" VERIFICA DI PROCESSI CONCORRENTI
VPC 19-20

Timed models

Prof.ssa Susanna Donatelli
Universita’ di Torino
www.di.unito.it
susi@di.unito.it

ﬁ Reference material books:

it Erlangen-Niirnherg

Prof. Jost-Pieter Katoen
(University of Aachen, D)

!'_ Acknowledgements

Transparencies adapted from the course notes and
trasparencies of

«Prof. Jost-Pieter Katoen, University of Aachen (Germany)

Dealing with time

Why is time introduced in formalisms for system
verification?

= Correctness may deFend also on time (think of the
operations of a pipelined CPU)

= Usefulness may depend on time (when I call the lift,
when the lift will come , or I want to compute how long
does a production line takes)

To check a timed property the time should be explicitely
represented in the model

We can check also untimed propertz on a timed model
(ex?mple: reachability of a marking in a timed Petri
net

Dealing with time

What is a time specification

1.

A value - fixed delay for an activity

An interval (min-max) = the duration of an activity
IS @ non deterministic value in the interval

A stochastic distribution = the duration of an
activity is a value is extracted from a distribution

The possibility of defining clocks as variables that
increase constantly

A mix of the above

ﬁDeaIing with time

Continuous or discrete?

Discrete:
m time is a discrete entity
m time elapses in regular ticks
m events/activities can happen only at ticks
m between two ticks the system stays unchanged

m used to represent synchronous system (system with a
global discrete clockg

m can represent an abstraction of a continuous system

m ex1: imagine a discrete time Petri net, in which all firing
have equal duration

m ex2: imagine a discrete time Petri net, in which firings
have different discrete durations v

¢4 +f> o

PN examples it;+f3+

<+ P4

2, oL,
tl C% i t3 C% 4 ,@/ = 3
1 p2 p4

O

7 e /S V) e I |

b}

_J. PN
example
S

A
=z
) 13
p2 ‘
p4

(13T
l co
| _
-E
} - lM’YGKLEAVTAI/:I
) f;(Jr(’b G
+ 0> \«JC} liw
)r\) ;wq T :
£ ijﬁi
o 7

+

PN examples

t ®
t t
2
1t

Iy

—)

PN examples

10

Property of interest: how often does the lazy chap
cooks, for how long does it cook?

Exists an execution in which he eats only for X unit
time? 11

Dealing with time

What is the state of the system?

= value of the variables plus value of clocks v
= marking plus value of clocks v
m process algebra terms plus the value of clocks v/

How many states do we have? v

How do we express temporal properties?
m use temporal logic without time (X “accounts” for time)

m use temporal logic ir ch temporal operators have a
time interval A[¢ (] A F[/(Z“M \7
f SR 2

| Dealing with time
Co te?

Continous:

m time is a continuous entity (modelled as a real non-
negative variable)

m time elapses continuously

m events/activities can happen at any instant of time
m time between two events can be arbitrarily small
m used to represent asynchronous system

m ex1: imagine a continuous time Petri net, in which all
activities have equal duration

m ex2: imagine a continuous time Petri net, in which
activities have different durations

m ex2: imagine a continuous time Petri net, in which
activities have different durations, chosen non
deterministically in a given interval

13

PN examples

pi pi
tl t3

pl+p3—=—

p2+p3

» time
00,1 2 T 4

14

ﬁ PN examples

Property of interest: how often does the lazy chap
cooks, for how long does it cook?

Exists an execution in which he eats only for X unit
time? .5

Dealing with time

What is the state of the system?

= value of the variables plus value of clocks
m marking plus value of clocks
m process algebra terms plus the value of clocks

How many states do we have?

