
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.1

Message-Passing Computing

Chapter 2

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.2

Message-Passing Programming using
User-level Message-Passing Libraries

Two primary mechanisms needed:

1. A method of creating separate processes for
execution on different computers

2. A method of sending and receiving messages

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.3

Multiple program, multiple data (MPMD)
model

Source
file

Executable

Processor 0 Processor p - 1

Compile to suit
processor

Source
file

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.4

Single Program Multiple Data (SPMD) model
.

Source
file

Executables

Processor 0 Processor p - 1

Compile to suit
processor

Basic MPI way

Different processes merged into one program. Control
statements select different parts for each processor to
execute. All executables started together - static process
creation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.5

Multiple Program Multiple Data (MPMD) Model

Process 1

Process 2spawn();

Time

Start execution
of process 2

Separate programs for each processor. One processor
executes master process. Other processes started from within
master process - dynamic process creation.

Taxonomy

• Synchronous/asynchronous
• Symmetric/asymmetric

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.6

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.7

Basic “point-to-point”
Send and Receive Routines

Process 1 Process 2

send(&x, 2);

recv(&y, 1);

x y

Movement
of data

Generic syntax (actual formats later)

Passing a message between processes using
send() and recv() library calls:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.8

Synchronous Message Passing

Routines that actually return when message transfer
completed.

Synchronous send routine
• Waits until complete message can be accepted by the

receiving process before sending the message.
Synchronous receive routine

• Waits until the message it is expecting arrives.

Synchronous routines intrinsically perform two actions:
They transfer data and they synchronize processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.9

Synchronous send() and recv() using 3-way
protocol

Process 1 Process 2

send();

recv();
Suspend

Time

process Acknowledgment

MessageBoth processes
continue

(a) When send() occurs before recv()

Process 1 Process 2

recv();

send();
Suspend

Time

process

Acknowledgment

MessageBoth processes
continue

(b) When recv() occurs before send()

Request to send

Request to send

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.10

Asynchronous Message Passing

• Routines that do not wait for actions to complete before
returning. Usually require local storage for messages.

• More than one version depending upon the actual
semantics for returning.

• In general, they do not synchronize processes but allow
processes to move forward sooner. Must be used with
care.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.11

MPI Definitions of Blocking and Non-
Blocking

• Blocking - return after their local actions complete,
though the message transfer may not have been
completed.

• Non-blocking - return immediately.

Assumes that data storage used for transfer not modified
by subsequent statements prior to being used for
transfer, and it is left to the programmer to ensure this.
These terms may have different interpretations in other
systems.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.12

How message-passing routines return
before message transfer completed

Process 1 Process 2

send();

recv();

Message buffer

Read
message buffer

Continue
process

Time

Message buffer needed between source and
destination to hold message:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.13

Asynchronous (blocking) routines
changing to synchronous routines

• Once local actions completed and message is safely
on its way, sending process can continue with
subsequent work.

• Buffers only of finite length and a point could be
reached when send routine held up because all
available buffer space exhausted.

• Then, send routine will wait until storage becomes re-
available - i.e then routine behaves as a synchronous
routine.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.14

Message Tag

• Used to differentiate between different types
of messages being sent.

• Message tag is carried within message.

• If special type matching is not required, a wild
card message tag is used, so that the recv()
will match with any send().

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.15

Message Tag Example

Process 1 Process 2

send(&x,2, 5);

recv(&y,1, 5);

x y

Movement
of data

Waits for a message from process 1 with a tag of 5

To send a message, x, with message tag 5 from
a source process, 1, to a destination process, 2,
and assign to y:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.16

“Group” message passing routines

Have routines that send message(s) to a group
of processes or receive message(s) from a
group of processes

Higher efficiency than separate point-to-point
routines although not absolutely necessary.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.17

Broadcast
Sending same message to all processes concerned with
problem.
Multicast - sending same message to defined group of
processes.

bcast();

buf

bcast();

data

bcast();

datadata

Process 0 Process p - 1Process 1

Action

Code

MPI form

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.18

Scatter

scatter();

buf

scatter();

data

scatter();

datadata

Process 0 Process p - 1Process 1

Action

Code

MPI form

Sending each element of an array in root process
to a separate process. Contents of ith location of
array sent to ith process.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.19

Gather

gather();

buf

gather();

data

gather();

datadata

Process 0 Process p - 1Process 1

Action

Code

MPI form

Having one process collect individual values
from set of processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.20

Reduce

reduce();

buf

reduce();

data

reduce();

datadata

Process 0 Process p - 1Process 1

+

Action

Code

MPI form

Gather operation combined with specified
arithmetic/logical operation.

