{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'/Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"os.chdir('./data')\n",
"os.getcwd()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"from scipy import stats"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"x1 = np.array([10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0])\n",
"y1 = np.array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68])\n",
"\n",
"x2 = np.array([10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0])\n",
"y2 = np.array([9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74])\n",
"\n",
"x3 = np.array([10.0, 8.0, 13.0, 9.0, 11.0, 14.0, 6.0, 4.0, 12.0, 7.0, 5.0])\n",
"y3 = np.array([7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73])\n",
"\n",
"x4 = np.array([8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 19.0, 8.0, 8.0, 8.0])\n",
"y4 = np.array([6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89])\n",
"\n",
"limit=np.array([0,20])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"7.50090909091 7.50090909091 7.5 7.50090909091\n",
"3.75206280992 3.75239008264 3.74783636364 3.74840826446\n"
]
}
],
"source": [
"mx1=np.mean(x1)\n",
"mx2=np.mean(x2)\n",
"mx3=np.mean(x3)\n",
"mx4=np.mean(x4)\n",
"\n",
"my1=np.mean(y1)\n",
"my2=np.mean(y2)\n",
"my3=np.mean(y3)\n",
"my4=np.mean(y4)\n",
"\n",
"vx1=np.var(x1)\n",
"vx2=np.var(x2)\n",
"vx3=np.var(x3)\n",
"vx4=np.var(x4)\n",
"\n",
"vy1=np.var(y1)\n",
"vy2=np.var(y2)\n",
"vy3=np.var(y3)\n",
"vy4=np.var(y4)\n",
"\n",
"\n",
"slope1, intercept1, r_value1, p_value1, std_err1 = stats.linregress(x1,y1)\n",
"slope2, intercept2, r_value2, p_value2, std_err2 = stats.linregress(x2,y2)\n",
"slope3, intercept3, r_value3, p_value3, std_err3 = stats.linregress(x3,y3)\n",
"slope4, intercept4, r_value4, p_value4, std_err4 = stats.linregress(x4,y4)\n",
"\n",
"line1 = slope1*np.append(x1,limit)+intercept1\n",
"line2 = slope2*np.append(x2,limit)+intercept2\n",
"line3 = slope3*np.append(x3,limit)+intercept3\n",
"line4 = slope4*np.append(x4,limit)+intercept4\n",
"\n",
"\n",
"print(my1,my2,my3,my4)\n",
"print(vy1,vy2,vy3,vy4)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"IOPub data rate exceeded.\n",
"The notebook server will temporarily stop sending output\n",
"to the client in order to avoid crashing it.\n",
"To change this limit, set the config variable\n",
"`--NotebookApp.iopub_data_rate_limit`.\n"
]
}
],
"source": [
"import plotly.plotly as py\n",
"from plotly import __version__\n",
"from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n",
"import plotly.graph_objs as go\n",
"\n",
"init_notebook_mode()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This is the format of your plot grid:\n",
"[ (1,1) x1,y1 ] [ (1,2) x2,y2 ]\n",
"[ (2,1) x3,y3 ] [ (2,2) x4,y4 ]\n",
"\n"
]
}
],
"source": [
"import plotly.plotly as py\n",
"import plotly.graph_objs as go\n",
"from plotly import tools\n",
"\n",
"trace1 = go.Scatter(\n",
" x=x1,\n",
" y=y1,\n",
" mode = 'markers',\n",
" name = \"Group1\",\n",
" marker=dict(color=\"red\"),\n",
" \n",
" )\n",
"\n",
"trace1l = go.Scatter(\n",
" x=np.append(x1,limit),\n",
" y=line1,\n",
" mode='lines',\n",
" name=\"l1\",\n",
" line=dict(color=\"red\")\n",
")\n",
"\n",
"trace2 = go.Scatter(\n",
" x=x2,\n",
" y=y2,\n",
" xaxis='x2',\n",
" yaxis='y2',\n",
" mode = 'markers',\n",
" name = \"Group2\",\n",
" marker=dict(color=\"orange\")\n",
")\n",
"\n",
"trace2l = go.Scatter(\n",
" x=np.append(x2,limit),\n",
" y=line2,\n",
" mode='lines',\n",
" name=\"l2\",\n",
