" VERIFICA DI PROCESSI CONCORRENTI
VPC 16-1/

Timed models

Prof.ssa Susanna Donatelli
Universita’ di Torino
www.di.unito.it
susi@di.unito.it

http://www.di.unito.it/

ﬁ Reference material books:

Concepts, Algorithms, and Tools

for

Model Checking

Joost-Pieter Katoen
Lehrstuhl fiir Informatik VI

Friedrich- Alexander Universitit Erlangen-Nilrnberg

Prof. Jost-Pieter Katoen
(University of Aachen, D)

!'_ Acknowledgements

Transparencies adapted from the course notes and
trasparencies of
«Prof. Jost-Pieter Katoen, University of Aachen (Germany)

Dealing with time

Why is time introduced in formalisms for system
verification?

= Correctness may de||3end also on time (think of the
operations of a pipelined CPU)

= Usefulness may depend on time (when I call the lift,
when the lift will come , or I want to compute how long
does a production line takes)

To check a timed property the time should be explicitely
represented in the model

We can check also untimed propertz on a timed model
(ex?mple: reachability of a marking in a timed Petri
net

ﬁDeaIing with time

What is a time specification

1.

2.

A value - fixed delay for an activity

An interval (min-max) - the duration of an activity
is @ non deterministic value in the interval

A stochastic distribution = the duration of an
activity is a value is extracted from a distribution

The possibility of defining clocks as variables that
increase constantly

A mix of the above

ﬁDeaIing with time

Continuous or discrete?

Discrete:
m time is a discrete entity
m time elapses in regular ticks
m events/activities can happen only at ticks
m between two ticks the system stays unchanged

m used to represent synchronous system (system with a
global discrete clockg

m can represent an abstraction of a continuous system

m ex1: imagine a discrete time Petri net, in which all firing
have equal duration

m ex2: imagine a discrete time Petri net, in which firings
have different discrete durations v

(A +> fro

PN examples Jf’”ﬁ

<+ ¢4

SRR
t1 Cg 1 8 (g A /@/ t= 2
p2 p4

* PN examples

Q 2
S’(6 t1) 13 (
| \ + QB "’&0 p28> p4é>

l / /

[m— (14—
Q 12 IN TER LeAviv G
¢ + ¢

pr+ 0> vl
£ I 1
l . / \) J
P 2L+ 0D er+fy T=d
N AT N Y

* PN examples

<

9

ot
LG

J«—O=—]]
D\@
4

PN examples

10

ﬁ PN examples O/vl’“"?}g]
\7)/70‘{1
[3,%)

]
alk 4o

t,l p1 t2

Property of interest: how often does the lazy chap
cooks, for how long does it cook?

Exists an execution in which he eats only for X unit
time? 11

Dealing with time

What is the state of the system?

= value of the variables plus value of clocks v
= marking plus value of clocks v/
m process algebra terms plus the value of clocks v/

How many states do we have? v

How do we express temporal properties?
m use temporal logic without time (X “accounts” for time)

m use temporal logic ir ch temporal operators have a
time interval A[p(] A ‘7/2‘”‘”‘ \7
ooy

| Dealing with time
Co te?

Continous:

= time is a continuous entity (modelled as a real non-
negative variable)

m time elapses continuously

m events/activities can happen at any instant of time
m time between two events can be arbitrarily small
m used to represent asynchronous system

m ex1: imagine a continuous time Petri net, in which all
activities have equal duration

m ex2: imagine a continuous time Petri net, in which
activities have different durations

m ex2: imagine a continuous time Petri net, in which
activities have different durations, chosen non

deterministically in a given interval 13

PN examples

T b2
t1 3 7= /(’3 , Vs?@)
p2(g p4(g
1 1
12— t4—
pl+p3—
p2+p3

» time
00,1 2 ™ 4

14

ﬁ PN examples

Property of interest: how often does the lazy chap
cooks, for how long does it cook?

Exists an execution in which he eats only for X unit
time? .5

Dealing with time

What is the state of the system?

= value of the variables plus value of clocks
m marking plus value of clocks
m process algebra terms plus the value of clocks

How many states do we have?

