- (a) La formula $\forall x \forall y [R(x,y) \to \exists z (R(x,z) \land R(z,y))]$
 - □ non è un enunciato.
 - \square per essere valutata in una struttura richiede di assegnare un valore alla x.
 - \square è verificata in $\langle \mathbb{N}, < \rangle$.
 - \blacksquare è verificata in $\langle \mathbb{Q}, < \rangle$.
- (b) La funzione $f: \mathbb{Z} \to \mathbb{Q}, n \mapsto -2n^2$
 - □ è iniettiva.
 - □ è suriettiva.
 - \blacksquare ha immagine contenuta in \mathbb{Z} .
 - \blacksquare è tale che f(n) = f(-n) per ogni $n \in \mathbb{N}$.
- (c) La proposizione $(A \vee \neg B) \leftrightarrow (\neg (B \wedge \neg A))$
 - è una tautologia.
 - \square non è soddisfacibile.
 - \blacksquare è conseguenza logica di $A \vee \neg A$.
 - \Box ha come connettivo principale \lor .
- (d) Ricordiamo che Div(k) è l'insieme dei divisori di k e | la relazione di divisibilità.
 - \square Div(20) \subseteq Div(24).
 - $\square \langle \text{Div}(27), | \rangle \text{ NON è un ordine lineare.}$

 - \square Div(24) ha la stessa cardinalità di Div(6) \times Div(6).

- (a) La proposizione $(A \lor \neg A) \to B \grave{e}$
 - □ una tautologia.
 - soddisfacibile, ma non valida.
 - \square una contraddizione.
 - logicamente equivalente a B.
- (b) La funzione $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3 + 5$ è
 - iniettiva.
 - suriettiva.
 - biettiva.
 - $\Box\,$ né iniettiva, né suriettiva.
- (c) Sia φ la formula del prim'ordine $\forall x[(R(x,y) \land \exists y P(y)) \rightarrow \exists z R(f(z),x)]$. Allora
 - \Box le variabili libere di φ sono $y \in z$.
 - \blacksquare y ha sia occorrenze libere che vincolate in φ .
 - \blacksquare tutte le occorrenze di x sono vincolate.
 - \square φ è un enunciato.
- (d) Se $A = \{1, 2, 3\}$ e $B = \{2, 4\}$ allora
 - $\blacksquare A \setminus B = \{1, 3\}.$
 - $\blacksquare \{2,3,4\} \subseteq A \cup B.$
 - $\blacksquare A \cap B \neq \emptyset.$
 - \blacksquare $A \times B$ ha 6 elementi.

- (a) Sia φ la formula $\forall x \exists z \neg R(x, z)$.
 - \Box ϕ NON è un enunciato.
 - $\square \langle \mathbb{N}, \leq \rangle \models \varphi.$
 - $\blacksquare \langle \mathbb{N}, \geq \rangle \models \varphi.$
 - \blacksquare ϕ è soddisfacibile ma non valida.
- (b) La funzione $f: \mathbb{Q} \to \mathbb{Q}, x \mapsto -x + 5$
 - □ non è iniettiva ma è suriettiva.
 - è biettiva.
 - $\Box\,$ è iniettiva ma non suriettiva.
 - \blacksquare è tale che x < y se e solo se f(x) > f(y) per ogni $x, y \in \mathbb{Q}$.
- (c) La proposizione $A \vee (B \wedge \neg A)$
 - è soddisfacibile.
 - \square è logicamente equivalente a A $\vee \neg B$.
 - \blacksquare ha come conseguenza logica $B \lor \neg B$.
 - è conseguenza logica di A.
- (d) Se $A = \{n \in \mathbb{N} \mid n \text{ è un numero pari}\}$ e B = Div(30) è l'insieme dei divisori di 30, allora
 - $\blacksquare A \cap B = \{2, 6, 10, 30\}.$
 - \blacksquare $\{3, 4, 20\} \subseteq A \cup B$.
 - $\Box A \cup B = \mathbb{N}.$
 - \blacksquare $A \times B$ è infinito.

