
Translation Verification of the OCaml pattern
matching compiler

Francesco Mecca

Abstract

This dissertation presents an algorithm for the translation valida-
tion of the OCaml pattern matching compiler. Given the source rep-
resentation of the target program and the target program compiled
in untyped lambda form, the algoritmhm is capable of modelling the
source program in terms of symbolic constraints on it’s branches and
apply symbolic execution on the untyped lambda representation in or-
der to validate wheter the compilation produced a valid result. In this
context a valid result means that for every input in the domain of the
source program the untyped lambda translation produces the same
output as the source program. The input of the program is modelled
in terms of symbolic constraints closely related to the runtime repre-
sentation of OCaml objects and the output consists of OCaml code
blackboxes that are not evaluated in the context of the verification.

1 Background

1.1 OCaml

Objective Caml (OCaml) is a dialect of the ML (Meta-Language) family of
programming languages. OCaml shares many features with other dialects of
ML, such as SML and Caml Light, The main features of ML languages are the
use of the Hindley-Milner type system that provides many advantages with
respect to static type systems of traditional imperative and object oriented
language such as C, C++ and Java, such as:

• Polymorphism: in certain scenarios a function can accept more than
one type for the input parameters. For example a function that com-
putes the lenght of a list doesn’t need to inspect the type of the ele-
ments of the list and for this reason a List.length function can accept
lists of integers, lists of strings and in general lists of any type. Such

1

languages offer polymorphic functions through subtyping at runtime
only, while other languages such as C++ offer polymorphism through
compile time templates and function overloading. With the Hindley-
Milner type system each well typed function can have more than one
type but always has a unique best type, called the principal type. For
example the principal type of the List.length function is "For any a,
function from list of a to int" and a is called the type parameter.

• Strong typing: Languages such as C and C++ allow the programmer to
operate on data without considering its type, mainly through pointers.
Other languages such as C# and Go allow type erasure so at runtime
the type of the data can’t be queried. In the case of programming
languages using an Hindley-Milner type system the programmer is not
allowed to operate on data by ignoring or promoting its type.

• Type Inference: the principal type of a well formed term can be inferred
without any annotation or declaration.

• Algebraic data types: types that are modelled by the use of two al-
gebraic operations, sum and product. A sum type is a type that can
hold of many different types of objects, but only one at a time. For
example the sum type defined as A + B can hold at any moment a
value of type A or a value of type B. Sum types are also called tagged
union or variants. A product type is a type constructed as a direct
product of multiple types and contains at any moment one instance
for every type of its operands. Product types are also called tuples or
records. Algebraic data types can be recursive in their definition and
can be combined.

Moreover ML languages are functional, meaning that functions are treated as
first class citizens and variables are immutable, although mutable statements
and imperative constructs are permitted. In addition to that OCaml features
an object system, that provides inheritance, subtyping and dynamic binding,
and modules, that provide a way to encapsulate definitions. Modules are
checked statically and can be reificated through functors.

1.2 Lambda form compilation

OCaml provides compilation in form of a byecode executable with an option-
ally embeddable interpreter and a native executable that could be statically
linked to provide a single file executable.

2

After the OCaml typechecker has proven that the program is type safe,
the OCaml compiler lower the code to Lambda, an s-expression based lan-
guage that assumes that its input has already been proved safe. On the
Lambda representation of the source program, the compiler performes a se-
ries of optimization passes before translating the lambda form to assembly
code.

1. OCaml datatypes

Most native data types in OCaml, such as integers, tuples, lists, records,
can be seen as instances of the following definition

type t = Nil | One of int | Cons of int * t

that is a type t with three constructors that define its complete signa-
ture. Every constructor has an arity. Nil, a constructor of arity 0, is
called a constant constructor.

2. Lambda form types A lambda form target file produced by the ocaml
compiler consists of a single s-expression. Every s-expression consist
of (, a sequence of elements separated by a whitespace and a closing).
Elements of s-expressions are:

• Atoms: sequences of ascii letters, digits or symbols

• Variables

• Strings: enclosed in double quotes and possibly escaped

• S-expressions: allowing arbitrary nesting

There are several numeric types:

• integers: that us either 31 or 63 bit two’s complement arithmetic
depending on system word size, and also wrapping on overflow

• 32 bit and 64 bit integers: that use 32-bit and 64-bit two’s com-
plement arithmetic with wrap on overflow

• big integers: offer integers with arbitrary precision

• floats: that use IEEE754 double-precision (64-bit) arithmetic with
the addition of the literals infinity, neg_infinity and nan.

