
1 

VERIFICA DI PROCESSI CONCORRENTI 
VPC 16-17 

Timed models 

Prof.ssa  Susanna Donatelli 

Universita’ di Torino 

www.di.unito.it 

susi@di.unito.it 

http://www.di.unito.it/


2 

Reference material books: 

Prof. Jost-Pieter Katoen 

(University of Aachen, D) 



3 

Acknowledgements  

Transparencies adapted from the course notes and 
trasparencies of 

Prof. Jost-Pieter Katoen, University of Aachen (Germany) 

….  



4 

Dealing with time 

Why is time introduced in formalisms for system 
verification? 

 Correctness may depend also on time (think of the 
operations of a pipelined CPU) 

 Usefulness may depend on time (when I call the lift, 
when the lift will come , or I want to compute how long 
does a production line takes) 

 
To check a timed property the time should be explicitely 

represented in the model 
 
We can check also untimed property on a timed model 

(example: reachability of a marking in a timed Petri 
net) 

 
 

 



5 

Dealing with time 
 

What is a time specification 
 

1. A value   fixed delay for an activity 

 
2. An interval (min-max)  the duration of an activity 

is a non deterministic value in the interval 
 

3. A stochastic distribution  the duration of an 
activity is a value is extracted from a distribution 
 

4. The possibility of defining clocks as variables that 
increase constantly 
 

5. A mix of the above 
 
 



6 

Dealing with time 
 

Continuous or discrete? 
 

Discrete:  
 time is a discrete entity 
 time elapses in regular ticks 
 events/activities can happen only at ticks 
 between two ticks the system stays unchanged 
 used to represent synchronous system (system with a 
global discrete clock) 
 can represent an abstraction of a continuous system 
 ex1: imagine a discrete time Petri net, in which all firing 
have equal duration 
  ex2: imagine a discrete time Petri net, in which  firings 
have different discrete durations 
 

 
 



7 

PN examples 

2

t t' t t'

t"

t

t'

1

2 4

53

d

b c e

f

6

a

 

p1 

p2 

t2 

t1 

 

p3 

p4 

t4 

t3 



8 

PN examples 

 

p1 

p2 

t2 

t1 

 

p3 

p4 

t4 

t3 



9 

PN examples 

2

t t' t t'

t"

t

t'



10 

PN examples 

1

2 4

53

d

b c e

f

6

a



11 

 PN examples 

 

Property of interest: how often does the lazy chap 
cooks, for how long does it cook? 

Exists an execution in which he eats only for X unit 
time? 

 



12 

Dealing with time 
 

What is the state of the system? 
  

 value of the variables plus value of clocks 
 marking plus value of clocks 
 process algebra terms plus the value of clocks 

 

How many states do we have? 
 
How do we express temporal properties? 

 use temporal logic without time (X “accounts” for time) 

 use temporal logic in which temporal operators have a 

time interval A[U [t1,t2]]  
 



13 

Dealing with time 
Continuous or discrete? 
 
Continous:  

 time is a continuous entity (modelled as a real non-
negative variable) 
 time elapses continuously 
 events/activities can happen at any instant of time 
 time between two events can be arbitrarily  small 
 used to represent asynchronous system  
 ex1: imagine a continuous  time Petri net, in which all 
activities have equal duration 
  ex2: imagine a continuous  time Petri net, in which  
activities have different durations 
  ex2: imagine a continuous  time Petri net, in which  
activities have different durations, chosen non 
deterministically in a given interval 
 
 

 
 



14 

PN examples 

 

p1 

p2 

t2 

t1 

 

p3 

p4 

t4 

t3 

p1+p3 

p2+p3 

time 



15 

 PN examples 

 

Property of interest: how often does the lazy chap 
cooks, for how long does it cook? 

Exists an execution in which he eats only for X unit 
time? 

 



16 

Dealing with time 
 

What is the state of the system? 
  

 value of the variables plus value of clocks 
 marking plus value of clocks 
 process algebra terms plus the value of clocks 

 

How many states do we have? 
 
How do we express temporal properties? 

 use temporal logic in which temporal operators have a 
time interval A[U [t1,t2]]  

 



17 

Some timed formalisms and logics 

 

Timed automata 
 

Timed Petri nets 
 
Timed process algebra 
 
Timed CTL (TCTL) example: a leader is elected within 3 
seconds 

 
Note: there is no probabilistic reasoning, only non determinism 
and “possibility” 

 
 

Semantics is given in 
terms of Timed transition 
system, the system of 
timed executions } 



18 

Timed automata part 

 Syntax of timed automata 

 State of a finite automata, execution paths 
and timed transition systems 

 Semantics of timed automata (in terms of a 
timed transition system) 

 TCTL syntax and semantics 

 Model checking TCTL 

 Timed automata and temporal logic in Uppaal 



19 

Timed automata 

 Finite-state graph with locations and edges  

 + clock variables 

 + …… 

 Time elapses in location, not in edges 

 Example: light switch, with clock x 

off 
on 



20 

Timed automata 

 Finite-state graph with locations and edges  

 + clocks variables (run at the same speed) 