How do we express temporal properties?

m use temporal logic in which temporal operators have a
time interval A[¢ U [H2]y]

16

*Some timed formalisms and logics

. Semantics is given in
Timed automata terms of Timed transition
system, the system of
timed executions

Timed Petri nets

Timed process algebra

Timed CTL (TCTL) example: a leader is elected within 3
seconds

Note: there is no probabilistic reasoning, only non determinism
and “possibility”

17

Timed automata part

Syntax of timed automata

State of a finite automata, execution paths
and timed transition systems

Semantics of timed automata (in terms of a
timed transition system)

TCTL syntax and semantics
Model checking TCTL
Timed automata and temporal logic in Uppaal

18

ﬁ Timed automata

= Finite-state graph with locations and edges
+ clock variables

= Time elapses in location, not in edges
= Example: light switch, with clock x

19

ﬁ Timed automata

= Finite-state graph with locations and edges
+ clocks variables (run at the same speed)

+ clock constraints that “constrain” the
behaviour (examples: x<3, x-y>5)

A clock constraint can be
an invariant for a location

A clock constraint — X2
can be a guard on
an edge

20

Timed automata

+

= Finite-state graph with locations and edges

+ C
+ C
+ C

OC
OC
OC

KS variables (run at the same speed)
K constraints
KS reset
Clocks can be reset while
/ taking the edge
{x:=0}

cL)

X=2

21

Timed automata

/

location invariant:
force taking the
edge

guard: limit the possibility
of taking the edge

clock reset: reset
time count

X2
{x}:=0

22

Timed automata

X, y clocks

x<bh a y:=0

A possible execution6 |
O

fo M fo —2 5 {?1

x 0 4.1 4.1

y 0 4.1 0

Clock valuation

‘*Timed automata: another example

24

ﬁ Timed automata

Def.: a clock is a variable ranging over R+

Def. Clock constraints. Let C be a set of clocks, with x O C
and c a natural value, then

1. x < ¢ and x < ¢ are clock constraints

2. If o 1s a clock constraint, then — « is a clock constraint
3. If o and 5 are clock constraints, then o A 8 1s a clock constraint

4. Anything else is not a clock constraint.

The set of clock constraints over C is indicated with W(C) or
Cstr(C)

25

ﬁ Timed automata

Note: adding x+y to clock constraints makes the MC
undecidable (and x-y)?

Note: taking c over the real makes the MC
undecidable (and for rational?)

26

i Definition of timed automata

Def.: A timed automata A is a tuple (L, |,, E, Label, C,
clocks, guard, inv) with

=L @ non empty and finite set of locations with initial location
lo
=E[] LxL, a set of edges

sLabel: L--> 2AP 3 function that assigns to each location a
set Label(l) of atomic propositions

=C, a finite set of clocks

sClocks: E --> 2¢, a function that assign to each edge e O E
a set of clocks clocks(e) --

sguard: E --> Cstr(C), a function that assign to each edge e
[E a clock constraint guard(e)

sinv: L --> Cstr(C), a function that assign to each location |
[0 L a clock constraint inv(l) 27

* Timed automata

Guards or invariants

° o

¢
IV
N
N
IA
>¢
|
W

—~—
>
-
1
(-
~—
>
—
|
-

28

* Timed automata

Time diagram

L

value

of z
C r =2 2

29

* Timed automata

Time diagram

30

* Timed automata

Time diagram

31

* Timed automata

Time diagram

<
\%
BN

—=
<
!

clock
value

——- clock
—— clock y

32

Timed automata

Def.: clock valuation v for a set of clocks C is a function
v: C-->R*, assigning to each clock x in C its current value v(x)

Def.: Let V(C) denote the set of all clock valuations over C. A state of a timed
automata A is a pair

(Lv)

with | a location of A and v a valuation over C, the clocks of A

For positive real ¢, v+dis the valuation where each clock is incremented by
d. The valuation v with clock x reset is

(reset z in v)(y) = { v(y) fy#z

33

Timed automata

Def.: evaluation of clock constraints. For x OO C, v OO V(CO),

natural c and a and BOCstr(C), we have

SIS S 2~

—r < C
— r < C
:_lflf

—a A [

iff v(z) < ¢
iff v(z) < ¢

iff v
iff v

£ (v

— o A v

34

Timed Transition System (TTS)

Def.: Timed transition system underlying a timed automata A,
M(A), is defined as (S,s,,-->) where

o S={(lLv) e LxV(O)|vEinv()]}

e 55 = (lp,vg) where vo(z) =0 forallx € C
e the transition relation| — C S x (IR" U {*}) x S is defined by the rules:

1. ({,v) — (I, reset clocks(e) in ¢) if the following conditions hold:
a) e = (I,I') € K

(
(b) v [= guard(e)
(c) (reset clocks(e) in v) = inv(l')

2. (l,v) — (l, v+d), for positive real d, if the following condition holds:

g

and

-

Vd < d.v+d | inv(l).

