L
<ANVIDIA. S

LLINOIS

Lecture 3.2 — CUDA Parallelism Model

Obijective
— To understand multidimensional Grids

— Multi-dimensional block and thread indices
— Mapping block/thread indices to data indices

@mon [Buma |

. Block Block
0,0 0,1
Block Block
1,0 1,1

1,0,0 1,0,1 1,0,2 1,0,3

Processing a Picture with a 2D Grid

16x16 blocks

62x76 picture

anvon [Bus [

Row-Major Layout in C/C++

M
v Row*Width+Col = 2*4+1 = 9
M, M, M, M,
M T
v

T

MO,O MO,I M0,2 MO,3

@mon | Buaws [|

Source Code of a PictureKernel

__global__ void PictureKernel(float* d_Pin, float* d_Pout,
int height, int width)
{

// Calculate the row # of the d_Pin and d_Pout element
int Row = blockldx.y*blockDim.y + threadldx.y;

// Calculate the column # of the d_Pin and d_Pout element
int Col = blockldx.x*blockDim.x + threadldx.Xx;

// each thread computes one element of d_Pout if in range
if ((Row < height) && (Col < width)) {
d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
}
}

Scale every pixel value by 2.0

Host Code for Launching PictureKernel

/[assume that the picture is m X n,

/[m pixels in y dimension and n pixels in x dimension

/l input d_Pin has been allocated on and copied to device
/l output d_Pout has been allocated on device

dim3 DimGrid((n-1)/16 + 1, (m-1)/16+1, 1);

dim3 DimBlock(16, 16, 1);
PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);

@rvon [Buma [

Covering a 62x76 Picture with 16x16 Blocks

16x16 block

Not all threads in a Block will follow the same control flow path.

anvon [Bus [

GPU Teaching Kit
<ANVIDIA. i

ILLINOIS