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia $a_n, n \in \mathbb{N}$, la successione definita per ricorsione da

$$a_0 = k$$
$$a_{n+1} = a_n \cdot a_n.$$

- Se k = 0, allora $a_n = 0$ per ogni n.
- Se k = 1, allora $a_n = 1$ per ogni n.
- \blacksquare Se k=2, allora $a_2=16$.
- \square Se k=3, allora $a_2<80$.
- (b) Sia φ la formula $\forall w(w = f(w, z))$.
 - $\blacksquare \langle \mathbb{R}, + \rangle \models \varphi[z/0]$
 - $\blacksquare \langle \mathbb{R}, \cdot \rangle \models \varphi[z/1, w/1]$
 - \Box φ richiede di assegnare un valore a w per essere valutata in una struttura.
 - \blacksquare φ richiede di assegnare un valore a z per essere valutata in una struttura.
- (c) La funzione $f: \mathbb{Z} \to \mathbb{R}, n \mapsto 3^n$
 - è iniettiva.
 - □ è suriettiva.
 - \square è tale che f(x+y) = f(x) + f(y) per ogni $x, y \in \mathbb{Z}$.
 - \blacksquare è tale che $f(x+y) = f(x) \cdot f(y)$ per ogni $x, y \in \mathbb{Z}$.
- (d) Se $A = \{r \in \mathbb{R} \mid r^2 5r + 6 = 0\}$ e B = Div(36) è l'insieme dei divisori di 36, allora
 - $\blacksquare A \cap B = A.$
 - $\Box A \setminus B \neq \emptyset$.
 - $\blacksquare A \cup B \subseteq B$.
 - \square $A \times B$ è infinito.

- (a) La proposizione $(A \rightarrow \neg B) \lor (B \rightarrow \neg A)$
 - \blacksquare è logicamente equivalente ad $\neg(A \land B)$.
 - □ è una tautologia.
 - \blacksquare è conseguenza logica di $\neg(A \lor \neg A)$.
 - \square ha come conseguenza logica $\neg(A \lor \neg A)$.
- (b) La funzione $f: \{0,1\}^{<\mathbb{N}} \to \{0,1\}^{<\mathbb{N}}, \langle s_1,\ldots,s_n \rangle \mapsto \langle 1-s_1,\ldots,1-s_n \rangle$
 - è iniettiva.
 - è suriettiva.
 - \square ha immagine contenuta in $\{0,1\}^n$ per un opportuno $n \in \mathbb{N}$.
 - \blacksquare è tale che $f \circ f$ è la funzione identità, ovvero f(f(s)) = s per ogni $s \in \{0, 1\}^{<\mathbb{N}}$.
- (c) Sia φ la formula $\forall z \forall w [(R(z, w) \land R(w, x)) \rightarrow R(z, x)].$
 - \square φ è un enunciato.
 - $\blacksquare \langle \mathbb{Z}, < \rangle \models \varphi[x/n, w/n, z/n]$ per qualsiasi $n \in \mathbb{Z}$.
 - \Box φ ha almeno una occorrenza libera della variabile w.
 - \square $\mathcal{A} \models \varphi[x/5]$, dove $\mathcal{A} = \langle \mathbb{Z}, R^{\mathcal{A}} \rangle$ e $R^{\mathcal{A}} = \{\langle 0, 1 \rangle, \langle 1, 5 \rangle\}$.
- (d) Sia A un insieme infinito e B un insieme finito.
 - $\Box |A| \leq |B|$.
 - \square Esiste una suriezione $g: B \to A$.
 - $\square B \times A$ è finito se $B \neq \emptyset$.
 - $\square B \times A$ è infinito se $B = \emptyset$.

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia $a_n, n \in \mathbb{N}$, la successione definita per ricorsione da

