
machine on an application with the same application running non-vectorized on asingle pro-
cessor of the latest parallel Cray machine, and simply say that our machine “beat the Cray”.

Compare with old code on an obsolete system Instead of using our new and improved appli-
cation on asingle processor of the latest Cray machine, as above, we could simply use a older
dusty-deck version of the application on a much older Cray machine.

Use parallel code as base instead of best sequential one As discussed in Section 4.2, this can
inflate speedups.

Quote performance in terms of utilization, speedups, peak MFLOPS per dollar, and |eave out
execution time See Section 4.3.5.

Use inefficient algorithms to get high MFLOPS rates Again, see Section 4.3.5.
Measure parallel times on a dedicated system, but uniprocessor times on a busy system.
Show pretty pictures and videos, but don't talk about performance.

We should be aware of these ways to mislead both to avoid them ourselves and to avoid being
misled by others.

Evaluating an Architectural Idea or Tradeoff

Imagine that you are an architect at a computer company, getting ready to design your next-gen-
eration multiprocessor. You have a new architectural idea that you would like to decide whether
or not to include in the machine. You may have a wealth of information about performance and
bottlenecks from the previous-generation machine, which in fact may have been what prompted
to you to pursue this idea in the first place. However, your idea and this data are not all that is
new. Technology and technological assumptions have changed since the last machine, ranging
from the level of integration to the cache sizes and organizations used by microprocessors. The
processor you will use may be not only a lot faster but also a lot more sophisticated (e.g. four-
way issue and dynamically scheduled versus single-issue and statically scheduled), and it may
have new capabilities that affect the idea at hand. The operating system has likely changed too, as
has the compiler and perhaps even the workloads of interest. And these software components
may change further by the time the machine is actually built and sold. The feature you are inter-
ested in has a significant cost, in both hardware and particularly design time. And you have dead-
lines to contend with.

In this sea of change, the relevance of the data that you have in making quantitative decisions
about performance and cost is questionable. At best, you could use it together with your intuition
to make informed and educated guesses. But if the cost of the feature is high, you would probably
want to do more. What you can do is build a simulator that models your system. You fix every-
thing else—the compiler, the operating system, the processor, the technological and architectural
parameters—and simulate the system with the feature of interest absent and then present, and
judge its performance impact.

Building accurate simulators for parallel systems is difficult. There are many complex interac-
tions in the extended memory hierarchy that are difficult to model correctly, particularly those
having to do with contention. Processors themselves are becoming much more complex, and
accurate simulation demands that they too be modeled in detail. However, even if you can design

9/10/97

DRAFT: Parallel Computer Architecture 225

Workload-Driven Evaluation

44.1

a very accurate simulator that mimics your design, there is till a big problem. Simulation is
expensive; it takes alot of memory and time. The implication for you is that you cannot simulate
life-sized problem and machine sizes, and will have to scale down your simulations somehow.
Thisisthefirst major issue that will be discussed in this section.

Now suppose that your technological parameters are not fixed. You are starting with a clean date,
and want to know how well the idea would work with different technological assumptions. Or
you are a researcher, seeking to determine the benefits of an idea in a general context. Now, in
addition to the earlier axes of workload, problem size, and machine size, the parameters of the
machine are also variable. These parameters including the number of processors, the cache size
and organization, the granularities of alocation, communication and coherence, and the perfor-
mance characteristics of the communication architecture such as latency, occupancy and band-
width. Together with the parameters of the workload, this leads to a vast parameter space that we
must navigate. The high cost and the limitations of simulation makeit all the more important that
we prune this design space while not losing too much coverage. We will discuss the methodol og-
ical considerations in choosing parameters and pruning the design space, using a particular eval-
uation as an example. First, let ustake a quick look at multiprocessor simulation.

Multiprocessor Simulation

While multiple processes and processing nodes are simulated, the simulation itself may be run on
auniprocessor workstation. A reference generator plays the role of the processors on the parallel
machine. It simulates the activities of the processors, and issues memory references (together
with a process identifier that tells which processor the reference is from) or commands such as
send/receive to amemory system and interconnection network simulator, which represents all the
caches and memories in the system (see Figure 4-7). If the simulation is being run on a unipro-
cessor, the different simulated processes time-share the uniprocessor, scheduled by the reference
generator. One example of scheduling may be to deschedule a process every timeit issues arefer-
ence to the memory system simulator, and allow another process to run until it issues its next ref-
erence. Another example would be to reschedule processes every simulated clock cycle. The
memory system simulator simulates all the caches and main memories on the different process-
ing nodes, as well as the interconnection network itself. It can be arbitrarily complex in its simu-
lation of data paths, latencies and contention.

The coupling between the reference generator (processor simulator) and the memory system sim-
ulator can be organized in various ways, depending on the accuracy needed in the ssmulation and
the complexity of the processor model. One option istrace-driven simulation. In this case, atrace
of the instructions executed by each process is obtained by running the parallel program on one
system, and the same trace is fed into the simulator that simulates the extended memory hierar-
chy of adifferent multiprocessor system. Here, the coupling or flow of informationisonly in one
direction: from the reference generator (here just a trace) to the memory system simulator. the
more popular form of simulation is execution-driven simulation, which provides coupling in both
directions.

In execution-driven simulation, when the memory system simulator receives a reference or com-
mand from the reference generator, it simulates the path of the reference through the extended
memory hierarchy—including contention with other references, and returns to the reference gen-
erator the time that the reference took to be satisfied. This information, together with concerns
about fairness and preserving the semantics of synchronization events, is used by the reference

226

DRAFT: Parallel Computer Architecture 9/10/97

Evaluating an Architectural Idea or Tradeoff

4.4.2

generator to determine which simulated process to schedule next. Thus, there is feedback from
the memory system simulator to the reference generator, providing more accuracy than trace-
driven simulation. To allow for maximum concurrency in simulating events and references, most
components of the memory system and network are also modeled as separate communicating
threads scheduled by the simulator. A global notion of simulated time—i.e. time that would have
been seen by the ssimulated machine, not real time that the simulator itself runs for—is main-
tained by the simulator. It is what we look up in determining the performance of workloads on
the simulated architecture, and it is used to make scheduling decisions. In addition to time, simu-

vy
Er——= [[I—1I1] g
T
0]
. . 5
° :I:I:I:II | :I:I:I:II g K
(P) ' [
Reference Generator Memory and Interconnect Simulator

Figure 4-7 Execution-driven multiprocessor simulation.

lators usually keep extensive statistics about the occurrence of various events of interest. This
provides us with a wealth of detailed performance information that would be difficult if not
impossible to measure on area system, but some of these types of information may be tainted by
alack of credibility since it is after all simulation. Accurate execution-driven simulation is also
much more difficult when complex, dynamically scheduled, multiple-issue processors have to be
modeled []. Some of the tradeoffs in simulation techniques are discussed in Exercise 4.8.

Given that the simulation is done in software, and involves many processes or threads that are
being very frequently rescheduled (more often for more accuracy) it should not be surprising that
simulation is very expensive, and that we need to scale down parameters for it. Research is also
being done in performing simulation itself as a parallel application to speed it up, and in using
hardware emulation instead of simulation [RHL+93, Gol93, cite Dubois]

Scaling Down Problem and M achine Parametersfor Simulation

The tricky part about scaling down problem and machine parameters is that we want the scaled
down machine running the smaller problem to be representative of the full-scale machine running
the larger problem. Unfortunately, there are no good general formulas for this. But it isan impor-
tant issue, since it is the reality of most architectural tradeoff evaluation. We should at least
understand the limitations of such scaling, recognize which parameters can be scaled down with
confidence and which cannot, and develop guidelines that help us avoid pitfalls. Let us first
examine scaling down the problem size and number of processors, and then explain some further

9/10/97

DRAFT: Parallel Computer Architecture 227

Workload-Driven Evaluation

difficulties associated with lower-level machine parameters. We focus again on a cache-coherent
shared address space communication abstraction for concreteness.

Problem parameter sand number of processors

Consider problem parametersfirst. We should first look for those problem parameters, if any, that
affect ssimulation time greatly but do not have much impact on execution characteristics related to
parallel performance. An example is the number of time-steps executed in many scientific com-
putations, or even the number of iterations in the simple equation solver. The data values manip-
ulated can change a lot across time-steps, but the behavioral characteristics often don’'t change
very much. In such cases, after initialization and the cold-start period, which we now ignore, we
can run the simulation for afew time-steps and ignore the rest.

Unfortunately, many if not most application parameters affect execution characteristics related to
parallelism. When scaling these parameters we must also scale down the number of processors,
since otherwise we may obtain highly unrepresentative behavioral characteristics. Thisisdifficult
to do in a representative way, because we are faced with many constraints that are individually
very difficult to satisfy, and that might be impossible to reconcile. These include:

Preserving the distribution of time spent in program phases The relative amounts of time
spent performing different types of computation, for example in different phases of an appli-
cation, will most likely change with problem and machine size.

Preserving key behavioral characteristics. These include the communication to computation
ratio, load balance, and datalocality, which may all scalein different ways!

Preserving scaling relationships among application parameters. See Section 4.2.4.

Preserving contention and communication patterns. Thisis particularly difficult, since bursti-
ness for exampleis difficult to predict or control.

A more realistic goal than preserving true representativeness when scaling down might be to at
least cover arange of realistic operating points with regard to some key behavioral characteristics
that matter most for a study, and avoid unrealistic scenarios. In this sense scaled down simula-
tions are not in fact quantitatively representative of any particular reality, but can be used to gain
insight and rough estimates. With this more modest and realistic goal, let us assume that we have
scaled down application parameters and the number of processors in some way, and see how to
scale other machine parameters.

Other machine parameters

Scaled down problem and machine sizes interact differently with low-level machine parameters
than the full-scal e problems woul d. We must therefore choose parameters with considerable care.

1. We may have to omit the initialization and cold-start periods of the application from the measurements,
since their impact is much larger in the run with reduced time-steps than it would be in practice. If we
expect that the behavior over long periods of time may change substantially, then we can dump out the pro-
gram state periodically from an execution on areal machine of the problem configuration we are simulating,
and start afew sample simulations with these dumped out states as their input data sets (again not measuring
cold-start in each sample). Other sampling techniques can also be used to reduce simulation cost.

228

DRAFT: Parallel Computer Architecture 9/10/97

Evaluating an Architectural Idea or Tradeoff

Example 4-6

Answer

Consider the size of the cache or replication store. Suppose that the largest problem and machine
configuration that we can simulate for the equation solver kernel is a 512-by-512 grid with 16
processors. |f we don’t scale the IMB per-processor cache down, we will never be able to repre-
sent the situation where the important working set doesn’t fit in the cache. The key point with
regard to scaling cachesis that it should be done based on an understanding of how working sets
scale and on our discussion of redlistic and unrealistic operating points. Not scaling the cache
sizeat al, or simply scaling it down proportionally with data set size or problem size are inappro-
priate in general, since cache size interacts most closely with working set size, not with data set
or problem size. We should also ensure that the caches we use don't become extremely small,
since these can suffer from unrepresentative mapping and fragmentation artifacts. Similar argu-
ments apply to other replication stores than processor caches, especially those that hold commu-
nicated data.

In the Barnes-Hut application, suppose that the size of the most important working
set when running afull-scale problem with n=1M particlesis 150K B, that the target
machine has 1MB per-processor caches, and that you can only simulate an
execution with n=16K particles. Would it be appropriate to scale the cache size
down proportionally with the data set size? How would you choose the cache size?

We know from Chapter 3 that the size of the most important working set in Barnes-
Hut scales aslog n, where n isthe number of particles and is proportional to the size
of the data set. The working set of 150KB fits comfortably in the full-scale IMB
cache on the target machine. Given its slow growth rate, thisworking set islikely to
always fit in the cache for redlistic problems. If we scale the cache size
proportionally to the data set for our simulations, we get a cache size of IMB *
16K/1M or 16KB. The size of the working set for the scaled down problem is
150KB * ——'%%116'\5 or 70KB, which clearly does not fit in the scaled down 16KB
cache. Thus, this form of scaling has brought us to an operating point that is not
representative of reality. We should rather choose a cache size large enough to
always hold this working set.

Aswe move to till lower level parameters of the extended memory hierarchy, including perfor-
mance parameters of the communication architecture, scaling them representatively becomes
increasingly difficult. For example, interactions with cache associativity are very difficult to pre-
dict, and the best we can do is |leave the associativity asit is. The main danger is with retaining a
direct mapped cache when cache sizes are scaled down very low, since thisis particularly suscep-
tible to mapping conflicts that wouldn’t occur in the full-scale cache. Interactions with organiza-
tional parameters of the communication architecture—such as the granularities of data
alocation, transfer and coherence—are also complex and unpredictable unless there is near-per-
fect spatial locality, but keeping them fixed can lead to serious, unrepresentative artifacts in some
cases. We shall see some examples in the Exercises. Finally, performance parameters like
latency, occupancy, and bandwidth are also very difficult to scale down appropriately with all the
others. For example, should the average end-to-end latency of a message be kept the same or
reduced according to the number of hops traversed, and how should aggregate bandwidth be
treated.

9/10/97

DRAFT: Parallel Computer Architecture 229

Workload-Driven Evaluation

[
% Unredlistic § Unredlistic
a o @ Realistic
s Redlistic = (pick one point)
I |)
- I |
: | Redlistic é | | Redlistic (perform
| : | | sensitivity analysis)
I
: I Unrealistic : I Unredlistic
I
| [| (
8K 256K 2M K Ak 128K -
Cache Size Cache Size
Full-Scale Problem and Machine Scaled Down Problem and Machine

Figure 4-8 Choosing cache sizes for scaled down problem and machines.

Based on our understanding of the sizes and scaling of working sets, we first decide what regions of the curve are realistic for full-
scale problems running on the machine with full-scale caches %Ieft_graf)h). We then project or measure what the working set curve
looks like for the smaller problem and machine size that we are simulating (right graph), prune out the corresponding unrealistic
regionsin it, and pick representative operating points (cache sizes) for the realistic regions as discussed in Section 4.4. For regions
that cannot be pruned we can perform sensitivity analysis as necessary.

In summary, the best approach to simulation is to try to run the problem sizes of interest to the
extent possible. However, by following the guidelines and pitfalls discussed above, we can at
least ensure that we cover the important types of operating points with regard to some key execu-
tion characteristics when we scale down, and guide our designs by extrapolating with caution.
We can be reasonably confident about scaling with respect to some parameters and characteris-
tics, but not others, and our confidence relies on our understanding of the application. This is
okay for understanding whether certain architectural features are likely to be beneficial or not,
but it is dangerous to use scaled down situations to try to draw precise quantitative conclusions.

4.4.3 Dealing with the Parameter Space: An Example Evaluation

Consider now the problem of the large parameter space opened up by trying to evaluate an ideain
ageneral context, so that lower-level machine parameters are also variable. Let us now examine
an actual evaluation that we might perform through simulation, and through it see how we might
deal with the parameter space. Assume again a cache-coherent shared address space machine
with physically distributed memory. The default mechanism for communication isimplicit com-
munication in cache blocks through loads and stores. We saw in Chapter 3 that the impact of end-
point communication overhead and network latency can be alleviated by communicating in larger
messages. We might therefore wish to understand the utility of adding to such an architecture a
facility to explicitly send larger messages, called a block transfer facility, which programs can
use in addition to the standard transfer mechanisms for cache blocks. In the equation solver, a
process might send an entire border subrow or subcolumn of its partition to its neighbor process
in asingle block transfer.

In choosing workloads for such an evaluation, we would of course choose at least some with
communication that is amenable to being structured in large messages, such as the equation
solver. The more difficult problem is navigating the parameter space. Our goals are three-fold:

230 DRAFT: Parallel Computer Architecture 9/10/97

Evaluating an Architectural Idea or Tradeoff

Example 4-7

Answer

To avoid unrealistic execution characteristics We should avoid combinations of parameters
(or operating points) that lead to unrealistic behavioral characteristics; that is, behavior that
wouldn’'t be encountered in practical use of the machine.

To obtain good coverage of execution characteristics We should try to ensure that important
characteristics that may arise in real usage are represented.

To prune the parameter space Even in the realistic subspaces of parameter values, we should
try to prune out points when possible based on application knowledge, to save time and
resources, without losing much coverage, and to determine when explicit sensitivity analysis
iS necessary.

We can prune the space based on the goals of the study, restrictions on parameters imposed by
technology or the use of specific building blocks, and an understanding of parameter interactions.
Let us go through the process of choosing parameters, using the equation solver kernel as an
example. Although we shall examine the parameters one by one, issues that arise in later stages
may make us revisit decisions that were made earlier.

Problem size and number of processors

We choose these based on the considerations of inherent program characteristics that we have
discussed in evaluating a real machine and in scaling down for simulation. For example, if the
problem is large enough that the communication to computation ratio is very small, then block
transfer is not going to help overall performance much. Nor if the problem is small enough that
load imbalance is the dominant bottleneck.

What about other architectural parameters? Since problem and machine size as well as these
architectural parameters are now variables, we could either fix the latter first and then choose
problem size and machine sizes asin Section 4.3, or do the reverse. Thereality usualy isthat we
pick one first and then iterate in a brief feedback loop to arrive at a good compromise. Here, we
assume that we fix the problem and machine sizes first, primarily because these are limited by
simulation resources. Given a problem size and number of processors, et us examine choosing
other parameters. For the equation solver, we assume that we are using a 512-by-512 grid and 16
processors.

Cache/Replication size

Once again, we choose cache sizes based on knowledge of the working set curve. In evaluating a
real machine we saw how to choose problem sizes given a cache size (and organization) and
number of processors. Clearly, if we know the curve and how the important working sets scale
with problem size and number of processors, we can keep these fixed and choose cache sizes as
well.

Since the equation solver kernel has sharply defined working sets, it provides a
good example for choosing cache sizes for simulation. How might you choose the
cache sizesin this case?

Figure 4-9 illustrates the method using the well-defined working sets of the
equation solver. In general, while the sizes of important working sets often depend

9/10/97

DRAFT: Parallel Computer Architecture 231

Workload-Driven Evaluation

_ X X O @ Operating points
Miss NN X Unrealistic op. pts.
Retio o e Redligticop. pts.
Knee 1 e Representative redlistic op. pts.

® <

Knee2 7
—o———0-o

Cache Size
Figure 4-9 Picking cache sizes for an evaluation using the equation solver kernel.

Knee 1 corresponds roughly to a couple of subrows of either B or n/vp elements, depending on whether the grid traversal is blocked
or not, and knee 2 to a processor’s Bartltl on of the matrix, i.e. data set n“ divided lg/\ p. The latter worki n%set mafy or may not fit in
the cache dermndmg onnandp, sobothY and Z are realistic operating points and should be represented. For the first working set, it
is conceivable that It not fit in the caches if the traversal is not blocked, but as we have seen in realistically |arge caches thisis very
unlikely. If the traversal is blocked, the block size B is chosen so the former working set always fits. Operating point X is therefore
representative of an unrealistic region and isignored. Blocked matrix computations are similar in this respect.

on application parameters and the number of processors, their nature and hence the
general shape of the curve usually does not change with these parameters. For an
important working set, suppose we know its size and how it scales with these
parameters (as we do know for the equation solver, see Figure 4-9). If we also know
the range of cache sizesthat are realistic for target machines, we can tell whether it
is (i) unrealistic to expect that working set to fit in the cache in practical situations,
(i) unrealistic to expect that working set to not fit in the cache, or (iii) realistic to
expect it to fit for some practical combinations of parameter values and to not fit for
others.! Thus, we can tell which of the regions between knees in the curve may be
representative of realistic situations and which are not. Given the problem size and
number of processors, we know the working set curve versus cache size, and can
choose cache sizes to avoid unrepresentative regions, cover representative ones,
and prune flat regions by choosing only a single cache size from them (if al we
care about from a cache isits missrate).

Whether or not the important working sets fit in the cache affects the benefits from block transfer
greatly, in interesting ways. The effect depends on whether these working sets consist of locally
or nonlocally allocated data. If they consist mainly of local data—as in the equation solver when
data are placed properly—and if they don't fit in the cache, the processor spends more of itstime
stalled on the local memory system. As a result, communication time becomes relatively less
important and block transfer islikely to help less (block transferred data also interferes more with
the local bus traffic, causing contention). However, if the working sets are mostly nonlocal data,
we have an opposite effect: If they don't fit in the cache, then there is more communication and

1. Whether a working set of a given size fits in the cache may depend on cache associativity and perhaps
even block size in addition to cache size, but it is usually not amajor issuein practice if we assumethereis
at least 2-way associativity as we shall see later, and we can ignore these effects for now.

232 DRAFT: Parallel Computer Architecture 9/10/97

Evaluating an Architectural Idea or Tradeoff

hence a greater opportunity for block transfer to help performance. Again, proper evaluation
requires that we understand the applications well enough.

Of course, a working set curve is not always composed of relatively flat regions separated by
sharply defined knees. If there are knees but the regions they separate are not flat (Figure 4-
10(a)), we can till prune out entire regions as before if we know them to be unrealistic. However,
if aregionisredlistic but not flat, or if there aren’t any knees until the entire data set fits in the
cache (Figure 4-10(b)), then we must resort to sensitivity analysis, picking points close to the
extremes as well as perhaps some in between.

Miss Miss
Ratio Ratio

Knee

v

Cache Size Cache Size
(a) Portion to left of kneeis not flat (b) No flat regions for realistic caches

Figure 4-10 Missrate versus cache size curvesthat are not knees separated by flat regions.

The remaining question is determining the sizes of the knees and the shape of the curve between
them. In simple cases, we may be able to do this analytically. However, complex algorithms and
many other factors such as constant factors and the effects of cache block size and associativity
may be difficult to analyze. In these cases, we can obtain the curve for a given a problem size and
number of processors by measurement (simulation) with different cache sizes. The simulations
needed are relatively inexpensive, since working set sizes do not depend on detailed timing-
related issues such as latencies, bandwidths, occupancies and contention, which therefore do not
need to be simulated. How the working sets change with problem size or number of processors
can then be analyzed or measured again as appropriate. Fortunately, analysis of growth ratesis
usualy easier than predicting constant factors. Lower-level issues like block size and associativ-
ity often don’t change working sets too much for large enough caches and reasonable cache orga-
nizations (other than direct-mapped caches) [WOT+95].

Cache block size and associativity

In addition to the problem size, number of processors and cache size, the cache block size is
another important parameter for the benefits of block transfer. The issues are a little more
detailed. Long cache blocks themselves act like small block transfers for programs with good
spatial locality, making explicit block transfer relatively less effective in these cases. On the other
hand, if spatial locality is poor then the extratraffic caused by long cache blocks (due to fragmen-
tation or false-sharing) can consume a lot more bandwidth than necessary. Whether this wastes
bandwidth for block transfer as well depends on whether block transfer isimplemented by pipe-
lining whole cache blocks through the network or only the necessary words. Block transfer itself
increases bandwidth requirements, since it causes the same amount of communication to be per-
formed in hopefully less time. If block transfer is implemented with cache block transfers, then
with poor spatial locality it may hurt rather than help when available bandwidth is limited, since

9/10/97

DRAFT: Parallel Computer Architecture 233

Workload-Driven Evaluation

it may increase contention for the available bandwidth. Often, we are able to restrict the range of
interesting block sizes either due to constraints of current technology or because of limits
imposed by the set of building blocks we might use. For example, almost all microprocessors
today support cache blocks between 32 and 128 bytes, and we may have aready chosen amicro-
processor that has a 128-byte cache block. When thresholds occur in the interactions of problem
size and cache block size (for instance in the sorting example discussed earlier), we should
ensure that we cover both sides of the threshold.

While the magnitude of the impact of cache associativity impact is very difficult to predict, real
caches are built with small associativity (usually at most 4-way) so the number of choicesto con-
sider is small. If we must choose a single associativity, we are best advised to avoid direct-
mapped caches unless we know that the machines of interest will have them.

Perfor mance Par ameter s of the Communication Architecture

Overhead The higher the overhead of initiating the transfer of a cache block (on a miss, say) the
more important it isto amortize it by structuring communication in larger, block transfers. Thisis
true as long as the overhead of initiating a block transfer is not so high as to swamp out the bene-
fits, since the overhead of explicitly initiating a block transfer may be larger than of automatically
initiating the transfer of a cache block.

Network transit time The higher the network transit time between nodes, the greater the benefit of
amortizing it over large block transfers (there are limits to this, which will be discussed when we
examine block transfer in detail in Chapter 11). The effects of changing latency usually do not
exhibit knees or thresholds, so to examine a range of possible latencies we simply have to per-
form sensitivity analysis by choosing a few points along the range. Usually, we would choose
latencies based on the target latencies of the machines of interest; for example, tightly coupled
multiprocessors typically have much smaller latencies than workstations on alocal area network.

Transfer Bandwidth We have seen that available bandwidth is an important issue for our block
transfer study. Bandwidth also exhibits a strong knee effect, which is in fact a saturation effect:
Either there is enough bandwidth for the needs of the application, or thereis not. And if thereis,
then it may not matter too much whether the available bandwidth is four times what is needed or
ten times. We can therefore pick one bandwidth that is less than that needed and one that is much
more. Since the block transfer study is particularly sensitive to bandwidth, we may also choose
one that is closer to the borderline. In choosing bandwidths, we should be careful to consider the
burstiness in the bandwidth demands of the application; choices based on average bandwidth
needs over the whole application may lead to unrepresentative contention effects.

Revisiting choices

Finally, we may often need to revise our earlier choices for parameter values based on interac-
tions with parameters considered later. For example, if we are forced to use small problem sizes
dueto lack of simulation time or resources, then we may be tempted to choose avery small cache
Size to represent a realistic case where an important working set does not fit in the cache. How-
ever, choosing a very small cache may lead to severe artifacts if we simultaneously choose a
direct-mapped cache or a large cache block size (since this will lead to very few blocks in the
cache and potentially a lot of fragmentation and mapping conflicts). We should therefore recon-

234

DRAFT: Parallel Computer Architecture 9/10/97

lllustrating Workload Characterization

444

4.5

sider our choice of problem size and number of processors for which we want to represent this
situation.

Summary

The above discussion shows that the results of an evaluation study can be very biased and mis-
leading if we don’'t cover the space adequately: We can easily choose a combination of parame-
ters and workloads that demonstrates good performance benefits from a feature such as block
transfer, and can just as easily choose a combination that doesn't. It is therefore very important
that we incorporate the above methodological guidelinesin our architectural studies, and under-
stand the relevant interactions between hardware and software.

While there are alot of interactions, we can fortunately identify certain parameters and properties
that are high-level enough for us to reason about, that do not depend on lower-level timing details
of the machine, and upon which key behavioral characteristics of applications depend crucialy.
We should ensure that we cover realistic regimes of operation with regard to these parameters
and properties. They are: application parameters, the number of processors, and the relationship
between working sets and cache/replication size (that is, the question of whether or not the
important working sets fit in the caches). Some benchmark suites provide the basic characteris-
tics for their applications, together with their dependence on these parameters, so that architects
do not have to reproduce them [WOT+95].

Itisalso important to look for knees and flat regionsin the interactions of application characteris-
tics and architectural parameters, since these are useful for both coverage and pruning. Finally,
the high-level goals and constraints of a study can also help us prune the parameter space.

