VERIFICA DI PROGRAMMI
!'_ CONCORRENTI
VPC 19-20

(Qualitative and quantitative
verification of systems)

Prof.ssa Susanna Donatelli
Universita di Torino
www.di.unito.it
susi@di.unito.it



http://www.di.unito.it/

Obiettivi

A

Obiettivo del corso €' di fornire gli strumenti, teorici e pratici, necessari alla verifica dei
sistemi, ed in particolare del software. Per raggiungere tale obiettivo studieremo alcuni
paradigmi di base per la specifica di processi distribuiti, focalizzando I'attenzione sulle
capacita modellistiche e sugli strumenti di verifica di proprieta di buon comportamento.

Alla fine del corso lo studente sara in grado di specificare sistemi concorrenti usando
linguaggi formali e di utilizzare strumenti software per la verifica di proprieta’ del
sistema tramite verifica di proprieta del modello. Oltre alle classiche proprieta dei sistemi
distribuiti quali assenza di deadlock, fairness e liveness, lo studente sara in grado di
definire e verificare proprieta in logica temporale quali ad esempio: "se il processo P manda
un messaggio, allora non inviera il prossimo messaggio sino a che non riceve un
acknowledgment", oppure "se il processo P manda un messaggio, ricevera un acknowledge
entro 5 unita di tempo"..

Il corso non ha come obiettivo di fornire conoscenza su strumenti di verifica di linguaggi
di programmazione, perché' non si focalizza sulla verifica dell' implementazione degli
algoritmi, ma sulla verifica delle soluzioni algoritmiche legate alla concorrenza.

Nel ciclo di sviluppo del software le competenze acquisite in questo corso sono utili al fine
della progettazione e verifica di soluzioni concorrenti/distribuite




Modalita di verifica dell' apprendimento

A

Combinazione di:

Piccoli esercizi e piu consistenti progetti durante il corso, con precise date di consegna
(pencil and paper and use of tools)

Gli esercizi devono essere accompagnati da una relazione (written report)

Verifica finale — discussione degli esercizi con uso dei tool e verifica della parte di
teoria (dates can be agreed upon with the teacher, contact the teacher at least 10
days before)

Ci sono due modalita’ per la valutazione

Orientata agli strumenti: sperimentazioni complete con gli strumenti di verifica.
Discussione dei laboratori e una prova orale sugli argomenti principali

Orientata alla teoria: esercizi piu semplici e piu veloci e classico esame di teoria su
tutti gli argomenti del corso




Argomenti per l'insegnamento da 6cfu

A

Non sono argomenti di esame dell'insegnamento da 6 cfu (e quindi non si devono
portare i corrispondenti laboratori):

1. reti colorate e relativi esercizi

2. timed automata




- | Reference material books:

H
3
E

rithms, and Tool

cking

2 =
- E:E

Prof, Jost-Pieter Katoen

Model Che
Jogst-Pieter Katoeh

Concepts, Algo

" (University of Aachen, D)

(University of Warwick, UK)

Reactive Systems

Modelling, Specification and Verification
Luca Aceto, Reykjavik University

Anna Ingolfsdéttir, Reykjavik University

Kim Guldstrand Larsen, Aalborg University,
Denmark

Jiri Srba, Aalborg University, Denmark

Notes of the EU-sponsored Jaca
MATCH school

Chapter 2

Untimed Petri Nets

Tntrodwction

Reactive
Systems

Modelling,
Specification and
o | Verification



http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/reactive-systems-modelling-specification-and-verification#bookPeople
http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/reactive-systems-modelling-specification-and-verification#bookPeople
http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/reactive-systems-modelling-specification-and-verification#bookPeople
http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/reactive-systems-modelling-specification-and-verification#bookPeople

!'_ Acknowledgements

Transparencies adapted from the course notes and
trasparencies of

= Prof. Doron A. Peled, University of Warwick (UK) and Bar

Ilan University (Israel)
http://www.dcs.warwick.ac.uk/~doron/srm.html

=« Prof. Jost-Pieter Katoen, University of Aachen (Germany)
= Prof. Manuel Silva, Unievrsity of Zaragoza (Spain)

= Prof.ssa Giuliana Franceschinis, Universita del Piemonte
orientale (Italy)

= Dr. Jeremy Sproston, Universita di Torino (Italy)
= Anders Moeller — BRICS University of Aurhus (DK) 6



http://www.dcs.warwick.ac.uk/~doron/srm.html

Goal: system and software

ﬁ reliability

Use system and software Use formal methods
engineering during code

methodologies to development
develop the code.




i Why system reliability?

System mulfunctioning can cause

= Loss of life (safety critical applications)

= Loss of money (mission critical applications)
= Loss of data/security/privacy



* Why system reliability?

......... and not validation and verification?

[Boehm'79]

« Verification: "Are we building the product right™?
= Validation: "Are we building the right product™?



ﬁ Why should we care?