$$a_0 = 0$$

 $a_{n+1} = a_n + n + 1.$

- $a_2 = 3.$
- $\Box \ a_3 = 5.$
- $\blacksquare \ a_3 = 0 + 1 + 2 + 3.$
- $\blacksquare \ a_n = \sum_{i=0}^n i.$
- (b) La funzione $f: \{0,2,4\}^{<\mathbb{N}} \to \{0,1,2,3\}^{<\mathbb{N}}, \langle s_1,\ldots,s_n \rangle \mapsto \langle \frac{s_1}{2},\ldots,\frac{s_n}{2} \rangle$
 - è iniettiva.
 - □ è suriettiva.
 - \square ha immagine contenuta in $\{0,2\}^{<\mathbb{N}}$.
 - \blacksquare è tale che $(f \circ f)(s) \in \{0,1\}^{<\mathbb{N}}$ per ogni $s \in \{0,4\}^{<\mathbb{N}}$.
- (c) La proposizione $\neg A \rightarrow (A \lor \neg B)$
 - \square è una tautologia.
 - \blacksquare è logicamente equivalente a A $\vee \neg B$.
 - \Box ha come conseguenza logica $\neg B$.
 - è conseguenza logica di ¬B.
- (d) Sia $L = \{f, g, h\}$ con f, g simboli di funzione binari ed h simbolo di funzione unario. Sia t_1 il termine f(x, h(x)) e t_2 il termine g(h(x), h(h(x))).
 - $\square \langle \mathbb{Z}, +, \cdot, \rangle \models \varphi_1[x/1]$, dove φ_1 è la formula $t_1 = t_2$.
 - $\blacksquare \langle \mathbb{Z}, \cdot, +, \rangle \models \varphi_2[x/0], \text{ dove } \varphi_2 \text{ è la formula } t_1 = t_2.$
 - $\blacksquare \langle \mathbb{Z}, +, \cdot, \rangle \models \varphi_3[y/0]$, dove φ_3 è la formula $\forall x(t_1 = y)$.
 - $\blacksquare \langle \mathbb{Z}, +, \cdot, \rangle \models \varphi_4[x/3, y/-9], \text{ dove } \varphi_4 \text{ è la formula } t_2 = y.$

Attenzione! L'interpretazione della funzione h in ciascuna delle strutture precedenti è la funzione **unaria** $-: \mathbb{Z} \to \mathbb{Z}, \ k \mapsto -k$.

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia $a_n, n \in \mathbb{N}$, la successione definita per ricorsione da

$$a_0 = k$$
$$a_{n+1} = a_n + a_n.$$

- Se k = 0 allora $a_n = 0$ per ogni n.
- \square Se k=1 allora $a_3 \neq 8$.
- \square Se k=1 allora $a_n \neq 2^n$ per qualche $n \in \mathbb{N}$.
- Per ogni $k \in \mathbb{N}$ si ha che $a_n = k \cdot 2^n$ per ogni $n \in \mathbb{N}$.
- (b) La funzione $f: \mathbb{R}^2 \to \mathbb{R}, \langle r_0, r_1 \rangle \mapsto r_0 \cdot r_1 + r_0$
 - \square è iniettiva.
 - è suriettiva.
 - \square ha immagine contenuta in \mathbb{Q} .
 - \blacksquare è tale che $f(\langle r, 0 \rangle) = r$ per ogni $r \in \mathbb{R}$.
- (c) La formula $\neg(A \lor B) \leftrightarrow \neg(\neg A \land \neg B)$
 - è una contraddizione.
 - \square è logicamente equivalente a A $\vee \neg B$.
 - \blacksquare ha come conseguenza logica $\neg A$.
 - \square è conseguenza logica di $\neg(A \lor B)$.
- (d) Sia A l'insieme dei numeri razionali positivi e B l'insieme dei numeri interi.
 - $\square |A| > |B|$.
 - $\blacksquare |A \times B| = |A|.$
 - $\blacksquare |A \cap B| = |A|.$
 - \blacksquare $|A^B| = |\mathbb{N}^{\mathbb{N}}|$, dove A^B è l'insieme di tutte le funzioni da B in A.

- (a) Sia φ la formula f(g(x,y),z)=g(f(x,y),z) nel linguaggio $L=\{f,g\}$, dove $f\in g$ sono entrambi simboli di funzione binari.
 - $\square \langle \mathbb{Z}, +, \cdot \rangle \not\models \varphi[x/0, y/1, z/7].$
 - $\blacksquare \langle \mathbb{Z}, +, \cdot \rangle \models \psi[x/2, y/2, z/7], \text{ dove } \psi \text{ è la formula } \exists x \exists y \varphi.$
 - $\blacksquare \exists x \exists y \varphi$ ha come unica variabile libera z.
 - $\square \langle \mathbb{Z}, +, \cdot \rangle \models \varphi[x/2, y/2, z/0].$
- (b) La funzione $f \colon \mathbb{R} \to \mathbb{R}^2, \ r \mapsto \langle r^2, r \rangle$
 - è iniettiva.
 - □ è suriettiva.
 - \blacksquare ha immagine contenuta in $\{a \in \mathbb{R} \mid a \geq 0\} \times \mathbb{R}$.
 - \square è tale che f(r) = f(-r) per ogni $r \in \mathbb{R}$.
- (c) La proposizione $\neg(A \rightarrow B) \lor \neg(A \land \neg B)$
 - è una tautologia.
 - \square è logicamente equivalente a A.
 - \square ha come conseguenza logica $\neg B$.
 - \blacksquare è conseguenza logica di $\neg(A \lor B)$.
- (d) Sia A l'insieme dei numeri razionali maggiori di 0 e | la relazione di divisibilità su A (ossia dati $q, s \in A$, vale la relazione $q \mid s$ se e solo se esiste $r \in A$ tale che $q \cdot r = s$).
 - $\blacksquare q \mid s \text{ per ogni } q, s \in A.$
 - \blacksquare | è una relazione transitiva su A.
 - \square | NON è una relazione simmetrica su A.
 - \blacksquare | è una relazione di equivalenza su A.