Path of a TTS

. P a.Q a1
Def.: @ path is an infinite sequence so — $1 — ...
where, for all j s; — s;+1is a transition in the TTS

An execution of a timed automata A is a path through its timed
transition system M(A).

The elapsed time on a path is defined as follow:

Definition 44. (Elapsed time on a path)

For path o = sg LN $1 A ... and natural 1, the time elapsed from sy to s;,
denoted A(o,1), is defined by:

A(o,0) = 0

0 ifa;=x*

Aloyi+1) Aloyi) + { a; ifa; € RT.

36

o

Path of a TTS

r =2
{z,y}

" T =2

(o ORES
y=9
{z}

= (off,v0) — (off, v1) —*—>(o11 V) — (om,v3) = (on,)
1> (on,vs) _2—> (on,vg) — (on,vr) N (off,vg) ...

Vo VI Vo VU3 V4 Vs Vg V7 U

|0 & 0 4 0 1 8 5§ 0
yl 0 & 0 4 4 &5 7T 9 9

37

Path of a TTS

Def.: a path is called time-divergent if lim;_,. A(o,i) = o0

Non timed-divergent paths in previous automata?

. . -1 2—2 2—3 o—k+1
Ex. of non time-div path: so = s1 = s2 = s3...55, =— 5k 1--.

The set of time-divergent paths from a state s is Paths™(s)

Def: A timed automata A is called non-Zeno if from anv state

true

some time-divergent path can start {z)

brue 38

* Example of a Timed automata

| 'esempio della lampadina a due livelli

(a) Lamp. (b) User.

39

. | Example of a Timed automata

L'esempio della lampadina a due livelli

W .
_ idle
ress? || press!
- .?
_J

G
/\b (b) User.

(3) Lamp.
(looes) £ EF (bl h 4-7)
(W w)E EFe Lw(%&& < awm EF (\MW A«%éé)
NN @m,m‘-)i: EF”¢ [’”ﬂM - RAwmeET (W/\ 256)

L Examples of Timed automata

press?

(a) Lamp. (b) User.

41

imed Computational Tree Logic (TCTL)

Sy : CTL + formula clocks that can be reset in formula

Semantics defined over TTS

Example of properties that can be expressed in TCTL

* |f a message is sent,
it is received within at most 5 time units.

AG (send(m) — AF* receive(m))

* |tis possible to reach a red state
from each blue state immediately.
AG (blue — EF™ red)

* The program finishes exactly after 5 time units.

A (~finished U™ finished) "

ﬁ Timed Computational Tree Logic

Def: For pLIAP, zLID, D the set of formula clocks, and
aICstr(C LID), the set of TCTL formulae is given by:

pr=pla|-¢|eve|lzing|E@Ugl|A[pUgL

Clock z in "z in ®" is called a freeze identifier, and it means: “z
in d” is valid in state s if ® holds in s where clock z starts from 0

For example: “z in (z=0)" is valid (true in any state) while “z in
(z>1)"is not

Clocks have to be bounded to the formula 43

ﬁ Timed Computational Tree Logic

Not a very convenient way to express timed properties, and a
number of derived operators have been defined:

cE(®PU"WY) =resetzinE (DU (zsn A W))
e A(PU"W) =resetzinA(P U (z<n A W¥))

e EFT" O =reset zin EF (z=n A @)
e AF*" ® = reset z in AF (zsn A D)
s EG™ O = 7AF" 2O

« AG™ O = “EF™" ~®

. | Example of a Timed automata

L'esempio della lampadina a due livelli

W .
_ idle
ress? || press!
- .?
_J

G
/\b (b) User.