 + clock constraints that “constrain” the 
behaviour (examples: x3, x-y>5) 

off 

x2 

x3 

on 

A clock constraint 
can be a guard on 
an edge 

A clock constraint can be 
an invariant for a location 



21 

Timed automata 

off 

x2 

x3 

on 
{x:=0} 

{x:=0} 

 Finite-state graph with locations and edges  

 + clocks variables (run at the same speed) 

 + clock constraints  

 + clocks reset 
Clocks can be reset while 
taking the edge 



22 

Timed automata 
guard: limit the possibility 
of taking the edge 

clock reset: reset 
time count 

location invariant: 
force taking the 
edge 



23 

Timed automata 

Clock valuation 

x, y clocks 

 A possible execution 



24 

Timed automata: another example 



25 

Timed automata 

Def.: a clock is a variable ranging over R+ 

 

Def. Clock constraints. Let C be a set of clocks, with x  C 
and c a natural value, then  

The set of clock constraints over C is indicated with (C) or 
Cstr(C) 

 

 



26 

Timed automata 

Note: adding x+y to clock constraints makes the MC 
undecidable (and x-y)? 

Note: taking c over the real makes the MC 
undecidable (and for rational?) 



27 

Definition of timed automata 

Def.: A timed automata A is a tuple (L, l0, E, Label, C, 
clocks, guard, inv) with 

L a non empty and finite set of locations with initial location 
l0 

E LxL, a set of edges 

Label: L--> 2AP a function that assigns to each location a 
set Label(l) of atomic propositions 

C, a finite set of clocks 

clocks: E --> 2C, a function that assign to each edge e  E 
a set of clocks clocks(e)  --clocks to be reset  

guard: E --> Cstr(C),  a function that assign to each edge e 
 E a clock constraint guard(e)  

inv: L --> Cstr(C), a function  that assign to each location l 
 L a clock constraint inv(l) 



28 

Timed automata 

 Guards or invariants 



29 

Timed automata 

 Time diagram 



30 

Timed automata 

 Time diagram 



31 

Timed automata 

 Time diagram 



32 

Timed automata 

 Time diagram 



33 

Timed automata 

 Def.: clock valuation v for a set of clocks C is a function  

 v: C-->R+, assigning to each clock x in C its current value v(x) 

 

Def.: Let V(C) denote the set of all clock valuations over C. A state of a timed  
automata A is a pair 

(l,v) 

 with l a location of A and v a valuation over C, the clocks of A 

 

For positive real d, v+d is the valuation where each clock is incremented by 
d.  The valuation v with clock x reset is 



34 

Timed automata 

 Def.: evaluation  of clock constraints. For x  C, v  V(C), 
natural c and a and bCstr(C), we have  



35 

Timed Transition System (TTS) 

 Def.: Timed transition system  underlying a timed automata A, 
M(A), is defined as (S,s0,-->) where 



36 

 Def.: a  path  is an infinite sequence                 

where, for all i,  

An execution of a timed automata A is a path through its timed 
transition system M(A). 

The elapsed time on a path is defined as follow: 

Path of a TTS 



37 

Path of a TTS 



38 

Def.: a path is called   time-divergent  if  

 

Non timed-divergent paths in previous automata? 

 

Ex. of non time-div path: 

 

The set of time-divergent paths from a state s is 

 

Def: A timed automata A is called non-Zeno if from any state 
some time-divergent path can start  

Path of a TTS 



39 

L'esempio della lampadina a due livelli 

Example of a Timed automata 



40 

L'esempio della lampadina a due livelli 

Example of a Timed automata 



41 

Examples of Timed automata 



42 

Syntax: CTL + formula clocks that can be reset in formula 
 
Semantics defined over TTS 
 

Example of properties that can be expressed in TCTL 

Timed Computational Tree Logic (TCTL) 



43 

Def: For pAP, zD, D the set of formula clocks, and      

aCstr(C D), the set of TCTL formulae is given by: 

 

 

 

 

Clock z in “z in F” is called a freeze identifier,  and it means: “z 
in F” is valid in state s if F holds in s where clock z starts from 0 

 

For example: “z in (z=0)” is valid (true in any state) while “z in 
(z>1)” is not 

 

Clocks have to be bounded to  the formula 

Timed Computational Tree Logic 



44 

Not a very convenient way to express timed properties, and a 
number of derived operators have been defined: 

Timed Computational Tree Logic 



45 

L'esempio della lampadina a due livelli 

Example of a Timed automata 



46 

Semantics: need to define (i,d), position over a path and an 
order relationship on position 

This definition is wrong in Katoen’s notes (as was in the original 
paper of Alur and Dill of 1989/90) 

Timed Computational Tree Logic 



47 

Timed Computational Tree Logic 

Def.: A RT-trajectory s is an infinite sequence of states si =(li,vi) 

and delays di:  

s = s0  -d0->  s1  -d1->  s2  -d2->  s3 -d3->………… 

 