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

- (a) Siano dati gli insiemi $A = \{x \in \mathbb{Z} \mid x^2 4 = 0\}$ e $B = \{x \in \mathbb{R} \mid x > 0\}$.
 - $\Box |A \cap B| > 1.$
 - $\Box A \setminus B = \emptyset.$
 - $\blacksquare |B \times A| = |B|.$
 - $\blacksquare \ \mathbb{R} \setminus (B \cup A) = \{ a \in \mathbb{R} \mid a \le 0 \text{ e } a \ne -2 \}.$
- (b) La funzione $f: \mathbb{N} \to \mathbb{R}, \ n \mapsto \frac{n}{n+1}$
 - è iniettiva.
 - □ è suriettiva.
 - \blacksquare ha immagine contenuta in \mathbb{Q} .
 - \blacksquare ha immagine contenuta in [0; 1).
- (c) Sia $L = \{R, f, h\}$ con R simbolo di funzione binario, f simbolo di funzione binario e h simbolo di funzione unario. Sia t_1 il termine f(x, h(y)) e t_2 il termine h(f(x, y)).
 - $\square \langle \mathbb{Z}, <, +, \rangle \models R(t_1, t_2)[x/2, y/3].$
 - $\blacksquare \langle \mathbb{Z}, <, +, \rangle \models \varphi[x/2, y/3], \text{ dove } \varphi \text{ è la formula } \exists x \exists y \neg R(t_1, t_2).$
 - $\blacksquare \exists x \exists y \neg R(t_1, t_2)$ è un enunciato.
 - $\square \langle \mathbb{Z}, <, +, \rangle \models \psi[x/2, y/3], \text{ dove } \psi \text{ è la formula } \forall x \forall y R(t_1, t_2).$

Attenzione! L'interpretazione della funzione h in ciascuna delle strutture precedenti è la funzione **unaria** $-: \mathbb{Z} \to \mathbb{Z}, k \mapsto -k$.

- (d) Sia | la relazione di divisibilità sui numeri interi (ossia dati $q, s \in \mathbb{Z}$, vale la relazione $q \mid s$ se e solo se esiste $r \in \mathbb{Z}$ tale che $q \cdot r = s$).
 - $\square \ q \mid s \text{ per ogni } q, s \in \mathbb{Z}.$
 - $\blacksquare \ | \ \mbox{\`e}$ una relazione riflessiva e transitiva su $\mathbb{Z}.$
 - $\blacksquare 3 \mid -3 = -3 \mid 3.$
 - \square | è una relazione di ordine su $\mathbb{Z}.$

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Quali delle seguenti sono formalizzazioni corrette (in N) dell'affermazione

Due numeri consecutivi non possono essere entrambi pari.

nel linguaggio costituito dai simboli + e 1 (interpretati nella maniera usuale)?