(3) Lamp.
(looes) £ EF (bl h 4-7)
(W w)E EFe Lw(%&& < awm EF (\MW A«%éé)
NN @m,m‘-)i: EF”¢ [’”ﬂM - RAwmeET (W/\ 256)

i Timed Computational Tree Logic

Semantics: need to define (i,d), position over a path and an
order relationship on position

This definition is wrong in Katoen’s notes (as was in the original
paper of Alur and Dill of 1989/90)

46

* Timed Computational Tree Logic

Def.: A RT-trajectory o is an infinite sequence of states s, =(l,,v;)
and delays &,:

O = SO _60_> Sl _61_> SZ _62_> S3 _63_>

Def.: A position in o is the pair (i,0): iON and 0<d,

Def.: location in the position (i,d) is loc(i,d) = |
Def.: valuation in the position (i,d) is val(i,d) = v, +&
Def.: state in position (i,0) is

o(i,®) = (loc(i,d), val(i,d))

47

* Timed Computational Tree Logic

Def.: time elapsed at position (i,d) is

T0(|,6) — 6 + ZOSj<i 6i

Def. of precedence on positions: we say that (i,0) precedes
(j,0") and we write (i,0)<<(j,0’) if:

li<j or

=i =j and 0<0

48

* Timed Computational Tree Logic

Def: Semantics of TCTL. Let pLUAP, zLID, wLIV(D), sLIS (States

of the TTS), alLICstr(C LID), s=(l,v), vLIV(C), the set of TCTL
formulae is given by:

S,)
8, W
S, W
8, W

S, W

=D
— (¥
B
oV Y

— 2 In ¢

(£ vl \

Lve V©

we

iff p € Label(s L@@[l)

1ﬁ'va}:a
iff = (s,w | ¢)

iff (s,w = ¢) V (s,w = 9)
iff s,reset z in w = ¢

V®)

49

i Timed Computational Tree Logic

......... cont.: let pLIAP, zLID, wlIV(D), sLIS, alLlCstr(C LID),
P{s) the RT-trajectories starting in s,

s, wiEE[pUy] iff 3o € PY(s). 3 (i,d) € Pos(o).

(o(i,d), w+Alo, i) E¢ A

¥ (@) < (i,d). 0, &) w-Ao) F 6 v 9))
s, wEAlpUyY] iff Vo e PY(s). (i, d) € Pos(o).

((o(i,d), w+A(o,7)) Ev¥ A

(V (4, d) < (&,d). (¢(j,d'), wtAlo,j) F ¢ V 9))

50

i Timed Computational Tree Logic

Why it is necessary that ... w+A(o,7)) E ¢ V ¢

Consider the formula
reset z in E(z<=5 U z>5)

then on paths on which the delays on the paths are almost zero
we approach 5: it is not possible to find “the point” in which z
become >5 for the first time

QIS IA

kel

51

* Example of TCTL

Promptness requirement: maximal delay between an event and
Its reaction

AG [send(m) = AF_s receive (r,)

2w A Feene(1y) oud 244)
Punctuality requirement: exact delay between events

EG [send(m) = AF_i; receive (rp,)]

52

ﬁ Example of TCTL

Periodicity requirement: an event occur within a certain period
Example: a machine that put boxes on a belt every 25 time units

AG [AF:25 pu tbOX} w(‘/“'

1sC

AG [putbox = ~ putboxU_os putbox|

Attention: the correct version of the above formula is
AG (putbox = z in [(net(putbox) or z=0) U (putbox and z =25)])

Same correction for the formulas in the next pages

%‘-;_\2 gtm

53

ﬁ Example of TCTL

Minimal delay: minimal delay between events

Example: the delay between two trains at a crossing (tac)
should be at least 180

AG [tac = —tacUy g tac

Interval delay: an event must occur within a certain interval
from another event

Example: trains should have a maximal distance of 900 time
units (the minimal delay still holds)

AG [t&C = (_' tac U;lgg tac A o t&CUgg{]g tac)]

AG [tac = — tacU—,g (AF <729 tac)] 54

ﬁ Clock equivalence

Even simple automata give rise to infinite TTS, the infinite
number of states is due to the real valuations of clocks

Solution: a finite number of equivalence classes on the clock
valuations. Equivalence should maintain.....

Question: what could be such equivalence on the TA below?

x =2 ! :
4)@ = ;-@ gives rise to the
infinite transition system:
T =27

55

ﬁ Clock equivalence

Solution: a finite number of equivalence classes on the clock
valuations.