" line=dict(color=\"orange\")\n",
")\n",
"\n",
"trace3 = go.Scatter(\n",
" x=x3,\n",
" y=y3,\n",
" xaxis='x3',\n",
" yaxis='y3',\n",
" mode = 'markers',\n",
" name = \"Group3\",\n",
" marker=dict(color=\"green\")\n",
")\n",
"\n",
"trace3l = go.Scatter(\n",
" x=np.append(x3,limit),\n",
" y=line3,\n",
" mode='lines',\n",
" name=\"l3\",\n",
" line=dict(color=\"green\")\n",
")\n",
"\n",
"trace4 = go.Scatter(\n",
" x=x4,\n",
" y=y4,\n",
" xaxis='x4',\n",
" yaxis='y4',\n",
" mode = 'markers',\n",
" name = \"Group4\",\n",
" marker=dict(color=\"blue\")\n",
")\n",
"\n",
"trace4l = go.Scatter(\n",
" x=np.append(x4,limit),\n",
" y=line4,\n",
" mode='lines',\n",
" name=\"l4\",\n",
" line=dict(color=\"blue\")\n",
")\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"fig = tools.make_subplots(rows=2, cols=2)\n",
"fig.append_trace(trace1, 1, 1)\n",
"fig.append_trace(trace1l, 1, 1)\n",
"fig.append_trace(trace2, 2, 1)\n",
"fig.append_trace(trace2l, 2, 1)\n",
"fig.append_trace(trace3, 1, 2)\n",
"fig.append_trace(trace3l, 1, 2)\n",
"fig.append_trace(trace4, 2, 2)\n",
"fig.append_trace(trace4l, 2, 2)\n",
"\n",
"\n",
"fig['layout']['yaxis1'].update(range=[0,15])\n",
"fig['layout']['xaxis1'].update(range=[0,20])\n",
"fig['layout']['yaxis2'].update(range=[0,15])\n",
"fig['layout']['xaxis2'].update(range=[0,20])\n",
"fig['layout']['yaxis3'].update(range=[0,15])\n",
"fig['layout']['xaxis3'].update(range=[0,20])\n",
"fig['layout']['yaxis4'].update(range=[0,15])\n",
"fig['layout']['xaxis4'].update(range=[0,20])\n",
"\n",
"fig['layout']['title']=\"Anscombe's quartet\"\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"economics = pd.read_csv(\"economics.csv\").set_index('date')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" pce | \n",
" pop | \n",
" psavert | \n",
" uempmed | \n",
" unemploy | \n",
" year | \n",
" month | \n",
"
\n",
" \n",
" date | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1967-07-01 | \n",
" 1 | \n",
" 507.4 | \n",
" 198712 | \n",
" 12.5 | \n",
" 4.5 | \n",
" 2944 | \n",
" 1967 | \n",
" 7 | \n",
"
\n",
" \n",
" 1967-08-01 | \n",
" 2 | \n",
" 510.5 | \n",
" 198911 | \n",
" 12.5 | \n",
" 4.7 | \n",
" 2945 | \n",
" 1967 | \n",
" 8 | \n",
"
\n",
" \n",
" 1967-09-01 | \n",
" 3 | \n",
" 516.3 | \n",
" 199113 | \n",
" 11.7 | \n",
" 4.6 | \n",
" 2958 | \n",
" 1967 | \n",
" 9 | \n",
"
\n",
" \n",
" 1967-10-01 | \n",
" 4 | \n",
" 512.9 | \n",
" 199311 | \n",
" 12.5 | \n",
" 4.9 | \n",
" 3143 | \n",
" 1967 | \n",
" 10 | \n",
"
\n",
" \n",
" 1967-11-01 | \n",
" 5 | \n",
" 518.1 | \n",
" 199498 | \n",
" 12.5 | \n",
" 4.7 | \n",
" 3066 | \n",
" 1967 | \n",
" 11 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Unnamed: 0 pce pop psavert uempmed unemploy year month\n",
"date \n",
"1967-07-01 1 507.4 198712 12.5 4.5 2944 1967 7\n",
"1967-08-01 2 510.5 198911 12.5 4.7 2945 1967 8\n",
"1967-09-01 3 516.3 199113 11.7 4.6 2958 1967 9\n",
"1967-10-01 4 512.9 199311 12.5 4.9 3143 1967 10\n",
"1967-11-01 5 518.1 199498 12.5 4.7 3066 1967 11"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"economics.head()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"economics=economics.drop(economics.columns[[0]], axis=1) "
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" pce | \n",
" pop | \n",
" psavert | \n",
" uempmed | \n",
" unemploy | \n",
" year | \n",
" month | \n",
"
\n",
" \n",
" date | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1967-07-01 | \n",
" 507.4 | \n",
" 198712 | \n",
" 12.5 | \n",
" 4.5 | \n",
" 2944 | \n",
" 1967 | \n",
" 7 | \n",
"
\n",