How do we express temporal properties?

m use temporal logic in which temporal operators have a
time interval A[p U [t2]y]

16

*Some timed formalisms and logics

- Semantics is given in
Timed automata terms of Timed transition
system, the system of
timed executions

Timed Petri nets

Timed process algebra

Timed CTL (TCTL) example: a leader is elected within 3
seconds

Note: there is no probabilistic reasoning, only non determinism
and “possibility”

17

Timed automata part

Syntax of timed automata

State of a finite automata, execution paths
and timed transition systems

Semantics of timed automata (in terms of a
timed transition system)

TCTL syntax and semantics
Model checking TCTL
Timed automata and temporal logic in Uppaal

18

* Timed automata

= Finite-state graph with locations and edges
+ clock variables

= [ime elapses in location, not in edges
= Example: light switch, with clock x

pei

19

* Timed automata

= Finite-state graph with locations and edges
+ clocks variables (run at the same speed)

+ clock constraints that “constrain” the
behaviour (examples: x<3, x-y>5)

A clock constraint can be
an invariant for a location

A clock constraint - X>2
can be a guard on
an edge

20

* Timed automata

= Finite-state graph with locations and edges
+ clocks variables (run at the same speed)
+ clock constraints

+ clocks reset
Clocks can be reset while
/ taking the edge

{X:=0} 4,

oo

X>2

21

"1 Timed automata

guard: limit the possibility
of taking the edge

location invariant:
force taking the
edge

clock reset: reset
time count

X222 Vv
{x} =0

—

22

Timed automata

X, Yy clocks

A possible execution

6.0t

So4m
x 0 4.1 4.1
y 0 4.1 0

Clock valuation

‘*Timed automata: another example

(D—=
d y:=0

24

* Timed automata

Def.: a clock is a variable ranging over R+

Def. Clock constraints. Let C be a set of clocks, with x € C
and ¢ a natural value, then

1. x < ¢ and x < ¢ are clock constraints

2. If « 1s a clock constraint, then — « is a clock constraint
3. If o and § are clock constraints, then o A S is a clock constraint

4. Anything else is not a clock constraint.

The set of clock constraints over C is indicated with ¥(C) or
Cstr(C)

25

* Timed automata

Note: adding x+y to clock constraints makes the MC
undecidable (and x-y)?

Note: taking c over the real makes the MC
undecidable (and for rational?)

26

* Definition of timed automata

Def.: A timed automata A is a tuple (L, |,, E, Label, C,
clocks, guard, inv) with

=L a non empty and finite set of locations with initial location
IO
sEc LxL, a set of edges

sLabel: L--> 2AP a function that assigns to each location a
set Label(l) of atomic propositions

=C, a finite set of clocks

sClocks: E --> 2¢, a function that assign to each edge e € E
a set of clocks clocks(e) --

sguard: E --> Cstr(C), a function that assign to each edge e
e E a clock constraint guard(e)

sinv: L --> Cstr(C), a function that assign to each location |
e L a clock constraint inv(l) 27

* Timed automata

Guards or invariants

@ ®

>
v
N
N
IA
>
IA
W

~
>
—
1
-
~—
>
—
|
o

* Timed automata

Time diagram

L

value

Q :z:-{,>,}2 of x ,

29

* Timed automata

Time diagram

* Timed automata

Time diagram

31

* Timed automata

Time diagram

y =2 ?

{y} 4
clock
value

T =2 2

32

Timed automata

Def.: clock valuation v for a set of clocks C is a function
v: C-->R*, assigning to each clock x in C its current value v(x)

Def.: Let V(C) denote the set of all clock valuations over C. A state of a timed
automata A is a pair

(Lv)

with | a location of A and v a valuation over C, the clocks of A

For positive real @, v+dis the valuation where each clock is incremented by
d. The valuation v with clock x reset is

(reset = in v)(y) = { v(y) fy#z

33

Timed automata

Def.: evaluation of clock constraints. For x € C, v € V(C),

natural c and a and BeCstr(C), we have

ST S S

— r < C
— r < ¢
— 1y

—a N\ S

iff v(z) < ¢
iff v(z) < e

iff v
iff v

=X

— o N\ v

34

Timed Transition System (TTS)

Def.: Timed transition system underlying a timed automata A,

M(A), is defined as (S,s,,-->) where

e S—{(lLv)e Lx V() |vE inv(l)

o 359 = (lp, vg) where vo(x) = 0 for all 4

e the transition relation

1. ({,v) — (I', reset
(a) e=(I,I') e I

(b) v | guard(e)
(c) (reset clocks(

2. (I,v) -5 (1, v+d)

Vd <d vt

w0

— C 5 x (K

clocks(e) in 1

and

e) in v) = inv

-

}
e (C
" U {*}) x S is defined by the rules:

) if the following conditions hold:

)

, for positive teal d, if the following condition holds:

d = inv(l).