- $\Box \forall x \forall y [y = x + 1 \to (\neg \exists z (x = z + z) \land \neg \exists z (y = z + z))].$
- (b) La relazione R su \mathbb{Z} definita da x R y se e solo se x e y sono due interi consecutivi (ovvero |x-y|=1)
 - □ è riflessiva.
 - è simmetrica.
 - \square antisimmetrica.
 - □ transitiva.
- (c) Sia $A = \{a, b, c\}$. L'insieme $\mathcal{P}(A)$ delle parti di A
 - ha 8 elementi.
 - \blacksquare ha un massimo e un minimo rispetto alla relazione \subseteq .
 - \blacksquare contiene almeno due elementi $x \in y$ tali che $x \cap y \neq \emptyset$.
 - \blacksquare contiene almeno due elementi $x \in y$ tali che $x \cap y = \emptyset$.
- (d) Sia $L = \{R\}$ con R simbolo di relazione binario. Sia $\mathcal{A} = \langle A, R^{\mathcal{A}} \rangle$ un ordine, ovvero una L-struttura tale che $R^{\mathcal{A}}$ è una relazione riflessiva, antisimmetrica e transitiva su A. Se sappiamo che $\mathcal{A} \models \exists x \forall y R(x,y) \land \forall x \exists y R(x,y)$, allora
 - \blacksquare \mathcal{A} ha un minimo.
 - \square certamente \mathcal{A} non ha un massimo.
 - \blacksquare \mathcal{A} può avere sia un minimo che un massimo.
 - \square può essere che \mathcal{A} non abbia né massimo né minimo.

- (a) Siano P e Q due proposizioni tali che Q \models P. Allora
 - \blacksquare Q \models P \land Q.
 - $\blacksquare \ \ Q \land \neg P$ è certamente insoddisfacibile.
 - $\blacksquare \ \, \mathbf{Q} \rightarrow \mathbf{P}$ è certamente una tautologia.
 - $\Box\ \ P \to Q$ è certamente una tautologia.
- (b) La funzione $f: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto x^2 y^2$.
 - □ È iniettiva.
 - È suriettiva.
 - \blacksquare È tale che f(x,y) = f(-x,-y) per ogni $x,y \in \mathbb{R}$.
 - \blacksquare È tale che f(x,x)=0 per ogni $x\in\mathbb{R}$.
- (c) Sia φ la formula $\forall x (\exists y R(y, x) \to R(x, y))$.
 - \square φ è un enunciato.
 - \square Tutte le occorrenze della variabile y sono vincolate.
 - \Box Tutte le occorrenze della variabile y sono libere.
 - \blacksquare Tutte le occorrenze della variabile x sono vicolate.
- (d) Si ricordi che per $a, b \in \mathbb{R}$,

$$[a;b] = \{x \in \mathbb{R} \mid a \le x \le b\}.$$

- \square Esistono $a, b \in \mathbb{R}$ con $a \leq b$ e $[a; b] = \emptyset$.
- \blacksquare Per ogni $a,b\in\mathbb{R}$ tali che $a\leq b,$ l'insieme $[a;b]\cap\mathbb{N}$ è finito.
- \square Per ogni $a, b \in \mathbb{R}$ tali che $a \leq b$, l'insieme $[a; b] \cap \mathbb{Q}$ è infinito.

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

- (a) Sia P una tautologia. Allora
 - P è soddisfacibile.
 - \square Per ogniQ,la proposizione $P \to Q$ è una tautologia.
 - \blacksquare Per ogni Q, la proposizione Q \rightarrow P è una tautologia.
 - ¬P è una contraddizione.
- (b) Consideriamo la funzione $f: \mathbb{N} \to \mathbb{N}, n \mapsto n^2$. Allora
 - \blacksquare f è iniettiva.
 - \blacksquare l'immagine di f è un sottoinsieme proprio di \mathbb{N} .
 - $\blacksquare f(f(n)) \neq 4 \text{ per ogni } n \in \mathbb{N}.$
 - $\Box f(n) > n \text{ per ogni } n \in \mathbb{N}.$
- (c) Sia X l'insieme delle nazioni europee e sia R la seguente relazione binaria su X:

x R y se e solo se x confina con y.

- \square R è una relazione transitiva.
- \blacksquare R è una relazione simmetrica.
- \square R è un ordine.
- \blacksquare Esistono $x, y \in X$ tali che non vale x R y.
- (d) Sia φ la formula

$$\forall x (P(x,y) \to \exists y \forall z P(z,y))$$

- \square φ è un enunciato.
- \Box Le variabili che occorrono vincolate (almeno una volta) in φ sono: $x \in y$.
- \blacksquare La variabile y occorre sia libera che vincolata nella formula φ .
- \Box La variabile z occorre sia libera che vincolata nella formula φ .

