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Dealing with time 

Why is time introduced in formalisms for system 
verification? 

 Correctness may depend also on time (think of the 
operations of a pipelined CPU) 

 Usefulness may depend on time (when I call the lift, 
when the lift will come , or I want to compute how long 
does a production line takes) 

 
To check a timed property the time should be explicitely 

represented in the model 
 
We can check also untimed property on a timed model 

(example: reachability of a marking in a timed Petri 
net) 
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Dealing with time 
 

What is a time specification 
 

1. A value   fixed delay for an activity 

 
2. An interval (min-max)  the duration of an activity 

is a non deterministic value in the interval 
 

3. A stochastic distribution  the duration of an 
activity is a value is extracted from a distribution 
 

4. The possibility of defining clocks as variables that 
increase constantly 
 

5. A mix of the above 
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Dealing with time 
 

Continuous or discrete? 
 

Discrete:  
 time is a discrete entity 
 time elapses in regular ticks 
 events/activities can happen only at ticks 
 between two ticks the system stays unchanged 
 used to represent synchronous system (system with a 
global discrete clock) 
 can represent an abstraction of a continuous system 
 ex1: imagine a discrete time Petri net, in which all firing 
have equal duration 
  ex2: imagine a discrete time Petri net, in which  firings 
have different discrete durations 
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PN examples 
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PN examples 
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PN examples 
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 PN examples 

 

Property of interest: how often does the lazy chap 
cooks, for how long does it cook? 

Exists an execution in which he eats only for X unit 
time? 
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Dealing with time 
 

What is the state of the system? 
  

 value of the variables plus value of clocks 
 marking plus value of clocks 
 process algebra terms plus the value of clocks 

 

How many states do we have? 
 
How do we express temporal properties? 

 use temporal logic without time (X “accounts” for time) 

 use temporal logic in which temporal operators have a 

time interval A[U [t1,t2]]  
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Dealing with time 
Continuous or discrete? 
 
Continous:  

 time is a continuous entity (modelled as a real non-
negative variable) 
 time elapses continuously 
 events/activities can happen at any instant of time 
 time between two events can be arbitrarily  small 
 used to represent asynchronous system  
 ex1: imagine a continuous  time Petri net, in which all 
activities have equal duration 
  ex2: imagine a continuous  time Petri net, in which  
activities have different durations 
  ex2: imagine a continuous  time Petri net, in which  
activities have different durations, chosen non 
deterministically in a given interval 
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PN examples 
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 PN examples 

 

Property of interest: how often does the lazy chap 
cooks, for how long does it cook? 

Exists an execution in which he eats only for X unit 
time? 
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Dealing with time 
 

What is the state of the system? 
  

 value of the variables plus value of clocks 
 marking plus value of clocks 
 process algebra terms plus the value of clocks 

 

How many states do we have? 
 
How do we express temporal properties? 

 use temporal logic in which temporal operators have a 
time interval A[U [t1,t2]]  
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Some timed formalisms and logics 

 

Timed automata 
 

Timed Petri nets 
 
Timed process algebra 
 
Timed CTL (TCTL) example: a leader is elected within 3 
seconds 

 
Note: there is no probabilistic reasoning, only non determinism 
and “possibility” 

 
 

Semantics is given in 
terms of Timed transition 
system, the system of 
timed executions } 
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Timed automata part 

 Syntax of timed automata 

 State of a finite automata, execution paths 
and timed transition systems 

 Semantics of timed automata (in terms of a 
timed transition system) 

 TCTL syntax and semantics 

 Model checking TCTL 

 Timed automata and temporal logic in Uppaal 
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Timed automata 

 Finite-state graph with locations and edges  

 + clock variables 

 + …… 

 Time elapses in location, not in edges 

 Example: light switch, with clock x 

off 
on 
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Timed automata 

 Finite-state graph with locations and edges  

 + clocks variables (run at the same speed) 

 + clock constraints that “constrain” the 
behaviour (examples: x3, x-y>5) 

off 

x2 

x3 

on 

A clock constraint 
can be a guard on 
an edge 

A clock constraint can be 
an invariant for a location 
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Timed automata 

off 

x2 

x3 

on 
{x:=0} 

{x:=0} 

 Finite-state graph with locations and edges  

 + clocks variables (run at the same speed) 

 + clock constraints  

 + clocks reset 
Clocks can be reset while 
taking the edge 
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Timed automata 
guard: limit the possibility 
of taking the edge 

clock reset: reset 
time count 

location invariant: 
force taking the 
edge 
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Timed automata 

Clock valuation 

x, y clocks 

 A possible execution 
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Timed automata: another example 
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Timed automata 

Def.: a clock is a variable ranging over R+ 

 

Def. Clock constraints. Let C be a set of clocks, with x  C 
and c a natural value, then  

The set of clock constraints over C is indicated with (C) or 
Cstr(C) 
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Timed automata 

Note: adding x+y to clock constraints makes the MC 
undecidable (and x-y)? 