" \n",
" 1967-08-01 | \n",
" 510.5 | \n",
" 198911 | \n",
" 12.5 | \n",
" 4.7 | \n",
" 2945 | \n",
" 1967 | \n",
" 8 | \n",
"
\n",
" \n",
" 1967-09-01 | \n",
" 516.3 | \n",
" 199113 | \n",
" 11.7 | \n",
" 4.6 | \n",
" 2958 | \n",
" 1967 | \n",
" 9 | \n",
"
\n",
" \n",
" 1967-10-01 | \n",
" 512.9 | \n",
" 199311 | \n",
" 12.5 | \n",
" 4.9 | \n",
" 3143 | \n",
" 1967 | \n",
" 10 | \n",
"
\n",
" \n",
" 1967-11-01 | \n",
" 518.1 | \n",
" 199498 | \n",
" 12.5 | \n",
" 4.7 | \n",
" 3066 | \n",
" 1967 | \n",
" 11 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" pce pop psavert uempmed unemploy year month\n",
"date \n",
"1967-07-01 507.4 198712 12.5 4.5 2944 1967 7\n",
"1967-08-01 510.5 198911 12.5 4.7 2945 1967 8\n",
"1967-09-01 516.3 199113 11.7 4.6 2958 1967 9\n",
"1967-10-01 512.9 199311 12.5 4.9 3143 1967 10\n",
"1967-11-01 518.1 199498 12.5 4.7 3066 1967 11"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"economics.head()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trace = go.Scatter(\n",
" x = economics.year,\n",
" y = economics.psavert,\n",
" mode = 'markers'\n",
")\n",
"data = [trace]\n",
"\n",
"layout = go.Layout(\n",
" title='Scatter plot',\n",
" xaxis=dict(\n",
" title='Year',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
" ),\n",
" yaxis=dict(\n",
" title='Personal savings rate',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
" )\n",
")\n",
"fig = go.Figure(data=data,layout=layout)\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trace = go.Scatter(\n",
" x = economics.index,\n",
" y = economics.psavert,\n",
" \n",
")\n",
"data = [trace]\n",
"layout = go.Layout(\n",
" title='Line chart',\n",
" xaxis=dict(\n",
" title='Year',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
" ),\n",
" yaxis=dict(\n",
" title='Personal savings rate',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
" )\n",
")\n",
"fig = go.Figure(data=data,layout=layout)\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trace = go.Scatter(\n",
" x = economics.index,\n",
" y = economics.psavert,\n",
" fill='tonexty'\n",
")\n",
"data = [trace]\n",
"layout = go.Layout(\n",
" title='Area chart',\n",
" xaxis=dict(\n",
" title='Year',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
" ),\n",
" yaxis=dict(\n",
" title='Personal savings rate',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
" )\n",
")\n",
"fig = go.Figure(data=data,layout=layout)\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"traces=[]\n",
"for i in range(economics.year.min(),economics.year.max()+1):\n",
" anno=economics[economics.year==i]\n",
" traces.append(go.Box(\n",
" y=anno.psavert,\n",
" name=i,\n",
" line = dict(\n",
" color = 'blue')\n",
" \n",
" )\n",
" )\n",
"layout = go.Layout(\n",
" title='Boxplot',\n",
" showlegend=False,\n",
" xaxis=dict(\n",
" title='Year',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
" ),\n",
" yaxis=dict(\n",
" title='Personal savings rate',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
") \n",
")\n",
"fig = go.Figure(data=traces,layout=layout)\n",
"\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = [go.Bar(\n",
" x=economics.year,\n",
" y=economics.psavert\n",
" )]\n",
"\n",
"layout = go.Layout(\n",
" title='Barplot',\n",
" \n",
" xaxis=dict(\n",
" title='Year',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
" ),\n",
" yaxis=dict(\n",
" title='Personal savings rate',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
") \n",
")\n",
"fig=go.Figure(data=data,layout=layout)\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data=[{\n",
