
An introduction to UPPAAL

Jeremy Sproston

sproston@di.unito.it

(lezione tenuta dalla prof.ssa Donatelli

mailto:sproston@di.unito.it

UPPAAL

• Developed by the universities of Uppsala

(Sweden) and Aalborg (Denmark)

– www.uppaal.com

• Used to model check:

– Systems expressed as networks of interacting

timed automata (with discrete variables)

– A restricted class of CTL properties (limited

nesting)

Timed automata

• Recall: timed automata
– Finite state graph equipped with a finite set of variables

called clocks, which increase at the same rate as real-time

– Semantics: timed transition systems

• E.g. of (timed) transition:

(n, x=2.4, y=3.1415) (n, x=3.5, y=4.2415)

• E.g. of (discrete) transition:

(n, x=2.4, y=3.1415) (m, x=0, y=3.1415)

n

x<=5

m

y<=10

x<=5 && y>3

a?

x:=0

Networks of timed automata

• Model complex systems using a set of interacting timed

automata

• Edges of timed automata can be labelled with actions

– Can be used to define synchronization, as in process algebra

– UPPAAL models feature two-way synchronization on

complementary actions

– No action label: internal action

n

x<=5

m

y<=10

x<=5 && y>3

a?

x:=0

Networks of timed automata

n1

x<=5

m1

y<=10

x<=5 && y>3

a?

x:=0

n2

z<4

m2

true

z<4

a!

(n1, n2)

x<=5 &&

z<4

(m1,m2)

y<=10

x<=5 && y>3 && z<4

x:=0

Modelling in UPPAAL

• Other key concepts in the UPPAAL modelling

language:

– Urgency (of locations, and of synchronization channels)

– Committed locations

– Discrete variables (with bounded domains)

– Constants

• There are additional concepts (more recently

introduced)

Modelling in UPPAAL

• System editor (to create and edit system models):

Modelling in UPPAAL

• Declaring clocks:

– Syntax:

clock x1, …, x_n;

– Example: (to declare clocks x and y)

clock x, y;

Modelling in UPPAAL

• Declaring discrete variables:
– Syntax:

int[l,u] p1, …, p_n;

– Example: (to declare two integer variables which takes
values between 0 and 255 inclusive)

int[0,255] p, q;

– Example - “default” domain: (to declare an integer variable
which takes values from the “default” domain [-32768,
32767])

int p;

– Example - initialisation: (to declare an integer variable which
takes values between 1 and 100 inclusive, and which is
initialised to 20)

int[1,100] p=20;

Modelling in UPPAAL

• Declaring channels (i.e. actions):

– Syntax:

chan a1, …, a_n;

– Example: (to declare two channels)

chan a, b;

• Declaring urgent channels: (to be explained later…):

– Syntax:

urgent chan a1, …, a_n;

Modelling in UPPAAL

• Declaring boolean variables:
– Syntax:

bool b1, …, bn;

– Example:

bool switch=false;

• Declaring constants:
– Syntax:

const int c=n;

const bool c=n;

– Example:

const int N=1024;

Modelling in UPPAAL

• Invariant conditions:

– Conjunction of upper bounds on the values of

clocks (the bound can be given by an expression

over integers, including integer variables)

– Example:

• x<40 && y<=time_out*3 (where x, y are clocks, and

time_out is an integer variable or integer constant)

n

x<=5

m

y<=10

x<=5 && y>3

a?

x:=0

Modelling in UPPAAL

• Guards (on edges):

– Clock guards: comparisons of values of clocks with bounds

(bounds can be given as integer expressions)

– Data guards: comparisons of values obtained by resolving

integer expressions

– For example:

• x>backoff && backoff=bc_max (where x is a clock, backoff is an

integer variable, and bc_max is an integer constant)

n

x<=5

m

y<=10

x<=5 && y>3

a?

x:=0

Modelling in UPPAAL

• Updates (to clocks and variables):

– Assignment of a new value to a clock or variable (the new

value may be the result of an integer expression)

– For example:

• x:=0 (where x is a clock)

• x:=backoff*3 (where x is a clock and backoff is an integer

variable)

• backoff:=5 (where backoff is an integer variable)

n

x<=5

m

y<=10

x<=5 && y>3

a?

x:=0

Modelling in UPPAAL

• Actions:

– Can be of the form a!, a?, where a is the name of

a channel

– … or the edge can be unlabelled (corresponding

to choice of the edge unrestricted by other

automata of the system, i.e., internal action)

n

x<=5

m

y<=10

x<=5 && y>3

a?

x:=0

Modelling in UPPAAL

• Timed automata are modelled using templates

– The list of templates are given in the left-hand bar:

Two

templates,

Door and

User

Modelling in UPPAAL

• Template: the structure of a timed automaton

(represented graphically), plus a set of local

declarations

TA structure

Local declaration(s)

Modelling in UPPAAL

• Each template has a name and a set of parameters:

• Each template can be instantiated a number of times

to obtain a number of timed automata sub-

components:

Modelling in UPPAAL

• System: corresponds to a series of instantiated templates (plus

global clocks, channels, data variables, constants, which may

be used in the instantiated templates)

Modelling in UPPAAL

• Urgent channels

– Suppose that in the two timed automata, the edges from n1

to m1, and n2 to m2, should be taken as soon as possible

• That is, when both timed automata are able to synchronise on

channel a

– Solution: declare a as an urgent channel

n1 m1
a?

n2 m2
a!