This concludes our discussion of methodological issues in workload-driven evaluation. In the rest
of this chapter, we introduce the rest of the paralel programs that we shall use most often as
workloads in the book, and describe the basic methodologically relevant characteristics of all
these workloads as well as the three we will use that were described in previous chapters (Ocean,
Barnes-Hut, and Raytrace).

[llustrating Workload Char acterization

We shall use workloads extensively in this book to quantitatively illustrate some of the architec-
tural tradeoffs we discuss, and to evaluate our case-study machines. Systems that support a
coherent shared address space communication abstraction will be discussed in Chapters 5 and 8,
while message passing and non-coherent shared address space will be discussed in Chapter 7.
Our programs for the abstractions are written in the corresponding programming models. Since
programs for the two models are written very differently, as seen in Chapter 2, we illustrate our
characterization of workloads with the programs used for a coherent shared address space. In
particular, we use six parallel applications and computational kernels that run in batch mode (i.e.
one at atime) and do not include operating system activity, and a multiprogrammed workload
that includes operating system activity. While the number of applications we use is small, we try
to choose applications that represent important classes of computation and have widely varying
characteristics.

9/10/97

DRAFT: Parallel Computer Architecture 235

Workload-Driven Evaluation

45.1 Workload Case Studies

All of the parallel programs we use for shared address space architectures are taken from the
SPLASH?2 application suite (see APPENDIX A). Three of them (Ocean, Barnes, and Raytrace)
have aready been described and used to illustrate performance issues in previous chapters. In
this section, we briefly describe the workloads that we will use but haven't yet discussed: LU,
Radix (which we have used as an example to illustrate interactions of problem size with cache
block size), Radiosity and Multiprog. Of these, LU and Radix are computational kernels, Radios-
ity isareal application, and Multiprog is a multiprogrammed workload. Then, in Section 4.5.2,
we measure some methodologically relevant execution characteristics of the workloads, includ-
ing the breakdown of memory references, the communication to computation ratio and how it
scales, and the size and scaling of the important working sets. We will use this characterization in
later chaptersto justify our use of default memory system parameters, and to pick the cache sizes
that we shall use with these applications and data sets.

LU

Dense LU factorization is the process of converting a dense matrix A into two matrices L, U that
are lower- and upper-triangular, respectively, and whose product equals A (i.e. A=LU)L. Its utility
isin solving linear systems of equations, and it is encountered in scientific applications as well as
optimization methods such as linear programming. In addition to itsimportance, LU factorization
is awell-structured computational kernel that is nontrivial, yet familiar and fairly easy to under-
stand.

LU factorization works like Gaussian elimination, eliminating one variable at atime by subtract-
ing rows of the matrix by scalar multiples of other rows. The computational complexity of LU

factorization is O(n3) while the size of the data set is O(n2). As we know from the discussion of
temporal locality in Chapter 3, thisis an ideal situation to exploit temporal locality by blocking.
In fact, we use a blocked LU factorization, which is far more efficient both sequentially and in
parallel than an unblocked version. The n-by-n matrix to be factored is divided into B-by-B
blocks, and the ideais to reuse a block as much as possible before moving on to the next block.

We now think of the matrix as consisting of %—by - E blocks rather than of n-by-n elements and

eliminate and update blocks at atime just as we would elements, but using matrix operations like
multiplication and inversion on small B-by-B blocks rather than scalar operations on elements.
Sequential pseudocode for this“blocked” LU factorization is shown in Figure 4-11.

Consider the benefits of blocking. If we did not block the computation, a processor would com-
pute an element, then compute its next assigned element to the right, and so forth until the end of
the current row, after which it would proceed to the next row. When it returned to the first active
element of the next row, it would re-references a perimeter row element (the one it used to com-
pute the corresponding active element of the previous row). However, by thistime it has streamed

1. A matrix is caled dense if a substantial proportion of its elements are non-zero (matrices that have
mostly zero entries are called sparse matrices). A lower-triangular matrix such asL is one whose entries are
all 0 above the main diagonal, while an upper-triangular matrix such as U has all 0's below the main diago-
nal. The main diagonal is the diagonal that runs from the top left corner of the matrix to the bottom right
corner.

236

DRAFT: Parallel Computer Architecture 9/10/97

lllustrating Workload Characterization

for kK « 0to N1 do [*loop over all diagonal blocks*/
factorize bl ock A ;
for j « k+l to N1 do /* for all blocksin the row of, and
to the right of, this diagonal block */
Aci o< A T (A WL [* divide by diagonal block */
for i « k+1 to N1 do [* for all rows below this diagonal block*/
for j « k+l to N1 do /* for all blocksin the corr. row */
A <A - A (AT
endf or
endf or
endf or
endf or

Figure 4-11 Pseudocode describing sequential blocked dense LU factorization.

N is the number of blocks (N = rB), and Ay ; represents the block in the i row and j*" column of matrix A. In the K" iteration of this
outer loop, we call the block A, |, on the main diagonal of A the diagonal block, and the k™" row and column the perimeter row and
perimeter column, respectively (see also Figure 4-12). Note that the k™' iteration does not touch any of the elementsin the first k-1
rows or columns of the matrix; that is, only the shaded part of the matrix in the square region to theright of and below the pivot ele-
ment is “active” in the current outer loop iteration. The rest of the matrix has already been computed in previous iterations, and will
beinactivein this and all subsequent outer loop iterations in the factorization.

through data proportional to an entire row of the matrix, and with large matrices that perimeter
row element might no longer bein the cache. In the blocked version, we proceed only B elements
in a direction before returning to previously referenced data that can be reused. The operations
(matrix multiplications and factorizations) on the B-by-B blocks each involve O(B%) computation
and data accesses, with each block element being accessed B times. If the block size B is chosen
such that a block of B-by-B or B2 elements (plus some other data) fitsin the cache, then in agiven
block computation only the first access to an element misses in the cache. Subsequent accesses
hit in the cache, resulting in B2 misses for B2 accesses or a miss rate of =

Figure 4-12 provides a pictoria depiction of the flow of information among blocks within an
outer loop iteration, and also shows how we assign blocks to processors in the parallel version.
Because of the nature of the computation, blocks toward the top left of the matrix are active only
in the first few outer loop iterations of the computation, while blocks toward the bottom right
have a lot more work associated with them. Assigning contiguous rows or squares of blocks to
processes (a domain decomposition of the matrix) would therefore lead to poor load balance. We
therefore interleave blocks among processes in both dimensions, leading to a partitioning called a
two-dimensional scatter decomposition of the matrix: The processes are viewed as forming a

two-dimensional ./p-by-./p grid, and this grid of processes is repeatedly stamped over the
matrix of blocks like a cookie cutter. A process is responsible for computing the blocks that are
assigned to it in thisway, and only it writesto those blocks. The interleaving improves—but does
not eliminate—load balance, while the blocking preserves locality and allows us to use larger
data transfers on message passing systems.

The drawback of using blocks rather than individual elementsisthat it increases task granularity
(the decomposition is into blocks rather than elements) and hurts load balance: Concurrency is
reduced since there are fewer blocks than elements, and the maximum load imbalance per itera-

9/10/97 DRAFT: Parallel Computer Architecture 237

Workload-Driven Evaluation

Ak _>| B 4__1 for all k from 0 to N-.1
»@ : B if | own Ay, factorize Ay,
: . v .
L //. ZH Y BARRIER;

for all my blocks Ay; in pivot rc

n : : Ay < A A
RN BARRIER
: PR for all my blocks Aij in active i
: 45167 Ajp <= Aj = Ay
v % 28 19 11011 endfor

. Diagonal Block

@ Perimeter Block “Cookie Cutter”
assignment of
Interior Block blocks to processors

Figure 4-12 Paralel blocked LU factorization: flow of information, partitioning and parallel pseudocode.

The flow of information within an outer (K) loop iteration is shown by the solid arrows. Information (data) flows from the diagonal
block (which isfirst factorized) to all blocks in the perimeter row in the first phase. In the second phase, a block in the active part of
the matrix needs the corresponding elements from the perimeter row and perimeter column.

tion is the work associated with a block rather than a single element. In sequential LU factoriza-
tion, the only constraint on block size is that the two or three blocks used in a block computation
fit in the cache. In the parallel case, the ideal block size B is determined by a tradeoff between
data locality and communication overhead (particularly on a message-passing machine) pushing
toward larger blocks on one hand and load balance pushing toward smaller blocks on the other.
The ideal block size therefore depends on the problem size, number of processors, and other
architectural parameters. In practice block sizes of 16-by-16 or 32-by-32 elements appear to
work well on large parallel machines.

Data can aso be reused across different block computations. To reuse data from remote blocks,
we can either copy blocks explicitly in main memory and keep them around or, on cache-coher-
ent machines perhaps rely on caches being large enough to do this automatically. However, reuse
across block computations is typically not nearly as important to performance as reuse within
them, so we do not make explicit copies of blocksin main memory.

For spatia locality, since the unit of decomposition is now a two-dimensional block, the issues
are quite similar to those discussed for the simple equation solver kernel in Section 3.4.1. We are
therefore led to a three- or four-dimensional array data structure to represent the matrix in a
shared address space. This allows us to distribute data among memories at page granularity (if
blocks are smaller than a page, we can use one more dimension to ensure that all the blocks
assigned to a process are contiguous in the address space). However, with blocking the capacity
miss rate is small enough that data distribution in main memory is often not a major problem,

238

DRAFT: Parallel Computer Architecture 9/10/97

lllustrating Workload Characterization

unlike in the equation solver kernel. The more important reason to use high-dimensional arraysis
to reduce cache mapping conflicts across subrows of ablock as well as across blocks, as we shall
seein Chapter 5 (Section 5.7). These are very sensitive to the size of the array and number of pro-
cessors, and can easily negate most of the benefits of blocking.

No locks are used in this computation. Barriers are used to separate outer loop iterations as well
as phases within an iteration (e.g. to ensure that the perimeter row is computed before the blocks
in it are used). Point-to-point synchronization at the block level could have been used instead,
exploiting more concurrency, but barriers are much easier to program.

Radix

The Radix program sorts a series of integers, called keys, using the radix sorting method. Sup-
pose there are n integers to be sorted, each of size b bits. The agorithm uses a radix of r bits,
where r is chosen by the user. This means the b hits representing a key can be viewed as a set of
[b/r7 groups of r bits each. The algorithm proceeds in [b/r7] phases or iterations, each phase
sorting the keys according to their values in the corresponding group of r bits, starting with the
lowest-order group (see Figure 4-13).1 The keys are completely sorted at the end of these [b/r]

b bits
ooo‘oooo‘oooo‘oooo
r-1 bits r bits r bits r bits
iter (b/r) - 1 (iter 1) (iter 0)

Figure 4-13 A b-bit number (key) divided into [b/r] groups of r bits each.

Thefirst iteration of radix sorting uses the least significant r bits, etc.

phases. Two one-dimensional arrays of size n integers are used: one stores the keys as they
appear in the input to a phase, and the other the output from the phase. The input array for one
phase is the output array for the next phase, and vice versa.

The parallel algorithm partitions the n keys in each array among the p processes so that process 0
get thefirst n/p keys, processor 1 the next n/p keys, and so on. The portion of each array assigned
to aprocessis alocated in the corresponding processor’s local memory (when memory is physi-
cally distributed). The n/p keys in the input array for a phase that are assigned to a process are
called itslocal keysfor that phase. Within a phase, a process performs the following steps:

1. Make a pass over the local n/p keys to build a local (per-process) histogram of key values.
The histogram has 2" entries. If akey encountered has the valuei in the r bits corresponding
to the current phase, then the i bin of the histogram is incremented.

2. When all processes have completed the previous step (determined by barrier synchronization
in this program), accumulate the local histograms into aglobal histogram. Thisisdonewith a

1. The reason for starting with the lowest-order group of r bits rather than the highest-order one is that this
leads to a “stable” sort; i.e. keys with the same value appear in the output in the same order relative to one
another as they appeared in the input.

9/10/97

DRAFT: Parallel Computer Architecture 239

Workload-Driven Evaluation

parallel prefix computation, as discussed in Exercise 4.13. The global histogram keeps track
of both how many keys there are of each value, and also for each of the p process-id valuesj,
how many keysthere are of a given value that are owned by processeswhoseid islessthanj.

3. Make another pass over the local n/p keys. For each key, use the global and local histograms
to determine which position in the output array this key should go to, and write the key value
into that entry of the output array. Note that the array element that will be written is very
likely (expected likelihood (p-1)/p) to be nonlocal (see Figure 4-14). This phaseis called the
permutation phase.

proc O proc 1 proc 2 proc p
InpUt array A1 R
s 7 N
Output array 2= g%4 ¥ Y%i A A W \ |V \ BN T
proc O proc 1 proc 2 proc p

Figure 4-14 The permutation phase of aradix sorting iteration.

In each of the input and output arrays (which change places in successive iterations), keys (entries) assigned to a process are allo-
cated in the corresponding processor’s local memory.

A more detailed description of the algorithm and how it works can be found in [BL+91]. In a
shared address space implementation, communication occurs when writing the keys in the per-
mutation phase (or reading them in the binning phase of the next iteration if they stay in the writ-
ers caches), and in constructing the global histogram from the local histograms. The
permutation-related communication is all-to-all personalized (i.e. every process sends some keys
to every other) but isirregular and scattered, with the exact patterns depending on the distribution
of keys and the iteration. The synchronization includes global barriers between phases, and finer-
grained synchronization in the phase that builds the global histogram. The latter may take the
form of either mutual exclusion or point-to-point event synchronization, depending on the imple-
mentation of this phase (see Exercises).

Radiosity

The radiosity method is used in computer graphics to compute the global illumination in a scene
containing diffusely reflecting surfaces. In the hierarchical radiosity method, a scene is initialy
modeled as consisting of k large input polygons or patches. Light transport interactions are com-
puted pairwise among these patches. If the light transfer between a pair of patchesis larger than a
threshold, then one of them (the larger one, say) is subdivided, and interactions computed
between the resulting patches and the other patch. This process continues until the light transfer
between al pairs is low enough. Thus, patches are hierarchically subdivided as necessary to
improve the accuracy of computing illumination. Each subdivision results in four subpatches,
leading to a quadtree per patch. If the resulting final number of undivided subpatches is n, then
with k original patches the complexity of this algorithm is O(n+ kz). A brief description of the
stepsin the algorithm follows. Details can be found in [HSA91, Sin93].

240

DRAFT: Parallel Computer Architecture 9/10/97

lllustrating Workload Characterization

Theinput patches that comprise the scene are first inserted into a binary space partitioning (BSP)
tree [FAG83] to facilitate efficient visibility computation between pairs of patches. Every input
patchisinitially given an interaction list of other input patches which are potentially visible from
it, and with which it must therefore compute interactions. Then, radiosities are computed by the
following iterative agorithm:

1. For every input patch, compute its radiosity due to all patches onitsinteraction list, subdivid-
ing it or other patches hierarchically and computing their interactions recursively as necessary
(see below and Figure 4-15).

2. Starting from the patches at the leaves of the quadtrees, add all the area-weighted patch radi-
osities together to obtain the total radiosity of the scene, and compare it with that of the previ-
ous iteration to check for convergence within a fixed tolerance. If the radiosity has not
converged, return to step 1. Otherwise, go to step 3.

3. Smooth the solution for display.

Most of the time in an iteration is spent in step 1. Suppose a patch i is traversing its interaction

Polygon B

Polygon C
Polygon A \
input
polygo

/

interactions /

patches

TN

leaf patches

Polygon D

Figure 4-15 Hierarchical subdivision of input polygonsinto quadtrees as the radiosity computation progresses.

Binary trees are shown instead of quadtrees for clarity, and only one patch’s interactions lists are shown.

list to compute interactions with other patches (quadtree nodes). Consider an interaction between
patch i and another patch j on itsinteraction list. The interaction involves computing the inter-vis-
ibility of the two patches and the light transfer between them (the actual light transfer is the prod-
uct of the actua inter-visibility and the light transfer that would have happened assuming full
inter-visibility). Computing inter-visibility involves traversing the BSP tree several times from
one patch to the other; in fact, visibility computation is a very large portion of the overall execu-

9/10/97

DRAFT: Parallel Computer Architecture 241

Workload-Driven Evaluation

tion time. If the result of an interaction says that the “source” patch i should be subdivided, then
four children are created for patch i—if they don’t already exist due to a previous interaction—
and patch j isremoved from i’sinteraction list and added to each of i’s children’s interaction lists,
so that those interactions can be computed later. If the result is that patch j should be subdivided,
then patch j is replaced by its children on patch i’s interaction list. This means that interactions
will next be computed between patch i and each of patch j's children. These interactions may
themselves cause subdivisions, so the process continues recursively (i.e.if patch j's children are
further subdivided in the course of computing these interactions, patch i ends up computing inter-
actions with a tree of patches below patch j; since the four children patches from a subdivision
replace the parent in-place on i's interaction list, the traversal of the tree comprising patch j's
descendants is depth-first). Patch i’s interaction list is traversed fully in this way before moving
on to the next patch (perhaps a descendant of patch i, perhaps a different patch) and itsinteraction
list. Figure 4-16 shows an example of this hierarchical refinement of interactions. The next itera-

(1) Before refinement

Figure 4-16 Hierarchical refinement of interactions and interaction lists.

tion of the iterative algorithm starts with the quadtrees and interaction lists as they are at the end
of the current iteration.

1. Visihility is computed by conceptually shooting a number of rays between the two patches, and seeing
how many of the rays reach the destination patch without being occluded by intervening patches in the
scene. For each such conceptual ray, determining whether it is occluded or not is done efficiently by travers-
ing the BSP tree from the source to the destination patch.

242

DRAFT: Parallel Computer Architecture 9/10/97

lllustrating Workload Characterization

452

Parallelism is available at three levelsin this application: across the k input polygons, across the
patches that these polygons are subdivided into—i.e. the patches in the quadtrees—and across
the interactions computed for a patch. All three levels involve communication and synchroniza-
tion among processors. We obtain the best performance by defining atask to be either a patch and
al itsinteractions or a single patch-patch interaction, depending on the size of the problem and
the number of processors.

Since the computation and subdivisions are highly unpredictable, we have to use task queues
with task stealing. The parallel implementation provides every processor with its own task queue.
A processor’s task queue is initialized with a subset of the initial polygon-polygon interactions.
When a patch is subdivided, new tasks involving the subpatches are enqueued on the task queue
of the processor that did the subdivision. A processor processes tasks from its queue until there
are no tasks |eft. Then, it steals tasks from other processors' queues. Locks are used to protect the
task queues and to provide mutually exclusive access to patches as they are subdivided (note that
to different patches, assigned to two different processes, may have the same patch on their inter-
action list, so both processes may try to subdivide the latter patch at the same time). Barrier syn-
chronization is used between phases. The parallel algorithm is non-deterministic, and has highly
unstructured and unpredictable execution characteristics and access patterns.

Multiprog

The workloads we have discussed so far include only parallel application programs running one
at atime. Aswe said at the beginning of the previous chapter, a very common use of multiproces-
sors, particularly small-scale shared-address-space multiprocessors, is as throughput engines for
multiprogrammed workloads. The fine-grained resource sharing supported by these machines
alows a single operating system image to service the multiple processors efficiently. Operating
system activity is often itself a substantial component of such workloads, and the operating sys-
tem constitutes an important, complex parallel application in itself. The final workload we study
is a multiprogrammed (time-shared) workload, consisting of a number of sequential applications
and the operating system itself. The applications are two UNIX file conpr ess jobs, and two
parallel compilations—or pmakes—in which multiple files needed to create an executable are
compiled in parallel. The operating system is a version of UNIX produced by Silicon Graphics
Inc., caled IRIX version 5.2.

Workload Char acteristics

We now quantitatively measure some important basic characteristics of all our workloads, includ-
ing the breakdown of memory references, the communication to computation ratio and how it
scales, and the size and scaling of the important working sets. We use this characterization to jus-
tify our choice of memory system parameters, and to pick the cache sizes that we shall use with
these applications and data sets in the rest of our evaluations (according to the methodology
developed in this chapter). We present data for 16-processor executions for our parallel applica
tions, and 8-processor executions of the multiprogrammed workload. For these simulations we
assume that each processor has a single-level, 1 Mbyte large, 4-way set-associative cache with
64-byte cache blocks.

9/10/97

DRAFT: Parallel Computer Architecture 243

Workload-Driven Evaluation

Data Access and Synchronization Characteristics

Table 4-1 summarizes the basic reference counts and dynamic frequency of synchronization
events (locks and global barriers) in the different workloads. From left-to-right the columns are:
program name, input data-set, total instructions executed, total number of floating-point opera-
tions executed, reads, writes, shared-reads, shared-writes, barriers, lock-unlock pairs. A dashina
table entry means that the entry is not applicable for that application (e.g. Radix has no floating
point operations). The input data sets are the default data sets that we shall use for these programs
in the simulation experiments in the rest of the book, unless otherwise mentioned. The data sets
are chosen to be large enough to be of practical interest for a machine of about 64 processors (the
size we will measure in Chapter 8), but small enough to simulate in reasonable time. They are at
the small end of the data sets one might run in practice on 64-processor machines, but are quite
appropriate for the bus-based machines we consider here. How the characteristics of interest
scale with problem size is usually discussed qualitatively or analytically, and sometimes mea-
sured.

In al the programs throughout the book, we begin keeping track of behaviora and timing statis-
tics after the child processes are created by the parent. Previous references (by the main process)
are issued to the memory system simulator and simulated, but are not included in the statistics. In
most of the applications, measurement begins exactly after the child processes are created. The
exceptions are Ocean and Barnes-Hut. In both these cases we are able to take advantage of the
fact that we can drastically reduce the number of time-steps for the purpose of smulation (as dis-
cussed in Section 4.4.2) but have to then ignore cold-start misses and allow the application to set-
tle down before starting measurement. We simulate a small number of time-steps—six for Ocean
and five for Barnes-Hut—and start tracking behavioral and timing statistics after the first two
time-steps (though we do simulate the first two as well). For the Multiprog workload, statistics
are gathered from a checkpoint taken close to the beginning of the pmake. While for all other
applications we consider only application data references, for the Multiprog workload we also
consider impact of instruction references, and furthermore separate out kernel references and
user application references. The statistics are presented separately for kernel and user references,
and in some cases these are further split into instruction and data references.

As per our discussion in this chapter, we quantitatively characterize the following basic proper-
ties of the program here: concurrency and load balance (to show that the programs are appropri-
ate for the machine sizes we with to examine), inherent communication to computation ratio, and
working sets. We also discuss analytically or qualitatively how these characteristics scale with
key problem parameters and the number of processors. More detailed architectural measurements
will be made in later chapters.

Concurrency and Load Balance

We characterize load balance by measuring the algorithmic speedups we discussed earlier; i.e.
speedups on an a PRAM, an architectural model that assumes that memory references have zero
latency (they just cost the instruction it takes to issue the reference) regardless of whether they
are satisfied in the cache, local memory or have to traverse the network. On such an architecture,
which is of courseimpossibleto realize in practice, deviations from ideal speedup are attributable
to load imbalance, serialization dueto critical sections, and the overheads of redundant computa-
tion and parallelism management.

244

DRAFT: Parallel Computer Architecture 9/10/97

lllustrating Workload Characterization

Figure 4-17 PRAM speedups for the six parallel applications.

70 —

60 1—

Speedup

40

30

20

10

Ideal
Barnes
Ocean
Raytrace
Radix

LU
Radiosity

Ideal speedup simply means a speedup of p with p processors.

40 50

60

70

Number of Processors

Table 4-1 General tatistics about application programs. For the parallel programs, shared reads and writes simply refer to all
non-stack references issued by the application processes. All such references do not necessarily point to data that are truly
shared by multiple processes. The Multiprog workload is not a parallel application, so does not access shared data. A dashina

table entry means that measurement is not applicable to or is not measured for that application.

Total Total Total Total Total Shared | Shared
Instr Flops Refs Reads | Writes | Reads | Writes Bar-
Application Data Set (M) (M) (M) (M) (M) (M) (M) riers Locks
512x512 matrix
LU 16x16 blocks 489.52 92.20 | 151.07 | 103.09 47.99 92.79 44,74 66 0
258x258 grids
tolerance=10""
Ocean 4time-steps 376.51 101.54 99.70 81.16 18.54 76.95 16.97 364 1296
16K particles
6=10
Barnes 3time-steps 2002.74 | 239.24 | 720.13 | 406.84 | 313.29 | 225.04 93.23 7 34516
256K points
Radix radix = 1024 84.62 — 14.19 7.81 6.38 3.61 2.18 11 16
RayTrace Car scene 833.35 — 290.35 210.03 80.31 161.10 22.35 0 94456
Radiosity Room scene 2297.19 — 769.56 486.84 282.72 249.67 21.88 10 | 210485
'\U" S”e'r“prog: SGI Irix 5.2, 1296.43 — | 50022 | 35042 | 149.80 — — — —
two pmakes +
- .| two compress
Multiprog: 1 {ops 668.10 — | 21258 | 17814 | 3444 — — — | 621505
9/10/97 DRAFT: Parallel Computer Architecture 245

Workload-Driven Evaluation

Figure 4-17 shows the PRAM speedups for the programs for up to 64 processors with the default
data sets. Three of the programs (Barnes, Ocean and Raytrace) speed up very well all the way to
64 processors even with the relatively small default data sets. The dominant phases in these pro-
grams are data parallel across alarge data set (all the particlesin Barnes, an entire grid in Ocean,
and the image plane in Raytrace), and have limited parallelism and seriaization only in some
global reduction operations and in portions of some particular phases that are not dominant in
terms of number of instructions executed (e.g. tree building and near the root of the upward pass
in Barnes, and the higher levels of the multigrid hierarchy in Ocean).

The programs that do not speed up fully well for the higher numbers of processors with these
data setsare LU, Radiosity, and Radix. The reasons in all these cases have to do with the sizes of
the input data-sets rather than the inherent nature of load imbalance in the applications them-
selves. In LU, the default data set results in considerable load imbalance for 64 processors,
despite the block-oriented decomposition. Larger data sets reduce the imbalance by providing
more blocks per processor in each step of the factorization. For Radiosity, the imbalance is also
dueto the use of asmall data set, though it is very difficult to analyze. Finaly, for Radix the poor
speedup at 64 processors is due to the prefix computation when accumulating local histograms
into a global histogram (see Section), which cannot be completely parallelized. The time spent
in this prefix computation is O(logp) while the time spent in the other phasesis O(n/ p), so the
fraction of total work in this unbalanced phase decreases as the number of keys being sorted
increases. Thus, even these three programs can be used to evaluate larger machines as long as
larger data sets are chosen.

We have therefore satisfied our first criterion of not choosing parallel programs that are inher-
ently unsuitable for the machine sizes we want to evaluate, and of understanding how to choose
data sets for these programs that make them appropriate in this regard. Let us now examine the
inherent communication to computation ratios and working set sizes of the programs.