- (a) Sia A l'insieme dei numeri razionali positivi e B l'insieme dei numeri interi.
 - $\square |A| > |B|$.
 - $\blacksquare |A \times B| = |A|.$
 - $\blacksquare |A \cap B| = |A|.$
 - $\blacksquare |A^B| = |2^{\mathbb{N}}|.$
- (b) La funzione $f: \mathbb{R} \to \mathbb{R}^2, r \mapsto \langle r^2, r \rangle$
 - è iniettiva.
 - □ è suriettiva.
 - \blacksquare ha immagine contenuta in $\{a \in \mathbb{R} : a \geq 0\} \times \mathbb{R}$.
 - \square è tale che f(r) = f(-r) per ogni $r \in \mathbb{R}$.
- (c) Sia data la formula $\varphi \equiv (f(g(x,y),z) = g(f(x,y),z))$ nel linguaggio $L = \{f,g\}$ con due simboli di funzioni binari f,g:
 - $\square \langle \mathbb{Z}, +, \cdot \rangle \not\models \varphi[x/0, y/1, z/7].$
 - $\blacksquare \langle \mathbb{Z}, +, \cdot \rangle \models \exists x \exists y \varphi[x/2, y/2, z/7].$
 - $\blacksquare \exists x \exists y \varphi$ ha come unica variabile libera z.
 - $\square \langle \mathbb{Z}, +, \cdot \rangle \models \varphi[x/2, y/2, z/0].$
- (d) La formula $\neg A \rightarrow (A \lor \neg B)$
 - □ è una tautologia.
 - \blacksquare è logicamente equivalente a A $\vee \neg B$.
 - \square Ha come conseguenza logica $\neg B$.
 - È conseguenza logica di ¬B.

- (a) Sia $L = \{P, f, a\}$ con P simbolo di relazione binario, f simbolo di funzione binario e a simbolo di costante. Quali delle seguenti sono L-formule?
 - $\Box \ \exists x (P(f(y,x),a) = a).$
 - $\Box P(a, f(f(x), f(x))).$
 - $\square \ \forall a P(a,a).$
 - $\exists y (f(x,y) = a) \land \forall y P(x,y).$
- (b) Sia R la relazione "avere lo stesso peso".
 - \blacksquare R è una relazione simmetrica.
 - \square R è una relazione di ordine.
 - \blacksquare R è una relazione di equivalenza.
 - \blacksquare R è una relazione di pre-ordine.
- (c) Sia $\varphi(x)$ la formula $\exists y (y = f(a, a) \land g(y, x) = a)$ nel linguaggio $L = \{f, g, a\}$. Consideriamo la L-struttura $\mathcal{A} = \langle \mathbb{Q}, +, \cdot, 1 \rangle$.
 - $\blacksquare \mathcal{A} \models \varphi[x/2^{-1}].$
 - $\square \mathcal{A} \models \varphi[x/2].$
 - $\blacksquare \mathcal{A} \models \exists x \, \varphi(x).$
 - $\Box \ \mathcal{A} \models \forall x \, \varphi(x).$
- (d) La formula $A \rightarrow (B \rightarrow C)$
 - \square è conseguenza logica di A.
 - \square è logicamente equivalente a A.
 - □ è vera solo quando A e B sono false, mentre C è vera.
 - è falsa solo quando A e B sono vere, mentre C è falsa.

- (a) Sia P la proposizione $A \wedge (\neg A \rightarrow B) \rightarrow \neg A$.
 - P è soddisfacibile.
 - \blacksquare ¬P è soddisfacibile.
 - \blacksquare Per ogni valutazione v, il valore di v(P) non dipende dal valore di v(B).
 - \Box P è vera se e solo se B è vera.
- (b) La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^2 x$
 - \square è tale che $x \leq f(x)$ per ogni $x \in \mathbb{R}$.
 - \blacksquare è tale che f(x) = 0 per qualche $x \in \mathbb{R}$.
 - $\hfill\Box$ è iniettiva.
 - □ è suriettiva.
- (c) Quali delle seguenti affermazioni sono corrette?
 - \square Se A è un insieme finito, anche $A^{<\mathbb{N}}$ lo è.
 - \square Se A è infinito, allora $A^{<\mathbb{N}}$ è un insieme numerabile.
 - \square Se esiste una suriezione $f: A \to B$, allora $|A| \le |B|$.
 - \blacksquare $\mathbb{R} \times \mathbb{R} \approx \mathbb{R} \times \mathbb{N}$.
- (d) Sia $L = \{R, f, a\}$ con R simbolo di relazione unario, f simbolo di funzione binario e a simbolo di costante. Sia φ la stringa

$$(\exists x ((\forall y (R(f(x,y)))) \land ((R(a)) \rightarrow (f(a,a) = a))))$$

