Programmazione Dinamica

A.A. 2017-2018

Scheduling Zaino

Scheduling (come somma di sottounsiemi)

Lo **scheduling** e` una ricca sorgente di problemi algoritmici motivati dalla pratica.

Consideriamo il problema in cui le *richieste di uso di una risorsa* siano specificate da una durata e debbano essere soddisfatte entro un particolare intervallo di tempo.

Usiamo la programmazione dinamica, ma con una "svolta": l'insieme "ovvio" dei sottoproblemi risultera` non bastare e dovremo creare una collezione di sottoproblemi piu` ricca. La difficolta` sta nel capire qual e` questo buon insieme di sottoproblemi.

Scheduling (come somma di sottounsiemi)

Come nel problema degli intervalli pesati si hanno due casi: l'ennesima richiesta non appartiene a una soluzione ottima, allora OPT(n) = OPT(n-1); se invece appartiene a una soluzione ottima, vorremmo una ricorsione semplice che dice qual e` il miglior valore possibile tra le soluzioni che contengono l'ultima richiesta 'n'.

Se la richiesta 'n' viene soddisfatta, il tempo a disposizione per le altre richieste e` il tempo totale (W) meno il tempo della richiesta n-esima (w_n): $W - w_n$.

Questa osservazione suggerisce che servono piu` sottoproblemi: per trovare il valore di OPT(n) non serve solo quello di OPT(n-1) ma si deve anche conoscere la miglior soluzione usando un sottoinsieme dei primi n-1 item e un tempo totale $W-w_n$.

Nota bene: si assume che i pesi siano rappresentabili con numeri *interi* (non eccessivamente grandi)

Scheduling

Si ha percio` bisogno di risolvere molti sottoproblemi, uno per ogni insieme {1,...,i} di item e ogni possibile valore per i restanti tempi disponibili w.

$$\mathsf{OPT}(\mathsf{i},\,\mathsf{w}) = \max_{\mathsf{S}} \, \textstyle \sum_{\mathsf{j} \in \mathsf{S}} \mathsf{w}_{\mathsf{j}} \leq \mathsf{w}.$$

Dove il massimo $j \in S$ e` sui sottinsiemi S di $\{1,...,i\}$ che soddisfano $\sum w_j \leq w$.

Se w <
$$w_i$$
 allora OPT(i, w) = OPT(i-1, w),
altrimenti OPT(i, w) = max (OPT(i-1, w), w_i + OPT(i-1, w- w_i))

La soluzione al problema originale e` OPT(n, W).

Nota:

Se n non appartiene alla soluzione, OPT(n, W) = OPT(n-1, W) Se n appartiene alla soluzione, OPT(n, W) = w_n + OPT(n-1, W - w_n)

Scheduling

```
Subset-Sum (n, W)

M: array [0..n, 0..W]

for w \leftarrow 0 to W M[0, w] = 0

for i \leftarrow 1 to n

for w \leftarrow 0 to W

M[i, w] \leftarrow max (M(i-1, w), w<sub>i</sub> + M(i-1, w-w<sub>i</sub>))

return M[n, W]
```

E` facile dimostrare per induzione su n che il valore di M[n, W] e` il valore ottimo per le richieste 1,...,n e tempo disponibile W.

L'algoritmo Subset-Sum(n, W) calcola correttamente il valore ottimo e la sua complessita` in tempo e` O(n·W).

Data una tabella dei valori ottimi dei sottoproblemi, l'insieme ottimo S puo` essere trovato in tempo O(n).

Zaino 0/1 (knapsack problem)

Dato un contenitore (zaino) di "capacità" C ed n oggetti O_1 ,, O_n , ciascuno con un "peso" ed un "valore", scegliere un sottinsieme degli oggetti, da mettere nel contenitore, in modo da massimizzare il "valore" del contenuto.

Capacità dello zaino, valore e peso degli oggetti sono supposti rappresentabili con numeri *interi*.