Communication to Computation Ratio

We include in the communication to computation ratio inherent communication as well as com-
munication due to the first time aword is accessed by a processor, if it happens to be nonlocally
allocated (cold start misses). Where possible, data is distributed appropriately among physically
distributed memories, so we can consider this cold start communication to be quite fundamental.
To avoid artifactual communication due to finite capacity or issues related to spatial locality (see
Section 3.4.1), we simul ate infinite per-processor caches and a single-word cache block. We mea-
sure communication to computation ratio as the number of bytes transferred per instruction, aver-
aged over all processors. For floating-point intensive applications (LU and Ocean) we use bytes
per FLOP (floating point operation) instead of per instruction, since FLOPs are |ess sensitive to
vagaries of the compiler than instructions.

We first present the communication to computation (measured as indicated above) for the base
problem size shown in Table 4-1 versus the number of processors used. This shows how theratio
increases with the number of processors under constant problem size scaling. Then, where possi-
ble we describe analytically how the ratio depends on the data set size and the number of proces-
sors (Table4-2). The effects of other application parameters on the communication to
computation ratio are discussed qualitatively.

246

DRAFT: Parallel Computer Architecture 9/10/97

lllustrating Workload Characterization

lable 4-2 Growth Rates of Communication-to-Computation Ratio.

Code Growth Rate of Comm/Comp Ratio
LU JP1.JDS
Ocean JP 1 ./DS
Barnes approximately /P / /DS
Radiosity unpredictable
Radix (P-1)/P
Raytrace unpredictable

Figure 4-18 shows the first set of results for our six parallel programs. The programs for which

0.3

0.25
o
(e}
-
[0.2
5] —&—Radix
=
S 0.15 L
§ Ocean
E 0.1 Radiosity
. —lIE—Raytrace
[
o —®—Barnes
o 0.05
Q
s /*_/_l—/*/
i)

o B/
-0.05
2 4 8 16 32 64

Figure 4-18 Communication to computation ratio versus processor count for the base problem size in
the six parallel applications

we measure bytes per instruction are shown on a different graph than the ones for which we mea-
sure bytes per FLOP, and Radix is shown in a separate graph due to the need for a different scale
on the Y-axis. The first thing we notice is that for the communication to computation ratios are
generally quite small. With processors operating at 200 million instructions per second (MIPS), a
ratio of 0.1 byte per instruction is about 20MB/sec of traffic. Actua traffic is much higher than
inherent—both due to artifactual communication and also because control information is sent
along with data in each transfer—and this communication is averaged over the entire execution
of the program, but it still quite small for modern, high-performance multiprocessor networks.
The only application for which the ratio becomes quite high is Radix, so for this application com-
munication bandwidth is very important to model carefully in evaluations. One reason for the low
communication to computation ratios is that the applications we are using have been very well
optimized in their assignments for parallel execution. Applications that run on real machinesin
reality will likely fall more toward higher communication to computation ratios.

The next observation we can make from the figure is that the growth rates of communication to
computation ratio are very different across applications. These growth rates with the number of
processors and with data set size (not shown in the figures) are summarized in Table 4-2. The

9/10/97

DRAFT: Parallel Computer Architecture 247

Workload-Driven Evaluation

absolute numbers would change dramatically if we used a different data set size (problem size) in
some applications (e.g. Ocean and LU), but at least inherent communication would not change
much in others. Artifactual communication is awhole different story, and we shall examine com-
munication traffic due to it in the context of different architectural typesin later chapters.

While growth rates are clearly fundamental, it is important to realize that growth rates in them-
selves do not reveal the constant factors in the expressions for communication to computation
ratio, which can often be more important than growth rates in practice. For example, if a pro-
gram’sratio increases only as the logarithm of the number of processors, or almost not at al asin
Radix, this does not mean that its ratio is small. In fact, although its ratio will asymptotically
become smaller than that of an application whose ratio grows as the square root of the number of
processors, it may actualy be much larger for al practical machine sizes if its constant factors
are much larger. The constant factors for our applications can be determined from the absolute
values of the communication to computation ratio in the results we present.

Working Set Sizes

Theinherent working set sizes of a program are best measured using fully associative caches and
a one-word cache block, and simulating the program with different cache sizes to find knees in
the miss rate versus cache size curve. ldeally, the cache sizes should be changed with very fine
granularity in the vicinity of knees in order to identify the locations of knees precisely. Finite
associativity can make the size of cache needed to hold the working set larger than the inherent
working set size, as can the use of multi-word cache blocks (due to fragmentation). We come
close to measuring inherent working set sizes by using one-level fully associative caches per pro-
cessor, with a least-recently-used (LRU) cache replacement policy and 8-byte cache blocks. We
use caches sizes that are powers of two, and change cache sizes at a finer granularity in areas
where the change in miss rate with cache size is substantial.

Figure 4-19 shows the resulting miss rate versus cache size curves for our six paralel applica
tions, with the working sets labeled as level 1 working set (levlWS), level 2 working set
(lev2WS), etc. In addition to these working sets, some of the applications also have tiny working
sets that do not scale with problem size or the number of processors and are therefore always
expected to fit in a cache; we call these the level 0 working sets (IlevOWS). They typically consist
of stack data that are used by the program as temporary storage for a given primitive calculation
(such as a particle-cell interaction in Barnes-Hut) and reused across these. These are marked on
the graphs when they are visible, but we do not discuss them further.

We see that in most cases the working sets are very sharply defined. Table 4-3 summarizes how
the different working sets scale with application parameters and the number of processors,
whether they are important to performance (at least on efficient cache-coherent machines), and
whether they can be expected to not fit in a modern secondary cache for realistic problem sizes
(with a reasonable degree of cache associativity, at least beyond direct-mapped). The cases in
which it is reasonable to expect a working set that is important to performance on an efficient
cache-coherent machine to not fit in amodern secondary cache are those with a“Yes’ in each of
the last two columns of the table; i.e. Ocean, Radix and Raytrace. Recall that in Ocean, all the
major computations operate on (and stream through) a process's partition of one or more grids. In
the near-neighbor computations, fitting a subrow of a partition in the cache allows us to reuse that
subrow, but the large working set consists of a process's partitions of entire grids that it might
benefit from reusing. Whether or not this large working set fits in a modern secondary cache

248

DRAFT: Parallel Computer Architecture 9/10/97

lllustrating Workload Characterization

200

200

Miss Rate (%)

ERTIET
Cache Size (K)

(a LU

25 76 iz 10

T w w
Cache Size (K)

(d) Radiosity

Miss Rate (%)

Miss Rate (%)

ERNEC
Cache Size (K)

(e) Raytrace

Figure 4-19 Working set curves for the six parallel applicationsin sixteen-processor executions.

ERE
Cache Size (K)

(f) Radix

The graphs show miss rate versus cache size for fully associative first-level caches per processor and an 8-byte cache block.

Table 4-3 Important working sets and their growth rates for the SPLASH-2 suite. DS
represents the data set size, and P isthe number of processes.

Imp | Realistic Imp | Realistic

orta | tonotfit orta | tonot fit
rogram Working Set 1 Growth Rate | nt? | incache? | WorkingSet2 | GrowthRate | nt? | incache?
J One block Fixed(B) Yes | No partition of DS DS/P No Yes
cean A few subrows JP/ /DS Yes | No partitionof DS | DS/P Yes | Yes
arnes Treedatafor 1body | (logDS)/62 | Yes | No partition of DS DS/P No Yes
diosity BSP tree log(polygons) Yes | No Unstructured Unstructured No Yes
adix Histogram Radix r Yes | No partition of DS DS/P Yes | Yes
ytrace Unstructured Unstructured Yes | No Unstructured Unstructured Yes | Yes

249

9/10/97

DRAFT: Parallel Computer Architecture

Workload-Driven Evaluation

4.6

therefore depends on the grid size and the number of processors. In Radix, a process streams
through al its n/p keys, at the same time heavily accessing the histogram data structure (of size
proportional to the radix used). Fitting the histogram in cache is therefore important, bit this
working set is not clearly defined since the keys are being streamed through at the sametime. The
larger working set is when a process's entire partition of the key data set fits in the cache, which
may or may not happen depending on n and p. partitions that a process might reuse. Finally, in
Raytrace we have seen that the working set is diffuse and ill-defined, and can become quite large
depending on the characteristics of the scene being traced and the viewpoint. For the other appli-
cations, we expect the important working sets to fit in the cache for realistic problem and
machine sizes. We shall take this into account as per our methodology when we evaluate archi-
tectural tradeoffsin the following chapters. In particular, for Ocean, Radix and Raytrace we shall
choose cache sizes that both fit and do not fit the larger working set, since both situations are rep-
resentative of practice.

Concluding Remarks

We now have a good understanding of the major issues in workload-driven evaluation for multi-
processors. choosing workloads, scaling problems and machines, dealing with the large parame-
ter space, and presenting results. For each issue, we have a set of guidelines and steps to follow,
an understanding of how to avoid pitfalls, and a means to understand the limitations of our own
and other investigations. We also have a basis for our own quantitative illustration and evaluation
of architectural tradeoffs in the rest of the book. However, our experiments will mostly serve to
illustrate important points rather than evaluate tradeoffs comprehensively, since the latter would
reguire a much wider range of workloads and parameter variations.

We've seen that workloads should be chosen to represent awide range of applications, behavioral
patterns, and levels of optimization. While complete applications and perhaps multiprogrammed
workloads are indispensable, thereis arole for simpler workloads such as microbenchmarks and
kernelsaswell.

We have also seen that proper workload-driven evaluation requires an understanding of the rele-
vant behavioral properties of the workloads and their interactions with architectural parameters.
While this problem is complex, we have provided guidelines for dealing with the large parame-
ters space—for evaluating both real machines as well as architectural tradeoffs—and pruning it
while still obtaining coverage of realistic situations.

The importance of understanding relevant properties of workloads was underscored by the scal-
ing issue. Both execution time and memory may be constraints on scaling, and applications often
have more than one parameter that determines execution properties. We should scale programs
based on an understanding of these parameters, their relationships, and their impact on execution
time and memory requirements. We saw that realistic scaling models driven by the needs of
applications lead to very different results of architectural significance than naive models that
scale only asingle application parameter.

Many interesting issues also arose in our discussion of choosing metrics to evaluate the goodness
of asystem or idea and presenting the results of a study. For example, we saw that execution time
(preferably with a breakdown into its major components) and speedup are both very useful met-

250

DRAFT: Parallel Computer Architecture 9/10/97

References

4.7

rics to present, while rate-based metrics such as MFLOPS or MIPS or utilization metrics are too
susceptible to problems.

Finally, with this chapter we have described all of the workloads that we shall use in our own
illustrative workload-driven evaluation of real systems and architectural tradeoffs in the rest of
the book, and have quantified their basic characteristics. We are now on a firm footing to use
them as we proceed to examine detailed architectural issues in the remainder of the book.

References

[Bai93]
[Bai9l]
[Par94]

[Bai90]

[BBB+91]

[BHS+95]

[BH8Y]
[GB}+94]
[Sun90]
[SDG+94]
[GS92]
[MPI194]
[SOL+95]
[BC+89]

[BL+91]

D. H. Bailey, Mideading Performance Reporting in the Supercomputing Field, Scientific Pro-
gramming, vol. 1., no. 2, p. 141 - 151, 1993. Early version in Proceedings of Supercomputing’ 93.
D. H. Bailey, Twelve Ways to Fool the Masses When Giving Performance Results on Parallel
Computers, Supercomputing Review, August 1991, p. 54 - 55.

ParkBench Committee. Public International Benchmarks for Parallel Computers. Scientific Pro-
gramming, vol. 3, no. 2 (Summer 1994).

D.H. Bailey, FFTsin External or Hierarchical Memory, Journal of Supercomputing, vol. 4, no. 1
(March 1990), p. 23 - 35. Early version in Proceedings of Supercomputing'89, Nov. 1989, p. 234-
242,

D. H. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan and S. Weeratunga. The
NAS Parallel Benchmarks, Intl. Journal of Supercomputer Applications, vol. 5, no. 3 (Fall 1991),
pp. 66 - 73. Also Technical Report RNR-94-007, Numerical Aerodynamic Simulation Facility.
NASA Ames Research Center March 1994.

David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice Y ar-
row. The NAS Parallel Benchmarks 2.0. Report NAS-95-020, Numerical Aerodynamic Simula-
tion Facility. NASA Ames Research Center December, 1995

Barnes, J. E. and Hut, P. Error Analysis of a Tree Code. Astrophysics Journal Supplement, 70, pp.
389-417, June 1989.

A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jiang, and V. Sunderam. PVM: A Users
Guide and Tutorial for Networked Parallel Computing, MIT Press, 1994.

V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency: Practice
and Experience, vol. 2, no. 4, pp 315--339, December, 1990.

V. Sunderam, J. Dongarra, A. Geist, and R Manchek. The PVM Concurrent Computing System:
Evolution, Experiences, and Trends. Parallel Computing, Vol. 20, No. 4, April 1994, pp 531-547.
Network Based Concurrent Computing on the PVYM System, G. A. Geist and V. S. Sunderam,
Journal of Concurrency: Practice and Experience, 4, 4, pp 293--311, June, 1992.

The Message Passing Interface, International Journal of Supercomputing Applications Volume 8
Number 3/4, Fall/Winter 1994 (updated 5/95). Special issue on MPI.

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI: The
Complete Reference. MIT Press, 1995.

Berry, M., Chen, D. et al. The PERFECT Club Benchmarks: Effective Performance Evaluation of
Computers. International Journal of Supercomputer Applications, 3(3), pp. 5-40, 1989.

Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J, and Zagha, M. A Com-
parison of Sorting Algorithms for the Connection Machine CM-2. In Proceedings of the Sympo-

9/10/97

DRAFT: Parallel Computer Architecture 251

Workload-Driven Evaluation

[D090]

[DW93]
[DMW87]
[DW94]

[CDP+92]

[BCC+97]

[KLS+94]
[Fow?78]
[FAGS3]
[Gol93]
[Gusss]
[GSH]
[HSA91]
[Her87]
[Hey91]
[HPF93]
[KuG91]
[LO+87]

[PAR94]

[RH+94]

sium on Parallel Algorithms and Architectures, pp. 3-16, July 1991.

Dongarra, Jack J. Performance of Various Computers using Standard Linear Equations Software
in aFortran Environment. Technical Report CS-89-85, Computer Science Department, University
of Tennessee, March 1990.

Dongarra, Jack J. and Gentzsch, W (editors). Computer Benchmarks. Elsevier Science B.V.,
North-Holland, Amsterdam, 1993.

Dongarra, Jack J., Martin, J., and Worlton, J. Computer Benchmarking: Paths and Pitfalls. IEEE
Spectrum, July 1987, p. 38.

Dongarra, Jack J. and Walker, David W. Software libraries for linear algebra computations on
high performance computers, SIAM Review, 37 (1995), pp. 151-180.

J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaL APACK: A scalable linear algebralibrary for
distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the Fron-
tiers of Massively Parallel Computation, McLean, Virginia, 1992, |EEE Computer Society Press,
pp. 120-127.

L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmél, |. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C. Whaley. ScaL APACK Users Guide.
SIAM Press, July 1997.

C. Koebel, D. Loveman, R. Schreiber, G. Steele, and M. Zosdl, The High Performance Fortran
Handbook. MIT Press, 1994.

S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proceedings of the Tenth
ACM Symposium on Theory of Computing, May 1978.

Fuchs, H., Abram, G. and Grant, E. Near real-time shaded display of rigid objects. In Proceedings
of SIGGRAPH, 1983.

Goldschmidt, S.R. Simulation of Multiprocessors: Speed and Accuracy, Ph.D. Dissertation, Stan-
ford University, June 1993 <<tech report info>>.

Gustafson, J.L. Reevaluating Amdahl’s Law. Communications of the ACM, vol 31, no. 5, May
1988, pp. 532-533.

Gustafson, J.L and Snell, Q.0. HINT: A New Way to Measure Computer Performance. Technical
Report, Ames Laboratory, U.S. Department of Energy, Ames, lowa, 1994. <<number>>
Hanrahan, P., Salzman, D. and Aupperle, L. A Rapid Hierarchical Radiosity Algorithm. In Pro-
ceedings of SIGGRAPH, 1991.

Hernquist, L. Performance Characteristics of Tree Codes. Astrophysics Journal Supplement, 64,
pp. 715-734, August 1987.

Hey, A.J.G. The Genesis Distributed Memory Benchmarks. Parallel Computing, 17, pp. 1111-
1130, 1991.

High Performance Fortran Forum. High Performance Fortran Language Specification. Scientific
Programming, vol. 2, no. 1, 1993, p. 170.

Vipin Kumar and Anshul Gupta. Analysis of Scalability of Parallel Algorithmsand Architectures:
A Survey. In Proceedings of the International Conference on Supercomputing, pp. 396-405, 1991.
Lusk, E.W., Overbeek, R. et a. Portable Programs for Parallel Processors. Holt, Rinehart and
Winston, Inc. 1987.

PARKBENCH Committee. Public International Benchmarks for Parallel Computers. Scientific
Computing, 1994 <<more info>>. Also Technical Report CS93-213, Department of Computer
Science, University of Tennessee, Knoxville, November 1993.

Rosenblum, M., Herrod, S. A., Witchel, E. and Gupta, A. Complete Computer Simulation: The

252

DRAFT: Parallel Computer Architecture 9/10/97

Exercises

[RSGI3]

[SGC93]
[Sin93]
[SGLY4]

[SH-+95]

[SWG92]

[SPES9)]
[WH95]

4.8

SimOS Approach. IEEE Parallel and Distributed Technology, vol. 3, no. 4, Fall 1995.

Rothberg, E., Singh, J.P., and Gupta, A. Working Sets, Cache Sizes and Node Granularity for
Large-scale Multiprocessors. In Proc. Twentieth International Symposium on Computer Architec-
ture, pp. 14-25, May 1993.

Saavedra, R. H., Gaines, R.S., and Carlton, M.J. Micro Benchmark Analysis of the KSR1. In Pro-
ceedings of Supercomputing’ 93, November 1993, pp. 202-213.

Singh, J.P. Parallel Hierarchical N-body methods and their Implications for Multiprocessors.
Ph.D. Thesis, Technical Report no. CSL-TR-93-565, Stanford University, March 1993.

Singh, J.P., Gupta, A. and Levoy, M. Paralld Visualization Algorithms: Performance and Archi-
tectural Implications. |EEE Computer, vol. 27, no. 6, June 1994.

Singh, J.P., Holt, C., Totsuka, T., Gupta, A. and Hennessy, J.L. Load balancing and data locality
in Hierarchical N-body Methods: Barnes-Hut, Fast Multipole and Radiosity. Journal of Parallel
and Distributed Computing, 1995 <<compl ete citation>>.

Singh, J.P., Weber, W.-D., and Gupta, A., SPLASH: The Stanford Parallel Applications for
Shared Memory, Computer Architecture News, 20(1), March 1992, pp. 5-44.

Standard Performance Evaluation Corporation. SPEC Benchmark Suite Release 1.0, 1989.
Wood, D.A. and Hill, M.D. Cost-Effective Parallel Computing. IEEE Computer, vol. 28, no. 2,
February 1995, pp. 69-72.

Exercises

4.1 Design afew simple exercises.
4.2 <4.2> Scaling
a. What isthe fundamental problem with TC scaling? Illustrate it with an example.

b. Suppose you had to evaluate the scalability of a system. One possibility isto measure the
speedups under different scaling models as defined in this chapter. Another is to see the
how the problem size needed to get say 70% parallel efficiency scales. What are the
advantages and particularly disadvantages or caveats for each of these? What would you
actually do?

4.3 <4.3.5> Your boss asks you to compare two types of systems based on same uniprocessor
node, but with some interesting differences in their communication architectures. She tells
you that she cares about only 10 particular applications. She orders you to come up with a
single numeric measure of which is better, given a fixed number of processors and a fixed
problem size for each application, despite your arguments based on reading this chapter that
averaging over parallel applicationsis not such agood idea. What additional questions would
you ask her before running the applications with those problem sizes on the systems. What
measure of average would you report to her and why (explain in some detail).

4.4 <4.3.5> Often, a system may display good speedups on an application even though its com-
munication architecture is not well suited to the application. Why might this happen? Can you
design a metric aternative to speedup that measures the effectiveness of the communication
architecture for the application? Discuss some of the issues and alternativesin designing such
ametric.

4.5 <4.3> A research paper you read proposes a communication architecture mechanism and tells

you that starting from a given communication architecture on a machine with 32 processors,
the mechanism improves performance by 40% on some workloads that are of interest to you.

9/10/97

DRAFT: Parallel Computer Architecture 253

Workload-Driven Evaluation

I's this enough information for you to decide to include that mechanism in the next machine
you design? If not, list the magjor reasons why, and say what other information you would
need. Assume that the machine you are to design also has 32 processors.

4.6 <4.3> Suppose you had to design experiments to compare different methods for implement-

ing locks on a shared address space machine. What performance properties would you want
to measure, and what “microbenchmark” experiments would you design? What would be
your specific performance metrics? Now answer the same questions for global barriers.

4.7 <4.3> You have designed a method for supporting a shared address space communication

abstraction transparently in software across bus-based shared memory multiprocessors like
the Intel Pentium Quads discussed in Chapter 1. With anode or Quad, coherent shared mem-
ory is supported with high efficiency in hardware; across nodes, it is supported much less effi-
ciently and in software. Given a set of applications and the problem sizes of interest, you are
about to write aresearch report evaluating your system. What are the interesting performance
comparisons you might want to perform to understand the effectiveness of your cross-node
architecture? What experiments would you design, what would each type of experiment tell
you, and what metrics would you use? Your system prototype has 16 bus-based multiproces-
sor nodes with 4 processorsin each, for atotal of 64 processors.

4.8 <4.4.1> Two types of simulations are often used in practice to study architectural tradeoffs:

trace-driven and execution-driven. In trace-driven simulation, a trace of the instructions exe-
cuted by each process is obtained by running the parallel program on one system, and the
sametrace is fed into the simulator that simulates the extended memory hierarchy of a differ-
ent multiprocessor system. In execution-driven simulation, the instruction generator and the
memory system simulator are coupled together in both directions. The instruction generator
generates a memory instruction from a process; that instruction is simulated by the memory
system simulator, and the time at which the operation completesis fed back to the instruction
generator, which uses this timing information to determine which process to issue an instruc-
tion from next and when to issue the next instruction from a particular process.

a. What are the mgjor tradeoffs between trace-driven and instruction-driven simulation?
Under what conditions do you expect the results (say a program’s execution time) to be
significantly different.

b. What aspects of a system do you think it is most difficult to smulate accurately (proces-
sor, memory system, network, communication assist, latency, bandwidth, contention)?
Which of these do you think are most important, and which would you compromise on?

¢. How important do you think it is to simulate the processor pipeline appropriately when
trying to evaluate the impact of tradeoffsin the communication architecture. For example,
while many modern processors are superscalar and dynamically scheduled, a single-issue
statically scheduled processor is much easier to simulate. Suppose the real processor you
want to model is 200MHz with 2-way issue but achieved a perfect memory CPI of 1.5.
Could you modd it as a single-issue 300MHz processor for a study that wants to under-
stand the impact of changing network transit latency on end performance? What are the
major issues to consider?

4.9 <4.4>You are the evaluation specialist for your company. The head of engineering comes to

you with a proposal for an enhancement to the communication architecture, and wants you to
evaluate its performance benefits for three applications—Radix, Barnes-Hut, and Ocean—
using your simulation technology. No further guidelines are given. Your simulation technol-
ogy is capable of simulating up to 256 processors and up to 8M keys for Radix, up to 32K
bodies for Barnes-Hut, and up to a 2050-by-2050 grid size for Ocean. Design a set of experi-

254

DRAFT: Parallel Computer Architecture 9/10/97

Exercises

ments that you would report results for to your boss, as well as the manner in which you
would report the results.

4.10 <4.4> Consider the familiar iterative nearest-neighbor grid computation on a two-dimen-

sional grid, with subblock partitioning. Suppose we use a four-dimensional array representa-
tion, where the first two dimensions are pointers to the appropriate partition. The full-scale
problem we are trying to evaluate is a 8192-by-8192 grid of double-precision elements with
256 processors, with 256K B of direct-mapped cache with a 128B cache block size per pro-
cessor. We cannot simulate this, but instead simulate a 512-buy-512 grid problem with 64
processors.

a. What cache sizes would you choose, and why?
b. List some of the dangers of choosing too small a cache.

¢. What cache block size and associativity would you choose, and what are the issues and
caveats involved?

d. Towhat extent would you consider the results representative of the full-scale problem on
the larger machine? Would you use this setup to evaluate the benefits of a certain commu-
nication architecture optimization? To evaluate the speedups achievable on the machine
for that application?

411 <4.2.3, 4.2.4> In scientific applications like the Barnes-Hut galaxy simulation, a key issue

that affects scaling is error. These applications often simulate physical phenomena that occur
in nature, using several approximations to represent a continuous phenomenon by a discrete
model and solve it using numerical approximation techniques. Several application parameters
represent distinct sources of approximation and hence of error in the simulation. For example,
in Barnes-Hut the number of particles n represents the accuracy with which the galaxy is
sampled (spatia discretization), the time-step interval At represents the approximation made
in discretizing time, and the force calculation accuracy parameter 6 determines the approxi-
mation in that calculation. The goal of an application scientist in running larger problems is
usualy to reduce the overall error in the simulation and have it more accurately reflect the
phenomenon being simulated. While there are no universal rules for how scientists will scale
different approximations, a principle that has both intuitive appeal and widespread practical
applicability for physical simulations is the following: All sources of error should be scaled
so that their error contributions are about equal.

For the Barnes-Hut galaxy simulation, studies in astrophysics [Her87,BH89] show that while
some error contributions are not completely independent, the following rules emerge as being
valid in interesting parameter ranges:

n: Anincreasein n by afactor of sleadsto a decrease in simulation error by afactor of V5.

At: The method used to integrate the particle orbits over time has a global error of the order of
At2. Thus, reducing the error by a factor of Vs (to match that due to a s-fold increase in n)
requires a decrease in At by a factor of 4/s. This means 4/s more time-steps to simulate a
fixed amount of physical time, which we assume is held constant.

6: The force-calculation error is proportional to 62 in the range of practical interest. Reducing
the error by afactor of ./s thus requires adecreasein 8 by afactor of 4/s.
Assume throughout this exercise that the execution time of a problem size on p processorsis

1/p of the execution time on one processor; i.e. perfect speedup for that problem size under
problem-constrained scaling.

9/10/97

DRAFT: Parallel Computer Architecture 255

Workload-Driven Evaluation

f.

How would you scale the other parameters, 6 and At if nisincreased by afactor of s? Call
thisrule realistic scaling, as opposed to naive scaling, which scales only the number of
particlesn.

In asequential program, the data set sizeis proportional to n and independent of the other
parameters. Do the memory requirements grow differently under realistic and naive scal-
ing in a shared address space (assume that the working set fits in the cache)? In message
passing?

The sequential execution time grows roughly as 1t Chlogn, (assuming that a fixed

At g2
amount of physical timeissimulated). If nisscaled by afactor of s, how doesthe parallel
execution time on p processors scale under realistic and under naive scaling, assuming
perfect speedup?

How does the parallel execution time grow under MC scaling, both naive and redlistic,
when the number of processorsincreases by afactor of k? If the problem took aday on the
base machine (before it was scaled up), how long will it take in the scaled up case on the
bigger machine under both the naive and realistic models?