" 'x': economics[economics.year==y].month,\n",
" 'y': economics[economics.year==y].psavert,\n",
" 'name': y,\n",
" \n",
"} for y in range(economics.year.min(),economics.year.max()+1) if y%5==0]\n",
"\n",
"layout = go.Layout(\n",
" title='Multiline chart',\n",
" \n",
" xaxis=dict(\n",
" title='Year',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
" ),\n",
" yaxis=dict(\n",
" title='Personal savings rate',\n",
" titlefont=dict(\n",
" family='Courier New, monospace',\n",
" size=18,\n",
" color='#7f7f7f'\n",
" )\n",
") \n",
")\n",
"fig=go.Figure(data=data,layout=layout)\n",
"\n",
"\n",
"\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"traces=[]\n",
"for y in range(economics.year.min(),economics.year.max()+1):\n",
" if y%5==0:\n",
" anno=economics[economics.year==y]\n",
" traces.append(go.Scatter(\n",
" x=anno.month,\n",
" y=anno.psavert,\n",
" name=y,\n",
" mode='lines'\n",
"))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This is the format of your plot grid:\n",
"[ (1,1) x1,y1 ] [ (1,2) x2,y2 ] \n",
"[ (2,1) x3,y3 ] [ (2,2) x4,y4 ] \n",
"[ (3,1) x5,y5 ] [ (3,2) x6,y6 ] \n",
"[ (4,1) x7,y7 ] [ (4,2) x8,y8 ] \n",
"[ (5,1) x9,y9 ] [ (5,2) x10,y10 ]\n",
"\n"
]
}
],
"source": [
"n=len(traces)\n",
"fig = tools.make_subplots(rows=int(n/2), cols=2)\n",
"for i in range(1,n+1):\n",
" if i<= n/2:\n",
" fig.append_trace(traces[i-1], i, 1)\n",
" else:\n",
" fig.append_trace(traces[i-1], i-int(n/2), 2)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig['layout']['yaxis1'].update(range=[0,20],title=\"psa\")\n",
"fig['layout']['yaxis2'].update(range=[0,20],title=\"psa\")\n",
"fig['layout']['yaxis3'].update(range=[0,20],title=\"psa\")\n",
"fig['layout']['yaxis4'].update(range=[0,20],title=\"psa\")\n",
"fig['layout']['yaxis5'].update(range=[0,20],title=\"psa\")\n",
"fig['layout']['yaxis6'].update(range=[0,20],title=\"psa\")\n",
"fig['layout']['yaxis7'].update(range=[0,20],title=\"psa\")\n",
"fig['layout']['yaxis8'].update(range=[0,20],title=\"psa\")\n",
"fig['layout']['yaxis9'].update(range=[0,20],title=\"psa\")\n",
"fig['layout']['yaxis10'].update(range=[0,20],title=\"psa\")\n",
"\n",
"fig['layout']['xaxis1'].update(title=\"year\")\n",
"fig['layout']['xaxis2'].update(title=\"year\")\n",
"fig['layout']['xaxis3'].update(title=\"year\")\n",
"fig['layout']['xaxis4'].update(title=\"year\")\n",
"fig['layout']['xaxis5'].update(title=\"year\")\n",
"fig['layout']['xaxis6'].update(title=\"year\")\n",
"fig['layout']['xaxis7'].update(title=\"year\")\n",
"fig['layout']['xaxis8'].update(title=\"year\")\n",
"fig['layout']['xaxis9'].update(title=\"year\")\n",
"fig['layout']['xaxis10'].update(title=\"year\")\n",
"fig['layout']['title']=\"Separated subplots\"\n",
"\n",
"\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"movies = pd.read_csv(\"movies.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Unnamed: 0 | \n",
" title | \n",
" year | \n",
" length | \n",
" budget | \n",
" rating | \n",
" votes | \n",
" r1 | \n",
" r2 | \n",
" r3 | \n",
" ... | \n",
" r9 | \n",
" r10 | \n",
" mpaa | \n",
" Action | \n",
" Animation | \n",
" Comedy | \n",
" Drama | \n",
" Documentary | \n",
" Romance | \n",
" Short | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" $ | \n",
" 1971 | \n",
" 121 | \n",
" NaN | \n",
" 6.4 | \n",
" 348 | \n",
" 4.5 | \n",
" 4.5 | \n",
" 4.5 | \n",
" ... | \n",
" 4.5 | \n",
" 4.5 | \n",
" NaN | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" $1000 a Touchdown | \n",
" 1939 | \n",
" 71 | \n",
" NaN | \n",