Example: Values could be gathered and then
added together by root:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.21

PVM
(Parallel Virtual Machine)

Perhaps first widely adopted attempt at using a workstation
cluster as a multicomputer platform, developed by Oak
Ridge National Laboratories. Available at no charge.

Programmer decomposes problem into separate programs
(usually master and group of identical slave programs).

Programs compiled to execute on specific types of
computers.

Set of computers used on a problem first must be defined
prior to executing the programs (in a hostfile).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.22

Message routing between computers done by PVM daemon processes
installed by PVM on computers that form the virtual machine.

PVM

Application

daemon

program

Workstation

PVM
daemon

Application
program

Application
program

PVM
daemon

Workstation

Workstation

Messages
sent through
network

(executable)

(executable)

(executable)

MPI implementation we use is similar.

Can have more than one process
running on each computer.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.23

MPI
(Message Passing Interface)

• Message passing library standard developed
by group of academics and industrial partners
to foster more widespread use and portability.

• Defines routines, not implementation.

• Several free implementations exist.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.24

MPI
Process Creation and Execution

• Purposely not defined - Will depend upon
implementation.

• Only static process creation supported in MPI version 1.
All processes must be defined prior to execution and
started together.

• Originally SPMD model of computation.
• MPMD also possible with static creation - each program

to be started together specified.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.25

Communicators

• Defines scope of a communication operation.

• Processes have ranks associated with communicator.

• Initially, all processes enrolled in a “universe” called
MPI_COMM_WORLD, and each process is given a
unique rank, a number from 0 to p - 1, with p
processes.

• Other communicators can be established for groups of
processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.26

Using SPMD Computational Model
main (int argc, char *argv[])

{
MPI_Init(&argc, &argv);

.

.
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /*find process rank */

if (myrank == 0)
master();

else

slave();
.
.

MPI_Finalize();
}

where master() and slave() are to be executed by master
process and slave process, respectively.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.27

Unsafe message passing - Example

lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…);(a) Intended behavior

(b) Possible behavior
lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…);

Destination

Source

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.28

MPI Solution
“Communicators”

• Defines a communication domain - a set of
processes that are allowed to communicate
between themselves.

• Communication domains of libraries can be
separated from that of a user program.

• Used in all point-to-point and collective MPI
message-passing communications.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.29

Default Communicator
MPI_COMM_WORLD

• Exists as first communicator for all processes
existing in the application.

• A set of MPI routines exists for forming
communicators.

• Processes have a “rank” in a communicator.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.30

MPI Point-to-Point Communication

• Uses send and receive routines with
message tags (and communicator).

• Wild card message tags available

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.31

MPI Blocking Routines

• Return when “locally complete” - when location
used to hold message can be used again or
altered without affecting message being sent.

• Blocking send will send message and return -
does not mean that message has been
received, just that process free to move on
without adversely affecting message.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.32

Parameters of blocking send

MPI_Send(buf, count, datatype, dest, tag, comm)

Address of

Number of items

Datatype of

Rank of destination

Message tag

Communicator
send buffer

to send

each item

process

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.33

Parameters of blocking receive

MPI_Recv(buf, count, datatype, src, tag, comm, status)
Address of

Maximum number

Datatype of

Rank of source

Message tag

Communicator

receive buffer

of items to receive

each item

process

Status
after operation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.34

Example

To send an integer x from process 0 to process 1,

MPI_Comm_rank(MPI_COMM_WORLD,&myrank); /* find rank */

if (myrank == 0) {
int x;
MPI_Send(&x, 1, MPI_INT, 1, msgtag, MPI_COMM_WORLD);

} else if (myrank == 1) {
int x;
MPI_Recv(&x, 1, MPI_INT,
0,msgtag,MPI_COMM_WORLD,status);

}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.35

MPI Nonblocking Routines

• Nonblocking send - MPI_Isend() - will return
“immediately” even before source location is
safe to be altered.