Note: taking c over the real makes the MC 
undecidable (and for rational?) 
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Definition of timed automata 

Def.: A timed automata A is a tuple (L, l0, E, Label, C, 
clocks, guard, inv) with 

L a non empty and finite set of locations with initial location 
l0 

E LxL, a set of edges 

Label: L--> 2AP a function that assigns to each location a 
set Label(l) of atomic propositions 

C, a finite set of clocks 

clocks: E --> 2C, a function that assign to each edge e  E 
a set of clocks clocks(e)  --clocks to be reset  

guard: E --> Cstr(C),  a function that assign to each edge e 
 E a clock constraint guard(e)  

inv: L --> Cstr(C), a function  that assign to each location l 
 L a clock constraint inv(l) 
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Timed automata 

 Guards or invariants 



29 

Timed automata 

 Time diagram 
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Timed automata 

 Time diagram 
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Timed automata 

 Time diagram 
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Timed automata 

 Time diagram 
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Timed automata 

 Def.: clock valuation v for a set of clocks C is a function  

 v: C-->R+, assigning to each clock x in C its current value v(x) 

 

Def.: Let V(C) denote the set of all clock valuations over C. A state of a timed  
automata A is a pair 

(l,v) 

 with l a location of A and v a valuation over C, the clocks of A 

 

For positive real d, v+d is the valuation where each clock is incremented by 
d.  The valuation v with clock x reset is 
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Timed automata 

 Def.: evaluation  of clock constraints. For x  C, v  V(C), 
natural c and a and bCstr(C), we have  
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Timed Transition System (TTS) 

 Def.: Timed transition system  underlying a timed automata A, 
M(A), is defined as (S,s0,-->) where 
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 Def.: a  path  is an infinite sequence                 

where, for all i,  

An execution of a timed automata A is a path through its timed 
transition system M(A). 

The elapsed time on a path is defined as follow: 

Path of a TTS 
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Path of a TTS 
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Def.: a path is called   time-divergent  if  

 

Non timed-divergent paths in previous automata? 

 

Ex. of non time-div path: 

 

The set of time-divergent paths from a state s is 

 

Def: A timed automata A is called non-Zeno if from any state 
some time-divergent path can start  

Path of a TTS 
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L'esempio della lampadina a due livelli 

Example of a Timed automata 
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L'esempio della lampadina a due livelli 

Example of a Timed automata 
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Examples of Timed automata 
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Syntax: CTL + formula clocks that can be reset in formula 
 
Semantics defined over TTS 
 

Example of properties that can be expressed in TCTL 

Timed Computational Tree Logic (TCTL) 
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Def: For pAP, zD, D the set of formula clocks, and      

aCstr(C D), the set of TCTL formulae is given by: 

 

 

 

 

Clock z in “z in F” is called a freeze identifier,  and it means: “z 
in F” is valid in state s if F holds in s where clock z starts from 0 

 

For example: “z in (z=0)” is valid (true in any state) while “z in 
(z>1)” is not 

 

Clocks have to be bounded to  the formula 

Timed Computational Tree Logic 



44 

Not a very convenient way to express timed properties, and a 
number of derived operators have been defined: 

Timed Computational Tree Logic 
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L'esempio della lampadina a due livelli 

Example of a Timed automata 
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Semantics: need to define (i,d), position over a path and an 
order relationship on position 

This definition is wrong in Katoen’s notes (as was in the original 
paper of Alur and Dill of 1989/90) 

Timed Computational Tree Logic 
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Timed Computational Tree Logic 

Def.: A RT-trajectory s is an infinite sequence of states si =(li,vi) 

and delays di:  

s = s0  -d0->  s1  -d1->  s2  -d2->  s3 -d3->………… 

 

Def.: A position in  s is the pair (i,d):  iN and  ddi  
 

Def.: location in the position (i,d) is  loc(i,d) = li 

Def.: valuation in the position (i,d) is val(i,d) = vi +d  

Def.: state in position (i,d) is 

s(i,d) = ( loc(i,d), val(i,d) ) 
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Timed Computational Tree Logic 