How does the number of particles that can be simulated in a shared address space grow
under TC scaling, both realistic and naive, when the number of processors increases by a
factor of k?

Which scaling model appears more practical for this application: MC or TC?

412 <4.2.3, 4.2.4> For the Barnes-Hut example, how do the following execution characteristics
scale under redlistic and naive MC, TC and PC scaling?

a

The communication to computation ratio. Assume first that it depends only on n and the
number of processors p, varying as ./p/ /n, and roughly plot the curves of growth rate of
this ratio with the number of processors under the different models. Then comments on
the effects of the other parameters under the different scaling models.

The sizes of the different working sets, and hence the cache size you think is needed for
good performance on a shared address space machine. Roughly plot the growth rate for
the most important working set with number of processors under the different models.
What major methodological conclusion in scaling does this reinforce? Comment on any
differencesin these trends and the amount of local replication needed in the locally essen-
tial trees version of message passing.

The frequency of synchronization (per unit computation, say), both locks and barriers.
Describe qualitatively at least.

The average frequency and size of input/output operations, assuming that every processor
prints out the positions of all its assigned bodies (i) every ten time-steps, (ii) every fixed
amount of physical time simulated (e.g. every year of simulated time in the galaxy’s evo-
lution).

The number of processors likely to share (access) a given piece of body data during force
calculation in a coherent shared address space at atime. Aswe will seein Chapter 8, this
information is useful in the design of cache coherence protocols for scalable shared
address space machines.

The frequency and size of messages in an explicit message passing implementation,
focusing on the communication needed for force cal culation and assuming that each pro-
cessor sends only one message to each other communicating the data that the latter needs
from the former to compute its forces.

256

DRAFT: Parallel Computer Architecture 9/10/97

Exercises

4.13 <4.5> The radix sorting application required a parallel prefix computation to compute the
global histogram from local histograms. A simplified version of the computation is as fol-
lows. Suppose each of the p processes has alocal value it has computed (think of this as rep-
resenting the number of keys for a given digit value in the local histogram of that process).
The goal isto compute an array of p entries, in which entry i isthe sum of all the local values
from processors 0 through i-1. Describe and implement the simplest linear method to com-
pute this output array. Then design a parallel method with a shorter critical path [Hint: you
can use atree structure]. Implement the latter method, and compare its performance with that
of the simple linear method on a machine of your choice. You may use the simplified example
here, or the fuller example where the “local value” isin fact an array with one entry per radix
digit, and the output array is two-dimensional, indexed by process identifier and radix digit.
That is, the fuller example does the computation for each radix digit rather than just one.

9/10/97 DRAFT: Parallel Computer Architecture 257

Workload-Driven Evaluation

258 DRAFT: Parallel Computer Architecture 9/10/97

Introduction

CHAPTER 5

Shared Memory Multiprocessors

Morgan Kaufmann ispleased to present material from a preliminary draft of Parallel Computer Architecture; the
material is(c) Copyright 1996 Morgan Kaufmann Publishers. Thismaterial may not be used or distributed for any
commercial purpose without the expresswritten consent of Morgan Kaufmann Publishers. Please note that this
material isadraft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changes or alterationsin thefinal edition.

5.1

I ntroduction

The most prevalent form of parallel architecture is the multiprocessor of moderate scale that pro-
vides aglobal physical address space and symmetric accessto all of main memory from any pro-
cessor, often called a Symmetric Multiprocessor or SMP. Every processor has its own cache adn
all the processors and memory modules attach to the same interconnect, usually a shared bus.
SMPs dominate the server market and are becoming more common on the desktop. They are also
important building blocks for larger scale systems. The efficient sharing of resources, such as
memory and processors, makes these machines attractive as “throughput engines’ for multiple
sequential jobs with varying memory and CPU requirements, and the ability to access all shared
data efficiently using ordinary loads and stores from any of the processors makes them attractive
for parallel programming. The automatic movement and replication of shared data in the local
caches can significantly ease the programming task. These features are also very useful for the

9/10/97

DRAFT: Parallel Computer Architecture 259

Shared Memory Multiprocessors

operating system, whose different processes share data structures and can easily run on different
processors.

From the viewpoint of the layers of the communication architecture in Figure 5-1, the hardware
directly supports the shared address space programming model. User processes can read and
write shared virtual addresses, and these operations are realized by individual |oads and stores of
shared physical addresses that are uniformly and efficiently accessible from any processor. In
fact, the relationship between the programming model and the hardware operation is so close,
that they both are often referred to simply as “shared memory.” A message passing programming
model can be supported by an intervening software layer—typically aruntime library—that man-
ages portions of the shared address space explicitly as message buffers per process. A send-
receive operation pair is realized by copying data between buffers. The operating system need not
be involved, since address tranglation and protection on these shared buffers is provided by the
hardware. For portability, most message passing programming interfaces have been implemented
on popular SMPs, aswell astraditional message passing machines. In fact, such implementations
often deliver higher message passing performance than traditional message passing systems—as
long as contention for the shared bus and memory does not become a bottleneck—Ilargely
because of the lack of operating system involvement in communication. The operating system is
still there for input/output and multiprogramming support.

Message Programming Models
Passing Multiprogramming g g
/Sﬂ%r% Compilation Communication Abstraction
Space o User/System Boundary
Library * Operating Systems Support
Hardware/Software Boundary

Communication Hardware

Physical Communication Medium

Figure 5-1 Layersof abstraction of the communication architecture for bus-based SMPs.

Since all communication and local computation generates memory accesses in a shared address
space, from a system architect’s perspective the key high-level design issue is the organization of
the extended memory hierarchy. In general, memory hierarchies in multiprocessors fall primarily
into four categories, as shown in Figure 5-2, which correspond loosely to the scale of the multi-
processor being considered. Thefirst three are symmetric multiprocessors (all of main memory is
equally far away from all processors), while the fourth is not.

In the first category, the “shared cache” approach (Figure5-2a), the interconnect is located
between the processors and a shared first-level cache, which in turn connects to a shared main-
memory subsystem. Both the cache and the main-memory system may be interleaved to increase
available bandwidth. This approach has been used for connecting very small numbers (2-8) of
processors. In the mid 80s it was a common technique to connect a couple of processors on a
board; today, it is a possible strategy for a multiprocessor-on-a-chip, where a small number of
processors on the same chip share an on-chip first-level cache. However, it applies only at a very
small scale, both because the interconnect between the processors and the shared first level cache

260

DRAFT: Parallel Computer Architecture 9/10/97

Introduction

00

mter Ieaved o 0 o
:I it Ievellc I: Cache Cache
bus
(interleaved)
main memory]
Memory I/O Devices
(@) Shared Cache (b) Bus-based Shared Memory

Cach ® O O |Cahe
—] e e e

o
Interconnection Network

Interconnection Network

(c) Dance-hall (d) Distributed Memory

Figure 5-2 Common memory hierarchies found in multiprocessors.

is on the critical path that determines the latency of cache access and because the shared cache
must deliver tremendous bandwidth to the processors pounding on it.

In the second category, the “bus-based shared memory” approach (Figure 5-2b), the interconnect
is a shared bus located between the processor’s private caches and the shared main-memory sub-
system. This approach has been widely used for small- to medium-scale multiprocessors consist-
ing of up to twenty or thirty processors. It is the dominant form of parallel machine sold today,
and essentially all modern microprocessors have invested considerable design effort to be able to
support “cache-coherent” shared memory configurations. For example, the Intel Pentium Pro
processor can attach to a coherent shared bus without any glue logic, and low-cost bus-based
machines that use these processors have greatly increased the popularity of this approach. The
scaling limit for these machines comes primarily due to bandwidth limitations of the shared bus
and memory system.

The last two categories are intended to be scalable to many processing nodes. The third category,
the “dance-hall” approach, also places the interconnect between the caches and main memory,
but the interconnect is now a scalable point-to-point network and memory is divided into many
logical modules that connect to logically different points in the interconnect. This approach is
symmetric, all of main memory is uniformly far away from all processors, but its limitation is
that all of memory is indeed far away from all processors: Especially in large systems, several

9/10/97

DRAFT: Parallel Computer Architecture 261

Shared Memory Multiprocessors

“hops’ or switches in the interconnect must be traversed to reach any memory module. The
fourth category, the “distributed memory” approach, is not symmetric: A scalable interconnect is
located between processing nodes but each node hasits local portion of the global main memory
to which it has faster access (Figure 5-2c). By exploiting locality in the distribution of data, the
hope is that most accesses will be satisfied in the local memory and will not have to traverse the
network. This design is therefore most attractive for scalable multiprocessors, and several chap-
ters are devoted to the topic later in the book. Of course, it is aso possible to combine multiple
approaches into a single machine design—for example a distributed memory machine whose
individual nodes are bus-based SMPs, or sharing a cache other than at thefirst level.

In al cases, caches play an essentia role in reducing the average memory access time as seen by
the processor and in reducing the bandwidth requirement each processor places on the shared
interconnect and memory system. The bandwidth requirement is reduced because the data
accesses issued by a processor that are satisfied in the cache do not have to appear on the bus;
otherwise, every access from every processor would appear on the bus which would quickly
become saturated. In al but the shared cache approach, each processor has at least one level of its
cache hierarchy that is private and this raises a critical challenge, namely that of cache coher-
ence. The problem arises when a memory block is present in the caches of one or more proces-
sors, and another processor modifies that memory block. Unless specia action is taken, the
former processors will continue to access the old, stale copy of the block that isin their caches.

Currently, most small-scale multiprocessors use a shared bus interconnect with per-processor
caches and a centralized main memory, while scalable systems use physicaly distributed main
memory. Dancehall and shared cache approaches are employed in relatively specific settings, that
change as technology evolves. This chapter focuses on the logical design of multiprocessors that
exploit the fundamental properties of a busto solve the cache coherence problem. The next chap-
ter expands on the hardware design issues associated with realizing these cache coherence tech-
niques. The basic design of scalable distributed-memory multiprocessors will be addressed in
Chapter 7, and issues specific to scalable cache coherence in Chapter 8.

In Section 5.2 describes the cache coherence problem for shared-memory architectures in detail.
Coherence is a key hardware design concept and is a necessary part of our intuitive notion the
memory abstraction. However, paralel software often makes stronger assumptions about how
memory behaves. Section 5.3 extends the discussion of ordering begun in Chapter 1 and intro-
duces the concept of memory consistency which defines the semantics of shared address space.
This issue has become increasingly important in computer architecture and compiler design; a
large fraction of the reference manuals for most recent instruction set architectures is devoted to
the memory model. Section 5.4 presents what are called “snooping” or “snoopy” protocols for
bus-based machines and shows how they satisfy the conditions for coherence aswell asfor ause-
ful consistency model. The basic design space of snooping protocolsislaid out in Section 5.5 and
the operation of commonly used protocols is described at the state transition level. The tech-
niques used for quantitative evaluation several design tradeoffs at this level are illustrated using
aspects of the methodology for workload driven evaluation of Chapter 4.

The latter portions of the chapter examine the implications these cache coherent shared memory
architectures have for software that runs on them. Section 5.6 examines how the low-level syn-
chronization operations make use of the available hardware primitives on cache coherent multi-
processors, and how the algorithms can be tailored to use the machine efficiently. Section 5.7
discusses the implications for parallel programming more generally, putting together our know!-
edge of paralée programs from Chapters 2 and 3 and of bus-based cache-coherent architecture

262

DRAFT: Parallel Computer Architecture 9/10/97

Cache Coherence

5.2

from this chapter. In particular, it discusses how temporal and spatial data locality may be
exploited to reduce cache misses and traffic on the shared bus.

Cache Coherence

521

Example 5-1

Answer

Think for a moment about your intuitive model of what a memory should do. It should provide a
set of locations holding values, and when alocation is read it should return the latest value writ-
ten to that location. Thisisthe fundamental property of the memory abstraction that werely onin
sequential programs when we use memory to communicate a value from a point in a program
where it is computed to other points where it is used. We rely on the same property of a memory
system when using a shared address space to communicate data between threads or processes
running on one processor. A read returns the latest value written to the location, regardless of
which process wrote it. Caching does not interfere with the use of multiple processes on one pro-
cessor, because they all see the memory through the same cache hierarchy. We would also like to
rely on the same property when the two processes run on different processors that share a mem-
ory. That is, we would like the results of a program that uses multiple processes to be no different
when the processes run on different physical processors than when they run (interleaved or multi-
programmed) on the same physical processor. However, when two processes see the shared
memory through different caches, there is a danger that one may see the new value in its cache
while the other till seesthe old value.

The Cache Coherence Problem

The cache coherence problem in multiprocessors is both pervasive and performance critical. The
problem isillustrated by the following example.

Figure 5-3 shows three processors with caches connected via a bus to shared main
memory. A sequence of accesses to location u is made by the processors. First,
processor P1 reads u from main memory, bringing a copy into its cache. Then
processor P3 reads u from main memory, bringing a copy into its cache. Then
processor P3 writes location u changing its value from 5 to 7. With awrite-through
cache, this will cause the main memory location to be updated; however, when
processor P1 reads location u again (action 4), it will unfortunately read the stale
value 5 from its own cache instead of the correct value 7 from main memory. What
happens if the caches are writeback instead of write through?

The situation is even worse with writeback caches. P3's write would merely set the
dirty (or modified) bit associated with the cache block holding location u and
would not update main memory right away. Only when this cache block is
subsequently replaced from P3's cache would its contents be written back to main
memory. Not only will P1 read the stale value, but when processor P2 reads
location u (action 5) it will missin its cache and read the stale value of 5 from main
memory, instead of 7. Finally, if multiple processors write distinct values to
location u in their write-back caches, the final value that will reach main memory

9/10/97

DRAFT: Parallel Computer Architecture 263

Shared Memory Multiprocessors

will be determined by the order in which the cache blocks containing u are
replaced, and will have nothing to do with the order in which the writes to u occur.

\
@\ o /@ I/0 Devices

Memory

Figure 5-3 Example cache coherence problem

The figure shows three processors with caches connected by a bus to main memory. “u” is a location in memory
whose contents are being read and written by the processors. The sequence in which reads and writes are done is
indicated by the number listed inside the circles Pl aced next to the arc. Itis to see that unless special action is
taken when P3 updates the value of u to 7, P1 will subsequently continue to read the stale value out of its cache, and
P2 will also read a stale value out of main memory.

Cache coherence problems arise even in uniprocessors when 1/O operations occur. Most 1/O
transfers are performed by DMA devices that move data between memory and the peripheral
component. A DMA device sitting on the main memory bus may read a stale value for alocation
in main memory, because the latest value for that location is in the processor’s write-back cache.
Similarly, when the DMA device writes to a location in main memory, unless special action is
taken, the processor may continue to see the old value if that location was previously present in
its cache. Since 1/0 operations are much less frequent than memory operations, several simple
solutions have been adopted in uniprocessors. For example, segments of memory space used for
1/0 may be marked as uncacheable, or the processor may always use uncached |oads-stores for
locations used to communicate with 1/0 devices. For I/O devices that transfer large blocks of
data, such as disks, operating system support is often enlisted to ensure coherence. In many sys-
tems the page of memory from/to which the data is to be transferred is flushed by the operating
system from the processor’s cache before the I/O is allowed to proceed. In still other systems, all
1/O traffic is made to flow through the processor cache hierarchy, thus maintaining coherence.
This, of course, pollutes the cache hierarchy with data that may not be of immediate interest to
the processor. Today, essentially all microprocessors provide support for cache coherence; in
addition to making the chip “multiprocessor ready”, this also solves the 1/O coherence problem.

Clearly, the behavior described in Example 5-1 violates our intuitive notion of what a memory
should do. Rreading and writing of shared variables is expected to be a frequent event in multi-
processors; it isthe way that multiple processes belonging to a parallel application communicate
with each other, so we do not want to disallow caching of shared data or invoke the operating sys-
tem on all shared references. Rather, cache coherence needs to be addressed as a basic hardware
design issue; for example, stale cached copies of a shared location must be eliminated when the
location is modified, by either invalidating them or updating them with the new value. The oper-

264

DRAFT: Parallel Computer Architecture 9/10/97

Cache Coherence

ating system itself benefits greatly from transparent, hardware-supported coherent sharing of its
datastructures, and isin fact one of the most widely used parallel applications on these machines.

Before we explore techniques to provide coherence, it is useful to define the coherence property
more precisely. Our intuitive notion, “each read should return the last value written to that loca-
tion,” is problematic for parallel architecture because “last” may not be well defined. Two differ-
ent processors might write to the same location at the same instant, or one processor may write so
soon after another that due to speed of light and other factors, there is not time to propagate the
earlier update to the later writer. Even in the sequential case, “last” is not a chronological notion,
but latest in program order. For now, we can think of program order in a single process as the
order in which memory operations are presented to the processor by the compiler. The subtleties
of program order will be elaborated on later, in Section 5.3. The challenge in the paralel caseis
that program order is defined for the operations in each individual process, and we need to make
sense of the collection of program orders.

Let usfirst review the definitions of some terms in the context of uniprocessor memory systems,
so we can extend the definitions for multiprocessors. By memory operation, we mean a single
read (load), write (store), or read-modify-write access to a memory location. Instructions that
perform multiple reads and writes, such as appear in many complex instruction sets, can be
viewed as broken down into multiple memory operations, and the order in which these memory
operations are executed is specified by the instruction. These memory operations within an
instruction are assumed to execute atomically with respect to each other in the specified order,
i.e. al aspects of one appear to execute before any aspect of the next. A memory operation issues
when it leaves the processor’s internal environment and is presented to the memory system,
which includes the caches, write-buffers, bus, and memory modules. A very important point is
that the processor only observes the state of the memory system by issuing memory operations;
thus, our notion of what it means for a memory operation to be performed is that it appears to
have taken place from the perspective of the processor. A write operation is said to perform with
respect to the processor when a subsequent read by the processor returns the value produced by
either that write or alater write. A read operation is said to perform with respect to the processor
when subsequent writes issued by that processor cannot affect the value returned by the read.
Notice that in neither case do we specify that the physical location in the memory chip has actu-
aly been accessed. Also, ‘subsequent’ is well defined in the sequential case, since reads and
writes are ordered by the program order.

The same definitions for operations performing with respect to a processor apply in the parallel
case; we can simply replace “the processor” by “aprocessor” in the definitions. The challenge for
ordering, and for the intuitive notions of ‘subsequent’ and ‘last’, now is that we do not have one
program order; rather, we have separate program orders for every process and these program
orders interact when accessing the memory system. One way to sharpen our intuitive notion of a
coherent memory system is to picture what would happen if there were no caches. Every write
and every read to a memory location would access the physical location at main memory, and
would be performed with respect to all processors at this point, so the memory would impose a
serial order on al the read and write operations to the location. Moreover, the reads and writesto
the location from any individual processor should be in program order within this overall serial
order. We have no reason to believe that the memory system should interleave independent
accesses from different processorsin a particular way, so any interleaving that preserves the indi-
vidual program orders is reasonable. We do assume some basic fairness; eventualy the opera-
tions from each processor should be performed. Thus, our intuitive notion of “last” can be viewed
as most recent in some hypothetical serial order that maintains the properties discussed above.

9/10/97

DRAFT: Parallel Computer Architecture 265

Shared Memory Multiprocessors

522

Since this seria order must be consistent, it is important that all processors see the writes to a
location in the same order (if they bother to ook, i.e. to read the location).

Of course, the total order need not actually be constructed at any given point in the machine
while executing the program. Particularly in a system with caches, we do not want main memory
to see all the memory operations, and we want to avoid serialization whenever possible. We just
need to make sure that the program behaves as if some serial order was enforced.

More formally, we say that a multiprocessor memory system is coherent if the results of any exe-
cution of a program are such that, for each location, it is possible to construct a hypothetical
serial order of all operationsto the location (i.e., put al reads/writes issued by all processorsinto
atotal order) which is consistent with the results of the execution and in which:

1. operations issued by any particular processor occur in the above sequence in the order in
which they were issued to the memory system by that processor, and

2. thevalue returned by each read operation is the value written by the last write to that location
in the above sequence.

Implicit in the definition of coherence is the property that all writes to alocation (from the same
or different processes) are seen in the same order by all processes. This property is called write
serialization. It meansthat if read operations by processor P1 to alocation see the value produced
by write w1 (from P2, say) before the value produced by write w2 (from P3, say), then reads by
another processor P4 (or P2 or P3) should aso not be able to see w2 before wl. Thereis no need
for an anal ogous concept of read serialization, since the effects of reads are not visible to any pro-
cessor but the one issuing the read.

The results of a program can be viewed as the values returned by the read operations in it, per-
haps augmented with an implicit set of readsto all locations at the end of the program. From the
results, we cannot determine the order in which operations were actually executed by the
machine, but only orders in which they appear to execute. In fact, it is not even important in what
order things actually happen in the machine or when which bits change, since this is not detect-
able; all that matters is the order in which things appear to happen, as detectable from the results
of an execution. This concept will become even more important when we discuss memory con-
sistency models. Finaly, the one additional definition that we will need in the multiprocessor
case isthat of an operation completing: A read or write operation is said to complete when it has
performed with respect to all processors.

Cache Coherence Through Bus Snooping

A simple and elegant solution to the cache coherence problem arises from the very nature of a
bus. The busisasingle set of wires connecting several devices, each of which can observe every
bus transaction, for example every read or write on the shared bus. When a processor issues a
reguest to its cache, the controller examines the state of the cache and takes suitable action,
which may include generating bus transactions to access memory. Coherence is maintained by
having each cache controller ‘snoop’ on the bus and monitor the transactions, as illustrated in
Figure 5-4 [Goo83]. The snooping cache controller also takes action if a bus transaction is rele-
vant to it, i.e. involves amemory block of which it has a copy in its cache. In fact, since the alo-
cation and replacement of datain caches are managed at the granularity of a cache block (usually
several words long) and cache misses fetch a block of data, most often coherence is maintained at

266

DRAFT: Parallel Computer Architecture 9/10/97

Cache Coherence

Example 5-2

Answer

the granularity of a cache block as well. That is, either an entire cache block isin valid state or
none of it is. Thus, a cache block is the granularity of alocation in the cache, of data transfer
between caches and of coherence.

The key properties of a bus that support coherence are the following: All transactions that appear
on the bus are visible to al cache controllers, and they are visible to the controllers in the same
order (the order in which they appear on the bus). A coherence protocol must simply guarantee
that all the necessary transactions in fact appear on the bus, in response to memory operations,
and that the controllers take the appropriate actions when they see arelevant transaction.

The simplest illustration of maintaining coherence is a system that has single-level write-through
caches. It is basically the approach followed by the first commercial bus-based SMPs in the mid
80's. In this case, every write operation causes a write transaction to appear on the bus, so every
cache observes every write. If a snooping cache has a copy of the block, it either invalidates or
updates its copy. Protocols that invalidate other cached copies on awrite are called invalidation-
based protocols, while those that update other cached copies are called update-based protocols.
In either case, the next time the processor with the invalidated or updated copy accesses the
block, it will see the most recent value, either through a miss or because the updated value isin
its cache. The memory always has valid data, so the cache need not take any action when it
observes aread on the bus.

Consider the scenario that was shown in Figure 5-3. Assuming write through
caches, show how the bus may be used to provide coherence using an invalidation-
based protocaol.

When processor P3 writes 7 to location u, P3's cache controller generates a bus
transaction to update memory. Observing this bus transaction as relevant, P1's
cache controller invalidates its own copy of block containing u. The main memory
controller will update the value it has stored for location u to 7. Subsequent reads to
u from processors P1 and P2 (actions 4 and 5) will both missin their private caches
and get the correct value of 7 from the main memory.

In general, a snooping-based cache coherence scheme ensures that:

e al “necessary” transactions appear on the bus, and
¢ each cache monitors the bus for relevant transactions and takes suitable actions.

The check to determine if a bus transaction isrelevant to acacheis essentially the same tag match
that is performed for aregquest from the processor. The suitable action may involve invalidating or
updating the contents or state of that memory block, and/or supplying the latest value for that
memory block from the cache to the bus.

A snoopy cache coherence protocal ties together two basic facets of computer architecture: bus
transactions and the state transition diagram associated with a cache block. Recall, a bus transac-
tion consists of three phases: arbitration, command/address and data. In the arbitration phase,
devicesthat desire to perform (or master) atransaction assert their bus request and the bus arbiter
selects one of these and responds by asserting its grant signal. Upon grant, the device places the
command, e.g. read or write, and the associated address on the bus command and address lines.

9/10/97

DRAFT: Parallel Computer Architecture 267

Shared Memory Multiprocessors

bus snoop
/

cache-memory
Memory 1/0 Devices transaction

Figure 5-4 Snoopy cache-coherent multiprocessor

Multiple processors with private caches are placed on a shared bus. Each processor’s cache controller continuously “snoops’ on
the bus watching for relevant transactions, and updates its state suitably to keep itslocal cache coherent.

All devices observe the address and one of them recognizesthat it is responsible for the particular
address. For aread transaction, the address phase is followed by data transfer. Write transactions
vary from bus to bus in whether the datais transferred during or after the address phase. For most
busses, the slave device can assert await signal to hold off the data transfer until it is ready. This
wait signal is different from the other bus signals, because it is awired-OR across al the proces-
sors, i.e, itisalogical 1 if any device asserts it. The master does not need to know which slave
deviceis participating in the transfer, only that thereis one and it is not yet ready.

The second basic notion is that each block in a uniprocessor cache has a state associated with it,
along with the tag and data, indicating the disposition of the block, e.g., invalid, valid, dirty. The
cache policy is defined by the cache block state transition diagram, which is a finite state
machine. Transitions for a block occur upon access to an address that maps to the block. For a
write-through, write-no-allocate cache [HeP90] only two states are required: valid and invalid.
Initially all the blocks are invalid. (Logically, all memory blocks that are not resident in the cache
can be viewed as being in either a specia “not present” state, or in “invalid” state.) When a pro-
cessor read operation misses, a bus transaction is generated to load the block from memory and
the block is marked valid. Writes generate a bus transaction to update memory and the cache
block if it is present in valid state. Writes never change the state of the block. (If a block is
replaced, it may be marked invalid until the memory provides the new block, whereupon it
becomes valid.) A write-back cache requires an additional state, indicating a “dirty” or modified
block.

In a multiprocessor system, a block has a state in each cache, and these cache states change
according to the state transition diagram. Thus, we can think of ablock’s “ cache state” as being a
vector of p states instead of a single state, where p is the number of caches. The cache state is
manipulated by a set of p distributed finite state machines, implemented by the cache controllers.
The state machine or state transition diagram that governs the state changes is the same for all
blocks and all caches, but the current states of ablock in different cachesis different. If ablock is
not present in a cache, we can assume it to be in a special “not present” state or even in invalid
State.

268

DRAFT: Parallel Computer Architecture 9/10/97

Cache Coherence

In a snoopy cache coherence scheme, each cache controller receives two sets of inputs: the pro-
cessor issues memory requests, and the bus snooper informs about transactions from other
caches. In response to either, the controller updates the state of the appropriate block in the cache
according to the current state and the state transition diagram. It responds to the processor with
regquested data, potentially generating new bus transactions to obtain the data. It responds to bus
transactions generated by others by updating its state, and sometimes intervenes in completing
the transaction. Thus, a snoopy protocol is a distributed algorithm represented by a collection of
such cooperating finite state machines. It is specified by the following components:

1. the set of states associated with memory blocksin the local caches;

2. the state transition diagram, which takes as inputs the current state and the processor request
or observed bus transaction, and produces as output the next state for the cache block; and

3. theactual actions associated with each state transition, which are determined in part by the set
of feasible actions defined by the bus, cache, and processor design.