= NIST (National Institute of Standards and
Technology) report

= software bugs cost $60 billion annually

= High profile incidents of systems failure
= Therac-25 radiation overdoses, 1985-87
= Pentium FDIV bug, 1994
= Northeast blackout, 2003
= Air traffic control, LA airport, 2004
= Chicago airport baggage delivery system

= Survey of airline problems in
http://www.wired.com/autopia/2013/04/airline-software-screw-ups/

= American Airlines cancellation of 400 flights
http://www.youtube.com/watch?v=W203d6QRL2k

10


http://www.wired.com/autopia/2013/04/airline-software-screw-ups/
http://www.wired.com/autopia/2013/04/airline-software-screw-ups/
http://www.wired.com/autopia/2013/04/airline-software-screw-ups/
http://www.wired.com/autopia/2013/04/airline-software-screw-ups/
http://www.wired.com/autopia/2013/04/airline-software-screw-ups/
http://www.wired.com/autopia/2013/04/airline-software-screw-ups/
http://www.wired.com/autopia/2013/04/airline-software-screw-ups/

ﬁ The problem has been solved?

= Give a look at the abstract of the invited talk of
Jeannete Wing from Microsoft at ACM SIGAda’s

Annual International Conference

Formal methods research has made tremendous progress since the 1980s
when a proof using a theorem prover was worthy of a Ph.D. thesis and a
bug in a VLSI textbook was found using a model checker. Now, with
aavances in theorem proving, model checking, satisfiability modulo
theories (SMT) solvers, and program analysis, the engines of formal
methods are more sophisticated and are applicable and scalable: to a wide
range of domains, from biology to mathematics; to a wide range of
systems, from asynchronous systems to spreadsheets,; and for a wide
range of properties, from security to program termination. In this talk, will
present a few Microsoft Research stories of advances in formal methods
and their application to Microsoft products and services. Formal methods
use, however, is not routine—yet—in industrial practice. So, I will close
with outstanding challenges and new directions for research in formal
methods. 11



* Target properties

Some properties can be easier than other to

12



Properties of Interest

Where does (semi-)automated analysis and verification
have a chance?

* resource management (memory, files, allocation, locking)

» temporal properties (event ordering, concurrency,
deadlocks, safety/liveness)

« datatype invariants (shapes, memory errors)
» security (integrity, confidentiality)
* numerical computations

Typical bugs? See e.g. bugzilla.mozilla.org or bugzilla.kernel.org

g
WA
ok

L

Anders Moller Univers;;y%gf Aarhus

13



Verification vs. other
* programming techniques

Analysis

Debugging
Program optimization

Programming at design level

14



Verification vs. Analysis

» Verification: checking invariants
* Analysis: detecting invariants

— this is just one possible definition of the words
— In practical tools, there is a large overlap
— analysis is not necessarily “harder” than verification

(Z=)
Anders Moller University of Aarhus 15



Relation to Debugging

« Debugging: you know there is a bug,
but not exactly where it is

+ Verification: you hope there are no bugs,
but you want to be sure

» Analysis tools can be used to enhance program
understanding (e.g. “program slicing”)

 Verification tools can often provide counterexamples

G

T iy
M@
&%
=%
% ™
Nk
RS

Zz

Anders Moller Univers‘it»‘y‘*i;)f Aarhus 16



Relation to Testing

"Program testing can be used to show
the presence of bugs, but never to show
their absence.” [Dijkstra, 1972]

(Z=)
Anders Moller University of Aarhus 17



Relation to Programming Language Design

 Programming at a higher level of abstraction
can reduce the possibility of errors

 Examples:
— type systems (note: types are invariants!)
— abstract data-types
— object oriented encapsulation and inheritance
— domain-specific languages

£
Anders Moller University of Aarhus

19



* What are formal methods?

Techniques for analyzing systems, based on some
mathematics.

This does not mean that the user must be a
mathematician.

Some of the work is done in an informal way, due to
complexity.

20



ﬁ Examples for FM

Deductive verification:
Using some logical formalism, prove using a theorm prover that the
software satisfies its specification.

Model checking:
Use some software to automatically check that the software satisfies
its specification.

Testing:

Check executions of the software according to some coverage
scheme.

21



* Formal methods’ adoption:

m Boss: Mark, I want that the new
internet marketing software will be
flawless. OK?

s Mark: Hmmm. Well, ..., Aham, Oh!
Ah??? Where do I start?

m Bob: I have just the solution for you. It
would solve everything.

22



ﬁ Why is software hard?

= The human element

= Getting a consistent and complete set of
requirements is difficult

= Requirements often change

= Human beings use software in ways never
imagined by the designers

23



ﬁ Why is software hard?

= | he mathematical element
= Huge set of behaviors

= Nondeterminism
= External due to inputs
« Internal due to concurrency

= Even if the requirements are unchanging,
complete and formally specified, it is unfeasible
to check all the behaviors

24



ﬁ Badmouth

= Formal methods can only be used by
mathematicians.

= The verification process is itself prone
to errors, so why bother?