Modelling in UPPAAL

• Urgent channels
– Recall syntax:

urgent chan a1, …, a_n;

– Informal semantics: no time delay is possible
when an urgent action can be taken

– Restrictions: it is not permitted to have clock
guards on transitions with urgent channels
(however, invariants and data variable guards are
permitted)

Modelling in UPPAAL

• Urgent locations

– Informal semantics: no time delay is possible

when some timed automaton component of the

system is in an urgent location

– Note that this places no restriction on the

(enabled) discrete transitions that can be taken

when an urgent location is entered

• E.g. TA1 enters an urgent location, then the next

transition of the system can be one of TA2’s enabled

discrete transitions

Modelling in UPPAAL

• Urgent locations

– What is the difference between the following two situations

(from the point of view of the semantics)?

n p
m

Urgent

n p
m

x<=0

x:=0

Modelling in UPPAAL

• Urgent locations

– No difference for the semantics: it’s just that we require the

“extra” clock x to “simulate” urgency of location m

– Having the extra clock is (generally) bad for modelling and

analysis

n p
m

Urgent

n p
m

x<=0

x:=0

Modelling in UPPAAL

• Committed locations

– Informal semantics:

• No time delay is possible when some timed automaton

component of the system is in a committed location

• The next transition must involve a timed automaton in a

committed location

Modelling in UPPAAL

• Committed locations

– Compare the following two situations (start from (n1,n2, …)):

n1 p1
m1

Urgent

n1 p1
m1

Committed

a!

i:=0

b!

a!

i:=0

b!

OR
composed

with

n2

m2

i==0

m2’

b?

TA1

TA1’

TA2

Modelling in UPPAAL

• Committed locations

– Compare the following two situations (start from (n1,n2, …)):

n1 p1
m1

Urgent
a!

i:=0

b!
n2

m2

i==0

m2’

b?

TA1
TA2

TA1 takes the first transition, then

TA2 takes the left-hand transition

to m2 …

Modelling in UPPAAL

• Committed locations

– Compare the following two situations (start from (n1,n2, …)):

n1 p1
m1

Urgent
a!

i:=0

b!
n2

m2

i==0

m2’

b?

TA1
TA2

… or TA1 then takes the transition

to p1 and TA2 synchronises with

this transition

Modelling in UPPAAL

• Committed locations

– Compare the following two situations (start from (n1,n2, …)):

n1 p1
m1

Committed
a!

i:=0

b!

n2

m2

i==0

m2’

b?
TA1’

TA2

In the case the m1 is committed,

TA2 does not have the opportunity

to take the transition to m2: only

TA1’ can take a transition

Modelling in UPPAAL

• Committed locations

– Can aid modelling (e.g. for multi-way synchronization)

– Can reduce the interleaving in state space computation

n1

m1

n2

m2

n1,n2

m1,n2

m1,m2

n1,m2

a! a?

Modelling in UPPAAL

• Committed locations

– Can aid modelling (e.g. for multi-way synchronization)

– Can reduce the interleaving in state space computation

n1

Committed

m1

n2

m2

n1,n2

m1,n2

m1,m2

n1,m2

a! a?

Modelling in UPPAAL

• Extensions to the UPPAAL modelling language:

– Broadcast channels

– Arrays of data variables (which can be referred to in guards

and assignments)

– Arrays of channels, clocks and constants

– Further operators on data variables (e.g. i++)

– Priorities on channels and processes

– C-like functions

– Others …

Verifying in UPPAAL

• Specification language: a subset of CTL

– A[] p (corresponds to AG p)

– A<> p (corresponds to AF p)

– E<> p (corresponds to EF p)

– E[] p (corresponds to EG p)

– p --> q (corresponds to AG(p AF q))

Verifying in UPPAAL

• A[] p, A<> p, E<> p, E[] p, p --> q

p ::= a.l | gd | gc | p and p | p or p | not p | p imply p | (p)

where:

• a is the name of a timed automaton

• l is the name of a location of a

• gd is an expression over data variables

• gc is an expression over clock variables

Verifying in UPPAAL

New queries

can be written

here

Check to

verify a

property,

insert to add a

new property

Results

(property

satisfied – or

not - in the

initial state)

UPPAAL’s simulator

Permits

exploration of

the system

following a

(random or

user-

specified)

behaviour

UPPAAL’s simulator

Random

generates a

random trace

Message

sequence chart

describing the

interaction of

components

List of variables

(including

possible clock

values)

UPPAAL’s simulator

• The simulator can be used to visualise “error traces”

generated by the verifier (choosing an option from

“Diagnostic trace”)

• For example:

– If E<> p is satisfied, UPPAAL can return a trace which leads

from the initial state to a state in which p is true

– Dually, if A[] p is not satisfied, UPPAAL can return a trace

which leads from the initial state to a state in which p is false

– Similar for E[] p and A<> p, except traces containing loops

are returned