The different state machines for ablock do not operate independently, but are coordinated by bus
transactions.

A simple invalidation-based protocol for a coherent write-through no-allocate cache is described
by the state diagram in Figure 5-5. As in the uniprocessor case, each cache block has only two
states: invalid (1) and valid (V) (the “not present” state is assumed to be the same asinvalid). The
transitions are marked with the input that causes the transition and the output that is generated
with the transition. For example, when a processor read misses in the cache a BusRd transaction
is generated, and upon completion of this transaction the block transitions up to the “valid” state.
Whenever the processor issues a write to a location, a bus transaction is generated that updates
that location in main memory with no change of state. The key enhancement to the uniprocessor
state diagram is that when the bus snooper sees a write transaction for a memory block that is
cached locally, it sets the cache state for that block to invalid thereby effectively discarding its
copy. Figure 5-5 shows this bus-induced transition with a dashed arc. By extension, if any one
cache generates awrite for ablock that is cached by any of the others, all of the others will inval-
idate their copies. The collection of caches thusimplements a single writer, multiple reader disci-
pline.

To see that this simple write-through invalidation protocol provides coherence, we need to show
that atotal order on the memory operations for alocation can be constructed that satisfies the two
conditions. Assume for the present discussion that memory operations are atomic, in that only
one transaction isin progress on the bus at atime and a processor waits until itstransactionisfin-
ished before issuing another memory operation. That is, once arequest is placed on the bus, all
phases of the transaction including the data response complete before any other request from any
processor is allowed access to the bus. With single-level caches, it is natural to assume that inval-
idations are applied to the caches, and the write completes, during the bus transaction itself.
(These assumptions will be relaxed when we look at protocol implementationsin more detail and
as we study high performance designs with greater concurrency.) We may assume that the mem-
ory handles writes and reads in the order they are presented to it by the bus. In the write-through
protocol, al writes go on the bus and only one bus transaction is in progress at a time, so all
writes to alocation are seriaized (consistently) by the order in which they appear on the shared
bus, called the bus order. Since each snooping cache controller performs the invalidation during
the bus transaction, invalidations are performed by all cache controllersin bus order.

9/10/97

DRAFT: Parallel Computer Architecture 269

Shared Memory Multiprocessors

PrRd/ -- PrwWr / BusWr

PrRd/ BusR | BuswWr/--

PrWr / BuswW
— = Processor initiated transactions

- - 9 Bus-snooper initiated transactions

Figure 5-5 Snoopy coherence for a multiprocessor with write-through no-write-allocate caches.

There are two states, valid (VEg and invalid (1) with intuitive semantics. The notation A/B (e.g. PrRd/BusRd) meansif you observe
A then generate transaction B. s)
cache controller may observe/generate transactions bus read (BusRd) or bus write (BuswWr).

From the processor side, the requests can be read (PrRd) or write (PrWr). From the bus side, the

Processors “see” writes through read operations. However, reads to alocation are not completely
serialized, since read hits may be performed independently and concurrently in their caches with-
out generating bus transactions. To see how reads may be inserted in the serial order of writes,
and guarantee that all processors see writes in the same order (write serialization), consider the
following scenario. A read that goes on the bus (a read miss) is seridized by the bus along with
the writes; it will therefore obtain the value written by the most recent write to the location in bus
order. The only memory operations that do not go on the bus are read hits. In this case, the value
read was placed in the cache by either the most recent write to that location by the same proces-
sor, or by its most recent read miss (in program order). Since both these sources of the value
appear on the bus, read hits also see the values produced in the consistent bus order.

More generally, we can easily construct a hypothetical serial order by observing the following
partial order imposed by the protocol:

A memory operation M, is subsequent to a memory operation M, if the operations are
issued by the same processor and M, follows M, in program order.

A read operation is subsequent to awrite operation W if the read generates a bus transaction
that follows that for W.

A write operation is subseguent to aread or write operation M if M generates a bus transac-
tion and the transaction for the write follows that for M .

A write operation is subsequent to aread operation if the read does not generate a bus transac-
tion (isahit) and is not already separated from the write by another bus transaction.

270

DRAFT: Parallel Computer Architecture 9/10/97

Cache Coherence

The “subsequent” ordering relationship is transitive. An illustration of this partial order is
depicted in Figure 5-6, where the bus transactions associated with writes segment the individual
program orders. The partial order does not constrain the ordering of read bus transactions from
different processors that occur between two write transactions, though the bus will likely estab-
lish a particular order. In fact, any interleaving of read operations in the segment between two
writesisavalid serial order, aslong as it obeys program order.

PO: —>®—>®—>®—> >
PLL. »>R—> ®—R®>® \
P2 »®>® G ®—>® R >

Figure 5-6 Partial order of memory operations for an execution with the write-through invalidation protocol

Bus transactions define a global sequence of events, between which individual processors read locations in program order. The
execution is consistent with any total order obtained by interleaving the processor orders within each segment.

Example 5-3

Answer

Of course, the problem with this simple write-through approach is that every store instruction
goes to memory, which is why most modern microprocessors use write-back caches (at least at
the level closest to the bus). This problem is exacerbated in the multiprocessor setting, since
every store from every processor consumes precious bandwidth on the shared bus, resulting in
poor scalability of such multiprocessors asillustrated by the example below.

Consider asuperscalar RISC processor issuing two instructions per cycle running at
200MHz. Suppose the average CPI (clocks per instruction) for this processor is 1,
15% of all instructions are stores, and each store writes 8 bytes of data. How many
processors will a GB/s bus be able to support without becoming saturated?

A single processor will generate 30 million stores per second (0.15 stores per
instruction * 1 instruction per cycle* 1,000,000/200 cycles per second), so the total
write-through bandwidth is 240Mbytes of data per second per processor (ignoring
address and other information, and ignoring read misses). A GB/s buswill therefore
support only about four processors.

For most applications, awrite-back cache would absorb the vast majority of the writes. However,
if writes do not go to memory they do not generate bus transactions, and it is no longer clear how
the other caches will observe these modifications and maintain cache coherence. A somewhat
more subtle concern is that when writes are allowed to occur into different caches concurrently
there is no obvious order to the sequence of writes. We will need somewhat more sophisticated
cache coherence protocols to make the “critical” events visible to the other caches and ensure
write seriaization.

9/10/97

DRAFT: Parallel Computer Architecture 271

Shared Memory Multiprocessors

Before we examine protocols for write-back caches, let us step back to the more general ordering
issue alluded to in the introduction to this chapter and examine the semantics of a shared address
space as determined by the memory consistency model.

5.3 Memory Consistency

Coherence is essential if information is to be transferred between processors by one writing a
location that the other reads. Eventually, the value written will become visible to the reader,
indeed all readers. However, it says nothing about when the write will become visible. Often, in
writing a parallel program we want to ensure that a read returns the value of a particular write,
that is we want to establish an order between awrite and aread. Typically, we use some form of
event synchronization to convey this dependence and we use more than one location.

Consider, for example, the code fragments executed by processors P1 and P2 in Figure 5-7,
which we saw when discussing point-to-point event synchronization in a shared address space in
Chapter 2. It is clear that the programmer intends for process P2 to spin idly until the value of the
shared variablef | ag changesto 1, and to then print the value of variable A as 1, since the value
of A was updated before that of f | ag by process P1. In this case, we use accesses to another
location (f | ag) to preserve order among different processes accesses to the same location (A).
In particular, we assume that the write of A becomes visible to P2 before the writeto f | ag, and
that the read of flag by P2 that breaksit out of its while loop completes before itsread of A. These
program orders within P1 and P2's accesses are not implied by coherence, which, for example,
only requires that the new value for A eventually become visible to processor P2, not necessarily
before the new value of f | ag is observed.

P1 P2

/* Assume initial value of A and flag is 0 */

A= 1; while (flag == 0); /* spinidly */
flag = 1; print A

Figure 5-7 Requirements of event synchronization through flags

The figure shows two processors concurrently executing two distinct code fragments For programmer intuition to be maintained, it
must be the case that the printed value of A iS 1. The intuition is that because of program order, if flag equals 1 is visible to processor
P2, then it must also be the case that A equals 1 isvisible to P2.

The programmer might try to avoid this issue by using a barrier, as shown in Figure 5-8. We
expect the value of A to be printed as 1, since A was set to 1 before the barrier (note that a print
statement is essentially aread). There are two potential problems even with this approach. First,
we are adding assumptions to the meaning of the barrier: Not only do processes wait at the bar-
rier till all have arrived, but until all writesissued prior to the barrier have become visible to other
processors. Second, a barrier is often built using reads and writes to ordinary shared variables
(e.g. bl in the figure) rather than with specialized hardware support. In this case, as far as the
machine is concerned it sees only accesses to different shared variables; coherence does not say
anything at all about orders among these accesses.

272 DRAFT: Parallel Computer Architecture 9/10/97

Memory Consistency

P1 P2
/* Assume initial value of Ais 0 */
A =1,
- —- BARRIER(b1)- — — — — — — - BARRI ER(b1l) - — -
print A;

Figure 5-8 Maintaining orders among accesses to alocation using explicit synchronization through barriers.

Clearly, we expect more from a memory system than “return the last value written” for each loca-
tion. To establish order among accesses to the location (say A) by different processes, we some-
times expect a memory system to respect the order of reads and writes to different locations (A
and f| ag or A and b1l) issued by a given process. Coherence says nothing about the order in
which the writes issued by P1 become visible to P2, since these operations are to different loca-
tions. Similarly, it says nothing about the order in which the reads issued to different locations by
P2 are performed relative to P1. Thus, coherence does not in itself prevent an answer of 0 being
printed by either example, which is certainly not what the programmer had in mind.

In other situations, the intention of the programmer may not be so clear. Consider the example in
Figure 5-9. The accesses made by process P1 are ordinary writes, and A and B are not used as

P1 P2

/* Assume initial values of A and B are 0 */
(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A

Figure 5-9 Orders among accesses without synchronization.

synchronization variables. We may intuitively expect that if the value printed for B is 2 then the
value printed for Ais 1 aswell. However, the two print statements read different locations before
printing them, so coherence says nothing about how the writes by P1 become visible. (This
example isasimplification of Dekker’'s algorithm to determine which of two processes arrives at
a critical point first, and hence ensure mutual exclusion. It relies entirely on writes to distinct
locations becoming visible to other processes in the order issued.) Clearly we need something
more than coherence to give a shared address space a clear semantics, i.e., an ordering model that
programmers can use to reason about the possible results and hence correctness of their pro-
grams.

A memory consistency model for a shared address space specifies constraints on the order in
which memory operations must appear to be performed (i.e. to become visible to the processors)
with respect to one another. This includes operations to the same locations or to different loca
tions, and by the same process or different processes, so memory consistency subsumes coher-
ence.

9/10/97

DRAFT: Parallel Computer Architecture 273

Shared Memory Multiprocessors

5.3.1 Sequential Consistency

Processors

In discussing the fundamental design issues for a communication architecture in Chapter 1
(Section 1.4), we described informally a desirable ordering model for a shared address space: the
reasoning one goes through to ensure a multithreaded program works under any possible inter-
leaving on a uniprocessor should hold when some of the threads run in parallel on different pro-
cessors. The ordering of data accesses within a process was therefore the program order, and that
across processes was some interleaving of the program orders. That is, the multiprocessor case
should not be able to cause values to become visible in the shared address space that no interleav-
ing of accesses from different processes can generate. This intuitive model was formalized by
Lamport as sequential consistency (SC), which is defined as follows [Lam79] .1

Sequential Consistency A multiprocessor is sequentially consistent if the result of any execu-
tion is the same as if the operations of al the processors were executed in some sequential
order, and the operations of each individual processor occur in this sequence in the order
specified by its program.

Figure 5-10 depicts the abstraction of memory provided to programmers by a sequentialy con-
sistent system [AdG96]. Multiple processes appear to share a single logical memory, even
though in the real machine main memory may be distributed across multiple processors, each
with their private caches and write buffers. Every processor appears to issue and complete mem-
ory operations one at atime and atomically in program order—that is, a memory operation does
not appear to be issued until the previous one has completed—and the common memory appears
to service these requests one at a time in an interleaved manner according to an arbitrary (but
hopefully fair) schedule. Memory operations appear atomic in this interleaved order; that is, it

issuing memory references
® pa program Orda k@ ‘ “)
[X N J

The “switch” is randomly
set after each memory
reference

Memory

Figure 5-10 Programmer’s abstraction of the memory subsystem under the sequential consistency model.

The model completely hides the underlying concurrency in the memory-system hardware, for example, the possible existence of dis-
tributed main memory, the presence of caches and write buffers, from the programmer.

1. Two closely related concepts in the software context are serializability[Papa79] for conccurent updates to
a database and linearizability[HEWIi87] for concurrent objects.

274

DRAFT: Parallel Computer Architecture 9/10/97

Memory Consistency

should appear globally (to all processors) as if one operation in the consistent interleaved order
executes and completes before the next one begins.

As with coherence, it is not important in what order memory operations actually issue or even
complete. What matters is that they appear to complete in an order that does not violate sequen-
tial consistency. In the example in Figure 5-9, under SC the result (0,2) for (A,B) would not be
allowed under sequential consistency—preserving our intuition—since it would then appear that
the writes of A and B by process P1 executed out of program order. However, the memory opera-
tions may actually execute and complete in the order 1b, 1a, 2b, 2a. It does not matter that they
actually complete out of program order, since the results of the execution (1,2) is the same as if
the operations were executed and completed in program order. On the other hand, the actual exe-
cution order 1b, 2a, 2b, lawould not be sequentially consistent, since it would produce the result
(0,2) which is not allowed under SC. Other examples illustrating the intuitiveness of sequential
consistency can be found in Exercise 5.4. Note that sequential consistency does not obviate the
need for synchronization. SC allows operations from different processes to be interleaved arbi-
trarily and at the granularity of individual instructions. Synchronization is needed if we want to
preserve atomicity (mutual exclusion) across multiple memory operations from a process, or if
we want to enforce certain orders in the interleaving across processes.

Theterm “program order” also bears some elaboration. Intuitively, program order for aprocessis
simply the order in which statements appear in the source program; more specifically, the order
in which memory operations appear in the assembly code listing that results from a straightfor-
ward tranglation of source statements one by one to assembly language instructions. This is not
necessarily the order in which an optimizing compiler presents memory operations to the hard-
ware, since the compiler may reorder memory operations (within certain constraints such as
dependences to the same location). The programmer has in mind the order of statements in the
program, but the processor sees only the order of the machineinstructions. In fact, thereisa“pro-
gram order” at each of the interfaces in the communication architecture—particularly the pro-
gramming model interface seen by the programmer and the hardware-software interface—and
ordering models may be defined at each. Since the programmer reasons with the source program,
it makes sense to use this to define program order when discussing memory consistency models;
that is, we will be concerned with the consistency model presented by the system to the program-
mer.

Implementing SC requires that the system (software and hardware) preserve the intuitive con-
straints defined above. There are really two constraints. The first is the program order require-
ment discussed above, which means that it must appear as if the memory operations of a process
become visible—to itself and others—in program order. The second requirement, needed to
guarantee that the total order or interleaving is consistent for all processes, is that the operations
appear atomic; that is, it appear that one is completed with respect to all processes before the next
oneinthetotal order isissued. Thetricky part of this second requirement is making writes appear
atomic, especialy in a system with multiple copies of a block that need to be informed on a
write. Write atomicity, included in the definition of SC above, impliesthat the position in the total
order at which a write appears to perform should be the same with respect to all processors. It
ensures that nothing a processor does after it has seen the new value produced by a write
becomes visible to other processes before they too have seen the new value for that write. In
effect, while coherence (write serialization) says that writes to the same location should appear to
all processors to have occurred in the same order, sequential consistency says that all writes (to
any location) should appear to all processors to have occurred in the same order. The following
example shows why write atomicity isimportant.

9/10/97

DRAFT: Parallel Computer Architecture 275

Shared Memory Multiprocessors

Example 5-4

Answer

532

Consider the three processes in Figure5-11. Show how not preserving write
atomicity violates sequential consistency.

Since P2 waits until A becomes 1 and then sets B to 1, and since P3 waits until B
becomes 1 and only then reads value of A, from transitivity we would infer that P3
should find the value of Ato be 1. If P2 is allowed to go on past the read of A and
write B before it is guaranteed that P3 has seen the new value of A, then P3 may
read the new value of B but the old value of A from its cache, violating our
sequentially consistent intuition.

Pl P2 P3

A=1l,— » while (A==0);
B=1; » While (B==0);
print A;

Figure 5-11 Exampleillustrating the importance of write atomicity for sequential consistency.

Each process's program order imposes a partial order on the set of all operations; that is, it
imposes an ordering on the subset of the operations that are issued by that process. An interleav-
ing (in the above sense) of the operations from different processes defines a total order on the set
of all operations. Since the exact interleaving is not defined by SC, interleaving the partial (pro-
gram) orders for different processes may yield a large number of possible total orders. The fol-
lowing definitions apply:

Sequentially Consistent Execution An execution of a program is said to be sequentially con-
sistent if the results it produces are the same as those produced by any one of these possible
total orders (interleavings as defined earlier). That is, there should exist atotal order or inter-
leaving of program orders from processes that yields the same result as that actual execution.

Sequentially Consistent SystemA system is sequentially consistent if any possible execution
on that system corresponds to (produces the same results as) some possible total order as
defined above.

Of course, an implicit assumption throughout is that a read returns the last value that was written
to that same location (by any process) in the interleaved total order.

Sufficient Conditionsfor Preserving Sequential Consistency

It is possible to define a set of sufficient conditions that the system should obey that will guaran-
tee sequential consistency in amultiprocessor—whether bus-based or distributed, cache-coherent
or not. The following set, adapted from their origina form [DSB86,ScD87], are commonly used
because they arerelatively simple without being overly restrictive:

1. Every processissues memory requests in the order specified by the program.

2. After awrite operation is issued, the issuing process waits for the write to complete before
issuing its next operation.

276

DRAFT: Parallel Computer Architecture 9/10/97

Memory Consistency

Example 5-5

Answer

3. After aread operation isissued, the issuing process waits for the read to complete, and for the
write whose value is being returned by the read to complete, before issuing its next operation.
That is, if the write whose value is being returned has performed with respect to this proces-
sor (as it must have if its value is being returned) then the processor should wait until the
write has performed with respect to all processors.

The third condition is what ensures write atomicity, and it is quite demanding. It is not asimple
local constraint, because the load must wait until the logically preceding store has become glo-
bally visible. Note that these are sufficient, rather than necessary conditions. Sequentia consis-
tency can be preserved with less serialization in many situations. This chapter uses these
conditions, but exploits other ordering constraintsin the bus-based design to establish completion
early.

With program order defined in terms of the source program, it is clear that for these conditions to
be met the compiler should not change the order of memory operations that it presentsto the pro-
cessor. Unfortunately, many of the optimizations that are commonly employed in both compilers
and processors violate the above sufficient conditions. For example, compilers routinely reorder
accesses to different locations within a process, so a processor may in fact issue accesses out of
the program order seen by the programmer. Explicitly parallel programs use uniprocessor com-
pilers, which are concerned only about preserving dependences to the same location. Advanced
compiler optimizations designed to improve performance—such as common sub-expression
elimination, constant propagation, and loop transformations such as loop splitting, loop reversal,
and blocking [Wol96]—can change the order in which different locations are accessed or even
eliminate memory references.! In practice, to constrain compiler optimizations multithreaded
and parallel programs annotate variables or memory references that are used to preserve orders.
A particularly stringent example isthe use of thevol at i | e quaifier in a variable declaration,
which prevents the variable from being register allocated or any memory operation on the vari-
able from being reordered with respect to operations before or after it.

How would reordering the memory operations in Figure 5-7 affect semanticsin a
sequential program (only one of the processes running), in a paralel program
running on a multiprocessor, and in athreaded program in which the two processes
are interleaved on the same processor. How would you solve the problem?

The compiler may reorder the writesto A and f | ag with no impact on a sequential
program. However, this can violate our intuition for both parallel programs and
concurrent uniprocessor programs. In the latter case, a context switch can happen
between the two reordered writes, so the process switched in may see the update to
f I ag without seeing the update to A. Similar violations of intuition occur if the
compiler reorders the reads of flag and A. For many compilers, we can avoid these
reorderings by declaring the variable f | ag to be of typevol atil e integer

1. Note that register allocation, performed by modern compilers to eliminate memory operations, can be
dangerous too. In fact, it can affect coherence itself, not just memory consistency. For the flag synchroniza-
tion examplein Figure 5-7, if the compiler were to register allocate the flag variable for process P2, the pro-
cess could end up spinning forever: The cache-coherence hardware updates or invalidates only the memory
and the caches, not the registers of the machine, so the write propagation property of coherenceis violated.

9/10/97

DRAFT: Parallel Computer Architecture 277

Shared Memory Multiprocessors

instead of justi nt eger . Other solutions are aso possible, and will be discussed in
Chapter 9.

Even if the compiler preserves program order, modern processors use sophisticated mechanisms
like write buffers, interleaved memory, pipelining and out-of-order execution techniques
[HeP90]. These allow memory operations from a process to issue, execute and/or complete out of
program order. These architectural and compiler optimizations work for sequential programs
because there the appearance of program order requires that dependences be preserved only
among accesses to the same memory location, as shown in Figure 5-12.

write A
(write B
read A)

read B

Figure 5-12 Preserving ordersin a sequential program running on a uniprocessor.

Only the orders corresponding to the two dependence arcs must be preserved. The first two operations can be reordered without a
problem, as can the last two or the middle two.

Preserving sequentia consistency in multiprocessors is quite a strong requirement; it limits com-
piler reordering and out of order processing techniques. The problem is that the out of order pro-
cessing of operations to shared variables by a process can be detected by other processes. Several
weaker consistency models have been proposed, and we will examine these in the context of
large scale shared address space machines in Chapter 6. For the purposes of this chapter, we will
assume the compiler does not perform optimizations that violate the sufficient conditions for
sequential consistency, so the program order that the processor sees is the same as that seen by
the programmer. On the hardware side, to satisfy the sufficient conditions we need mechanisms
for a processor to detect completion of its writes so it may proceed past them—completion of
readsis easy, it is when the data returns to the processor—and mechanisms to preserve write ato-
micity. For all the protocols and systems considered in this chapter, we will see how they satisfy
coherence (including write serialization), how they can satisfy sequential consistency (in particu-
lar, how write completion is detected and write atomicity is guaranteed), and what shortcuts can
be taken while still satisfying the sufficient conditions.

The serialization imposed by transactions appearing on the shared bus is very useful in ordering
memory operations. The reader should verify that the 2-state write-through invalidate protocol
discussed above actually provides sequential consistency, not just coherence, quite easily. The
key observation is that writes and read misses to all locations, not just to individual locations, are
serialized in bus order. When a read obtains the value of a write, the write is guaranteed to have
completed, since it caused a previous bus transaction. When a write is performed, all previous
writes have completed.

278

DRAFT: Parallel Computer Architecture 9/10/97

Design Space for Snooping Protocols

5.4 Design Space for Snooping Protocols

The beauty of snooping-based cache coherence is that the entire machinery for solving a difficult
problem boils down to a small amount of extrainterpretation on events that naturally occur in the
system. The processor is completely unchanged. There are no explicit coherence operations
inserted in the program. By extending the requirements on the cache controller and exploiting the
properties of the bus, the loads and stores that are inherent to the program are used implicitly to
keep the caches coherent and the serialization of the bus maintains consistency. Each cache con-
troller observes and interprets the memory transactions of others to maintain its internal state.
Our initial design point with write-through caches is not very efficient, but we are now ready to
study the design space for snooping protocols that make efficient use of the limited bandwidth of
the shared bus. All of these use write-back caches, allowing several processors to write to differ-
ent blocks in their local caches concurrently without any bus transactions. Thus, extra care is
required to ensure that enough information is transmitted over the bus to maintain coherence. We
will also see how the protocols provide sufficient ordering constraints to maintain write serializa-
tion and a sequentially consistent memory model.

Recall that with awrite-back cache on a uniprocessor, a processor write miss causes the cache to
read the entire block from memory, update aword, and retain the block as modified (or dirty) so it
may be written back on replacement. In a multiprocessor, this modified state is also used by the
protocols to indicate exclusive ownership of the block by acache. In general, acacheis said to be
the owner of ablock if it must supply the data upon a request for that block [SwS86]. A cacheis
said to have an exclusive copy of a block if it is the only cache with a valid copy of the block
(main memory may or may not have avalid copy). Exclusivity impliesthat the cache may modify
the block without notifying anyone else. If a cache does not have exclusivity, then it cannot write
a new value into the block before first putting a transaction on the bus to communicate with oth-
ers. The data may be in the writer's cache in avalid state, but since a transaction must be gener-
ated this is called a write miss just like a write to a block that is not present or invalid in the
cache. If a cache has the block in modified state, then clearly it is both the owner and has exclu-
sivity. (The need to distinguish ownership from exclusivity will become clear soon.)

On a write miss, then, a special form of transaction called a read-exclusive is used to tell other
caches about the impending write and to acquire a copy of the block with exclusive ownership.
This places the block in the cache in modified state, where it may now be written. Multiple pro-
cessors cannot write the same block concurrently, which would lead to inconsistent values: The
read-exclusive bus transactions generated by their writes will be serialized by the bus, so only
one of them can have exclusive ownership of the block at atime. The cache coherence actions are
driven by these two types of transactions: read and read-exclusive. Eventually, when a modified
block is replaced from the cache, the data is written back to memory, but this event is not caused
by a memory operation to that block and is ailmost incidental to the protocol. A block that is not
in modified state need not be written back upon replacement and can simply be dropped, since
memory has the latest copy. Many protocols have been devised for write-back caches, and we
will examine the basic alternatives.

We also consider update-based protocols. Recall that in update-based protocols, when a shared
location iswritten to by a processor its valueis updated in the caches of all other processors hold-
ing that memory block!. Thus, when these processors subsequently access that block, they can do
so from their caches with low latency. The caches of all other processors are updated with asin-
gle bus transaction, thus conserving bandwidth when there are multiple sharers. In contrast, with

9/10/97

DRAFT: Parallel Computer Architecture 279

Shared Memory Multiprocessors

541

invalidation-based protocols, on a write operation the cache state of that memory block in all
other processors’ caches is set to invalid, so those processors will have to obtain the block
through a miss and a bus transaction on their next read. However, subsequent writes to that block
by the same processor do not create any further traffic on the bus, until the block is read by
another processor. Thisis attractive when a single processor performs multiple writesto the same
memory block before other processors read the contents of that memory block. The detailed
tradeoffs are quite complex and they depend on the workload offered to the machine; they will be
illustrated quantitatively in Section 5.5. In general, invalidation-based strategies have been found
to be more robust and are therefore provided as the default protocol by most vendors. Some ven-
dors provide an update protocol as an option to be used selectively for blocks corresponding to
specific data structures or pages.

