
Accelerated Computing

GPU Teaching Kit

Parallel Reduction
Module 9.1 – Parallel Computation Patterns (Reduction)

2

Objective
– To learn the parallel reduction pattern

– An important class of parallel computation
– Work efficiency analysis
– Resource efficiency analysis

2

3

Partition and Summarize
– A commonly used strategy for processing large input

data sets
– There is no required order of processing elements in a data set (associative and

commutative)
– Partition the data set into smaller chunks
– Have each thread to process a chunk
– Use a reduction tree to summarize the results from each chunk into the final

answer

– Google and Hadoop MapReduce frameworks support
this strategy

– We will focus on the reduction tree step for now

3

4

Reduction enables other techniques
– Reduction is also needed to clean up after some

commonly used parallelizing transformations
– Privatization

– Multiple threads write into an output location
– Replicate the output location so that each thread has a private output

location
– Use a reduction tree to combine the values of private locations into

the original output location

4

5

What is a reduction computation?
– Summarize a set of input values into one value using a

“reduction operation”
– Max
– Min
– Sum
– Product

– Often used with a user defined reduction operation
function as long as the operation
– Is associative and commutative
– Has a well-defined identity value (e.g., 0 for sum)
– For example, the user may supply a custom “max” function for 3D

coordinate data sets where the magnitude for the each coordinate
data tuple is the distance from the origin.

An example of “collective operation”

6

An Efficient Sequential Reduction O(N)
– Initialize the result as an identity value for the reduction

operation
– Smallest possible value for max reduction
– Largest possible value for min reduction
– 0 for sum reduction
– 1 for product reduction

– Iterate through the input and perform the reduction operation
between the result value and the current input value

– N reduction operations performed for N input values
– Each input value is only visited once – an O(N) algorithm
– This is a computationally efficient algorithm.

6

7

A parallel reduction tree algorithm
performs N-1 operations in log(N) steps

13

8

A tournament is a reduction tree with “max” operation

9

A Quick Analysis
– For N input values, the reduction tree performs

– (1/2)N + (1/4)N + (1/8)N + … (1)N = (1- (1/N))N = N-1 operations
– In Log (N) steps – 1,000,000 input values take 20 steps

– Assuming that we have enough execution resources
– Average Parallelism (N-1)/Log(N))

– For N = 1,000,000, average parallelism is 50,000
– However, peak resource requirement is 500,000
– This is not resource efficient

– This is a work-efficient parallel algorithm
– The amount of work done is comparable to the an efficient sequential algorithm
– Many parallel algorithms are not work efficient

9

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 9.1 – Parallel Computation Patterns (Reduction)
	Objective
	Partition and Summarize
	Reduction enables other techniques
	What is a reduction computation?
	An Efficient Sequential Reduction O(N)
	A parallel reduction tree algorithm performs N-1 operations in log(N) steps
	A tournament is a reduction tree with “max” operation
	A Quick Analysis
	Slide Number 10