Questo problema è una versione un poco più complessa di quello precedente: anche in questo caso per individuare i sottoproblemi dobbiamo considerare gli oggetti, come si modifica la capacità dello zaino e il valore totale trasportato che deve essere massimizzato.

Zaino 0/1

Definizione induttiva

- Base. Se non ci sono oggetti o lo zaino ha capacità 0, il massimo valore è 0: Val(0, k) = Val(i, 0) = 0.
- Passo i. Se l'i-esimo oggetto non sta nello zaino:

$$Val(i, k) = Val(i-1, k)$$

Se l'i-esimo oggetto sta nello zaino Val(i, k) sarà dato dal massimo tra:

- massimo valore trasportabile con uno zaino di capacità k senza includere l'i-esimo oggetto
- massimo valore trasportabile con uno zaino di capacità k includendo l'iesimo oggetto e riempiendo in modo ottimale lo zaino di capacità k - p_i

Usando p_i e v_i per denotare rispettivamente il peso e il valore dell' i-esimo oggetto si ottiene:

$$\label{eq:Val} \mbox{Val(i,k)} = \begin{cases} 0 & \text{se i} = 0 \mbox{ or } k = 0 \\ \mbox{Val(i-1,k)} & \text{se i, } k \neq 0 \mbox{ and } k < p_i \\ \mbox{max } \{\mbox{Val(i-1,k)}, \mbox{Val(i-1, } k - p_i) + v_i\} & \text{se i, } k \neq 0 \mbox{ and } k \geq p_i \end{cases}$$

Algoritmo di programmazione dinamica

P e V sono array che

Zaino: 0/1

Esempio:
$$p_1 = 4$$
 $p_2 = 5$ $p_3 = 2$ $p_4 = 4$ $p_4 = 5$

$$n = 4$$

$$v_1 = 4$$

$$v_2 = 7$$

$$v_3 = 3$$

$$V_4 = 5$$

$$C = 8$$

$$p_1 = 3$$

$$p_2 = 5$$

$$p_3 = 2$$

$$p_4 = 4$$

i↓	k →	0	1	2	3	4	5	6	7	8
0		0	0	0	0	0	0	0	0	0
1		0	0	0	4	4	4	4	4	4
2		0	0	0	4	4	7	7	7	' 11
3		0	0	3	4	4	7	₂ 7	10	11
4		0	0	3	4	5	7	8	10	11

NB: qiui ci sono due possibili scelte

NB: le frecce rosse indicano da dove provengono i valori più alti

Zaino 0/1

La definizione data funziona?

È immediato verificare la correttezza dell'algoritmo rispetto alla definizione ricorsiva che abbiamo dato.

Resta però da verificare che quella definizione è corretta, nel senso che "risolve il problema".

Tale correttezza si basa su una proprietà essenziale:

"lo zaino di dimensione k, usando l'i-esimo oggetto, è riempito nel modo ottimo se è riempito nel modo ottimo lo zaino di dimensione k - p_i usando gli oggetti 1, 2,..., i-1"

La complessità dell'algoritmo è $\Theta(n - C)$.

Zaino con ripetizione

Se sono permesse ripetizioni?

Si deve modificare il concetto di sottoproblema: non serve l'informazione sugli oggetti usati.

Il problema si semplifica da un certo punto di vista, ma il numero di scelte *aumenta*! Non sono più soltanto due.

Esempio:

oggetto	peso	valore	
1	6	30	
2	3	14	
3	4	16	
4	2	9	

Se la capacità dello zaino è C = 10, la scelta ottima è prendere un oggetto 1 e due oggetti 4 (totale 48).

Zaino con ripetizione

Come esprimere il problema in funzione di sottoproblemi, quali sono i sottoproblemi?

I sottoproblemi dipendono solo dalla capacità dello zaino.

