
Automated Program Verification and Testing
15414/15614 Fall 2016
Lecture 20:
Temporal Properties

Matt Fredrikson
mfredrik@cs.cmu.edu

November 11, 2016

Matt Fredrikson Temporal Properties 1 / 37

Modeling Computation (Review)

Computations are modeled using a state
transition
graph, also called
a Kripke
structure

Kripke structure
A Kripke structure
M = (P, S, I, L,R) consists of:

▶ Set of atomic
propositions P

▶ States S

▶ Initial states I ⊆ S

▶ Labeling L : S 7→ 2P

▶ Transition relation R ⊆ S × S

{p0, p2}
s0

{p0, p1}
s1

{p1, p2}
s2

▶ P = {p0, p1, p2}, S = {s0, s1, s2}
▶ I = {s0}
▶ L = {(s0, {p0, p2}), . . .}
▶ R = {(s0, s1), (s1, s2), . . .}

Matt Fredrikson Temporal Properties 2 / 37

Temporal Operators (Review)

There are five basic temporal operators we’ll use

X p p holds at the next point in time
F p p holds at some
future point in time
G p p holds at every
point in time
p U q p holds until q holds
p R q p releases q: q holds until p (if it ever does)

These operators describe properties of a path π

Matt Fredrikson Temporal Properties 3 / 37

Linear Temporal Logic (Review)

These operators allow us to define linear
temporal
logic (LTL)

LTL contains state
formulas and path
formulas

State Formula
The syntax of state formulas is given by:

f ::= ⊤ | ⊥ | p | ¬f | f1 ∨ f2 | f1 ∧ f2

State formulas correspond to facts that hold in a particular state.

Path Formula
An LTL formula is composed of the following elements:

g ::= f | ¬g | g1 ∨ g2 | g1 ∧ g2 | X g | F g | G g | g1 U g2 | g1 R gs

Path formulas are evaluated along a particular path.

Matt Fredrikson Temporal Properties 4 / 37

Path Quantifiers

We mentioned that LTL univerally quantifies over paths

It is also possible to have existential path quantification

We extend state formulas with two new forms:
▶ E f is now a state formula, where:

M, s |= E g ⇔ there exists a path π starting at s where M,π |= g

▶ A f is now a state formula, where:
M, s |= A g ⇔ for all paths π starting at s,M, π |= g

This defines the logic CTL∗. LTL is a fragment of CTL∗, where:
▶ Each formula implicitly starts with A
▶ State formulas don’t have path quantifiers

Matt Fredrikson Temporal Properties 5 / 37

Branching Time

LTL formulas describe linear-time properties: single paths

CTL∗ formulas describe branching-time properties

Path quantifiers can talk about multiple possible
futures

For example, consider EF p

...
...

...
...

...
...

p
...

Matt Fredrikson Temporal Properties 6 / 37

Computation Tree Logic (CTL)

CTL is a fragment of CTL∗ where each temporal operator is
preceded by a path quantifier

▶ If f, f1, f2 are state formulas, then X f , F f , G f , f1 U f2, and
f1 R f2 are path formulas

▶ Importantly: path formulas are built directly from state formulas

CTL Syntax
CTL formulas ϕ are built from the following grammar:

ϕ ::= ⊤ | ⊥ | p ∈ P | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

| EX ϕ | EF ϕ | EG ϕ | E [ϕ1 U ϕ2] | E [ϕ1 R ϕ2]
| AX ϕ | AF ϕ | AG ϕ | A [ϕ1 U ϕ2] | A [ϕ1 R ϕ2]

Matt Fredrikson Temporal Properties 7 / 37

Example: Visualizing CTL (AX p)

What does AX p look like?

p

...
...

...

p

...
...

...
...

Matt Fredrikson Temporal Properties 8 / 37

Example: Visualizing CTL (EG p)

What does EG p look like?

p

p

p

p
...

...
...

...
...

...
...

Matt Fredrikson Temporal Properties 9 / 37

Example: Visualizing CTL (E [p U q])

What does E [p U q] look like?

p

...
...

...

p

p

q
...

...
...

...

Matt Fredrikson Temporal Properties 10 / 37

Example: Visualizing CTL (A [p U q])

What does A [p U q] look like?

p

q

...
...

...

p

p

q
...

q
...

q

...
...

Matt Fredrikson Temporal Properties 11 / 37

Example: CTL Properties

What do the following formulas mean?
▶ EF (start ∧ ¬ready)

Can get to a state where start holds by ready doesn’t
▶ AG (EF restart)

It is always possible (from any state) to enter restart
▶ AF (AG p)

No matter what, p eventually always holds on all paths
▶ AG (AF crit)

On all paths at all times, enter crit infinitely often
Or, crit is infintely often true on all paths

Matt Fredrikson Temporal Properties 12 / 37

Expressiveness
Consider the last example from the previous slide:

AF (AG p)

Couldn’t we just write F G p? Consider the following:

p q p

Does this satisfy F G p? Yes. What about AF (AG p)? No.

p

p

p

p
...

q
...

q

p
...

q

p
...

