
Android: User Interface / Toasts,... and Menus

Ferruccio Damiani

Università di Torino
www.di.unito.it/~damiani

Mobile Device Programming
(Laurea Magistrale in Informatica, a.a. 2018-2019)

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 1 / 24

www.di.unito.it/~damiani


Outline

1 Toasts,...

2 and Menus

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 2 / 24



Outline

1 Toasts,...

2 and Menus

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 3 / 24



Toasts [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinDialog.git]

Tiny messages over the Activity
I Used to highlight minor problems or provide confirmations
I Usually appear near the bottom of the screen, centered horizontally (gravity)
I We can control their duration

First, instantiate a Toast object with one of the makeText() methods. This method takes three parameters: the
application Context, the text message, and the duration for the toast. It returns a properly initialized Toast
object. You can display the toast notification with show(), as shown in the following example:

1 val context = applicationContext

2 val text = "Happy Toast!"

3 val duration = Toast.LENGTH_SHORT

4
5 Toast.makeText(context, text, duration).show()

This example demonstrates everything you need for most toast notifications. You should rarely need anything
else.1

1You may, however, want to position the toast differently or even use your own layout instead of a simple
text message.

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 4 / 24



Dialogs

Used to interact with the user

Short messages, easy answers

The Dialog class is the base class for dialogs, but you should
avoid instantiating Dialog directly. Instead, use one of the
following subclasses:

I AlertDialog: A dialog that can show a title, up to three buttons, a
list of selectable items, or a custom layout.

I ProgressDialog: A dialog showing a progress indicator and an
optional text message or view. Only a text message or a view can
be used at the same time.

F ProgressBar would be better

I DatePickerDialog or TimePickerDialog: A dialog with a
pre-defined UI that allows the user to select a date or time.

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 5 / 24



Examples of dialogs

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 6 / 24



You should use a Dialog (or a DialogFragment) as a container for your dialog.

For example, here’s a basic AlertDialog that’s managed within a AlertDialog.Builder:

[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinDialog.git]

1 private var alertDialog: Dialog? = null

2
3 fun fireMissilesDialog(view: View) {

4 if (alertDialog == null) {

5 val builder = AlertDialog.Builder(this).apply {

6 setMessage(R.string.missiles_title)

7 setPositiveButton(R.string.missiles_ok) { dialog, which ->

8 // FIRE THE MISSILES!

9 }

10 setNegativeButton(R.string.missiles_no) { _, _ ->

11 // User cancelled the dialog

12 }

13 }

14 alertDialog = builder.create()

15 }

16 alertDialog!!.show()

17 }

When you create an instance of this class and call
show() on that object, the dialog appears:

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 7 / 24



App widgets

Overview

Widgets are little applications which can be placed on a widget
host, typically the home screen or the lock screen

A widget runs as part of the process of its host

Android 4.2 introduces the ability for users to add widgets to the
lock screen

Limitations

A widget has the same runtime restrictions as a normal
broadcast receiver

I It only has 5 seconds to finish its processing

A widget should perform time consuming operations in a service
and perform the update of the widget from the service

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 8 / 24



Animations

Used to move/shrink/color elements

Two solutions
I Subsequent images (frame-by-frame)
I Initial state, final state, time, transition (tween)

Android 5.0 (API level 21) includes new APIs to create custom animations in your app
I Animations are heavy and expensive
I Too many animations are confusing and may become a problem

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 9 / 24



Animations: Frame by Frame

Each Drawable can be a frame of the animation

Could be defined via XML or in Java

Based on a particular set of images
I Same animation on different devices requires different sets

The .apk becomes bigger and bigger

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 10 / 24



Animations: Tween

Defines only the frame of the animation
I Starts like this, ends like that, and lasts x seconds

One can define the transparency of objects, their rotation, the dimension of images, and
their position on the screen

The same animation can be applied to multiple objects
I Animations are independent of the objects they work on

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 11 / 24



Outline

1 Toasts,...

2 and Menus

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 12 / 24



Menus: three fundamental types2

1. Options menu and app bar
I This is the primary collection of menu items for an activity
I On Android 3.0 and higher, items from the options menu are presented by the app bar as a

combination of on-screen action items and overflow options

2. Context menu and contextual action mode
I It is a floating menu that appears when the user performs a long-click on an element and

provides actions that affect the selected content or context frame
I On Android 3.0 and higher, you should instead use the contextual action mode to display

action items in a bar at the top of the screen and allows the user to select multiple items

3. Popup menu
I It displays a list of items in a vertical list that is anchored to the view that invoked the menu

F Good for providing an overflow of actions that relate to specific content

2Beginning with Android 3.0 (API level 11), Android powered devices are no longer required to provide a
dedicated Menu button. Android apps should provide an app bar to present common user actions.