- \blacksquare φ è una formula del prim'ordine nel linguaggio L.
- \square φ contiene variabili libere.
- \blacksquare L'altezza di φ è 3.
- \square Nel raggio d'azione di $\forall y$ compare il simbolo di costante a.

- (a) Sia P una contraddizione e Q una proposizione qualsiasi.
 - $\blacksquare \ \ P \to Q$ è una tautologia.
 - $\hfill\Box$ P \wedge Q è sod disfacibile.
 - \blacksquare Q \to P è logicamente equivalente a \neg Q.
 - \square Q \rightarrow P è logicamente equivalente a Q.
- (b) Sia A un insieme non vuoto.
 - $\square \ A^{<\mathbb{N}}$ è finito quando A lo è.
 - $\blacksquare A^{<\mathbb{N}}$ è numerabile se $|A| \leq |\mathbb{N}|$.
 - $\blacksquare A^n \subseteq A^{<\mathbb{N}}$ per ogni $n \in \mathbb{N}$.
 - \blacksquare Quando |A| = 1 si ha che $|A^{\mathbb{N}}| < |A^{<\mathbb{N}}|$.
- (c) La relazione R su \mathbb{N} definita da x R y se e solo se $|x-y| \leq 2$ è
 - riflessiva.
 - simmetrica.
 - □ transitiva.
 - □ una relazione d'equivalenza.
- (d) Consideriamo le funzioni $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ e $g: \mathbb{R} \to \mathbb{R}, x \mapsto x 4$.
 - \blacksquare La funzione g è una biezione.
 - \square La funzione f è una biezione.
 - \square La funzione $f \circ q$ è una biezione.
 - \square La funzione $g \circ f$ è una biezione.

- (a) Sia Q una tautologia e P una proposizione soddisfacibile ma non valida.
 - $\blacksquare \ \ P \to Q$ è una tautologia.
 - $\hfill\Box$ P \wedge Q non è logicamente equivalente a P.
 - \square Q \models P è vero.
 - \blacksquare Q \to P è logicamente equivalente a P.
- (b) Siano $A \in B$ insiemi non vuoti.
 - \square $A \times B$ è finito se almeno uno tra A e B lo è.
 - $|A^B| = 1$ se e solo se |A| = 1.
 - Se $A \subseteq B$ allora $A^n \subseteq B^n$ per ogni $n \in \mathbb{N}$.
 - \blacksquare Se $A \subseteq B$ e $|B| \le |A|$ allora |A| = |B|.
- (c) La relazione S su $\mathbb{Q} \setminus \{0\}$ definita da x S y se e solo se $\exists z(x \cdot z = y)$
 - è riflessiva.
 - \square non è simmetrica.
 - è transitiva.
 - □ non è una relazione d'equivalenza.
- (d) Consideriamo le funzioni $f: \mathbb{Q} \setminus \{1\} \to \mathbb{Q}, x \mapsto \frac{1}{x-1}$ e $g: \mathbb{Q} \setminus \{0\} \to \mathbb{Q}, x \mapsto \frac{1}{x} + 1$.
 - \blacksquare La funzione g è iniettiva.
 - \blacksquare 0 è nel codominio di f.
 - $\blacksquare (g \circ f)(2) = 2.$
 - \blacksquare 1 è nel codominio di g.