" 6.0 | \n",
" 20 | \n",
" 0.0 | \n",
" 14.5 | \n",
" 4.5 | \n",
" ... | \n",
" 4.5 | \n",
" 14.5 | \n",
" NaN | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" $21 a Day Once a Month | \n",
" 1941 | \n",
" 7 | \n",
" NaN | \n",
" 8.2 | \n",
" 5 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 24.5 | \n",
" 24.5 | \n",
" NaN | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" $40,000 | \n",
" 1996 | \n",
" 70 | \n",
" NaN | \n",
" 8.2 | \n",
" 6 | \n",
" 14.5 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 34.5 | \n",
" 45.5 | \n",
" NaN | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" $50,000 Climax Show, The | \n",
" 1975 | \n",
" 71 | \n",
" NaN | \n",
" 3.4 | \n",
" 17 | \n",
" 24.5 | \n",
" 4.5 | \n",
" 0.0 | \n",
" ... | \n",
" 0.0 | \n",
" 24.5 | \n",
" NaN | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 25 columns
\n",
"
"
],
"text/plain": [
" Unnamed: 0 title year length budget rating votes \\\n",
"0 1 $ 1971 121 NaN 6.4 348 \n",
"1 2 $1000 a Touchdown 1939 71 NaN 6.0 20 \n",
"2 3 $21 a Day Once a Month 1941 7 NaN 8.2 5 \n",
"3 4 $40,000 1996 70 NaN 8.2 6 \n",
"4 5 $50,000 Climax Show, The 1975 71 NaN 3.4 17 \n",
"\n",
" r1 r2 r3 ... r9 r10 mpaa Action Animation Comedy Drama \\\n",
"0 4.5 4.5 4.5 ... 4.5 4.5 NaN 0 0 1 1 \n",
"1 0.0 14.5 4.5 ... 4.5 14.5 NaN 0 0 1 0 \n",
"2 0.0 0.0 0.0 ... 24.5 24.5 NaN 0 1 0 0 \n",
"3 14.5 0.0 0.0 ... 34.5 45.5 NaN 0 0 1 0 \n",
"4 24.5 4.5 0.0 ... 0.0 24.5 NaN 0 0 0 0 \n",
"\n",
" Documentary Romance Short \n",
"0 0 0 0 \n",
"1 0 0 0 \n",
"2 0 0 1 \n",
"3 0 0 0 \n",
"4 0 0 0 \n",
"\n",
"[5 rows x 25 columns]"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"movies.head()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"movies=movies.drop(movies.columns[[0]], axis=1) "
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" title | \n",
" year | \n",
" length | \n",
" budget | \n",
" rating | \n",
" votes | \n",
" r1 | \n",
" r2 | \n",
" r3 | \n",
" r4 | \n",
" ... | \n",
" r9 | \n",
" r10 | \n",
" mpaa | \n",
" Action | \n",
" Animation | \n",
" Comedy | \n",
" Drama | \n",
" Documentary | \n",
" Romance | \n",
" Short | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" $ | \n",
" 1971 | \n",
" 121 | \n",
" NaN | \n",
" 6.4 | \n",
" 348 | \n",
" 4.5 | \n",
" 4.5 | \n",
" 4.5 | \n",
" 4.5 | \n",
" ... | \n",
" 4.5 | \n",
" 4.5 | \n",
" NaN | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" $1000 a Touchdown | \n",
" 1939 | \n",
" 71 | \n",
" NaN | \n",
" 6.0 | \n",
" 20 | \n",
" 0.0 | \n",
" 14.5 | \n",
" 4.5 | \n",
" 24.5 | \n",
" ... | \n",
" 4.5 | \n",
" 14.5 | \n",
" NaN | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" $21 a Day Once a Month | \n",
" 1941 | \n",
" 7 | \n",
" NaN | \n",
" 8.2 | \n",
" 5 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 24.5 | \n",
" 24.5 | \n",
" NaN | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" $40,000 | \n",
" 1996 | \n",
" 70 | \n",
" NaN | \n",
" 8.2 | \n",
" 6 | \n",
" 14.5 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" ... | \n",
" 34.5 | \n",
" 45.5 | \n",
" NaN | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" $50,000 Climax Show, The | \n",
" 1975 | \n",
" 71 | \n",
" NaN | \n",
" 3.4 | \n",
" 17 | \n",
" 24.5 | \n",
" 4.5 | \n",
" 0.0 | \n",
" 14.5 | \n",
" ... | \n",
" 0.0 | \n",
" 24.5 | \n",
" NaN | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 24 columns
\n",
"
"
],
"text/plain": [
" title year length budget rating votes r1 r2 \\\n",
"0 $ 1971 121 NaN 6.4 348 4.5 4.5 \n",