The are varios numeric operations defined:

3

• Arithmetic operations: +, -, *, /, % (modulo), neg (unary nega-
tion)

• Bitwise operations: &, |, ˆ, «, » (zero-shifting), a» (sign extend-
ing)

• Numeric comparisons: <, >, <=, >=, ==

3. Functions

Functions are defined using the following syntax, and close over all
bindings in scope: (lambda (arg1 arg2 arg3) BODY) and are applied
using the following syntax: (apply FUNC ARG ARG ARG) Evaluation
is eager.

4. Bindings The atom let introduces a sequence of bindings: (let BIND-
ING BINDING BINDING . . . BODY)

5. Other atoms TODO: if, switch, stringswitch. . . TODO: magari esempi

1.3 Pattern matching

Pattern matching is a widely adopted mechanism to interact with ADT. C
family languages provide branching on predicates through the use of if state-
ments and switch statements. Pattern matching on the other hands express
predicates through syntactic templates that also allow to bind on data struc-
tures of arbitrary shapes. One common example of pattern matching is the
use of regular expressions on strings. OCaml provides pattern matching on
ADT and primitive data types. The result of a pattern matching operation
is always one of:

• this value does not match this pattern”

• this value matches this pattern, resulting the following bindings of
names to values and the jump to the expression pointed at the pattern.

type color = | Red | Blue | Green | Black | White

match color with
| Red -> print "red"
| Blue -> print "red"
| Green -> print "red"
| _ -> print "white or black"

4

OCaml provides tokens to express data destructoring. For example we
can examine the content of a list with patten matching

begin match list with
| [] -> print "empty list"
| element1 :: [] -> print "one element"
| (element1 :: element2) :: [] -> print "two elements"
| head :: tail-> print "head followed by many elements"

Parenthesized patterns, such as the third one in the previous example,
matches the same value as the pattern without parenthesis.

The same could be done with tuples

begin match tuple with
| (Some _, Some _) -> print "Pair of optional types"
| (Some _, None) | (None, Some _) -> print "Pair of optional types, one of which is null"
| (None, None) -> print "Pair of optional types, both null"

The pattern pattern1 | pattern2 represents the logical "or" of the two
patterns pattern1 and pattern2. A value matches pattern1 | pattern2 if it
matches pattern1 or pattern2.

Pattern clauses can make the use of guards to test predicates and vari-
ables can captured (binded in scope).

begin match token_list with
| "switch"::var::"{"::rest -> ...
| "case"::":"::var::rest when is_int var -> ...
| "case"::":"::var::rest when is_string var -> ...
| "}"::[] -> ...
| "}"::rest -> error "syntax error: " rest

Moreover, the OCaml pattern matching compiler emits a warning when a
pattern is not exhaustive or some patterns are shadowed by precedent ones.

In general pattern matching on primitive and algebraic data types takes
the following form.

5

match variable with
| pattern1 -> expr1
| pattern2 when guard -> expr2
| pattern3 as var -> expr3
...
| pn -> exprn

It can be described more formally through a BNF grammar.

pattern ::= value-name
| _ ;; wildcard pattern
| constant ;; matches a constant value
| pattern as value-name ;; binds to value-name
| (pattern) ;; parenthesized pattern
| pattern | pattern ;; or-pattern
| constr pattern ;; variant pattern
| [pattern { ; pattern } [;]] ;; list patterns
| pattern :: pattern ;; lists patterns using cons operator (::)
| [| pattern { ; pattern } [;] |] ;; array pattern
| char-literal .. char-literal ;; match on a range of characters
| { field [: typexpr] [= pattern] { ; field [: typexpr] [= pattern] } \

[; _] [;] } ;; patterns that match on records

1.4 Symbolic execution

1.5 Translation validation

Translators, such as translators and code generators, are huge pieces of soft-
ware usually consisting of multiple subsystem and constructing an actual
specification of a translator implementation for formal validation is a very
long task. Moreover, different translators implement different algorithms,
so the correctness proof of a translator cannot be generalized and reused
to prove another translator. Translation validation is an alternative to the
verification of existing translators that consists of taking the source and the
target (compiled) program and proving a posteriori their semantic equiva-
lence.

� Techniques for translation validation

6

� What does semantically equivalent mean

� What happens when there is no semantic equivalence

� Translation validation through symbolic execution

7