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 13 / 24



Menus: how to design and implement them

Guidelines for properly designing them:
I If they become too big, they do not fit
I Should guide the user properly
I Should exploit the current state/context

Two ways of implementing them:
I XML: file in res/menu and inflate it (reuse)
I Java: directly part of the activity’s code

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 14 / 24



Defining a Menu in XML

For all menu types, Android provides a standard XML format to define menu items.
To define the menu, create an XML file inside your project’s res/menu/ directory and build the
menu with the following elements:

<menu> Defines a Menu, which is a container for menu items. A <menu> element must
be the root node for the file and can hold one or more <item>and <group>
elements.

<item> Creates a MenuItem, which represents a single item in a menu. This element
may contain a nested <menu> element in order to create a submenu.

<group> An optional, invisible container for <item> elements. It allows you to categorize
menu items so they share properties such as active state and visibility.

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 15 / 24



Each menu entry (<item>) is specified by an ID, an icon (optional), and a title. The
most important attributes are:

android:id A resource ID that’s unique to the item, which allows the application can
recognize the item when the user selects it

android:icon A reference to a drawable to use as the item’s icon.
android:title A reference to a string to use as the item’s title.
android:showAsAction Specifies when and how this item should appear as an action item

in the app bar.

One can add a submenu to an item in any menu (except a submenu)

Method onCreateOptionsMenu() inflates the menu
I Specific actions must then be implemented

1 <menu xmlns:android=...>

2 <item android:id="@+id/system"

3 android:icon="@drawable/system"

4 android:title="@string/option1"

5 app:showAsAction="ifRoom"/>

6 <item android:id="@+id/about"

7 android:title="@string/about" />

8 </menu>

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 16 / 24



Creating an Options Menu
[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinMenu.git]

Within the activity

To specify the options menu for an activity, override onCreateOptionsMenu():

1 override fun onCreateOptionsMenu(menu: Menu?): Boolean {

2 val inflater = menuInflater

3 inflater.inflate(R.menu.option_menu, menu)

4 return true

5 }

You can also add menu items using add() and retrieve items with findItem() to revise their properties with
MenuItem APIs.

To handle click events, override onOptionsItemSelected():

1 override fun onOptionsItemSelected(item: MenuItem?): Boolean {

2 return when (item?.itemId) {

3 R.id.system -> doSystem()

4 R.id.about -> doAbout()

5 else -> super.onOptionsItemSelected(item)

6 }

7 }

When you successfully handle a menu item, return true. If you don’t handle the menu item, you should
call the superclass implementation of onOptionsItemSelected() (the default implementation returns false).

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 17 / 24



To change menu items at runtime, use method onPrepareOptionsMenu()
I This method passes the Menu object as it currently exists so you can modify it, such as add,

remove, or disable items
I Fragments also provide an onPrepareOptionsMenu()
I Starting from Android 3.0, when you want to perform a menu update, you must call

invalidateOptionsMenu() to request that the system call onPrepareOptionsMenu().3

3You should never change items in the options menu based on the View currently in focus.
Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 18 / 24



Creating Contextual Menus

Most often used for items in a ListView, GridView, or other view collections in which the user
can perform direct actions on each item. There are two ways to provide contextual actions:

1. In a floating context menu. A menu appears as a floating list of menu items (similar to a dialog) when the
user performs a long-click (press and hold) on a view that declares support for a context menu. Users can
perform a contextual action on one item at a time.

2. In the contextual action mode. This mode is a system implementation of ActionMode that displays a
contextual action bar at the top of the screen with action items that affect the selected item(s). When
this mode is active, users can perform an action on multiple items at once (if your app allows it).

