GPU Teaching Kit

Accelerated Computing

Module 4.1 — Memory and Data Locality

CUDA Memories

Objective

— To learn to effectively use the CUDA memory types in a parallel
program
— Importance of memory access efficiency
— Registers, shared memory, global memory
— Scope and lifetime

Review: Image Blur Kernel.

/I Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
/I Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
) pixVal +=in[curRow *w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total
}
}

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

How about performance on a GPU

— All threads access global memory for their input matrix elements
— One memory accesses (4 bytes) per floating-point addition
— 4B/s of memory bandwidth/FLOPS
— Assume a GPU with
— Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
— 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
— The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS

— This limits the execution rate to 3.3% (50/1500) of the peak
floating-point execution rate of the device!

— Need to drastically cut down memory accesses to get close to
thel,500 GFLOPS

JHLAIM MDO0719

BLOCK_WIDTH

A Basic Matrix Multiplication

__global__ void MatrixMulKernel (float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockldx.y*blockDim.y+threadldx.y;

// Calculate the column index of P and N
int Col = blockldx.x*blockDim.x+threadldx.Xx;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

Example — Matrix Multiplication

__global__ void MatrixMulKernel (float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockldx.y*blockDim.y+threadldx.y;

// Calculate the column index of P and N
int Col = blockldx.x*blockDim.x+threadldx.Xx;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}

P[Row*Width+Col] = Pvalue;

A Toy Example: Thread to P Data Mapping

Block(0,0) Block(0,1)

\ Thrtlaad(O,l) /

Thread(0,0 v
() \\\\SPOD POJ P02 PQ3

Thread(1,0) \éP
Thread(1,1) -

BLOCK_WIDTH =2

P12 P13

PZD PZJ P22 P23

PBD PBJ P32 P33

N

Block(1,0) Block(1,1)

Calculation of P54 and P 4

0,0 0

1,0

2,0

3,0

Memory and Registers in the Von-Neumann Model

A\ 4

A

Memory /6

) v N
Processing Unit

Reg
File
*

Control Unit

Programmer View of CUDA Memories

Grid
Block (0, 0) Block (1, 0)
Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

S
-

Declaring CUDA Variables

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread
__device___shared__ int SharedVar; shared block block
_ device__ int GlobalVar; global grid application
__device__ __ constant__ int ConstantVar; constant grid application
— _ _device__ isoptional when used with __shared__,or _ constant

— Automatic variables reside in a register
— Except per-thread arrays that reside in global memory

Example:
Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out, int w, int h)

~ shared float ds_in[TILE_WIDTH][TILE_WIDTH];

Where to Declare Variables?

global - register

constant | shared

Shared Memory in CUDA

— A special type of memory whose contents are explicitly defined and
used in the kernel source code
— Onein each SM

— Accessed at much higher speed (in both latency and throughput) than global
memory

— Scope of access and sharing - thread blocks

— Lifetime — thread block, contents will disappear after the corresponding thread
finishes terminates execution

— Accessed by memory load/store instructions
— A form of scratchpad memory in computer architecture

Hardware View of CUDA Memories

170

PC

IR

- > Global Memory : i
: Processing Unit i
i| Shared Reqi |
‘[Memory B ||
| N |
o _—
! ! A :
Control Unit

Processor (SM)

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 4.1 – Memory and Data Locality
	Objective
	Review: Image Blur Kernel.
	How about performance on a GPU
	Example – Matrix Multiplication
	A Basic Matrix Multiplication
	Example – Matrix Multiplication
	A Toy Example: Thread to P Data Mapping
	Calculation of P0,0 and P0,1
	Memory and Registers in the Von-Neumann Model
	Programmer View of CUDA Memories
	Declaring CUDA Variables
	Example:�Shared Memory Variable Declaration
	Where to Declare Variables?
	Shared Memory in CUDA
	Hardware View of CUDA Memories
	Slide Number 17