Define an equivalence = that should have the following
characteristics:

s correctness: (v,w) = (V\,w’) ==> 0Od: (v,w)|=D sse (V,W)|=P

= finiteness: the number of equivalence classes of = is finite

Approach: we present the definition and we explain why each
constraint is needed

56

Clock equivalence

Approach: we present the definition and we explain why each

constraint is needed. Lex cx be the maximal constant that appears
In @ constraint on x

Definition 49. (Clock equivalence)

Let A be a timed automaton with set of clocks C and v,2' € V(C). Then v ~ v’
if and only if

1. |v(z)] = |¥'(z)] or v(z) > ¢, and v'(z) > ¢, for all z € C, and

2. frac(v(x)) € frac(v(y)) iff frac(v'(z)) < frac(v'(y)) for all z,y € C with
v(z) € ¢; and v(y) < ¢, and

3. frac(v(x)) = 0 iff frac(v'(z)) = 0 for all z € C with v(z) < c,.
57

ﬁ Clock equivalence

1st observation: may be we can use only the integral part

v v if and only if [v(z)] = [v'(z)] for all z € C.

2nd observation: the integral part is not enough, also the relative
order of clocks should be taken into account

x <1

T r=1 =1
yl%% (1) G
{y}

J
When v(x)=0.4 and v(y)=0.3, A can reach |,
when v(x)=0.2 and v(y)=0.3, A cannot reach I,

v(z) < v(y) if and only if v/(z) < V' (y) for all z,y € C
58

ﬁ Clock equivalence

3rd observation: since in the constraint the comparison is with
natural numbers, it can make a difference whether v(x)=n or

v(X)=n.m
efea 9

When v(x)=1.1 and v'(x)=1, the clocks have the same integral
part but only from v’ we can take the transition to |

frac(v(x)) = 0 if and only if frac(v'{z)) =0 for all z € C.

4th observation: all valuation are of interest only when they do
not pass ¢x be the maximal constant that appears in a constraint
on X 59

Clock equivalence

This lead to the following definition (Alur-Dill 1994):

Definition 49. (Clock equivalence)

Let A be a timed automaton with set of clocks C and v,2' € V(C). Then v ~ v’
if and only if

1. |v(z)] = |¥'(z)] or v(z) > ¢, and v'(z) > ¢, for all z € C, and

2. frac(v(x)) € frac(v(y)) iff frac(v'(z)) < frac(v'(y)) for all z,y € C with
v(z) € ¢; and v(y) < ¢, and

3. frac(v(x)) = 0 iff frac(v'(z)) = 0 for all z € C with v(z) < c,.

60

* Equivalence - example

The first requirement leads to the following eq. classes
D<€z <2,2<2<3],[3<x<,...

Since the biggest constant with which x is compared is 2,
0L <1, <e <2, |z=2], and [z > 2]

Separating according to the fractional part
[z =0,0<z<l,[zr=1],[l <z <2],[x =2], and [z > 2]

Clock ordering irrelevant (only one clock)
61

ﬁ Equivalence - example

Def.: the equivalence classes according to the previous definition
can be constructed using a partition refinement algorithm (there
IS an example of application on page 220 of the book, that leads

to the following construction)

¥ oA YA Y
1 1 / 1(1//
= = (L - T
0 i 2 0 1 2 x 0 1 2 x
(a) (b) (¢)

Figure 4.7: Partitioning of R" x R" according to =~ for ¢, =2 and ¢, =1 62

ﬁ Equivalence and TCTL

The theorem below (Alur-Dill-Courcoubetis) states that regions
can be safely used for TCTL model checking

Theorem 51.
Let 5,8 € S such that s,w ~ s, w'. For any TCTL-formula ¢, we have:

M(A), (s,w) = ¢ if and only if M(A), (', w") |E ¢.

63

ﬁ Region automata

Def.: a region is a pair (I,[v]), where | is a location and [v] an
equivalence class over clock valuations

We can build a finite state automata over region, called region
automata.
In region automata there are two types of transitions: let time

elapse or take a transition in the TA m>,2
4.
S C
R region automata

S for the single
l D location automata
used before

S A b "Lﬁ'c“

64

ﬁ Region automata

Def.: a region is a pair (I,[v]), where | is a location and [v] an
equivalence class over clock valuations

We can build a finite state automata over region, called region
automata.

In region automata there are two types of transitions: let time
elapse or take a transition in the TA

C

l region automata

r=1

for the single
o

location automata
used before

[
l<e <2

65

MR
ngon automa\taj

What happens when there are also formula clocks? We have to include also

formula clocks in the computation of the equivalences M2

! ! I !
x=10 O< <] r=1 1<z<2

Y