"1 $1000 a Touchdown 1939 71 NaN 6.0 20 0.0 14.5 \n",
"2 $21 a Day Once a Month 1941 7 NaN 8.2 5 0.0 0.0 \n",
"3 $40,000 1996 70 NaN 8.2 6 14.5 0.0 \n",
"4 $50,000 Climax Show, The 1975 71 NaN 3.4 17 24.5 4.5 \n",
"\n",
" r3 r4 ... r9 r10 mpaa Action Animation Comedy Drama \\\n",
"0 4.5 4.5 ... 4.5 4.5 NaN 0 0 1 1 \n",
"1 4.5 24.5 ... 4.5 14.5 NaN 0 0 1 0 \n",
"2 0.0 0.0 ... 24.5 24.5 NaN 0 1 0 0 \n",
"3 0.0 0.0 ... 34.5 45.5 NaN 0 0 1 0 \n",
"4 0.0 14.5 ... 0.0 24.5 NaN 0 0 0 0 \n",
"\n",
" Documentary Romance Short \n",
"0 0 0 0 \n",
"1 0 0 0 \n",
"2 0 0 1 \n",
"3 0 0 0 \n",
"4 0 0 0 \n",
"\n",
"[5 rows x 24 columns]"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"movies.head()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = [go.Histogram(\n",
" \n",
" x=movies.rating,\n",
" nbinsx=20\n",
" )]\n",
"\n",
"\n",
"layout = go.Layout(\n",
" title='Histogram',\n",
" \n",
" xaxis=dict(\n",
" title='Rating',\n",
" \n",
" ),\n",
" yaxis=dict(\n",
" title='Count',\n",
" \n",
") \n",
")\n",
"fig=go.Figure(data=data,layout=layout)\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = [go.Histogram(\n",
" \n",
" x=movies.rating,\n",
" nbinsx=100\n",
" )]\n",
"layout = go.Layout(\n",
" title='Histogram',\n",
" \n",
" xaxis=dict(\n",
" title='Rating',\n",
" \n",
" ),\n",
" yaxis=dict(\n",
" title='Count',\n",
" \n",
") \n",
")\n",
"fig=go.Figure(data=data,layout=layout)\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"mpa=movies[-movies.mpaa.isnull()]\n",
"mpa=mpa.sort_values(['rating'])\n",
"mpa_values=set(mpa.mpaa)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data=[]\n",
"for i in mpa_values:\n",
" trace=go.Histogram(\n",
" x=mpa[mpa.mpaa==i].rating,\n",
" name=i\n",
" )\n",
" data.append(trace)\n",
" \n",
"layout = go.Layout(\n",
" title='Histogram',\n",
" \n",
" xaxis=dict(\n",
" title='Rating',\n",
" \n",
" ),\n",
" yaxis=dict(\n",
" title='Count',\n",
" \n",
") \n",
")"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig = go.Figure(data=data,layout=layout)\n",
"fig[\"layout\"][\"barmode\"]='stack'\n",
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['R', 'PG-13', 'NC-17', 'PG']"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"labels=[]\n",
"for i in mpa_values:\n",
" labels.append(i)\n",
"labels"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[3377, 1003, 16, 528]"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"values=[]\n",
"for i in labels:\n",
" data=mpa[mpa.mpaa==i]\n",
" q=data.mpaa.count()\n",
" values.append(q)\n",
"\n",
"values\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"trace = [go.Pie(labels=labels, values=values,\n",
" hoverinfo='label+percent', textinfo='value', \n",
" textfont=dict(size=20),\n",
" marker=dict(line=dict(color='#000000', width=2))\n",
" )]\n",
"\n",
"layout = go.Layout(\n",
" title='Pie') \n",
"\n",
"fig=go.Figure(data=trace,layout=layout)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"trace = [go.Pie(labels=labels, values=values,\n",
" hoverinfo='label+percent', textinfo='value', \n",
" textfont=dict(size=20),\n",
" hole=0.7,\n",
" \n",
" marker=dict(line=dict(color='#000000', width=2)))]\n",
"\n",
" \n",
"layout = go.Layout(\n",
" title='Pie') \n",
"\n",
"fig=go.Figure(data=trace,layout=layout)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'file:///Users/ruffo/Documents/Didattica/2017:18/ComplexNetworks/dataviz/notebooks/data/temp-plot.html'"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"plot(fig)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}