Screenshots of:

1. a floating context menu (left) and

2. an example of contextual action bar (right).

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 19 / 24



1. Creating a floating context menu [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinMenu.git]

Register the View by calling registerForContextMenu() and pass it the View.

I If you pass the entire ListView or GridView, you register all of its items

Implement the onCreateContextMenu() method in your Activity or Fragment

1 override fun onCreateContextMenu(menu: ContextMenu?, v: View?,

2 menuInfo: ContextMenu.ContextMenuInfo?) {

3 super.onCreateContextMenu(menu, v, menuInfo)

4 val inflater = menuInflater

5 inflater.inflate(R.menu.context_menu, menu)

6 }

Implement onContextItemSelected() to perform the appropriate actions

1 override fun onContextItemSelected(item: MenuItem?): Boolean {

2 // Handle item selection

3 return when (item?.itemId) {

4 R.id.send -> doSend()

5 R.id.recive -> doRecive()

6 R.id.remove -> doRemove()

7 else -> super.onContextItemSelected(item)

8 }

9 }

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 20 / 24



2. Using the contextual action mode

For contextual actions on individual views
I Implement the ActionMode.Callback interface to specify the actions for the contextual action

bar
I Call startActionMode() when appropriate, such as in response to a long-click on a View

For batch contextual actions on groups of items in a ListView or GridView
I The user can select multiple items and perform an action on them all
I Implement the AbsListView.MultiChoiceModeListener interface and set it for the view group

with setMultiChoiceModeListener()
I Call setChoiceMode() with the CHOICE MODE MULTIPLE MODAL argument

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 21 / 24



Creating a Popup Menu

A PopupMenu is a modal menu anchored to a View. It appears below the anchor view if there
is room, or above the view otherwise. It’s useful for:

Provide an overflow-style menu for actions that relate to specific content
I This is not the same as a context menu, which is generally for actions that affect selected

content

Provide a second part of a command sentence
I A button marked “Add” that produces a popup menu with different “Add” options

Provide a drop-down similar to Spinner that does not retain a persistent selection

If you define your menu in XML, here’s how you can show the popup menu:

1. Instantate a PopupMenu with its constructor, which takes the current application Context and the View
to which the menu should be anchored.

2. Use MenuInflater to inflate your menu resource into the Menu object returned by PopupMenu.getMenu().
On API level 14 and above, you can use PopupMenu.inflate() instead.

3. Call PopupMenu.show().

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 22 / 24



For example:
[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinMenu.git]

here’s a button with the android:onClick attribute that shows a popup menu:

1 <TextView

2 android:id="@+id/id_popup"

3 android:layout_width="wrap_content"

4 android:layout_height="wrap_content"

5 android:text="@string/popup_menu"

6 android:onClick="showPopup" />

The activity can then show the popup menu like this:

1 fun showPopup(view: View) {

2 val popup = PopupMenu(this, view)

3
4 popup.inflate(R.menu.popup_menu)

5 popup.show()

6 }

In API level 14 and higher, you can combine the two lines that inflate the menu with PopupMenu.inflate().

The menu is dismissed when the user selects an item or touches outside the menu area. You can listen for
the dismiss event using PopupMenu.OnDismissListener.

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 23 / 24



To perform an action when the user selects a menu item, you must implement the
PopupMenu.OnMenuItemClickListener interface and register it with your PopupMenu by calling
setOnMenuItemclickListener(). When the user selects an item, the system calls the onMenuItemClick()
callback in your interface.

1 fun showPopup(view: View) {

2 val popup = PopupMenu(this, view)

3
4 // This activity implements OnMenuItemClickListener

5 popup.inflate(R.menu.popup_menu)

6 popup.setOnMenuItemClickListener(this)

7 popup.show()

8 }

9
10 override fun onMenuItemClick(item: MenuItem?): Boolean {

11 // Handle item selection

12 return when (item?.itemId) {

13 R.id.popup_start -> doPopupStart()

14 R.id.popup_end -> doPopupEnd()

15 else -> false

16 }

17 }

Ferruccio Damiani (Università di Torino) Android: ... and Menus Mobile Device Programming 24 / 24


	Toasts,...
	and Menus