35

Path of a TTS

. - - ag aj
Def.: a path is an infinite sequence so — §1 — ...
where, for all j s; —= s;11

An execution of a timed automata A is a path through its timed
transition system M(A).

The elapsed time on a path is defined as follow:

Definition 44. (Elapsed time on a path)

For path ¢ = sy — s1 —» ... and natural 4, the time elapsed from sg to s;,
denoted A(o,1), is defined by:

A(c,0) = 0

0 ifag;=x

A(G’Z—l_l) A(G’Z) + { a; if a; € IR,Jr.

36

o

Path of a TTS

z 2

()

— (oﬂ' 0) — (off, v1) —= (011 V) — (om,v3) — (on,vy)
L5 (om, vs) == (on,v6) — (on,v7) == (off,vg)...

37

Path of a TTS

Def.: a path is called time-divergent if lim;_,. A(o,i) = 00

Non timed-divergent paths in previous automata?

: : 2-1 22 23 9—k+1
Ex. of non time-div path: so — s1 — s2 = 83...8s =— Sk (1...

The set of time-divergent paths from a state s is Paths™(s)

Def: A timed automata A is called non-Zeno if from anv state

true

some time-divergent path can start {2}

fme 38

* Example of a Timed automata

'esempio della lampadina a due livelli

press?

(a) Lamp. (b) User.

39

. | Example of a Timed automata

L'esempio della lampadina a due livelli

Lamp.) (b) User.
F(bogth h 47

(M,t\ro)(: EFSA Lw&% Tam EF (LJW /\{54)
F e @w,m.;)#— EF’C Lu(rM’ -2 WmET (W/\ 276)

(a)
Uﬁow,%B F €

L Examples of Timed automata

(a) Lamp. (b) User.

41

imed Computational Tree Logic (TCTL)

Sy : CTL + formula clocks that can be reset in formula

Semantics defined over TTS

Example of properties that can be expressed in TCTL

* If a message is sent,
it IS received within at most 5 time units.

AG (send(m) — AF® receive(m))

* |tis possible to reach a red state
from each blue state immediately.
AG (blue — EF™ red)

* The program finishes exactly after 5 time units.

A (~finished U™ finished) "

ﬁ Timed Computational Tree Logic

Def: For peAP, zeD, D the set of formula clocks, and
aeCstr(C WD), the set of TCTL formulae is given by:

=p|a|-o|eve|zing|ElsUg||AlpU

Clock z in "z in ®@" is called a freeze identifier, and it means: “z
in ®” is valid in state s if ® holds in s where clock z starts from 0

For example: “z in (z=0)" is valid (true in any state) while “z in
(z>1)"is not

Clocks have to be bounded to the formula 43

ﬁ Timed Computational Tree Logic

Not a very convenient way to express timed properties, and a
number of derived operators have been defined:

c E(PUW) =resetzinE (P U (zsn A W))
c A(DU"W) =resetzin A(D U (z<n A W))

e EF" O =reset zin EF (z=n A ®)
s AF*" @ = reset z in AF (zsn A O)
s EG™ O = 2AF 2O

« AG"OD =EF" 0

. | Example of a Timed automata

L'esempio della lampadina a due livelli

Lamp.) (b) User.
F(bogth h 47

(M,t\ro)(: EFSA Lw&% Tam EF (LJW /\{54)
F e @w,m.;)#— EF’C Lu(rM’ -2 WmET (W/\ 276)

(a)
Uﬁow,%B F €

* Timed Computational Tree Logic

Semantics: need to define (i,d), position over a path and an
order relationship on position

This definition is wrong in Katoen’s notes (as was in the original
paper of Alur and Dill of 1989/90)

46

i Timed Computational Tree Logic

Def.: A RT-trajectory o is an infinite sequence of states s; =(l,v;)
and delays 4,:

G =Sy —0j—> Sy —0;=> Sy —0,=> S3—03—>..crrrrnnnn.