Matt Fredrikson Temporal Properties 13 / 37

Expressiveness

Consider one of the examples from the previous slide:
AG (EF restart)

“It is always possible to enter restart.”

Let’s write this as an LTL formula

What about G F restart?

This says, “At all times, restart will eventually be entered”.

It’s too strong: we just need the possibility of returning to restart

This formula can’t be expressed in LTL

Matt Fredrikson Temporal Properties 14 / 37

Expressiveness: CTL vs. LTL

CTL and LTL are incomparable in terms of expressiveness

There are formulas in both logics that can’t be expressed in the other

We’ve seen an example CTL formula with no LTL equivalent
(AG (EF p))

We’ve also seen an LTL formula with no equivalence in CTL:
F G p

These differences are not merely academic: both types of formulas
are useful in practice

▶ AG (EF p) says that it is possible to reach a state with p
regardless of the current state

▶ F G p says that a state invariant will hold in the future

Matt Fredrikson Temporal Properties 15 / 37

Useful Temporal Properties

Typically, the properties we want to check fall into a few categories
▶ Safety: Properties which require that “nothing bad should ever

happen”
▶ Liveness: Require that “something good always happens” in

the future
▶ Fairness: Precludes “degenerate” infinite behaviors

These are inherently linear-time properties

Can often be approximated by branching properties

Matt Fredrikson Temporal Properties 16 / 37

Safety: Invariants

An important class of safety properties describes invariant behavior

Invariants state that some property over states holds at all times
▶ Mutual exclusion
▶ Deadlock freedom
▶ Well-formedness of data structures

If ϕ is a propositional formula over P , then the LTL formula
G ϕ

is an invariant property

Matt Fredrikson Temporal Properties 17 / 37

Example: Mutual Exclusion

Consider two processes P1, P2 of
the form:

while (true) {
...
(noncritical actions)
...
while(y = 0) skip;
y := y + 1;
critical section
y := y − 1;

}

The variable y is shared between
P1 and P2

We’ll model each process using
the predicates:

▶ ci, that Pi is in its critical
section

▶ ni, that Pi is in non-critical
section

▶ wi, that Pi is waiting for y = 0

▶ y = 0, y = 1

Matt Fredrikson Temporal Properties 18 / 37

Example: Mutual Exclusion

ni, y = 1

wi, y = 1

ci, y = 0

The variable y is shared between P1 and P2

We’ll model each process using the predicates:
▶ ci, that Pi is in its critical section
▶ ni, that Pi is in non-critical section
▶ wi, that Pi is waiting for y = 0

▶ y = 0, y = 1

Start by writing the TS for a single process

Matt Fredrikson Temporal Properties 19 / 37

Modeling Concurrency

ni, y = 1

wi, y = 1

ci, y = 0

We’ll model the concurrent execution of P1, P2

We’ll create a global transition system
▶ Models state of both processes
▶ P = {c1, c2, n1, n2, w1, w2, y = 0, y = 1}
▶ Notice: shared state for y = 0, y = 1 is not

duplicated
▶ Transitions account for all interleavings
▶ Intuitively, these are the outcome of

nondeterministic choices between
processes’ steps

Matt Fredrikson Temporal Properties 20 / 37

Example: Mutual Exclusion

n1, n1, y = 1

w1, n2, y = 1 n1, w2, y = 1

c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1

c1, w2, y = 0 w1, c2, y = 0

Matt Fredrikson Temporal Properties 21 / 37

Example: Mutual Exclusion Formula

Recall that mutual exclusion is an invariant
G ϕ

What is ϕ? P1 and P2 can’t be simultaneously critical
ϕ ⇔ ¬c1 ∨ ¬c2

Does the transition system satisfy this property?

Yes. Easy to see by visual inspection in this case

Algorithmically, invariant checking is a reachability problem

Matt Fredrikson Temporal Properties 22 / 37

Safety properties, beyond invariants

Violating an invariant is one type of “bad thing” that could happen

Generally, we’re interested in more than simple reachability

General safety properties are defined in terms of bad
path
prefixes
▶ Let ϕ be a property over paths
▶ Let σ̂ be a prefix such that no path σ = σ̂ · · · satisfies ϕ

▶ Note: we require σ̂ to be finite

ϕ is a safety property iff every path that violates ϕ has a bad prefix

Think of a bad prefix as a witness of a violating instance

Matt Fredrikson Temporal Properties 23 / 37

Bad prefixes: example

The “bad prefix” definition shows that invariants are safety properties

What are the bad prefixes of an invariant property?
G ϕ

Any finite sequence ending with ¬ϕ:

ϕ ϕ ϕ ϕ ¬ϕ

What about in the mutual exclusion case?
¬c1 ∨ ¬c2 ¬c1 ∨ ¬c2 ¬c1 ∨ ¬c2 ¬c1 ∨ ¬c2 c1 ∧ c2

Matt Fredrikson Temporal Properties 24 / 37

Example: Safety Property

We want to model a property of a standard traffic light:

“a red light must be preceeded immediately by a yellow”

What are the atomic propositions?
P = {red, yellow,green}

What is an LTL formula?
G ((yellow → X red) ∧ ((green ∨ red) → ¬X red)))

Is this an invariant? No.