- (a) Siano P e Q proposizioni tali che $P \models Q$.
 - Se P è una tautologia allora anche Q lo è.
 - \square P \wedge \neg Q è soddisfacibile.
 - Se Q è una contraddizione allora anche P lo è.
 - \square Necessariamente vale anche $Q \models P$.
- (b) Sia $f: A \to B$ una funzione iniettiva.
 - \square Per ogni $b \in B$ l'insieme $f^{-1}(b)$ contiene esattamente un elemento.
 - \blacksquare Se B è finito anche A lo è.
 - \square Se |A| = |B| allora f è anche suriettiva.
 - \square Se B è infinito anche A lo è.
- (c) Sia $L = \{f\}$ con f simbolo di funzione binario. Consideriamo la L-struttura

$$\mathcal{A} = \langle \mathbb{N}, + \rangle$$
 e sia φ la formula $\forall x [(f(y, x) = z) \land \exists z (f(z, z) = x)].$

- \blacksquare L'insieme di verità di φ in \mathcal{A} è un sottoinsieme di \mathbb{N}^2 .
- \blacksquare L'insieme delle variabili libere di φ è $\{y, z\}$.
- \square φ è un enunciato.
- \blacksquare L'altezza di φ è 3.
- (d) Siano $A, B \in C$ insiemi non vuoti.
 - $\blacksquare (A \setminus B) \cup (C \setminus B) = (A \cup C) \setminus B.$
 - $\Box \text{ Se } C \cap (A \cap B) = \emptyset \text{ allora } C \cap (A \cup B) = \emptyset.$
 - \blacksquare Se $C \cap (A \cup B) = \emptyset$ allora $C \cap (A \cap B) = \emptyset$
 - Se $A \times B \subseteq A \times C$ allora $B \subseteq C$.

- (a) Quali dei seguenti insiemi sono infiniti e numerabili?
 - $\blacksquare \{x \in \mathbb{R} \mid \sqrt{x} \in \mathbb{Q}\}\$
 - $\Box \ \{x \in \mathbb{R} \mid x^2 5x + 2 = 0\}$
 - $\blacksquare \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Z} \land y \in \mathbb{Q}\}\$
 - $\square \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{Z} \lor y \notin \mathbb{Q} \}$
- (b) Sia $f: A \to B$ una funzione suriettiva.
 - \square Per ogni $b \in B$ l'insieme $f^{-1}(b)$ contiene esattamente un elemento.
 - \blacksquare Se A è finito anche B lo è.
 - \square Se |A| = |B| allora f è anche iniettiva.
 - \blacksquare Se B è infinito anche A lo è.
- (c) Sia φ la formula $\forall x \exists z \neg R(x, z)$.
 - \square φ non è un enunciato.
 - $\quad \Box \ \langle \mathbb{N}, \leq \rangle \models \phi.$
 - $\blacksquare \ \langle \mathbb{N}, \geq \rangle \models \phi.$
 - $\blacksquare \hspace{0.1cm} \phi$ è soddisfacibile ma non valida.
- (d) Sia $a_m, m \in \mathbb{N}$, la successione definita per ricorsione da

$$a_0 = n$$

$$a_{m+1} = 2a_m.$$

- Se n = 0, allora $a_m = 0$ per ogni m.
- \square Se n=1, allora $a_m=1$ per ogni m.
- Se n=2 allora $a_m=2^{m+1}$ per ogni m.
- \square Se n=3 allora $a_3<10$.

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia X l'insieme degli abitanti di Torino e R la relazione binaria

su X definita da x R y se e solo se x abita a meno di 50 metri da y.

- \blacksquare R è una relazione riflessiva.
- \square R è una relazione transitiva.
- \blacksquare R è una relazione simmetrica.
- $\hfill\Box$ Rè una relazione d'equivalenza.
- (b) Siano $A \in B$ due insiemi infiniti.
 - \square $A \cap B$ deve anch'esso essere infinito.
 - \blacksquare $A \cup B$ deve anch'esso essere infinito.
 - \square Se A è più che numerabile e $B \subseteq A$, anche B deve essere più che numerabile.
 - Se A è numerabile e $B \subseteq A$, allora $|B| = |\mathbb{N}|$.
- (c) Sia φ la formula $\forall x \forall z [x = y \to f(x, z) = z]$.
 - \blacksquare φ non è un enunciato.
 - \square Nessuna variabile occorre libera in φ .
 - $\blacksquare \langle \mathbb{N}, + \rangle \models \varphi[y/0].$
 - \blacksquare L'insieme di verità di φ in $\langle \mathbb{Q}, + \rangle$ è costituito da un solo elemento.
- (d) La funzione $f: \mathbb{Q} \to \mathbb{Q}$ definita da $f(q) = 2q^2 + 1$ è
 - \square iniettiva ma non suriettiva.
 - □ suriettiva ma non iniettiva.
 - \square biettiva.
 - né iniettiva, né suriettiva.