Def.: A position in  s is the pair (i,d):  iN and  ddi  
 

Def.: location in the position (i,d) is  loc(i,d) = li 

Def.: valuation in the position (i,d) is val(i,d) = vi +d  

Def.: state in position (i,d) is 

s(i,d) = ( loc(i,d), val(i,d) ) 



48 

Timed Computational Tree Logic 

Def.: time elapsed at  position (i,d) is  

ts(i,d) = d + S0j<i di 

 

Def. of precedence on positions: we say that (i,d) precedes 

(j,d’) and we write (i,d)<<(j,d’) if: 

 i < j                   or  

 i = j  and dd’ 



49 

Def: Semantics of TCTL. Let pAP, zD, wV(D), sS (States 

of the TTS), aCstr(C D), s=(l,v), vV(C), the set of TCTL 
formulae is given by: 

Timed Computational Tree Logic 



50 

………cont.: let pAP, zD, wV(D), sS, aCstr(C D),  

           the RT-trajectories starting in s,  

Timed Computational Tree Logic 



51 

Why it is necessary that … 

 

Consider the formula 

reset z in E(z<=5 U z>5)  

then on paths on which the delays  on the paths are almost zero 
we approach 5: it is not possible to find “the point” in which z 
become >5 for the first time 

Timed Computational Tree Logic 



52 

Promptness requirement: maximal delay between an event and 
its reaction 

Example of TCTL 

Punctuality requirement: exact delay between events 



53 

Example of TCTL 

Periodicity requirement: an event occur within a certain period 

Example: a machine that put boxes on a belt every 25 time units 

Attention: the correct version of the above formula is  

AG ( putbox  z in [(not(putbox) or z=0) U (putbox and z =25)]) 

 

Same correction for the formulas in the next pages 



54 

Minimal delay: minimal delay between events 

Example: the delay between two trains  at a crossing (tac) 
should be at least 180 

Example of TCTL 

Interval delay: an event must occur within a certain interval 
from another event 

Example: trains should have a maximal distance of 900 time 
units (the minimal delay still holds) 



55 

Even simple automata give rise to infinite TTS, the infinite 
number of states is due to the real valuations of clocks 

Solution: a finite number of equivalence classes on the clock 
valuations. Equivalence should maintain….. 

Question: what could be such equivalence on the TA below?  

Clock equivalence 



56 

Solution: a finite number of equivalence classes on the clock 
valuations.  

Define an equivalence  that should have the following 
characteristics: 

 correctness: (v,w)  (v’,w’) ==> F: (v,w)|=F sse (v’,w’)|=F 

 finiteness: the number of equivalence classes of  is finite 

 

 

Approach: we present the definition and we explain why each 
constraint is needed 

 

Clock equivalence 



57 

Approach: we present the definition and we explain why each 
constraint is needed. Lex cx be the maximal constant that appears 
in a constraint on x 

 

Clock equivalence 



58 

1st observation: may be we can use only the integral part  

Clock equivalence 

2nd observation: the integral part is not enough, also the relative 
order of clocks should be taken into account  

When v(x)=0.4 and v(y)=0.3, A can reach l2 

 when v(x)=0.2 and v(y)=0.3, A cannot reach l2 



59 

3rd observation: since in the constraint the comparison is with 
natural numbers, it can make a difference whether v(x)=n  or 
v(x)=n.m 

Clock equivalence 

4th observation: all valuation are of interest only when they do 
not pass cx be the maximal constant that appears in a constraint 
on x 

When v(x)=1.1 and v’(x)=1, the clocks have the same integral 
part but only from v’ we can take the transition to l1 



60 

This lead to the following definition (Alur-Dill 1994): 

Clock equivalence 



61 

Equivalence - example 

The first requirement leads to the following eq. classes 

Since the biggest constant with which x is compared is 2, 

Separating according to the fractional part 

Clock ordering irrelevant (only one clock) 



62 

Def.: the equivalence classes according to the previous definition 
can be constructed using a partition refinement algorithm (there 
is an example of application on page 220 of the book, that leads 
to the following construction) 

Equivalence - example 



63 

The theorem below (Alur-Dill-Courcoubetis) states that regions 
can be safely used for TCTL model checking  

Equivalence  and TCTL 



64 

Def.: a region is a pair (l,[v]), where l is a location and [v] an 
equivalence class over clock valuations 

We can build a finite state automata over region, called region 
automata. 

In region automata there are two types of transitions: let time 
elapse or take a transition in the TA  

Region automata 

region automata 
for the single 
location automata 
used before 



65 

Def.: a region is a pair (l,[v]), where l is a location and [v] an 
equivalence class over clock valuations 

We can build a finite state automata over region, called region 
automata. 

In region automata there are two types of transitions: let time 
elapse or take a transition in the TA  

Region automata 

region automata 
for the single 
location automata 
used before 



66 

What happens when there are also formula clocks? We have to include also 
formula clocks in the computation of the equivalences 

Region automata 