• Nonblocking receive - MPI_Irecv() - will return
even if no message to accept.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.36

Nonblocking Routine Formats

MPI_Isend(buf,count,datatype,dest,tag,comm,request)

MPI_Irecv(buf,count,datatype,source,tag,comm, request)

Completion detected by MPI_Wait() and MPI_Test().

MPI_Wait() waits until operation completed and returns then.
MPI_Test() returns with flag set indicating whether operation completed

at that time.

Need to know whether particular operation completed.
Determined by accessing request parameter.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.37

Example

To send an integer x from process 0 to process 1
and allow process 0 to continue,

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find rank */
if (myrank == 0) {

int x;
MPI_Isend(&x,1,MPI_INT, 1, msgtag, MPI_COMM_WORLD, req1);
compute();
MPI_Wait(req1, status);

} else if (myrank == 1) {
int x;
MPI_Recv(&x,1,MPI_INT,0,msgtag, MPI_COMM_WORLD, status);

}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.38

Send Communication Modes

• Standard Mode Send - Not assumed that corresponding
receive routine has started. Amount of buffering not defined
by MPI. If buffering provided, send could complete before
receive reached.

• Buffered Mode - Send may start and return before a
matching receive. Necessary to specify buffer space via
routine MPI_Buffer_attach().

• Synchronous Mode - Send and receive can start before
each other but can only complete together.

• Ready Mode - Send can only start if matching receive
already reached, otherwise error. Use with care.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.39

• Each of the four modes can be applied to
both blocking and nonblocking send routines.

• Only the standard mode is available for the
blocking and nonblocking receive routines.

• Any type of send routine can be used with
any type of receive routine.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.40

Collective Communication

Involves set of processes, defined by an intra-communicator.
Message tags not present. Principal collective operations:

• MPI_Bcast() - Broadcast from root to all other processes
• MPI_Gather() - Gather values for group of processes
• MPI_Scatter() - Scatters buffer in parts to group of processes
• MPI_Alltoall() - Sends data from all processes to all processes
• MPI_Reduce() - Combine values on all processes to single value
• MPI_Reduce_scatter() - Combine values and scatter results
• MPI_Scan() - Compute prefix reductions of data on processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.41

Example
To gather items from group of processes into process
0, using dynamically allocated memory in root
process:

int data[10]; /*data to be gathered from processes*/
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find rank */
if (myrank == 0) {

MPI_Comm_size(MPI_COMM_WORLD, &grp_size); /*find group size*/
buf = (int *)malloc(grp_size*10*sizeof (int)); /*allocate

memory*/
}
MPI_Gather(data,10,MPI_INT,buf,grp_size*10,MPI_INT,0,MPI_COMM_WORLD) ;

MPI_Gather() gathers from all processes, including root.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.42

Barrier routine

• A means of synchronizing processes by
stopping each one until they all have reached
a specific “barrier” call.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.43

Sample MPI program

#include “mpi.h”
#include <stdio.h>

#include <math.h>
#define MAXSIZE 1000
void main(int argc, char *argv)

{
int myid, numprocs;

int data[MAXSIZE], i, x, low, high, myresult, result;
char fn[255];
char *fp;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);
if (myid == 0) { /* Open input file and initialize data */

strcpy(fn,getenv(“HOME”));

strcat(fn,”/MPI/rand_data.txt”);
if ((fp = fopen(fn,”r”)) == NULL) {

printf(“Can’t open the input file: %s\n\n”, fn);
exit(1);

}

for(i = 0; i < MAXSIZE; i++) fscanf(fp,”%d”, &data[i]);
}

MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD); /* broadcast data */
x = n/nproc; /* Add my portion Of data */
low = myid * x;

high = low + x;
for(i = low; i < high; i++)

myresult += data[i];
printf(“I got %d from %d\n”, myresult, myid); /* Compute global sum */
MPI_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0) printf(“The sum is %d.\n”, result);
MPI_Finalize();

}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.44

Evaluating Parallel Programs

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.45

Sequential execution time, ts: Estimate by
counting computational steps of best sequential
algorithm.