Denotiamo con Val(k) il massimo valore raggiungibile con uno zaino di capacità k; n sia il numero di oggetti diversi.

$$Val(k) = \begin{cases} 0 & \text{se } k = 0 \\ max \{Val(k-1), max \{Val(k-p_i) + v_i \mid p_i \le k\} \} & \text{se } k \ne 0 \\ 1 \le i \le n \end{cases}$$

Convenzione: il massimo su un insieme vuoto è 0.

Zaino con ripetizione

```
\begin{split} \text{Val}(0) &= 0 \\ \text{Val}(k) &= \text{max } \{\text{Val}(k-1), \, \text{max } \{\text{Val}(k-p_i) + v_i \mid p_i \leq k\} \, \} \\ & \quad \textit{zaino\_r} \left( C, \, P[], \, V[], \, n \right) \\ & \quad \text{Val}[0] \leftarrow 0 \\ & \quad \text{for } k \leftarrow 1 \, \, \underline{\text{to}} \, C \\ & \quad \text{m} \leftarrow \text{Val}[k-1] \\ & \quad \text{for } i \leftarrow 1 \, \, \underline{\text{to}} \, n \\ & \quad \text{if } (k \geq P[i] \, \underline{\text{and}} \, \, \text{Val}[k - P[i]] + V[i] > m) \\ & \quad \text{m} \leftarrow \text{Val}[k - P[i]] + V[i] \\ & \quad \text{Val}[k] \leftarrow m \\ & \quad \text{return} \, \, \text{Val}[C] \end{split}
```

Complessità dell'algoritmo: $\Theta(n \cdot C)$.

Zaino con ripetizione: esempio

Esempio:

oggetto	peso	valore
1	3	7
2	2	4
3	4	5

capacità dello zaino: 7

k	val	agg. 1	agg. 2	agg. 3	I
1	0	-	-	1	0
2	4	-	4		2
3	7	7	4	1	1
4	4+4	7	4+4	5	2
5	7+4	7+4	7+4	5	2
6	7+7	7+7	4+4+4	4+5	1
7	4+4+7	4+4+7	7+4+4	4+4+5	1

Il valore massimo trasportabile è di 15.

Zaino con ripetizione: trovare la soluzione

Esercizio: scrivere la funzione per estrarre tutti gli elementi, con la loro molteplicità, che compongo la scelta ottimale.

Zaino oggetti continui

E se gli oggetti fossero continui?

Riempire lo zaino partendo dagli elementi più preziosi


```
 \begin{aligned} \textit{zaino\_c} & (\mathsf{C}, \mathsf{P}, \mathsf{V}, \mathsf{n}) \\ & \mathsf{peso} \leftarrow \mathsf{0} \; ; \; \mathsf{Val} \leftarrow \mathsf{0} \\ & \text{``Ordina P e V in modo } \textit{non crescente} \\ & \mathsf{rispetto a V[i]/P[i]''} \\ & \mathsf{i} \leftarrow \mathsf{1} \\ & \underline{\mathsf{while}} \; ((\mathsf{i} \leq \mathsf{n}) \; \underline{\mathsf{and}} \; (\mathsf{peso} + \mathsf{P[i]} \leq \mathsf{C})) \\ & \mathsf{peso} \leftarrow \mathsf{peso} + \mathsf{P[i]} \\ & \mathsf{Val} \leftarrow \mathsf{Val} \; + \mathsf{V[i]} \\ & \mathsf{i} \leftarrow \mathsf{i} + \mathsf{1} \\ & \underline{\mathsf{if}} \; ((\mathsf{i} \leq \mathsf{n}) \; \underline{\mathsf{and}} \; (\mathsf{peso} < \mathsf{C})) \\ & \mathsf{Val} \leftarrow \mathsf{Val} + (\mathsf{C} - \mathsf{peso}) \, / \, \mathsf{P[i]}_* \, \mathsf{V[i]} \\ & \underline{\mathsf{return}} \; \mathsf{Val} \end{aligned}
```