The choices made for the protocol, update versus invalidate, and caching strategies directly affect
the choice of states, the state transition diagram, and the associated actions. There is substantial
flexibility available to the computer architect in the design task at this level. Instead of listing all
possible chaices, let us consider three common coherence protocols that will illustrate the design
options.

A 3-state (M Sl) Write-back Invalidation Protocol

The first protocol we consider is a basic invalidation-based protocol for write-back caches. It is
very similar to the protocol that was used in the Silicon Graphics 4D series multiprocessor
machines [BJS88]. The protocol uses the three states required for any write-back cache in order
to distinguish valid blocks that are unmodified (clean) from those that are modified (dirty). Spe-
cifically, the statesare invalid (1), shared (S), and modified (M). Invalid has the obvious meaning.
Shared means the block is present in unmodified state in this cache, main memory is up-to-date,
and zero or more other caches may also have an up-to-date (shared) copy. Modified, also called
dirty, was discussed earlier; it means that only this processor has a valid copy of the block in its
cache, the copy in main memory is stale, and no other cache may have avalid copy of the block
(in either shared or modified state). Before a shared or invalid block can be written and placed in
the modified state, al the other potential copies must be invalidated via a read-exclusive bus
transaction. This transaction servesto order the write as well as cause the invalidations and hence
ensure that the write becomes visible to others.

The processor issues two types of requests: reads (PrRd) and writes (PrWr). The read or write
could be to amemory block that existsin the cache or to one that does not. In thislatter case, the
block currently in the cache will have to be replaced by the newly requested block, and if the
existing block isin modified state its contents will have to be written back to main memory.

We assume that the bus allows the following transactions:

Bus Read (BusRd): The cache controller puts the address on the bus and asks for a copy that
it does not intend to modify. The memory system (possibly another cache) supplies the data.

1. Thisis a write-broadcast scenario. Read-broadcast designs have also been investigated, in which the
cache containing the modified copy flushes it to the bus on a read, at which point all other copies are
updated too.

280

DRAFT: Parallel Computer Architecture 9/10/97

Design Space for Snooping Protocols

This transaction is generated by a PrRd that misses in the cache, and the processor expects a
data response as a result.

Bus Read-Exclusive (BusRdX): The cache controller puts the address on the bus and asks for
an exclusive copy that it intends to modify. The memory system (possibly another cache) sup-
pliesthe data. All other caches need to be invalidated. Thistransaction is generated by a Prwr
to ablock that is either not in the cache or isin the cache but not in modified state. Once the

cache obtains the exclusive copy, the write can be performed in the cache. The processor may
reguire an acknowledgment as aresult of this transaction.

Writeback (BusWB): The cache controller puts the address and the contents for the memory
block on the bus. The main memory is updated with the latest contents. This transaction is
generated by the cache controller on awriteback; the processor does not know about it, and
does not expect aresponse.

The Bus Read-Exclusive (sometimes called read-to-own) is a new transaction that would not
exist except for cache coherence. The other new concept needed to support write-back protocols
isthat in addition to changing the state of cached blocks, the cache controller can intervenein the
bus transaction and “flush” the contents of the referenced block onto the bus, rather than allow
the memory to supply the data. Of course, the cache controller can also initiate new bus transac-
tions as listed above, supply data for writebacks, or pick up data supplied by the memory system.

Prwr / BusRd

Prwr / BusRdX

Figure 5-13 Basic 3-state invaidation protocol.

I, S, and M stand for Invalid, Shared, and Modified states respectively. The notation A / B means that if we observe from processor-side
or bus-side event A, then in addition to state change, generate bus transaction or action B. “--" means null action. Transitions due to
observed bus transactions are shown in dashed arcs, while those due to local processor actions are shown in bold arcs. If multipleA / B
pairs are associated with an arc, it simply means that multiple inputs can cause the same state transition. For completeness, we need to
specify actions from each state corresponding to each observable event. If such transitions are not shown, it means that they are uninter-
esting and no action needs to be taken. Replacements and the writebacks they may cause are not shown in the diagram for simplicity.

9/10/97 DRAFT: Parallel Computer Architecture 281

Shared Memory Multiprocessors

State Transitions

The state transition diagram that governs a block in each cache in this snoopy protocol is as
shown in Figure 5-13. The states are organized so that the closer the state is to the top the more
tightly the block is bound to that processor. A processor read to ablock that is‘invalid’ (including
not present) causes a BusRd transaction to service the miss. The newly loaded block is promoted
from invalid to the ‘shared’ state, whether or not any other cache holds a copy. Any other caches
with the block in the ‘shared’ state observe the BusRd, but take no specia action, allowing the
memory to respond with the data. However, if a cache has the block in the ‘modified’ state (there
can only be one) and it observes a BusRd transaction on the bus, then it must get involved in the
transaction since the memory copy is stale. This cache flushes the data onto the bus, in lieu of
memory, and demotes its copy of the block to the shared state. The memory and the requesting
cache both pick up the block. This can be accomplished either by a direct cache-to-cache transfer
across the bus during this BusRd transaction, or by signalling an error on the BusRd transaction
and generating a write transaction to update memory. In the latter case, the original cache will
eventually retry its request and obtain the block from memory. (It is also possible to have the
flushed data be picked up only by the requesting cache but not by memory, leaving memory still
out-of-date, but this requires more states [SwS86]).

Writing into an invalid block is a write miss, which is serviced by first loading the entire block
and then modifying the desired bytes within it. The write miss generates a read exclusive bus
transaction, which causes all other cached copies of the block to be invalidated, thereby granting
the requesting cache exclusive ownership of the block. The block is raised to the ‘modified’ state
and is then written. If another cache later requests exclusive access, then in response to its Bus-
RdX transaction this block will be demoted to the invalid state after flushing the exclusive copy
to the bus.

The most interesting transition occurs when writing into a shared block. As discussed earlier this
istreated essentially like awrite miss, using aread-exclusive bus transaction to acquire exclusive
ownership, and we will refer to it as a miss throughout the book. The data that comes back in the
read-exclusive can be ignored in this case, unlike when writing to an invalid or not present block,
sinceit isalready in the cache. In fact, acommon optimization to reduce data traffic in bus proto-
cols is to introduce a new transaction, called a bus upgrade or BusUpgr, for this situation. A
BusUpgr which obtains exclusive ownership just like a BusRdX, by causing other copies to be
invalidated, but it does not return the data for the block to the requestor. Regardless of whether a
BusUpgr or a BusRdX isused (let us continue to assume BusRdX), the block transitions to mod-
ified state. Additional writes to the block while it is in the modified state generate no additional
bus transactions.

A replacement of a block from a cache logically demotes a block to invalid (not present) by
removing it from the cache. A replacement therefore causes the state machines for two blocks to
change states in that cache: the one being replaced from its current state to invalid, and the one
being brought in from invalid to its new state. The latter state change cannot take place before the
former, which requires some care in implementation. If the block being replaced wasin modified
state, the replacement transition from M to | generates awrite-back transaction. No special action
is taken by the other caches on this transaction. If the block being replaced was in shared or
invalid state, then no action is taken on the bus. Replacements are not shown in the state diagram
for simplicity.

282

DRAFT: Parallel Computer Architecture 9/10/97

Design Space for Snooping Protocols

Example 5-6

Answer

Note that to specify the protocol completely, for each state we must have outgoing arcs with
labels corresponding to all observable events (the inputs from the processor and bus sides), and
also actions corresponding to them. Of course, the actions can be null sometimes, and in that case
we may either explicitly specify null actions (see states Sand M in the figure), or we may simply
omit those arcs from the diagram (see state l). Also, since we treat the not-present state asinvalid,
when a new block is brought into the cache on a miss the state transitions are performed asiif the
previous state of the block was invalid.

Using the MSI protocol, show the state transitions and bus transactions for the
scenario depicted in Figure 5-3.
The results are shown in Figure 5-14.
Proc. Action StateinP1 Statein P2 Statein P3 BusAction Data Supplied By
1. Plreadsu S -- -- BusRd Memory
2. P3readsu S -- S BusRd Memory
3. P3writesu I - M BusRdX Memory
4. Plreadsu S -- S BusRd P3's cache
5.P2readsu S S S BusRd Memory

Figure 5-14 The 3-state invalidation protocol in action for processor transactions shown in Figure 5-3.

The figure shows the state of the relevant memory block at the end of each transaction, the bus transaction generated, if any, and the

entity supplying the data.

With write-back protocols, a block can be written many times before the memory is actually
updated. A read may obtain data not from memory but rather from awriter’s cache, and in fact it
may be this read rather than a replacement that causes memory to be updated. Also, write hits do
not appear on the bus, so the concept of “ performing awrite” isalittle different. In fact, it is often
simpler to talk, equivalently, about the write being “made visible.” A write to a shared or invalid
block is made visible by the bus read-exclusive transaction it triggers. The writer will “observe”
the data in its cache; other processors will experience a cache miss before observing the write.
Write hits to amodified block are visible to other processors, but are observed by them only after
a miss through a bus transaction. Formally, in the MSI protocol, the write to a non-modified
block is performed or made visible when the BusRdX transaction occurs, and to a modified block
when the block is updated in the writer’s cache.

Satisfying Coherence
Since both reads and writesto local caches can take place concurrently with the write-back proto-

col, it is not obvious that it satisfies the conditions for coherence, much less sequential consis-
tency. Let’s examine coherence first. The read-exclusive transaction ensures that the writing

9/10/97

DRAFT: Parallel Computer Architecture 283

Shared Memory Multiprocessors

cache has the only valid copy when the block is actually written in the cache, just like awritein
the write-through protocol. It is followed immediately by the corresponding write being per-
formed in the cache, before any other bus transactions are handled by that cache controller. The
only difference from awrite-through protocol, with regard to ordering operationsto alocation, is
that not al writes generate bus transactions. However, the key here is that between two transac-
tionsfor that block that do appear on the bus, only one processor can perform such write hits; this
is the processor, say P, that performed the most recent read-exclusive bus transaction w for the
block. In the seriaization, this write hit sequence therefore appears in program order between w
and the next bus transaction for that block. Reads by processor P will clearly see them in this
order with respect to other writes. For aread by another processor, there is at least one bus trans-
action that separates its completion from the completion of these write hits. That bus transaction
ensures that this read also sees the writes in the consistent seria order. Thus, reads by all proces-
sors see al writesin the same order.

Satisfying Sequential Consistency

To see how sequential consistency is satisfied, let us first appeal to the definition itself and see
how a consistent global interleaving of all memory operations may be constructed. The seridiza-
tion for the bus, in fact, defines atotal order on bus transactions for all blocks, not just those to a
single block. All cache controllers observe read and read-exclusive transactions in the same
order, and perform invalidationsin this order. Between consecutive bus transactions, each proces-
sor performs a sequence of memory operations (read and writes) in program order. Thus, any
execution of a program defines a natural partial order:

A memory operation M) is subsequent to operation M; if (i) the operations are issued by the
same processor and M J- follows M; in program order, or (ii) M J- generates a bus transaction
that follows the memory operation for M; .

This partial order looks graphically like that of Figure 5-6, except the local sequence within a
segment has reads and writes and both read-exclusive and read bus transactions play important
roles in establishing the orders. Between bus transactions, any interleaving of the sequences from
different processors leads to a consistent total order. In a segment between bus transactions, a
processor can observe writes by other processors, ordered by previous bus transactions that it
generated, as well asits own writes ordered by program order.

We can also see how SC is satisfied in terms of the sufficient conditions, which we will return to
when we look further at implementing protocols. Write completion is detected when the read-
exclusive bus transaction occurs on the bus and the write is performed in the cache. The third
condition, which provides write atomicity, is met because aread either (i) causes a bus transac-
tion that follows that of the write whose value is being returned, in which case the write must
have completed globally before the read, or (ii) followsin program order such aread by the same
processor, or (iii) follows in program order on the same processor that performed the write, in
which case the processor has already waited for the read-exclusive transaction and the write to
complete globally. Thus, all the sufficient conditions are easily guaranteed.

L ower-L evel Design Choices
Toillustrate some of the implicit design choices that have been made in the protocol, let us exam-

ine more closely the transition from the M state when a BusRd for that block is observed. In
Figure 5-13 we transition to state S and the contents of the memory block are placed on the bus.

284

DRAFT: Parallel Computer Architecture 9/10/97

Design Space for Snooping Protocols

54.2

Whileit isimperative that the contents are placed on the bus, it could instead have transitioned to
state I. The choice of going to Sversus | reflects the designer’s assertion that it ismorelikely that
the original processor will continue reading that block than it is that the new processor will soon
write to that memory block. Intuitively, this assertion holds for mostly-read data, which is com-
mon in many programs. However, a common case where it does not hold is for a flag or buffer
that is used to transfer information back and forth between two processes. one processor writesit,
the other reads it and modifies it, then the first reads it and modifies it, and so on. The problem
with betting on read sharing in this case is that each write is preceded by an invalidate, thereby
increasing the latency of the ping-pong operation. Indeed the coherence protocol used in the
early Synapse multiprocessor made the alternate choice of directly going from M to | state on a
BusRd. Some machines (Sequent Symmetry (model B) and the MIT Alewife) attempt to adapt
the protocol when the access pattern indicates such migratory data [CoF93,DDS94]. The imple-
mentation of the protocol can aso affect the performance of the memory system, as we will see
later in the chapter.

A 4-state (MESI) Write-Back Invalidation Protocol

A serious concern with our MSI protocol arises if we consider a sequential application running
on a multiprocessor; such multiprogrammed use in fact constitutes the most common workload
on small-scale multiprocessors. When it reads in and modifies a data item, in the MS| protocol
two bus transactions are generated even though there are never any sharers. The first is a BusRd
that gets the memory block in S state, and the second is a BusRdX (or BusUpgr) that converts the
block from Sto M state. By adding a state that indicates that the block is the only (exclusive)
copy but is not modified and loading the block in this state, we can save the latter transaction
since the state indicates that no other processor is caching the block. This new state, called exclu-
sive-clean or exclusive-unowned or sometime simply exclusive, indicates an intermediate level of
binding between shared and modified. It is exclusive, so unlike the shared state it can perform a
write and move to modified state without further bus transactions; but it doesimply ownership, so
unlike in the modified state the cache need not reply upon observing a request for the block
(memory has a valid copy). Variants of this MESI protocol are used in many modern micropro-
cessors, including the Intel Pentium, PowerPC 601, and the MIPS R4400 used in the Silicon
Graphics Challenge multiprocessors. It was first published by researchers at the University of
Illinois at Urbana-Champaign [PaP84] and is often referred to as the Illinois protocol [ArB86].

The MESI protocol consists of four states: modified(M) or dirty, exclusive-clean (E), shared (S),
and invalid (I). | and M have the same semantics as before. E, the exclusive-clean or just exclu-
sive state, means that only one cache (this cache) has a copy of the block, and it has not been
modified (i.e., the main memory is up-to-date). S means that potentially two or more processors
have this block in their cache in an unmodified state.

State Transitions

When the block is first read by a processor, if avalid copy exists in another cache then it enters
the processor’s cache in the S state as usual. However, if no other cache has a copy at the time
(for example, in a sequential application), it enters the cache in the E state. When that block is
written by the same processor, it can directly transition from E to M state without generating
another bus transaction, since no other cache has a copy. If another cache had obtained a copy in
the meantime, the state of the block would have been downgraded from E to S by the snoopy pro-
tocol.

9/10/97

DRAFT: Parallel Computer Architecture 285

Shared Memory Multiprocessors

This protocol places a new requirement on the physical interconnect of the bus. There must be an
additional signal, the shared signal (S), available to the controllers in order to determine on a
BusRd if any other cache currently holds the data. During the address phase of the bus transac-
tion, al caches determine if they contain the requested block and, if so, assert the shared signal.
Thisis awired-OR line, so the controller making the request can observe whether there are any
other processors caching the referenced memory block and thereby decide whether to load a
requested block in the E state or the S state.

Figure 5-15 shows the state transition diagram for the MESI protocol, still assuming that the
BusUpgr transaction is not used. The notation BusRd(S) means that when the bus read transac-

\ \ BusRdX /Flush
BusRd / Flush \

\ \
\ \
" \
= \\ \ \
N \
BusRd / A
Flusr \
PrRd/ -- I\ |
Prwr / BusRdX | \BustX / Flush
y |
v/ \' |
- BusRdX / Fllush’//
PrRA/ I
BusRd / Flush | /)
PrRd / AV
BusRd (S VA4
e

Figure 5-15 Statetransition diagram for the Illinois MESI protocol.

M, E, S, | stand for the Modified (dirty), Exclusive, Shared and Invalid states respectively. The notation is the same as that in Figure 5-
13. The E state helps reduce bus traffic for sequential programs where data are not shared. Whenever feasible, the protocol also makes
caches, rather than main memory, supply data for BusRd and BusRdX transactions. Since mult‘lcﬁ!eg processors may have a copy of the

memory block in their cache, we need'to select only one to supply the data on the bus. Flu

is true only for that processor; the

remaining processors take null action.

tion occurred the signal “S’ was asserted, and BusRd(S) means “S’ was unasserted. A plain
BusRd means that we don’t care about the value of Sfor that transition. A writeto ablock in any
state will elevate the block to the M state, but if it was in the E state no bus transaction is
required. Observing a BusRd will demote a block from E to S, since now another cached copy
exists. As usual, observing a BusRd will demote a block from M to S state and cause the block to
be flushed on to the bus; here too, the block may be picked up only by the requesting cache and
not by main memory, but this will require additional states beyond MESI [SwS86]. Notice that it

286

DRAFT: Parallel Computer Architecture 9/10/97

Design Space for Snooping Protocols

54.3

is possible for a block to be in the S state even if no other copies exist, since copies may be
replaced (S -> 1) without notifying other caches. The arguments for coherence and sequential
consistency being satisfied here are the same asin the MSI protocaol.

L ower-L evel Design Choices

An interesting question for the protocol is who should supply the block for a BusRd transaction
when both the memory and another cache have a copy of it. In the original Illinois version of the
MESI protocol the cache, rather than main memory, supplied the data, a technique called cache-
to-cache sharing. The argument for this approach was that caches being constructed out of
SRAM, rather than DRAM, could supply the data more quickly. However, this advantage is not
quite present in many modern bus-based machines, in which intervening in another processor’'s
cache to obtain data is often more expensive than obtaining the data from main memory. Cache-
to-cache sharing also adds complexity to a bus-based protocol. Main memory must wait until it is
sure that no cache will supply the data before driving the bus, and if the data resides in multiple
caches then there needs to be a selection algorithm to determine which one will provide the data.
On the other hand, this technique is useful for multiprocessors with physically distributed mem-
ory, aswe will see in Chapter 6, because the latency to obtain the data from a nearby cache may
be much smaller than that for afar away memory unit. This effect can be especially important for
machines constructed as a network of SMP nodes, because caches within the SMP node may
supply the data. The Stanford DASH multiprocessor [LLJ+92] used such cache-to-cache trans-
fersfor this reason.

A 4-state (Dragon) Write-back Update Protocol

We now look at a basic update-based protocol for writeback caches, an enhanced version of
which is used in the SUN SparcServer multiprocessors [Cat94]. This protocol was first proposed
by researchers at Xerox PARC for their Dragon multiprocessor system [McC84,TL S88].

The Dragon protocol consists of four states: exclusive-clean (E), shared-clean (SC), shared-mod-
ified (SM), and modified(M). Exclusive-clean (or exclusive) again means that only one cache
(this cache) has a copy of the block, and it has not been modified (i.e., the main memory is up-to-
date). The motivation for adding the E state in Dragon is the same as that for the MESI protocol.
SC means that potentially two or more processors (including this cache) have this block in their
cache, and main memory may or may not be up-to-date. SM means that potentially two or more
processor’s have this block in their cache, main memory is not up-to-date, and it is this proces-
sor’s responsibility to update the main memory at the time this block is replaced from the cache.
A block may be in SM state in only one cache at a time. However, it is quite possible that one
cache has the block in SM state while others have it in SC state. Or it may be that no cache hasiit
in SM state but some have it in SC state. This is why when a cache has the block in SC state
memory may or may not be up to date; it depends on whether some cache hasit in SM state. M
means, as before, that the block is modified (dirty) in this cache alone, main memory is stale, and
it isthis processor’s responsibility to update main memory on replacement. Note that there is no
explicit invalid (1) state as in the previous protocols. This is because Dragon is an update-based
protocol; the protocol always keeps the blocks in the cache up-to-date, so it is aways okay to use
the data present in the cache. However, if ablock is not present in a cache at al, it can be imag-
ined to be there in a special invalid or not-present state.

9/10/97

DRAFT: Parallel Computer Architecture 287

Shared Memory Multiprocessors

PrRdMiss / BusRd(S)

The processor requests, bus transactions, and actions for the Dragon protocol are similar to the
I1linois MESI protocol. The processor is still assumed to issue only read (PrRd) and write (PrWir)
requests. However, given that we do not have an invalid state in the protocol, to specify actions
when a new memory block is first requested by the processor, we add two more request types:
processor read-miss (PrRdMiss) and write-miss (PrWrMiss). As for bus transactions, we have
bus read (BusRd), bus update (BusUpd), and bus writeback (BuswB). The BusRd and BuswB
transactions have the usual semantics as defined for the earlier protocols. BusUpd is a new trans-
action that takes the specific word written by the processor and broadcasts it on the bus so that all
other processors’ caches can update themselves. By only broadcasting the contents of the specific
word modified rather than the whole cache block, it is hoped that the bus bandwidth is more effi-
ciently utilized. (See Exercise for reasons why this may not always be the case.) Asin the MESI
protocol, to support the E state there is a shared signal (S) available to the cache controller. This
signal is asserted if there are any processors, other than the requestor, currently caching the refer-
enced memory block. Finally, asfor actions, the only new capability needed is for the cache con-
troller to update alocally cached memory block (labeled Update) with the contents that are being
broadcast on the bus by arelevant BusUpd transaction.

PrRd/ --
BusUpd / Update

PrRdMiss/ BusRd(S)

Prwr / BusUpd(S)

BusUpd / Update

BusRd / Flush

PrwrMiss/ BusRd(S); BusUpd PrwrMiss/ BusRd(S)

PrRd/ --
Prwr / BusU sﬁd(s)
BusRd/ Flu

Figure 5-16 State-transition diagram for the Dragon update protocol.

The four states are vaid-exclusive (E), shared-clean (SC), shared-modified (SM), and modified (M). There is no invalid (I) state
because the update protocol always keeps blocks in the cache up-to-date.

1. Logically thereis another state as well, but it is rather crude. A mode bit is provided with each block to
force a miss when the block is accessed. Initialization software reads data into every line in the cache with
the miss mode turned on, to ensure that the processor will miss the first time it references a block that maps
to that line.

288

DRAFT: Parallel Computer Architecture 9/10/97

Design Space for Snooping Protocols

Example 5-7

Answer

State Transitions

Figure 5-16 shows the state transition diagram for the Dragon update protocol. To take a proces-
sor-centric view, one can also explain the diagram in terms of actions taken when a processor
incurs aread-miss, awrite-hit, or awrite-miss (no action is ever taken on aread-hit).

Read Miss: A BusRd transaction is generated. Depending on the status of the shared-signal
(S), the block isloaded in the E or SC state in the local cache. More specificaly, if the block
isin M or SM states in one of the other caches, that cache asserts the shared signal and sup-
pliesthe latest datafor that block on the bus, and the block isloaded in local cachein SC state
(it isalso updated in main memory; if we did not want to do this, we would need more states).
If the other cache had it in state M, it changes its state to SM. If no other cache has a copy,
then the shared line remains unasserted, the data are supplied by the main memory and the
block isloaded in local cachein E state.

Write: If the block isinthe SM or M states in the local cache, then no action needs to be
taken. If the block isin the E statein the local cache, then it internally changesto M state and
again no further action is needed. If the block isin SC state, however, aBusUpd transactionis
generated. If any other caches have a copy of the data, they update their cached copies, and
change their state to SC. Thelocal cache also updates its copy of the block and changesits
stateto SM. If no other cache has a copy of the data, the shared-signal remains unasserted, the
local copy is updated and the state is changed to M. Finally, if on awrite the block is not
present in the cache, the write istreated simply as a read-miss transaction followed by awrite
transaction. Thusfirst a BusRd is generated, and then if the block was also found in other
caches (i.e, the block isloaded locally in the SC state), a BusUpd is generated.

Replacement: On areplacement (arcs not shown in the figure), the block is written back to
memory using a bus transaction only if itisinthe M or SM state. If it isin the SC state, then
either some other cache hasit in SM state, or noone does in which caseit isalready valid in
main memory.

Using the Dragon update protocol, show the state transitions and bus transactions
for the scenario depicted in Figure 5-3.

The results are shown in Figure 5-17. We can see that while for processor actions 3
and 4 only one word is transferred on the bus in the update protocol, the whole
memory block is transferred twice in the invalidation-based protocol. Of course, it
is easy to construct scenarios where the invalidation protocol does much better than
the update protocol, and we will discuss the detailed tradeoffs later in Section 5.5.

L ower-L evel Design Choices

Again, many implicit design choices have been made in this protocol. For example, it isfeasible
to eliminate the shared-modified state. In fact, the update-protocol used in the DEC Firefly multi-
processor did exactly that. The reasoning was that every time the BusUpd transaction occurs, the
main memory can also update its contents along with the other caches holding that block, and
therefore, a shared-modified state is not needed. The Dragon protocol was instead based on the
assumption that since caches use SRAM and main memory uses DRAM, it is much quicker to
update the caches than main memory, and therefore it is inappropriate to wait for main memory

9/10/97

DRAFT: Parallel Computer Architecture 289

Shared Memory Multiprocessors

Proc. Action StateinP1 StateinP2 Statein P3 BusAction Data Supplied By
1. Plreadsu E -- -- BusRd Memory

2. P3readsu SC -- SC BusRd Memory

3. P3 writesu SC -- SM BusUpd P3

4. Plreadsu SC -- SM null -
5.P2readsu SC SC SM BusRd P3

Figure 5-17 The Dragon update protocol in action for processor transactions shown in Figure 5-3.

The figure shows the state of the relevant memory block at the end of each transaction, the bus transaction generated, if any, and the

entity supplying the data.

5.5

to be updated on all BusUpd transactions. Another subtle choice, for example, relates to the
action taken on cache replacements. When a shared-clean block is replaced, should other caches
be informed of that replacement via a bus-transaction, so that if there is only one remaining cache
with a copy of the memory block then it can change its state to valid-exclusive or modified? The
advantage of doing this would be that the bus transaction upon the replacement may not be in the
critical path of amemory operation, while the later bus transaction it saves might be.

Since all writes appear on the bus in an update protocol, write serialization, write completion
detection, and write atomicity are al quite straightforward with a simple atomic bus, a lot like
they were in the write-through case. However, with both invalidation and update based protocols,
there are many subtle implementation issues and race conditions that we must address, even with
an atomic bus and asingle-level cache. We will discussthese in Chapter 6, aswell as moreredis-
tic scenarios with pipelined buses, multi-level cache hierarchies, and hardware techniques that
can reorder the compl etion of memory operations like write buffers. Nonethel ess, we can quanti-
tatively examine protocol tradeoffs at the state diagram level that we have been considering so
far.