What is a bad prefix for this property?

yellow red green red green

Matt Fredrikson Temporal Properties 25 / 37

Liveness Properties

Safety properties prevent bad things from happening

It’s easy to design systems that don’t do bad things: do
nothing

Usually this isn’t what we want, and liveness properties address this

Intuitively, “something good” will always happen in the future

This intuition reveals a key distinction from safety properties:
▶ Safety properties are violated in finite
time
▶ Liveness properties can only be violated in infinite
time

Matt Fredrikson Temporal Properties 26 / 37

Liveness, Formally

Liveness properties are defined in terms of infinite
path
extensions
▶ Let ϕ be a property over paths
▶ Let σ̂ be a finite path prefix
▶ σ is an infinite path extension if σ̂σ satisfies ϕ

ϕ is a liveness property iff every finite prefix has an infinite extension

Put differently: a liveness property does not rule out any finite prefix

This implies that there are no finite witnesses for liveness

Matt Fredrikson Temporal Properties 27 / 37

Liveness: Examples

Think of the mutual exclusion example

Desirable liveness property: each Pi enters criticali infinitely often
G F c1 ∧G F c2

Another: each waiting process eventually enters its criticali
G (wi → F ci)

Any finite prefix can always be extended to satisfy these properties

Matt Fredrikson Temporal Properties 28 / 37

Liveness: “Repeated Eventually”

n1, n1, y = 1

w1, n2, y = 1 n1, w2, y = 1

c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1

c1, w2, y = 0 w1, c2, y = 0

¬(G F c1)

Does this satisfy G F c1 ∧G F c2? No. What’s a counterexample?

Matt Fredrikson Temporal Properties 29 / 37

Liveness: Starvation Freedom

n1, n1, y = 1

w1, n2, y = 1 n1, w2, y = 1

c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1

c1, w2, y = 0 w1, c2, y = 0

Does this satisfy G (wi → F ci)? No. What’s a counterexample?

Matt Fredrikson Temporal Properties 30 / 37

Fairness

Liveness violated because processes aren’t scheduled fairly

Unfairness arises from nondeterminism
▶ Choices that are globally biased against certain options
▶ Often these choices are unrealistic in practice
▶ Dealt with in the modelling, rather than checking, phase

To prove liveness, we want to rule out unfair paths from the model

Fairness
constraints allow us to do this

Matt Fredrikson Temporal Properties 31 / 37

Fairness Constraints

There are several different types of fairness

▶ Unconditional
fairness: Every process is executed infinitely
often.

for all i,G F Pi

▶ Strong
fairness: Every process that is enabled infinitely often
gets its turn infinitely often when it is enabled

for all i, (G F enabledi) → (G F Pi)

▶ Weak
fairness: Every process that is at some point
continuously enabled gets its turn infinitely often

for all i, (F G enabledi) → (G F Pi)

“Enabled” means “able to execute” a particular transition

Matt Fredrikson Temporal Properties 32 / 37

Example: Weak Fairness
Consider the mutual exclusion example

A process is enabled if it is able to enter its critical section

n1, n1, y = 1

w1, n2, y = 1 n1, w2, y = 1

c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1

c1, w2, y = 0 w1, c2, y = 0

Does this satisfy G (wi → F ci) under weak fairness?

Matt Fredrikson Temporal Properties 33 / 37

Example: Weak Fairness

n1, n1, y = 1

w1, n2, y = 1 n1, w2, y = 1

c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1

c1, w2, y = 0 w1, c2, y = 0

This doesn’t satisfy starvation freedom under weak fairness

Whenever P2 enters critical, P1 is not enabled

The antecedent that Pi be enabled continuously is false

Matt Fredrikson Temporal Properties 34 / 37

Example: Strong Fairness

n1, n1, y = 1

w1, n2, y = 1 n1, w2, y = 1

c1, n2, y = 0 n1, c2, y = 0w1, w2, y = 1

c1, w2, y = 0 w1, c2, y = 0

Does this satisfy G (wi → F ci) under strong fairness?

Yes, both processes enabled infinitely often along all paths

So a strongly-fair scheduler lets both execute infinitely often

Matt Fredrikson Temporal Properties 35 / 37

Example: Unconditional Fairness

Does starvation freedom hold if the scheduler is unconditionally fair?
Unconditional Fairness : for all i,G F Pi

Yes. It held for strong fairness, which was:
Strong Fairness : for all i, (G F enabledi) → (G F Pi)

So we see that unconditional fairness implies strong fairness

In fact, we can say that:
Unconditional Fairness =⇒ Strong Fairness =⇒ Weak Fairness

Matt Fredrikson Temporal Properties 36 / 37

Next Lecture

▶ Continue discussing model checking

▶ Model checking techniques

▶ Fifth assignment goes out today

▶ Fourth assignment due tonight at 11pm

Matt Fredrikson Temporal Properties 37 / 37