Parallel execution time, tp: In addition to number
of computational steps, tcomp, need to estimate
communication overhead, tcomm:

tp = tcomp + tcomm

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.46

Computational Time
Count number of computational steps.
When more than one process executed simultaneously,
count computational steps of most complex process.
Generally, function of n and p, i.e.

tcomp = f (n, p)

Often break down computation time into parts. Then
tcomp = tcomp1 + tcomp2 + tcomp3 + …

Analysis usually done assuming that all processors are
same and operating at same speed.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.47

Communication Time

Many factors, including network structure and
network contention. As a first approximation,
use

tcomm = tstartup + ntdata

tstartup is startup time, essentially time to send a
message with no data. Assumed to be constant.
tdata is transmission time to send one data word,
also assumed constant, and there are n data
words.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.48

Idealized Communication Time

Number of data items (n)

Startup time

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.49

Final communication time, tcomm
Summation of communication times of all
sequential messages from a process, i.e.

tcomm = tcomm1 + tcomm2 + tcomm3 + …

Communication patterns of all processes assumed
same and take place together so that only one
process need be considered.

Both tstartup and tdata, measured in units of one
computational step, so that can add tcomp and tcomm
together to obtain parallel execution time, tp.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.50

Benchmark Factors
With ts, tcomp, and tcomm, can establish speedup
factor and computation/communication ratio for
a particular algorithm/implementation:

Both functions of number of processors, p, and
number of data elements, n.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.51

Factors give indication of scalability of parallel
solution with increasing number of processors and
problem size.

Computation/communication ratio will highlight
effect of communication with increasing problem
size and system size.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.52

Debugging/Evaluating Parallel
Programs Empirically

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.53

Visualization Tools
Programs can be watched as they are executed in
a space-time diagram (or process-time diagram):

Process 1

Process 2

Process 3

TimeComputing
Waiting
Message-passing system routine
Message

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.54

Implementations of visualization tools are
available for MPI.

An example is the Upshot program visualization
system.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.55

Evaluating Programs Empirically
Measuring Execution Time

To measure the execution time between point L1 and point L2
in the code, we might have a construction such as

.
L1: time(&t1); /* start timer */

.

.
L2: time(&t2); /* stop timer */

.
elapsed_time = difftime(t2, t1); /* elapsed_time = t2 - t1 */
printf(“Elapsed time = %5.2f seconds”, elapsed_time);

MPI provides the routine MPI_Wtime() for returning time (in
seconds).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.56

Parallel Programming Home Page

http://www.cs.uncc.edu/par_prog

Gives step-by-step instructions for compiling
and executing programs, and other information.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.57

Compiling/Executing MPI Programs
Preliminaries

• Set up paths
• Create required directory structure
• Create a file (hostfile) listing machines to be

used (required)

Details described on home page.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.58

Hostfile
Before starting MPI for the first time, need to

create a hostfile

Sample hostfile
ws404
#is-sm1 //Currently not executing, commented
pvm1 //Active processors, UNCC sun cluster called pvm1 - pvm8
pvm2
pvm3
pvm4
pvm5
pvm6
pvm7
pvm8

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.59

Compiling/executing (SPMD) MPI program
For LAM MPI version 6.5.2. At a command line:

To start MPI:
First time: lamboot -v hostfile
Subsequently: lamboot

To compile MPI programs:
mpicc -o file file.c

or mpiCC -o file file.cpp

To execute MPI program:
mpirun -v -np no_processors file

To remove processes for reboot
lamclean -v

Terminate LAM
lamhalt

If fails
wipe -v lamhost

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.60

Compiling/Executing Multiple MPI Programs

Create a file specifying programs:

Example
1 master and 2 slaves, “appfile” contains

n0 master
n0-1 slave

To execute:
mpirun -v appfile

Sample output
3292 master running on n0 (o)
3296 slave running on n0 (o)
412 slave running on n1