Def.: A position in o is the pair (i,0): ie N and <5,

Def.: location in the position (i,5) is loc(i,5) = |
Def.: valuation in the position (i,5) is val(i,6) = v, +6
Def.: state in position (i,8) is

c(i,6) = (loc(i,0), val(i,5))

47

* Timed Computational Tree Logic

Def.: time elapsed at position (i,d) is

1,(1,8) = & + 2gsi<i O

Def. of precedence on positions: we say that (i,0) precedes
(j,0") and we write (i,86)<<(j,0") if:

li<j or

=i =j and 6<d’

48

i Timed Computational Tree Logic

Def: Semantics of TCTL. Let p€AP, zeD, weV(D), seS (States

of the TTS), aeCstr(C WD), s=(l,v), veV(C), the set of TCTL
formulae is given by:

S, W
8, w

S, W

— P
—

=~

S, W

|
AES
<
<

— 2 in ¢

(£, ;—f \

Lve VCC)

we

iff p € Label(s [/aéféﬂ)

1ﬁ'va}:a
iff —(s,w = ¢)

iff (s, w = ¢) V (8,0 =)
iff s,reset z in w = ¢

V®)

49

* Timed Computational Tree Logic

......... cont.: let peAP, zeD, weV(D), s€S, aeCstr(C \UD),
PX{s) the RT-trajectories starting in s,

s,wEE[pUy] iff 3o € P¥(s).3(4,d) € Pos(o).

(o(i,d), w+A{o, i) E¥ A

V(G d) < (i,d). (5, d),wrA(o,j) F & V)
s, wE= AlpUy] iff Vo € PY(s).d(i,d) € Pos(o).

((o(t;d), wt(o,4)) =9 A

V4, d) < (4,d). (0(i,d'), wtA(o,4) F ¢ Vv ¥))

50

* Timed Computational Tree Logic

Why it is necessary that ... w+A(o,j)) E ¢ V ¢

Consider the formula
reset z in E(z<=5 U z>5)

then on paths on which the delays on the paths are almost zero
we approach 5: it is not possible to find “the point” in which z
become >5 for the first time

NCYV

Al

51

i Example of TCTL

Promptness requirement: maximal delay between an event and
Its reaction

AG [send(m) = AF s receive (r,,)

Zim A Feeone(2,) oud 24 4)
Punctuality requirement: exact delay between events

EG [send(m) = AF_q; receive (7))

52

ﬁ Example of TCTL

Periodicity requirement: an event occur within a certain period
Example: a machine that put boxes on a belt every 25 time units

AG |[AF_s5 puthox| W T o

1sc¢

AG [putbox = -~ putboxU_q5 putbox]

Attention: the correct version of the above formula is
AG (putbox = z in [(not(putbox) or z=0) U (putbox and z =25)])
\

Same correction for the formulas in the next pages

%L;_\; glm

53

ﬁ Example of TCTL

Minimal delay: minimal delay between events

Example: the delay between two trains at a crossing (tac)
should be at least 180

AG [tac = —tacUy,5 tac

Interval delay: an event must occur within a certain interval
from another event

Example: trains should have a maximal distance of 900 time
units (the minimal delay still holds)

AG [tac = (_l tac U:;;]_g[} tac A\ - taCU‘gggg tac)]

AG[tac = — tacU—,gp (AF¢r29 tac)] 4

ﬁ Clock equivalence

Even simple automata give rise to infinite TTS, the infinite
number of states is due to the real valuations of clocks

Solution: a finite number of equivalence classes on the clock
valuations. Equivalence should maintain.....

Question: what could be such equivalence on the TA below?

x =2
4}.® ~ ;.® gives rise to the
infinite transition system:

55

ﬁ Clock equivalence

Solution: a finite number of equivalence classes on the clock
valuations.