Assessing Protocol Design Tradeoffs

Like any other complex system, the design of a multiprocessor requires many decisions to be
made. Even when a processor has been picked, the designer must decide on the maximum num-
ber of processors to be supported by the system, various parameters of the cache hierarchy (e.g.,
number of levelsin the hierarchy, and for each level the cache size, associativity, block size, and
whether the cache is write-through or writeback), the design of the bus (e.g., width of the data
and address buses, the bus protocol), the design of the memory system (e.g., interleaved memory
banks or not, width of memory banks, size of interna buffers), and the design of the I/O sub-
system. Many of the issues are similar to those in uniprocessors [Smi82], but accentuated. For
example, awrite-through cache standing before the bus may be a poor choice for multiprocessors
because the bus bandwidth is shared by many processors, and memory may need to be inter-
leaved more because it services cache misses from multiple processors. Greater cache associativ-
ity may also be useful in reducing conflict misses that generate bus traffic.

290

DRAFT: Parallel Computer Architecture 9/10/97

Assessing Protocol Design Tradeoffs

A crucia new design issue for a multiprocessor is the cache coherence protocol. This includes
protocol class (invalidation or update), protocol states and actions, and lower-level implementa-
tion tradeoffs that we will examine later. Protocol decisions interact with all the other design
issues. On one hand, the protocol influences the extent to which the latency and bandwidth char-
acteristics of system components are stressed. On the other, the performance characteristics as
well as organization of the memory and communication architecture influence the choice of pro-
tocols. As discussed in Chapter 4, these design decisions need to be evaluated relative to the
behavior of real programs. Such evaluation was very common in the late 1980s, albeit using an
immature set of parallel programs as workloads [ArB86,AgG88,EgK 88,EgK 89a,EgK 89b].

Making design decisions in real systemsis part art and part science. The art is the past experi-
ence, intuition, and aesthetics of the designers, and the science is workload-driven evaluation.
The goals are usually to meet a cost-performance target and to have a balanced system so that no
individual resource is a performance bottleneck yet each resource has only minimal excess
capacity. This section illustrates some key protocol tradeoffs by putting the workload driven eval-
uation methodology from Chapter 4 to action.

The basic strategy is as follows. The workload is executed on a simulator of a multiprocessor
architecture, which has two coupled parts: areference generator and a memory system simulator.
The reference generator simulates the application program’s processes and issues memory refer-
ences to the simulator. The simulator simulates the operation of the caches, bus and state
machines, and returns timing information to the reference generator, which uses this information
to determine from which process to issue the next reference. The reference generator interleaves
references from different processes, preserving timing relationships from the simulator as well as
the synchronization relationshipsin the parallel program. By observing the state transitionsin the
simulator, we can determine the frequency of various events such as cache misses and bus trans-
actions. We can then evaluate the effect of protocol choices in terms of other design parameters
such as latency and bandwidth requirements.

Choosing parameters according to the methodology of Chapter 4, this section first establishes the
basic state transition characteristics generated by the set of applications for the 4-state, Illinois
MESI protocoal. It then illustrates how to use these frequency measurements to obtain a prelimi-
nary quantitative analysis of design tradeoffs raised by the example protocols above, such as the
use of the fourth, exclusive state in the MESI protocol and the use of BusUpgr rather then Bus-
RdX transactions for the S->M transition. It also illustrates more traditional design issues, such
as how the cache block size—the granularity of both coherence and communication—impacts
the latency and bandwidth needs of the applications. To understand this effect, we classify cache
misses into categories such as cold, capacity, and sharing misses, examine the effect of block size
on each, and explain the results in light of application characteristics. Finally, this understanding
of the applicationsis used to illustrate the tradeoffs between invalidation-based and update-based
protocols, again in light of latency and bandwidth implications.

Oneimportant note isthat this analysisis based on the frequency of variousimportant events, not
the absolute times taken or therefore the performance. This approach is common in studies of
cache architecture, because the results transcend particular system implementations and technol -
ogy assumptions. However, it should be viewed as only a preliminary analysis, since many
detailed factors that might affect the performance tradeoffs in real systems are abstracted away.
For example, measuring state transitions provides a means of calculating miss rates and bus traf-
fic, but realistic values for latency, overhead, and occupancy are needed to translate the rates into
the actual bandwidth requirements imposed on the system. And the bandwidth requirements

9/10/97

DRAFT: Parallel Computer Architecture 291

Shared Memory Multiprocessors

551

themselves do not tranglate into performance directly, but only indirectly by increasing the cost
of misses due to contention. To obtain an estimate of bandwidth requirements, we may artificialy
assume that every reference takes a fixed number of cyclesto complete. The difficulty isincorpo-
rating contention, because it depends on the timing parameters used and on the burstiness of the
traffic which is not captured by the frequency measurements.

The simulations used in this section do not model contention, and in fact they do not even pretend
to assume a redlistic cost model. All memory operations are assumed to complete in the same
amount of time (here asingle cycl€) regardless of whether they hit or missin the cache. There are
Three main reasons for this. First, the focus is on understanding inherent protocol behavior and
tradeoffsin terms of event frequencies, not so much on performance. Second, since we are exper-
imenting with different cache block sizes and organizations, we would like the interleaving of
references from application processes on the simulator to be the same regardless of these choices;
i.e. al protocols and block sizes should see the same trace of references. With execution-driven
simulation, thisis only possible if we make the cost of every memory operation the same in the
simulations (e.g., one cycle), whether it hits or misses. Otherwise, if a reference misses with a
small cache block but hits with a larger one (for example) then it will be delayed by different
amounts in the interleaving in the two cases. It would therefore be difficult to determine which
effects are inherently due to the protocol and which are due to the particular parameter values
chosen. The third reason is that realistic simulations that model contention would take alot more
time. The disadvantage of using this simple model is that the timing model may affect some of
the frequencies we observe; however, this effect is small for the applications we study.

Workloads

The illustrative workloads for coherent shared address space architectures include six parallel
applications and computational kernels and one multiprogrammed workload. The parallel pro-
grams run in batch mode with exclusive access to the machine and do not include operating sys-
tem activity, at least in the simulations, while the multiprogrammed workload includes operating
system activity. The number of applications we use is relatively small, but they are primarily for
illustration and we try to choose programs that represent important classes of computation and
have widely varying characteristics.

The parallel applications used here are taken from the SPL ASH2 application suite (see Appendix
A) and were described in previous chapters. Three of them (Ocean, Barnes-Hut, and Raytrace)
were used as case studies for developing parallel programsin Chapters 2 and 3. The frequencies
of basic operations for the applications is given in Table 4-1. We now study them in more detail
to assess design tradeoffs in cache coherency protocols.

Bandwidth requirement under the MESI protocol

Driving the address traces for the workloads depicted in Table 4-1 through a cache simulator
modeling the Illinois MESI protocol generates the state-transition frequencies in Table 5-1. The
data are presented as number of state-transitions of a particular type per 100 references issued by
the processors. Note that in the tables, a new state NP (not-present) is introduced. This addition
helps to clarify transitions where on a cache miss, one block is replaced (creating a transition
fromoneof I, E, S, or M to NP) and a new block is brought in (creating a transition from NP to
oneof I, E, S, or M). For example, we can distinguish between writebacks done due to replace-
ments (M -> NP transitions) and writebacks done because some other processor wrote to a modi-

292

DRAFT: Parallel Computer Architecture 9/10/97

Assessing Protocol Design Tradeoffs

fied block that was cached locally (M -> | transitions). Note that the sum of state transitions can
be greater than 100, even though we are presenting averages per 100 references, because some
references cause multiple state transitions. For example, awrite-miss can cause two-transitionsin
the local processor’s cache (e.g., S-> NP for the old block, and NP -> M) for the incoming block,
plustransitionsin other processor’s cache invalidating their copies (I/E/SIM ->1).2 This low-level
state-transition frequency data is an extremely useful way to answer many different kinds of
“what-if" questions. As afirst example, we can determine the bandwidth requirement these appli-
cations would place on the memory system.
Table5-1 State transitions per 1000 data memory references issued by the applications. The

data assumes 16 processors, 1 Mbyte 4-way set-associative caches, 64-byte cache blocks, and the
I1linois MESI coherence protocol.

Appln. From/To NP I E S M
NP 0 0 0.0011 0.0362 0.0035
I 0.0201 0 0.0001 0.1856 0.0010
Barnes-Hut E 0.0000 0.0000 0.0153 0.0002 0.0010
S 0.0029 0.2130 0 97.1712 0.1253
M 0.0013 0.0010 0 0.1277 902.782
NP 0 0 0.0000 0.6593 0.0011
I 0.0000 0 0 0.0002 0.0003
LU E 0.0000 0 0.4454 0.0004 0.2164
S 0.0339 0.0001 0 302.702 0.0000
M 0.0001 0.0007 0 0.2164 697.129
NP 0 0 1.2484 0.9565 1.6787
I 0.6362 0 0 1.8676 0.0015
Ocean E 0.2040 0 14.0040 0.0240 0.9955
S 0.4175 2.4994 0 134.716 2.2392
M 2.6259 0.0015 0 2.2996 843.565
NP 0 0 0.0068 0.2581 0.0354
I 0.0262 0 0 0.5766 0.0324
Radiosity E 0 0.0003 0.0241 0.0001 0.0060
S 0.0092 0.7264 0 162.569 0.2768
M 0.0219 0.0305 0 0.3125 839.507
NP 0 0 0.0030 1.3153 5.4051

1. For the Multiprog workload, to speed up the simulations a 32K byte instruction cache is used as afilter,
before passing the instruction references to the 1 Mbyte unified instruction and data cache. The state transi-
tion frequencies for the instruction references are computed based only on those references that missed in
the L1 instruction cache. This filtering does not affect any of the bus-traffic data that we will generate using
these numbers. Also, for Multiprog we present data separately for kernel instructions, kernel data refer-
ences, user instructions, and user data references. A given reference may produce transitions of multiple
types. For example, if a kernel instruction miss causes a modified user-data-block to be written back, then
we will have one transition for kernel instructions from NP -> E/S and another transition for user datarefer-
ence category from M -> NP,

9/10/97

DRAFT: Parallel Computer Architecture 293

Shared Memory Multiprocessors

Example 5-8

Table 5-1 State transitions per 1000 data memory references issued by the applications. The
data assumes 16 processors, 1 Mbyte 4-way set-associative caches, 64-byte cache blocks, and the
Illinois MESI coherence protocol.

Appln. From/To NP I E S M
I 0.0485 0 0 0.4119 1.7050
Radix E 0.0006 0.0008 0.0284 0.0001 0
S 0.0109 0.4156 0 84.6671 0.3051
M 0.0173 4.2886 0 1.4982 906.945
NP 0 0 1.3358 0.15486 0.0026
I 0.0242 0 0.0000 0.3403 0.0000
Raytrace E 0.8663 0 29.0187 0.3639 0.0175
S 1.1181 0.3740 0 310.949 0.2898
M 0.0559 0.0001 0 0.2970 661.011
NP 0 0 0.1675 0.5253 0.1843
Multiprog I 0.2619 0 0.0007 0.0072 0.0013
User E 0.0729 0.0008 11.6629 0.0221 0.0680
Data S 0.3062 0.2787 0 214.6523 0.2570
References M 0.2134 0.1196 0 0.3732 772.7819
NP 0 0 3.2709 15.7722 0
Multiprog I 0 0 0 0 0
User E 1.3029 0 46.7898 1.8961 0
Instruction S 16.9032 0 0 981.2618 0
References M 0 0 0 0 0
NP 0 0 1.0241 1.7209 4.0793
Multiprog I 1.3950 0 0.0079 1.1495 0.1153
Kernel E 0.5511 0.0063 55.7680 0.0999 0.3352
Data S 1.2740 2.0514 0 393.5066 1.7800
References M 3.1827 0.3551 0 2.0732 542.4318
NP 0 0 2.1799 26.5124 0
Multiprog I 0 0 0 0 0
Kernel E 0.8829 0 5.2156 1.2223 0
Instruction S 24.6963 0 0 10752158 | O
References M 0 0 0 0 0

Suppose that the integer-intensive applications run at 200 MIPS per processor, and
the floating-point intensive applications at 200 MFLOPS per processor. Assuming
that cache block transfers move 64 bytes on the data lines and that each bus

294

DRAFT: Parallel Computer Architecture

9/10/97

Assessing Protocol Design Tradeoffs

Answer

transaction involves six bytes of command and address on the address lines, what is
the traffic generated per processor?

The first step is to calculate the amount of traffic per instruction. We determine
what bus-action needs to be taken for each of the possible state-transitions and how
much traffic is associated with each transaction. For example, aM --> NP transition
indicates that due to a miss a cache block needsto be written back. Similarly, an S -
> M transition indicates that an upgrade request must be issued on the bus. The bus
actions corresponding to al possible transitions are shown in Table5-2. All
transactions generate six bytes of address traffic and 64 bytes of address traffic,
except BusUpgr, which only generates address traffic.

Table 5-2 Bus actions corresponding to state transitionsin I1linois MESI protocol.

From/To NP | E S M
NP -- -- BusRd BusRd BusRdX
| -- -- BusRd BusRd BusRdX

E - - - - -
S -- -- not poss. -- BusUpgr

M BuswB BuswB not poss. BuswB --

At this point in the analysis the cache parameters and cache protocol are pinned
down (they are implicit in the state-transition data since they were provided to the
simulator in order to generate the data.) and the bus design parameters are pinned
down as well. We can now compute the traffic generated by the processors. Using
Table 5-2 we can convert the transitions per 1000 memory references in Table 5-1
to bus transactions per 1000 memory references, and convert this to address and
data traffic by multiplying by the traffic per transaction. Using the frequency of
memory accesses in Table4-1 we convert this to traffic per instruction, or per
MFLOPS. Finally, multiplying by the assuming processing rate, we get the address
and data bandwidth requirement for each application. The result of this calculation
is shown by left-most bar in Figure 5-18.

The calculation in the example above gives the average bandwidth requirement under the
assumption that the bus bandwidth is enough to allow the processors to execute at full rate. In
practice. This calculation provides a useful basis for sizing the system. For example, on a
machine such as the SGI Challenge with 1.2 GB/s of data bandwidth, the bus provides sufficient
bandwidth to support 16 processors on the applications other than Radix. A typical rule of thumb
isto leave 50% “head room” to alow for burstiness of data transfers. If the Ocean and Multiprog
workloads were excluded, the bus could support up to 32 processors. If the bandwidth is not suf-
ficient to support the application, the application will slow down due to memory waits. Thus, we
would expect the speedup curve for Radix to flatten out quite quickly as the number of processors
grows. In general a multiprocessor is used for avariety of workloads, many with low per-proces-
sor bandwidth requirements, so the designer will choose to support configurations of a size that
would overcommit the bus on the most demanding applications.

9/10/97

DRAFT: Parallel Computer Architecture 295

Shared Memory Multiprocessors

552

Example 5-9

Answer

Example 5-10

Answer

Impact of Protocol Optimizations

Given this base design point, we can evaluate protocol tradeoffs under common machine param-
eter assumptions.

We have described two invalidation protocols in this chapter -- the basic 3-state
invalidation protocol and the Illinois MESI protocol. The key difference between
them is the existence of the valid-exclusive state in the latter. How much bandwidth
savings does the E state buy us?

The main advantage of the E state is that when going from E->M, no traffic need be
generated. In this case, in the 3-state protocol we will have to generate a BusUpgr
transaction to acquire exclusive ownership for that memory block. To compute
bandwidth savings, all we have to do is put a BusUpgr for the E->M transition in
Table 5-2, and then recompute the traffic as before. The middle bar in Figure 5-18
shows the resulting bandwidth requirements.

The example above illustrates how anecdotal rationale for a more complex design may not stand
up to quantitative analysis. We see that, somewhat contrary to expectations, the E state offers
negligible savings. This is true even for the Multiprog workload, which consists primarily of
sequential jobs. The primary reason for this negligible gain is that the fraction of E->M transi-
tionsis quite small. In addition, the BusUpgr transaction that would have been needed for the S-
>M transition takes only 6 bytes of address traffic and no data traffic.

Recall that for the 3-state protocol, for a write that finds the memory block in
shared state in the cache we issue a BusUpgr request on the bus, rather than a
BusRdX. This saves bandwidth, as no data need be transferred for a BusUpgr, but it
does complicate the implementation, since local copy of data can be invalidated in
the cache before the upgrade request comes back. The question is how much
bandwidth are we saving for taking on this extra complexity.

To compute the bandwidth for the less complex implementation, all we have to do
is put in BusRdX in the E->M and S->M transitions in Table5-2 and then
recompute the bandwidth numbers. The results for all applications are shown in the
right-most bar in Figure5-18. While for most applications the difference in
bandwidth is small, Ocean and Multiprog kernel-data references show that it can be
as large as 10-20% on demanding applications.

The performance impact of these differences in bandwidth requirement depend on how the bus
transactions are actually implemented. However, this high level analysis indicates to the designer
where more detailed evaluation is required.

Finally, as we had discussed in Chapter 3, given the input data-set sizes we are using for the
above applications, it is important that we run the Ocean, Raytrace, Radix applications for
smaller 64 Kbyte cache sizes. The raw state-transition data for this case are presented in Table 5-
3 below, and the per-processor bandwidth requirements are shown in Figure 5-19. As we can see,

296

DRAFT: Parallel Computer Architecture 9/10/97

Assessing Protocol Design Tradeoffs

Traffic (MB/s)

200

180

160

140

120

100

80

60

40

20

barnes/Ill

barnes/3St

barnes/3St-RdEx

L] cmd
M Bus

|
|
|

lu/ill

lu/3St

lu/3St-RAEX

80

70

60

50

40

Traffic (MBJs)

Appl-Code/l
Appl-Code/3St
Appl-Code/3St-REx

i
i
||

ocean/lll
ocean/3St
ocean/3St-RdEx
radiosity/Ill
radiosity/3St
radiosity/3St-RdEx
radix/Ill

] cmd
I Bus

0S-Data/ll

o]

|

|

|

|

|

|

|

|

|

05-Dat3s: - I |
05-Data35-Rotx - | |

Appl-Data/lll
Appl-Data/3St

Appl-Data/3St-RdEx
0S-Code/ll
0S-Code/3St

0S-Code/3St-RaEx

__________________________Iu
|
|
|

radix/3St

radix/3St-RdEx
raytrace/lll
raytrace/3St
raytrace/3St-RdEx

[Artist: please change

the legend as follows.
“Cmd” should be changed
to “Address Bus’, and “Bus’
should be changed to
“DataBus’]

Figure 5-18 Per processor bandwidth requirements for the various applications assuming 200MIPS/M FL OPS processors.

Thetop bar-chart shows datafor SPLASH-2 a[|)_p
data traffic and address+command bus traffic.
where we use the basic 3-state invalidation

h

e leftmost bar shows traffic for the lllinois ME

rotocol without the E state as described in Section 5

traffic for the 3-state protocol when we use BusRdX instead of BusUpgr for S-> M transitions.

lications and the bottom chart data for the Multiprog workload. The traffic is split into
{ frotocol, the middle bar for the case

1, and the right most bar shows the

9/10/97

DRAFT: Parallel Computer Architecture

297

Shared Memory Multiprocessors

553

Table 5-3 State transitions per 1000 memory references issued by the applications. The data
assumes 16 processors, 64 Kbyte 4-way set-associative caches, 64-byte cache blocks, and the
Illinois MESI coherence protocol.

Appln. From/To NP I E S M
NP 0 0 26.2491 2.6030 15.1459
I 1.3305 0 0 0.3012 0.0008

Ocean E 21.1804 0.2976 452.580 0.4489 4.3216
S 2.4632 1.3333 0 113.257 11112
M 19.0240 0.0015 0 1.5543 387.780
NP 0 0 3.5130 0.9580 11.3543
I 1.6323 0 0.0001 0.0584 0.5556

Radix E 3.0299 0.0005 52.4198 0.0041 0.0481
S 1.4251 0.1797 0 56.5313 0.1812
M 8.5830 21011 0 0.7695 875.227
NP 0 0 7.2642 3.9742 0.1305
I 0.0526 0 0.0003 0.2799 0.0000

Raytrace E 6.4119 0 131.944 0.7973 0.0496
S 4.6768 0.3329 0 205.994 0.2835
M 0.1812 0.0001 0 0.2837 660.753

not having one of the critical working setsfit in the processor cache can dramatically increase the
bandwidth required. A 1.2 Gbyte/sec bus can now barely support 4 processors for Ocean and
Radix, and 16 processors for Raytrace.

Tradeoffsin Cache Block Size

The cache organization is a critical performance factor of all modern computers, but it is espe-
cially so in multiprocessors. In the uniprocessor context, cache misses are typically categorized
into the “three-Cs”: compulsory, capacity, and conflict misses [HiS89,PH90]. Many studies have
examined how cache size, associativity, and block size affect each category of miss. Compulsory
misses, or cold misses, occur on the first reference to a memory block by a processor. Capacity
misses occur when all the blocks that are referenced by a processor during the execution of a pro-
gram do not fit in the cache (even with full associativity), so some blocks are replaced and later
accessed again. Conflict or collision misses occur in caches with less than full associativity, when
the collection of blocks referenced by a program that map to a single cache set do not fit in the
set. They are misses that would not have occurred in afully associative cache.

Capacity misses are reduced by enlarging the cache. Conflict misses are reduced by increasing
the associativity or increasing the number of blocks (increasing cache size or reducing block
size). Cold misses can only be reduced by increasing the block size, so that a single cold miss
will bring in more data that may be accessed as well. What makes cache design challenging is
that these factors trade-off against one another. For example, increasing the block size for afixed
cache capacity will reduce the number of blocks, so the reduced cold misses may come at the
cost of increased conflict misses. In addition, variations in cache organization can affect the miss
penalty or the hit time, and therefore cycle time.

298

DRAFT: Parallel Computer Architecture 9/10/97

Assessing Protocol Design Tradeoffs

400
350 [l cmd
M Bus
300
¥ 250
S
~ 200
o
E
© 150
~
~ [Artist: please change
100 the legend as follows.
“Cmd” should be changed
to “Address Bus’, and “Bus’
50 should be changed to
“DataBus’]
0

RdAEXx
radix/Ill
radix/3St
radix/3St-

RdEXx

raytrace/Ill ‘
raytrace/3st [
]

ocean/lll
ocean/3St
raytrace/3St-
RdAEXx

ocean/3St-

Figure 5-19 Per processor bandwidth requirements for the various applications assuming 200MIPS/MFLOPS processors and 64

Kbyte caches.

The traffic is split into data traffic and address+cmd bus traffic. The leftmost bar shows traffic for the Illinois MESI protocol, the mid-
dle bar for the case where we use the basic 3-state invalidation protocol without the E state as described in Section 5.4.1, and the right
most bar shows the traffic for the 3-state protocol when we use BusRdX instead of BusUpgr for S-> M transitions.

Cache-coherent multiprocessors introduce a fourth category of misses: coherence misses. These
occur when blocks of data are shared among multiple caches, and are of two types: true sharing
and false sharing. True sharing occurs when a data word produced by one processor is used by
another. False sharing occurs when independent data words for different processors happen to be
placed in the same block. The cache block size is the granularity (or unit) of fetching data from
the main memory, and it istypically also used as the granularity of coherence. That is, on awrite
by a processor, the whole cache block is invalidated in other processors' caches. A true sharing
miss occurs when one processor writes some words in a cache block, invalidating that block in
another processor’s cache, and then the second processor reads one of the modified words. It is
called a“true” sharing miss because the miss truly communicates newly defined data val ues that
are used by the second processor; such misses are “essential” to the correctness of the program in
an invalidation-based coherence protocol, regardless of interactions with the machine organiza-
tion. On the other hand, when one processor writes some words in a cache block and then another
processor reads (or writes) different words in the same cache block, the invalidation of the block
and subsequent cache miss occurs as well, even though no useful values are being communicated
between the processors. These misses are thus called false-sharing misses [DSR+93]. As cache
block size is increased, the probability of distinct variables being accessed by different proces-
sors but residing on the same cache block increases. Technology pushes in the direction of large
cache block sizes (e.g., DRAM organization and access modes, and the need to obtain high-band-

9/10/97

DRAFT: Parallel Computer Architecture 299

Shared Memory Multiprocessors

Example 5-11

width data transfers by amortizing overhead), so it is important to understand the potential
impact of false sharing misses and how they may be avoided.

True-sharing misses are inherent to a given parallel decomposition and assignment; like cold
misses, the only way to decrease them is by increasing the block size and increasing spatial local-
ity of communicated data. False sharing misses, on the other hand, are an example of the artifac-
tual communication discussed in Chapter 3, since they are caused by interactions with the
architecture. In contrast to true sharing and cold misses, fal se sharing misses can be decreased by
reducing the cache block size, as well as by a host of other optimizations in software (orchestra-
tion) and hardware. Thus, thereis afundamental tension in determining the best cache block size,
which can only be resolved by evaluating the options against real programs.

A Classification of Cache Misses

The flowchart in Figure 5-20 gives a detailed algorithm for classification of misses.! Understand-
ing the details is not very important for now—it is enough for the rest of the chapter to under-
stand the definitions above—but it adds insight and is a useful exercise. In the algorithm, we
define the lifetime of a block as the time interval during which the block remains valid in the
cache, that is, from the occurrence of the miss until its invalidation, replacement, or until the end
of simulation. Observe that we cannot classify a cache miss when it occurs, but only when the
fetched memory block is replaced or invalidated in the cache, because we need to know if during
the block’s lifetime the processor used any words that were written since the last true-sharing or
essential miss. Let us consider the smple cases first. Cases 1 and 2 are straightforward cold
misses occurring on previously unwritten blocks. Cases 7 and 8 reflect false and true sharing on a
block that was previoudly invalidated in the cache, but not discarded. The type of sharing is deter-
mined by whether the word(s) modified since the invalidation are actually used. Case 11 is a
straightforward capacity (or conflict) miss, since the block was previously replaced from the
cache and the words in the block have not been accessed since last modified. All of the other
cases refer to misses that occur due to a combination of factors. For example, cases 4 and 5 are
cold misses because this processor has never accessed the block before, however, some other pro-
cessor has written the block, so there is also sharing (false or true, depending on which words are
accessed). Similarly, we can have sharing (false or true) on blocks that were previously discarded
due to capacity. Solving only one of the problems may not necessarily eliminate such misses.
Thus, for example, if a miss occurs due to both false-sharing and capacity problems, then elimi-
nating the false-sharing problem by reducing block size will likely not eliminate that miss. On
the other hand, sharing misses are in some sense more fundamental than capacity misses, since
they will remain there even if the size of cache isincreased to infinity.

To illustrate the definitions that we have just given, Table 5-4 below shows how to
classify references issued by three processors P1, P2, and P3. For this example, we

1. Inthis classification we do not distinguish conflict from capacity misses, since they both are a
result of the available resources becoming full and the difference between them (set versus entire
cache) does not shed additional light on multiprocessor issues.

300

DRAFT: Parallel Computer Architecture 9/10/97

Assessing Protocol Design Tradeoffs

assume that each processor’s cache consists of a single 4-word cache block. We
also assume that the caches are dl initially empty.