= Using formal methods will slow down
the project.

25



i Some answers...

Formal methods can only be used by
mathematicians.

Wrong. They are based on some math but the user
should not care.

The verification process is itself prone to errors,
so why bother?

We opt to reduce the errors, not eliminate them.

Using formal methods will slow down the
project.

Maybe it will speed it up, once errors are found earlier.

26



ﬁ Some exaggerations

Automatic verification can only find
errors.

Deductive verification can show that the
software is completely safe.

Testing is the only industrial practical
method.

“Program testing can be used to show

the presence of bugs, but never to show
their absence.” [Dijkstra, 1972]

27



ﬁ Some exaggeration

O MYth
= Think of the peace of mind you will have when the
verifier finally says “verified”, and you can relax
in the mathematical certainty that no more errors
exist

= Reality:

= Use instead to find bugs (like more powerful type
checkers)

= We should change “Verified” to “Sorry, I can't find
more bugs”

28



Holy grail of
* algorithmic verification

Nei proof systems
= Soundness
= Si possono solo derivare affermazioni corrette

= Completeness

» tutte le affermazioni corrette possono essere
derivate

29



ﬁ System Verification methods

= Light- weight
— unsound
— bug searching via simulation
— simple properties, efficient and easy to use

= Medium- weight

— sound but incomplete

— analysis via fixed- point computation, type checking/ inference
= Heavy- weight

— sound and complete

— verification via theorem proving and user annotations
— complex properties, resource demanding and difficult to use

31



Steps in the

ﬁ verification process

. Check the kind of 5. Apply methods.
system to analyze. 6. Obtain verification
. Choose formalisms, results.

methods and tools. 7. Analyze results.

. Express system 8. Identify errors.
properties.

9. Suggest correction.
. Model the system.

32



program-verification

* Example of verification steps — java

1. Check the kind of
system to analyze.

2. Choose formalisms,
methods and tools.

3. Express system
properties. (square function
of X does compute x*x)

4. Model the system. (add
java modelling language
specification)

oo

. Apply methods. (deductive

verification using Why through
Krakatoa)

. Obtain verification

results. (property is verified or
not)

. Analyze results.
. Identify errors.
. Suggest correction.

33




Mutual-exclusion of Dekker

* Example of verification steps —

1. Check the kind of 5. Apply methods. (state space
system to analyze_ exploration — RG generation)

2. Choose formalisms, 6. Obtain verification
methods and tools. (Petri results. (property is verified or
nets and the GreatSPN tool) not, if not example of execution

that violates the property)
/. Analyze results.
. Identify errors.
. Suggest correction.

3. Express system

properties. (It is never the
case that two processes can

access the common resource at 9
the same time)

4. Model the system. (build

a-Petri net specification of

oo

Dekker mutual exclusion) 5
4



ﬁ Some concerns

hich technique?
nich tool?

nich experts?

hat limitations?
nat methodology?
= At which points?

= How expensive?

= How many people?

=S === =

Needed expertise.
Kind of training.

Size limitations.
Exhaustiveness.
Reliability.
Expressiveness
Efficiency

Support

Degree of automation

36



ﬁ Our course

Concentrate on distributed systems (as inherently
protocols are)

Learn several formalisms to model system and
properties (automata, process algebras, Petri Nets,
temporal logic, timed automata).

Learn advantages and limitations, in order to choose
the right methods and tools.

Learn how to combine existing formalisms and existing
“solution” methods to pose and answer the right
guestions.

37



ﬁ Emphasis

= Qualitative properties (e.g. absence of deadlock, liveness,
fairness, “for each message sent an ack is received”)

= Quantitative properties (e.g. “reach a deadlock/absorbing
state no later than time 10", “for each msg sent an ack is
received in within 5 ms”, “for each msg sent an ack is
received in within 5 ms, with 99% probability”)

Selecting the tools, modeling, verification, locating errors.

Hands on at least GreatSPN, nuSMV, Uppaal

38



ﬁ Valutazione

Combinazione di:

= Piccoli esercizi e piu consistenti progetti durante il
corso, con precise date di consegna (

)

= Gli esercizi devono essere accompagnati da una
relazione ( )

= Verifica finale — discussione degli esercizi con uso dei
tool e verifica della parte di teoria (

)

39



ﬁ Valutazione

Due modalita’ per la valutazione

B Orientata agli strumenti: sperimentazioni complete con
gli strumenti di verifica e partecipazione alle attivita’ del
model checking context a cui partecipa il nostro gruppo

di ricerca. Solo la discussione dei laboratori e una prova
orale sugli argomenti principali

B Orientata alla teoria: esercizi piu’ semplici e classico
esame di teoria

40



i Example topics

Project:

Check the web page for the exercises given in
previous academic years

Oral exam:

i.  Give the definition of a Petri net

2. Definition of deadlock in a Petri nets
3. Etc...

42



* Prerequisiti — primo esercizio

s Imparare a fare e presentare definizioni di "
oggetti matematici”

43