Define an equivalence = that should have the following
characteristics:

= correctness: (v,w) = (VW) ==> VO: (vw)|=d sse (V,W')|[=D

= finiteness: the number of equivalence classes of = is finite

Approach: we present the definition and we explain why each
constraint is needed

56

Clock equivalence

Approach: we present the definition and we explain why each

constraint is needed. Lex cx be the maximal constant that appears
In @ constraint on x

Definition 49. (Clock equivalence)

Let A be a timed automaton with set of clocks C and v, 2" € V(C). Then v =~ v’
if and only if

1. |v(z)| = |¥'(z)] or v(z) > ¢, and v'(z) > ¢, for all x € C, and

2. frac(v(z)) < frac(v(y)) iff frac(v'(z)) < frac(v'(y)) for all z,y € C with
v(z) € ¢ and v(y) < ¢, and

3. frac(v(x)) = 0 iff frac(v'(x)) = 0 for all z € C with v(z) < c,.
57

ﬁ Clock equivalence

1st observation: may be we can use only the integral part

v = v il and only if [v(z)] = [v'(z)] for all z € C.

2nd observation: the integral part is not enough, also the relative
order of clocks should be taken into account
T <1

{z} r=1 y =1
l > ={ |

{v}
When v(x)=0.4 and v(y)=0.3, A can reach |,
when v(x)=0.2 and v(y)=0.3, A cannot reach I,

v(z) < v(y) if and only if v'(z) < V'(y) for all x,y € C

58

ﬁ Clock equivalence

3rd observation: since in the constraint the comparison is with
natural numbers, it can make a difference whether v(x)=n or

v(X)=n.m
SGIREG,

When v(x)=1.1 and v'(x)=1, the clocks have the same integral
part but only from v’ we can take the transition to |4

frac{v(z)) = 0 if and only if frac(v'(x)) = 0 for all z € C.

4th observation: all valuation are of interest only when they do
not pass cx be the maximal constant that appears in a constraint
on X 59

Clock equivalence

This lead to the following definition (Alur-Dill 1994):

Definition 49. (Clock equivalence)

Let A be a timed automaton with set of clocks C and v, 2" € V(C). Then v =~ v’
if and only if

1. |v(z)| = |¥'(z)] or v(z) > ¢, and v'(z) > ¢, for all x € C, and

2. frac(v(z)) < frac(v(y)) iff frac(v'(z)) < frac(v'(y)) for all z,y € C with
v(z) € ¢ and v(y) < ¢, and

3. frac(v(x)) = 0 iff frac(v'(x)) = 0 for all z € C with v(z) < c,.

60

* Equivalence - example

The first requirement leads to the following eq. classes
D<) [I€<z<2,2<z<3,[3<x<d,...

Since the biggest constant with which x is compared is 2,
0L <1,1<e <2, |z=2], and [z > 2]

Separating according to the fractional part
[z =0,0<z<l],[z=1],[l <z <2],[x =2], and [x > 2]

Clock ordering irrelevant (only one clock)
61

* Equivalence - example

Def.: the equivalence classes according to the previous definition
can be constructed using a partition refinement algorithm (there
is an example of application on page 220 of the book, that leads

to the following construction)

[

=

\3

'—'I.

= -~

\
By

=]
b2

(a) (b) (c)

JI

Figure 4.7: Partitioning of R" x R" according to ~ forc, =2 and ¢, =1 62
g g g y

i Equivalence and TCTL

The theorem below (Alur-Dill-Courcoubetis) states that regions
can be safely used for TCTL model checking

Theorem 51.
Let 5,58 € S such that s,w ~ s, w'. For any TCTL-formula ¢, we have:

M(A), (s,w) E ¢ if and only if M(A), (s, w") E ¢.

63

i Region automata

Def.: a region is a pair (I,[v]), where | is a location and [v] an
equivalence class over clock valuations

We can build a finite state automata over region, called region
automata.

In region automata there are two types of transitions: let time
elapse or take a transition in the TA m>2

—_—

44"

region automata
for the single
location automata
used before

S A b J,«a.v.

64

i Region automata

Def.: a region is a pair (I,[v]), where | is a location and [v] an
equivalence class over clock valuations

We can build a finite state automata over region, called region
automata.

In region automata there are two types of transitions: let time
elapse or take a transition in the TA

C
R region automata
for the single
l D location automata
z used before

l<x <2

65

MR
* LR/egion autom&é]
What ha

ppens when there are also formula clocks? We have to include also

formula clocks in the computation of the equivalences A2
A B C D E " F

[l { !
x=10 O<z<l r=1 = 1<p<2