Def.: time elapsed at  position (i,d) is  

ts(i,d) = d + S0j<i di 

 

Def. of precedence on positions: we say that (i,d) precedes 

(j,d’) and we write (i,d)<<(j,d’) if: 

 i < j                   or  

 i = j  and dd’ 
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Def: Semantics of TCTL. Let pAP, zD, wV(D), sS (States 

of the TTS), aCstr(C D), s=(l,v), vV(C), the set of TCTL 
formulae is given by: 

Timed Computational Tree Logic 
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………cont.: let pAP, zD, wV(D), sS, aCstr(C D),  

           the RT-trajectories starting in s,  

Timed Computational Tree Logic 
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Why it is necessary that … 

 

Consider the formula 

reset z in E(z<=5 U z>5)  

then on paths on which the delays  on the paths are almost zero 
we approach 5: it is not possible to find “the point” in which z 
become >5 for the first time 

Timed Computational Tree Logic 
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Promptness requirement: maximal delay between an event and 
its reaction 

Example of TCTL 

Punctuality requirement: exact delay between events 
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Example of TCTL 

Periodicity requirement: an event occur within a certain period 

Example: a machine that put boxes on a belt every 25 time units 

Attention: the correct version of the above formula is  

AG ( putbox  z in [(not(putbox) or z=0) U (putbox and z =25)]) 

 

Same correction for the formulas in the next pages 
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Minimal delay: minimal delay between events 

Example: the delay between two trains  at a crossing (tac) 
should be at least 180 

Example of TCTL 

Interval delay: an event must occur within a certain interval 
from another event 

Example: trains should have a maximal distance of 900 time 
units (the minimal delay still holds) 
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Even simple automata give rise to infinite TTS, the infinite 
number of states is due to the real valuations of clocks 

Solution: a finite number of equivalence classes on the clock 
valuations. Equivalence should maintain….. 

Question: what could be such equivalence on the TA below?  

Clock equivalence 
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Solution: a finite number of equivalence classes on the clock 
valuations.  

Define an equivalence  that should have the following 
characteristics: 

 correctness: (v,w)  (v’,w’) ==> F: (v,w)|=F sse (v’,w’)|=F 

 finiteness: the number of equivalence classes of  is finite 

 

 

Approach: we present the definition and we explain why each 
constraint is needed 

 

Clock equivalence 
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Approach: we present the definition and we explain why each 
constraint is needed. Lex cx be the maximal constant that appears 
in a constraint on x 

 

Clock equivalence 
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1st observation: may be we can use only the integral part  

Clock equivalence 

2nd observation: the integral part is not enough, also the relative 
order of clocks should be taken into account  

When v(x)=0.4 and v(y)=0.3, A can reach l2 

 when v(x)=0.2 and v(y)=0.3, A cannot reach l2 
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3rd observation: since in the constraint the comparison is with 
natural numbers, it can make a difference whether v(x)=n  or 
v(x)=n.m 

Clock equivalence 

4th observation: all valuation are of interest only when they do 
not pass cx be the maximal constant that appears in a constraint 
on x 

When v(x)=1.1 and v’(x)=1, the clocks have the same integral 
part but only from v’ we can take the transition to l1 
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This lead to the following definition (Alur-Dill 1994): 

Clock equivalence 
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Equivalence - example 

The first requirement leads to the following eq. classes 

Since the biggest constant with which x is compared is 2, 

Separating according to the fractional part 

Clock ordering irrelevant (only one clock) 
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Def.: the equivalence classes according to the previous definition 
can be constructed using a partition refinement algorithm (there 
is an example of application on page 220 of the book, that leads 
to the following construction) 

Equivalence - example 
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The theorem below (Alur-Dill-Courcoubetis) states that regions 
can be safely used for TCTL model checking  

Equivalence  and TCTL 
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Def.: a region is a pair (l,[v]), where l is a location and [v] an 
equivalence class over clock valuations 

We can build a finite state automata over region, called region 
automata. 

In region automata there are two types of transitions: let time 
elapse or take a transition in the TA  

Region automata 

region automata 
for the single 
location automata 
used before 
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Def.: a region is a pair (l,[v]), where l is a location and [v] an 
equivalence class over clock valuations 

We can build a finite state automata over region, called region 
automata. 

In region automata there are two types of transitions: let time 
elapse or take a transition in the TA  

Region automata 

region automata 
for the single 
location automata 
used before 
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What happens when there are also formula clocks? We have to include also 
formula clocks in the computation of the equivalences 

Region automata 