Table 5-4 Classifying missesin an example reference stream from 3 processors. If
multiple references are listed in the same row, we assume that P1 issues before P2 and P2
issues before P3. The notation Id/st wi refers to load/store of word i. The notation Pi.j
points to the memory reference issued by processor i at row j.

Seq. P1 P2 P3 Miss Classification
1 1dwo Idw2 iF;i/;ndP?,miss; but we will classify later on replace/
2 stw2 | P1.1: pure-cold miss; P3.2: upgrade
3 Idwl P2 misses, but we will classify later on replacef/inval
4 Idw2 | Idw7 | P2 hits;, P3 misses; P3.1: cold miss
5 Id w5 P1 misses
6 Id wé P2 misses; P2.3: cold-true-sharing miss (w2 accessed)
7 st wb P1.5: cold miss; p2.7: upgrade; P3.4: pure-cold miss
8 Idw5 P1 misses
9 Id wé Idw2 | P1 hits; P3 misses
10 ldw2 ldwl P1, P2 miss; P1.8: pure-true-share miss; P2.6: cold miss
11 st wb P1 misses; P1.10: pure-true-sharing miss
12 stw2 | P2.10: capacity miss; P3.11: upgrade
13 Idw7 | P3 misses; P3.9: capacity miss
14 Idw2 | P3 misses; P3.13: inval-cap-false-sharing miss
15 Id w0 P1 misses; P1.11: capacity miss

Impact of Block Size on Miss Rate

Applying the classification algorithm of Figure 5-20 to simulated runs of a workload we can
determine how frequently the various kinds of misses occur in programs and how the frequencies
change with variations in cache organization, such as block size. Figure 5-21 shows the decom-
position of the misses for the example applications running on 16 processors, 1 Mbyte 4-way set
associative caches, as the cache block size is varied from 8 bytes to 256 bytes. The bars show the
four basic types of misses, cold misses (cases 1 and 2), capacity misses (case 11), true-sharing
misses, (cases 4, 6, 8, 10, 12), and false-sharing misses (cases 3, 5, 7, and 9). In addition, the fig-
ure shows the frequency of upgrades, which are writes that find the block in the cache but in
shared state. They are different than the other types of misses in that the cache aready has the
valid data so al that needs to be acquired is exclusive ownership, and they are are not included in
the classification scheme of Figure 5-20. However, they are still usually considered to be misses
since they generate traffic on the interconnect and can stall the processor.

While the table only shows data for the default data-sets, in practice it is very important to exam-
ine the results as input data-set size and number of processors are scaled, before drawing conclu-
sions about the false-sharing or spatial locality of an application. The impact of such scaling is
elaborated briefly in the discussion below.

9/10/97

DRAFT: Parallel Computer Architecture 301

c0€

Gored

0ss900.d WoJ)

SSlie a0l

Boreo oiseq Inojauy L

1 85Me0aq)

US anJl/es) UoITep | eAu I-wno-Aligeded
‘8IS, i

g 0} UBlLIM 8] UBy)

'ssiw Bu e

Jossaooud A
‘P|09 B SISSILL 3YILI O 310!

‘

2IN19911Y2Jy J1oindwo) [gjeted 14vyd

duwexs 104 'ssiw ay) Joj sasned ajdnjnw 3q Aew aloy

9|

55900.d A M0eq Pesl aq uay) pue

10Sso!

Aew xoolqe
Aue N ‘sassiw Bulreys-ssfe) pue ‘Bulieys-ani) ‘Ajioeded

1 1511490

16/0T/6

do

e 11 bupew *

psJe|
PaX ILU

Miss Classification
Note: By “maodified word(s) accessed during lifetime”, we
‘ mean access to word(s) within the cache block that have
been modified since the last “essential” miss to this block by
this processor, where essential misses correspond to
categories 4, 6, 8, 10, and 12.

first reference to
memory block by PE

reason
for miss

reason for replacement

1. cold elimination of
last copy
invalidation
2. cold
old copy
with state=invalid

till there?

during lifetime

3. false-sharing-
cold

4. true-sharing-

cold during lifetime

word(s) access

during lifetime

5.false-sharing-

inval-cap 6. true-sharing-
inval-cap

7. pure-
false-sharing 8. pure-
true-sharing

'$10s5300.4d 1 NW AloWBWI-PaeS 10} SISSILU 8YJe0 JO UoIeolssep vV 0Z-G aInbi-

no

during lifetime

word(s) accessed
during lifetime,
9. false-sharing-10. true-sharing-
cap-inval cap-inval
11. pure- 12. true-sharing-
capacity capacity

sJossadsoidnny Alows pareys

Assessing Protocol Design Tradeoffs

0.6%
0 UPGMR
[Artist: please change 0.5% FSMR
the legend text as follows:
UPGMR --> Upgrade B TSMR
FSMR--> False Sharing
TSMR --> True Sharing 0.4% [J CAPMR
CAPMR --> Capacity
COLDMR --> Cold] 2 W COLDMR
X 0.3%
[%)]
2
=
0.2%
0.1% Himin
e
-r
0.0% ff% !! & 5 =
N O N X 0 © NV O N X 0 © W O N X 0 ©
T OO O N, S o0 ©NW XM O N W
vy TF5333Y =£333g9
S0 0L HH 33 8T T G 2>
S S S Lo . n u Y
S§ &8s ¢S €S S99 3G g
35 S TTT LS
Q Q9 Q® G S S8 ST T
Q Q S S S g ®
R
12.0%
[UPGMR
10.0% ¥ FSMR
H TSMR
8.0% O CAPMR
% B COLDMR
X 6.0%
)]
2
=
4.0%
2.0% i
0.0% EEEEE !55555
N O N X 0 © N O N X 0 © NV O N T X0 ©
s30LQNEL XJLLIYY sIFILeqWL
T S S S I XN T XX XS X QU T U T N
O ® ©® S S ST T T XX 8O Q QT B
S888FE “~csegeFy SEEEsR
SERSIRS IR R (Y TS S s &
©©° ggg §§

Figure 5-21 Breakdown of application miss rates as a function of cache block size for IMB per-processor caches.

Conflict misses are included in capacity misses. The breakdown and behavior of misses varies greatly across applications, but there are
some sommon trends. Cold misses and capacity misses tend to decrease quite quickly with block size due to spatial locality. True shar-
ing misses. True sharing misses also tend to decrease, while fal se sharing misses increase, While the fal se sharing component is usually
small for small block sizes, it sometimes remains small and sometimes Increases very quickly.

9/10/97 DRAFT: Parallel Computer Architecture 303

Shared Memory Multiprocessors

For each individual application the miss characteristics change with block size much as we would
expect, however, the overall characteristics differ widely across the sample programs. Cold,
capacity and true sharing misses decrease with block size because the additional data brought in
with each miss is accessed before the block is replaced, due to spatia locality. However, false
sharing misses tend to increase with block size. In al cases, true sharing is a significant fraction
of the misses, so even with ideal, infinite caches the miss rate and bus bandwidth will not go to
zero. However, the size of the true sharing component varies significantly. Furthermore, some
applications show substantial increase in false sharing with block size, while others show almost
none. Below we investigate the properties of the applications that give rise to these differences
observed at the machine level.

Relation to Application Structure

Multi-word cache blocks exploit spatial locality by prefetching data surrounding the accessed
address. Of course, beyond a point larger cache blocks can hurt performance by: (i) prefetching
unneeded data (ii) causing increased conflict misses, as the number of distinct blocks that can be
stored in a finite-cache decreases with increasing block size; and (iii) causing increased false-
sharing misses. Spatial locality in parallel programs tends to be lower than in sequentia pro-
grams because when a memory block is brought into the cache some of the data therein will
belong to another processor and will not be used by the processor performing the miss. As an
extreme example, some parallel decompositions of scientific programs assign adjacent elements
of an array to be handled by different processors to ensure good load balance, and in the process
substantially decrease the spatial locality of the program.

The data in Figure 5-21 show that LU and Ocean have both good spatial locality and little false
sharing. There is good spatial locality because the miss-rates drop proportionately to increasesin
cache block size and there are essentially no false sharing misses. Thisis in large part because
these matrix codes use architecturally-aware data-structures. For example, agrid in Ocean is not
represented as a single 2-D array (which can introduce substantial false-sharing), but as a 2-D
array of blocks each of which isitself a2-D array. Such structuring, by programmers or compil-
ers, ensures that most accesses are unit-stride and over small blocks of data, and thus the nice
behavior. Asfor scaling, the spatial locality for these applicationsis expected to remain good and
false-sharing non-existent both as the problem size is increased and as the number of processors
isincreased. This should be true even for cache blocks larger than 256 bytes.

The graphics application Raytrace also shows negligible fal se sharing and somewhat poor spatial
locality. The false sharing is small because the main data structure (collection of polygons consti-
tuting the scene) is read-only. The only read-write sharing happens on the image-plane data struc-
ture, but that is well controlled and thus only a small factor. This true-sharing miss rate reduces
well with increasing cache block size. The reason for the poor spatial locality of capacity misses
(although the overall magnitude is small) isthat the access pattern to the collection of polygonsis
quite arbitrary, since the set of objects that a ray will bounce off is unpredictable. As for scaling,
as problem size is increased (most likely in the form of more polygons) the primary effect is
likely to be larger capacity miss rates; the spatial locality and false-sharing should not change. A
larger number of processorsisin most ways similar to having a smaller problem size, except that
we may see dightly more false sharing in the image-plane data structure.

The Barnes-Hut and Radiosity applications show moderate spatial locality and false sharing.
These applications employ complex data structures, including trees encoding spatial information

304

DRAFT: Parallel Computer Architecture 9/10/97

Assessing Protocol Design Tradeoffs

and arrays where records assigned to each processor are not contiguous in memory. For example,
Barnes-Hut operates on particle records stored in an array. As the application proceeds and parti-
cles move in physical space, particle records get reassigned to different processors, with the
result that after some time adjacent particles most likely belong to different processors. True
sharing misses then seldom see good spatia locality because adjacent records within a cache
block are often not touched. For the same reason, false sharing becomes a problem at large block
sizes, as different processors write to records that are adjacent within a cache block. Another rea
son for the fal se-sharing missesis that the particle data structure (record) brings together (i) fields
that are being modified by the owner of that particle (e.g., the current force on this particle), and
(ii) fields that are read-only by other processors and that are not being modified in this phase
(e.g., the current position of the particle). Since these two fields may fall in the same cache block
for large block sizes, false-sharing results. It is possible to eliminate such false-sharing by split-
ting the particle data structure but that is not currently done, as the absolute magnitude of the
miss-rateis small. As problem size is scaled and number of processorsis scaled, the behavior of
Barnes-Hut is not expected to change much. This is because the working set size changes very
slowly (aslog of number of particles), spatial locality is determined by the record size of one par-
ticle and thus remains the same, and finally because the sources of false sharing are not sensitive
to number of processors. Radiosity is, unfortunately, a much more complex application whose
behavior is difficult to reason about with larger data sets or more processors; the only option isto
gather empirical data showing the growth trends.

The poorest sharing behavior is exhibited by Radix, which not only has avery high missrate (due
to cold and true sharing misses), but which gets significantly worse due to false sharing misses
for block sizes of 128 bytes or more. The false-sharing in Radix arises as follows. Consider sort-
ing 256K keys, using aradix of 1024, and 16 processors. On average, this resultsin 16 keys per
radix per processor (64 bytes of data), which are then written to a contiguous portion of a global
array at arandom (for our purposes) starting point. Since 64 bytes is smaller than the 128 byte
cache blocks, the high potential for false-sharing is clear. As the problem size isincreased (e.g.,
to 4 million keys above), it is clear that we will see much less false sharing. The effect of increas-
ing number of processors is exactly the opposite. Radix illustrates clearly that it is not sufficient
to look at a given problem size, a given number of processors, and based on that draw conclu-
sions of whether false-sharing or spatial locality are or are not a problem. It is very important to
understand how the results are dependent on the particular parameters chosen in the experiment
and how these parameters may vary in redlity.

Data for the Multiprog workload for 1 Mbyte caches are shown in Figure 5-22. The data are
shown separately for user-code, user-data, kernel-code, and kernel data. As one would expect, for
code, there are only cold and capacity misses. Furthermore, we see that the spatial locality is
quite low. Similarly, we see that the spatial locality in datareferencesis quite low. Thisistrue for
the application data misses, because gcc (the main application causing misses in Multiprog)
uses a large number of linked lists, which obviously do not offer good spatia locality. It is aso
somewhat interesting that we have an observabl e fraction of true-sharing misses, although we are
running only sequential applications. They arise due to process migration; when a sequential pro-
cess migrates from one processor to another and then references memory blocks that it had writ-
ten while it was executing on the other processor, they appear as true sharing misses. We see that
the kernel data misses, far outnumber the user data misses and have just as poor spatial locality.
While the spatial locality in cold and capacity missesis quite reasonable, the true-sharing misses
do not decrease at al for kernel data.

9/10/97

DRAFT: Parallel Computer Architecture 305

Shared Memory Multiprocessors

[Artist: same change to
legend asin previous

figure]

1.2%

1.0% [UPGMR
FSMR
0.8% B TSMR
% [J CAPMR
T o6% M COLDMR
g Z
=
0.4% ﬁ
0.2% .J
C J'
o - i
0.0% _ = = !!ﬁ /= =
Xt © © Xt 0 © Xt O © T 0 ©
8§ 8% I8y 8¢
I 3 3 % 8 8 T 3 9 T 8 8
S 3 T T = S T T % &
Q 8 § 2484 O 8 § 238 4
3909 s I I 6 99 2 h B
3 B 9 S S 8]
£88 <88 ©°83 SIS
< <

Figure 5-22 Breakdown of miss rates for Multiprog as a function of cache block size.

Theresults are for IMB caches. Spatia locality for true sharing misses is much better for the applications than for the OS.

It is aso interesting to look at the behavior of Ocean, Radix, and Raytrace for smaller 64 Kbyte
caches. The miss-rate results are shown in Figure 5-23. As expected, the overall miss rates are
higher and capacity misses have increased substantially. However, the spatial locality and false-
sharing trends are not changed significantly as compared to the results for 1 Mbyte caches,
mostly because these properties are fairly fundamental to data structure and algorithms used by a
program and are not too sensitive to cache size. The key new interaction is for the Ocean applica-
tion, where the capacity misses indicate somewhat poor spatial locality. The reason is that
because of the small cache size data blocks are being thrown out of the cache due to interference
before the processor has had a chance to reference al of the words in a cache block. Results for

false sharing and spatial locality for other applications can be found in the literature
[TLH94,JeE91].

Impact of Block Size on BusTraffic

Let us briefly examine impact of cache-block size on bus traffic rather than miss rate. Note that
while the number of misses and total traffic generated are clearly related, their impact on
observed performance can be quite different. Misses have a cost that may contribute directly to
performance, even though modern microprocessors try hard to hide the latency of misses by
overlapping it with other activities. Traffic, on the other hand, affects performance only indirectly
by causing contention and hence increasing the cost of other misses. For example, if an applica
tion program’s misses are halved by increasing the cache block size but the bus traffic is doubled,
this might be a reasonable trade-off if the application was originally using only 10% of the avail-
able bus and memory bandwidth. Increasing the bus/memory utilization to 20% is unlikely to

306

DRAFT: Parallel Computer Architecture 9/10/97

Assessing Protocol Design Tradeoffs

[Artist: same change
tolegend asin
previous figure.]

30.0%
=
[UPGMR
25.0%
4 FSMR
B TSMR
20.0%
(] CAPMR
0
—
T M COLDMR
X 150% | |F
n
2
S
10.0%
e
5.0% e 22
- - ?fﬁ
0.0% LJLJ i !.. iﬁiﬁﬁ
TLNTRE SSUTFY $9VTES
T S S S I N T XXX Q0 ¢ T I
$3§555 STTESS fgzgggd
SO 00OV O ST ETTT SS588¢8
T ®©
ISER IR IR IR+ [g&&&it
S S TEEZ
L
Figure 5-23 Breakdown of application miss-rates as a function of cache block size for 64 Kbyte caches.

apacity misses are now amuch larger fraction of the overall miss rate. Capacity miss rate decreases differently with
block size for different applications.

increase the miss latencies significantly. However, if the application was originally using 75% of
the bus/memory bandwidth, then increasing the block size is probably a bad idea under these cir-
cumstances

Figure 5-24 shows the total bus traffic in bytes/instruction or bytes/FL OP as block sizeis varied.
There are three points to observe from this graph. Firstly, although overall miss rate decreases for
most of the applications for the block sizes presented, traffic behaves quite differently. Only LU
shows monotonically decreasing traffic for these block sizes. Most other applications see a dou-
bling or tripling of traffic as block size becomes large. Secondly, given the above, the overall traf-
fic requirements for the applications are till small for very large block sizes, with the exception
of Radix. Radix’s large bandwidth requirements (~650 Mbytes/sec per-processor for 128-byte
cache blocks, assuming 200 MIPS processor) reflect its false sharing problems at large block
sizes. Finally, the constant overhead for each bus transaction comprises a significant fraction of
total traffic for small block sizes. Hence, athough actual data traffic increases as we increase the
block size, due to poor spatial locality, the total traffic is often minimized at 16-32 bytes.
Figure 5-25 shows the data for Multiprog. While the bandwidth increase from 64 byte cache
blocks to 128 byte blocks is small, the bandwidth requirements jump substantially at 256 byte
cache blocks (primarily due to kernel data references). Finaly, in Figure 5-26 we show traffic
results for 64 Kbyte caches. Notice that for Ocean, even 64 and 128 byte cache blocks do not
look so bad.

9/10/97

DRAFT: Parallel Computer Architecture 307

Shared Memory Multiprocessors

0.18

10
0.16 9
0.14 8
~ 0.
S [l cmd 1 cmd
< ?
g 01 M Bus S ¢ | MBus
>)
{2 0.08 3 5
S 3
£ 0.06 ~
& g 4
= 0.04 S
= 3
0.02
| BT 2
0 Eﬁii
1
WONTNO 0OONT®OO ©ONT DO
99388 SJQTTE FTIQSRY =M1 |
ATy £333FY oIy 0
c8883y gg85o2 fEEfus
S555E5S8 s8883838 ssES¢gs S32¢38
299 Q&S Y == & NN F X X X IV
Q9 IR CIR SIS 55@?? EE‘EE\S%%
=~ s T © ®
kkkmm
L
1.8
1.6
[Artist: please change the 1.4

legend asfollowsin all graphs here. L] cmd
“Cmd” should be changed
to “Address Bus’, and “Bus’
should be changed to

“DataBus’]

M Bus

/32 M

u/8
lu/16 WM
lu/64

lu/128 W
u/256 M

Traffic (bytes/FLOP)
o o o o P
o N SN (o)) o] P N
| W
[|
ocean/s NN |
ocean/lc NN |
ocean/32 I |
ocean/64 TN |
ocean/128 I |
ocean/256 I |

Figure 5-24 Traffic (in bytes/instr or bytes/flop) as a function of cache block size with 1 Mbyte per-processor caches.

Data traffic increases quite quickly with block size when communication misses dominate, except for applications like LU that have

excellent spatial locality on all types of misses. Address and command bus traffic tends to decrease witr?%Pock size since the miss rate
and hence number of blocks transferred decreases.

308 DRAFT: Parallel Computer Architecture 9/10/97

Assessing Protocol Design Tradeoffs

o
o

.] cmd
M Bus

Traffic (bytes/instr)
o o o o o
= N w ES (62}
OS-Data/64 I |
0S-Data/128 N
OS-Data/256 I

ILE TIE IS
3 I E%‘% RSN
888 "E£E& 833
SEESINS) QT SIESINS]
288 289 468
s [SHSEY » v
SSTSY g O

TEE T U0

Figure 5-25 Traffic in bytes/instruction as a function of cache block size for Multiprog with 1Mbyte caches.

Traffic increasese quickly with block size for data references from the OS kernel.

Alleviating the Drawbacks of L arge Cache Blocks

Thetrend towards larger cache block sizesis driven by the increasing gap between processor per-
formance and memory accesstime. The larger block size amortizes the cost of the bus transaction
and memory access time across a greater amount of data. Theincreasing density of processor and
memory chips makes it possible to employ large first level and second level caches, so the
prefetching obtained through a larger block size dominates the small increase in conflict misses.
However, this trend potentially bodes poorly for multiprocessor designs, because false sharing
becomes a larger problem. Fortunately there are hardware and software mechanisms that can be
employed to counter the effects of large block size.

The software techniques to reduce false sharing are discussed later in the chapter. These essen-
tially involve organizing data structures or work assignment so that data accessed by different
processes is hot at hearby addresses. One prime example is the use of higher dimensional arrays
so blocks are contiguous. Some compiler techniques have also been devel oped to automate some
of these techniques of laying out datato reduce false sharing [JeE91].

A natural hardware mechanism is the use of sub-blocks. Each cache block has a single address
tag but distinct state bits for each of several sub-blocks. One subblock may be valid while others
areinvalid (or dirty). Thistechnique is used in many machines to reduce the memory access time
on aread miss, by resuming the processor when the accessed sub-block is present, or to reduce
the amount of datathat is copied back to memory on areplacement. Under false sharing, awrite
by one processor may invalidate the sub-block in another processors cache while leaving the
other sub-blocks valid. Alternatively, small cache blocks can be used, but on a miss prefetch

9/10/97 DRAFT: Parallel Computer Architecture 309

Shared Memory Multiprocessors

Traffic (bytes/instr)

radix/8]

BMBus [Jcmd
6
"] cmd
5
M Bus T
Q4
€
()]
Q
T 3
N
)
&)
L2
i g
ii =_—--. 1
© N Yt © © ® O N T X O
J2eNE ISR 0
XX XJIY S d o oS Y X O N T DO
ST T XX TS S8 88 s T 2Ly
8 8 8 T T 8 5 85 5 & ® g & ¢ ¢ gy
8 g T £ 5 S &8 8 O 8 § § & &
== N NGRS Q © © © ® ©
R L S O 8 S © ©
o O Q0088

Figure 5-26 Traffic (bytes/instr or bytes/flop) as a function of cache block size with 64 Kbyte per-processor

caches.

Traffic increases more slowly now for Ocean than with 1IMB caches, since the capacity misses that now dominate
exhibit excellent spatial locality (traversal of a process's assigned subgrid). However, traffic in Radix increases
quickly once the threshold block size that causes false sharing is exceeded.

554

blocks beyond the accessed block. Proposals have also been made for caches with adjustable
block size[DuL92].

A more subtle hardware technique is to delay generating invalidations until multiple writes have
been performed. Delaying invalidations and performing them all at once reduces the occurrence
of intervening read misses to false shared data. However, this sort of technique can change the
memory consistency model in subtle ways, so further discussion is deferred until Chapter 6
where we consider weaker consistency models in the context of large scale machines. The other
hardware technique that is important to consider is the use of update protocols, which push

updates into other cached blocks, rather than invalidating those blocks. This option has been the
subject of considerable study.

Update-based vs. Invalidation-based Protocols

A larger design issue is the question of whether writes should cause cached copies to be updated
or invalidated. This has been the subject of considerable debate and various companies have
taken different stands and, in fact, changed their position from one design to the next. The contro-
versy on this topic arises because the relative performance of machines using an update-based
versus an invalidation-based protocol depends strongly on the sharing patterns exhibited by the
workload that is run and on the assumptions on cost of various underlying operations. Intuitively,

310

DRAFT: Parallel Computer Architecture 9/10/97

Assessing Protocol Design Tradeoffs

Example 5-12

Answer

if the processors that were using the data before it was updated are likely to continue to useiit in
the future, updates should perform better than invalidates. However, if the processor holding the
old datais never going to use it again, the updates are useless and just consume interconnect and
controller resources. Invalidates would clean out the old copies and eliminate the apparent shar-
ing. This latter ‘pack rat’” phenomenon is especially irritating under multiprogrammed use of an
SMP, when sequential processes migrate from processor to processor so the apparent sharing is
simply a shadow of the old process footprint. It is easy to construct cases where either scheme
does substantially better than the other, asillustrated by the following example.

Consider the following two program reference patterns:

Pattern-1: Repeat k times, processor-1 writes new value into variable V and proces-
sors 2 through N read the value of V. This represents a one-producer many-consumer
scenario, that may arise for example when processors are accessing a highly-con-
tended spin-lock.

Pattern-2: Repeat k times, processor-1 writes M-timesto variable V, and then proces-
sor-2 reads the value of V. This represents a sharing pattern that may occur between
pairs of processors, where the first accumulates a value into a variable, and then when
the accumulation is complete it shares the value with the neighboring processor.

What is the relative cost of the two protocols in terms of the number of cache-
misses and the bus traffic that will be generated by each scheme? To make the
calculations concrete, assume that an invalidation/upgrade transaction takes 6 bytes
(5 bytes for address, plus 1 byte command), an update takes 14 bytes (6 bytes for
address and command, and 8 bytes of data), and that a regular cache-miss takes 70
bytes (6 bytes for address and command, plus 64 bytes of data corresponding to
cache block size). Also assume that N=16, M=10, k=10, and that initially all caches
are empty.

With an update scheme, on pattern 1 the first iteration on all N processors will incur
aregular cache miss. In subsequent k-1 iterations, no more misses will occur and
only one update per iteration will be generated. Thus, overall, we will see: misses =
N = 16; traffic = N X RdMiss + (k-1). Update = 16 x 70 + 10 x 14 = 1260 bytes.

With an invalidate scheme, in the first iteration all N processors will incur a regular
cache miss. In subsequent k-1 iterations, processor-1 will generate an upgrade, but
all otherswill experience aread miss. Thus, overall, we will see: misses=N + (k-1)
X (N-1) =16 + 9 x 15 = 151; traffic = misses x RdMiss + (k-1). Upgrade = 151 x 70
+ 9 x 6 =10,624 bytes.

With an update scheme on pattern 2, in the first iteration there will be two regular
cache misses, one for processor-1 and the other for processor-2. In subsequent k-1
iterations, no more misses will be generated, but M updates will be generated each
iteration. Thus, overall, we will see: misses = 2; traffic = 2. RdMiss + M x (k-1).
Update =2 x 70 + 10 x 9 x 14 = 1400 bytes.

With an invalidate scheme, in thefirst iteration there will be two regular cache miss.
In subsequent k-1 iterations, there will be one upgrade plus one regular miss each

9/10/97

DRAFT: Parallel Computer Architecture 311

Shared Memory Multiprocessors

iteration. Thus, overall, we will see: misses=2 + (k-1) = 2 + 9 = 11; traffic = misses
x RdMiss + (k-1) x Upgrade = 11 x 70 + 9 x 6 = 824 bhytes.

The example above shows that for pattern-1 the update schemeis substantially superior, while for
pattern-2 the invalidate scheme is substantially superior. This anecdotal data suggests that it
might be possible design schemes that capture the advantages of both update and invalidate pro-
tocols. The success of such schemes will depend on the sharing patterns for real paralel pro-
grams and workloads. Let us briefly explore the design options and then employ the workload
driven evaluation of Chapter 4.

Combining Update and I nvalidation-based Protocols

One way to take advantage of both update and invalidate protocolsis to support both in hardware
and then to decide dynamically at a page granularity, whether coherence for any given pageisto
be maintained using an update or an invalidate protocol. The decision about choice of protocol to
use can be indicated by making a system call. The main advantage of such schemes is that they
are relatively easy to support; they utilize the