
Android: app fundamentals
http://developer.android.com/guide/components/fundamentals.html

Ferruccio Damiani

Università di Torino
www.di.unito.it/~damiani

Mobile Device Programming
(Laurea Magistrale in Informatica, a.a. 2018-2019)

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 1 / 23

http://developer.android.com/guide/components/fundamentals.html
www.di.unito.it/~damiani


Outline

1 APK and Manifest

2 High-level Concepts

3 The Manifest File

4 App Resources

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 2 / 23



Outline

1 APK and Manifest

2 High-level Concepts

3 The Manifest File

4 App Resources

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 3 / 23



Android application package (APK)

Android application package (APK) is the package file format used by the Android operating
system for distribution and installation of application software. It is an archive file with an .apk

suffix.

The Android SDK tools compile your code—along with any data and resource files—into an APK.

One APK file contains all the contents of an Android app.

An APK file is an archive that roughly contains:

1. An AndroidManifest.xml file (with precisely that name) in its root directory.

2. Dalvik executable.

3. Resources: everything that is not code (images, audio/video clips, XML files describing layouts, language
packs, and so on).

4. Native libraries: e.g. C/C++ libraries. This is compiled code that is specific to a software layer of a
processor, stored in the directory lib which is split into more directories, including: armeabi (compiled
code for all ARM based processors only), armeabi-v7a (compiled code for all ARMv7 and above based
processors only), etc.

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 4 / 23



Android Manifest

The manifest file presents essential information about the app, information that Android system must have
before it can run any of the app’s code. Among other things:

Specifies the Java package name for the app (the unique identifier for the app).

It describes the components of the application (activities, services, broadcast receivers, and content
providers). It names the classes that implement each of the components and publishes their capabilities
(for example, which Intent messages they can handle). These declarations let the Android system know
what the components are and under what conditions they can be launched.

It determines which processes will host application components.

It declares which permissions the application must have in order to access protected parts of the API and
interact with other applications.

It declares the permissions that others are required to have in order to interact with the application’s
components.

It lists the Instrumentation classes that provide profiling and other information as the application is
running. These declarations are present in the manifest only while the application is being developed and
tested; they’re removed before the application is published.

It declares the minimum level of the Android API that the application requires.

It lists the libraries that the application must be linked against.

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 5 / 23



Security model

Once installed on a device, each Android app lives in its own security sandbox:

The Android operating system is a multi-user Linux system in which each app is a different user.

By default, the system assigns each app a unique Linux user ID (the ID is used only by the system and is
unknown to the app). The system sets permissions for all the files in an app so that only the user ID
assigned to that app can access them.

Each process has its own virtual machine (VM), so an app’s code runs in isolation from other apps.

By default, every app runs in its own Linux process. Android starts the process when any of the app’s
components need to be executed, then shuts down the process when it’s no longer needed or when the
system must recover memory for other apps.

This implements the principle of least privilege. That is, each app, by default, has access
only to the components that it requires to do its worka and no more. This aims to create a
secure environment in which an app cannot access parts of the system for which it is not given
permission.

aAttention: who decides what its work is?

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 6 / 23



Cooperation and sharing

There are ways for an app to share data with other apps and for an app to access system
services:

It is possible to arrange for two apps to share the same Linux user ID, in which case they
are able to access each other’s files. To conserve system resources, apps with the same
user ID can also arrange to run in the same Linux process and share the same VM (the
apps must also be signed with the same certificate).

An app can request permission to access device data such as the user’s contacts, SMS
messages, the mountable storage (SD card), camera, Bluetooth, and more. All app
permissions must be granted by the user at install time.

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 7 / 23



Outline

1 APK and Manifest

2 High-level Concepts

3 The Manifest File

4 App Resources

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 8 / 23



Key terminology

Activity Component for composing UI

Service Component that runs on the background

Intent Message element that sends actions and data to components

Intent filter Defines components by setting receiving intents

Broadcast receiver Receives/responds to a certain broadcast (e.g., low battery)

Content provider Provides standardized interfaces for sharing data among applications

Notification Notifies events to users

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 9 / 23



Android through MVC

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 10 / 23



High-level behavior (applications and activities)

Any application can start another application’s component

When the system starts a component, it starts the process for that application and
instantiates the classes needed for the component

I If one starts the activity in the camera application that captures a photo, that activity runs in
the process that belongs to the camera application, not in your application’s process

An application cannot directly activate a component from another application
I To activate a component in another application, you must deliver a message to the system

that specifies your intent to star t a par ticular component
I The system then activates the component for you

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 11 / 23



Outline

1 APK and Manifest

2 High-level Concepts

3 The Manifest File

4 App Resources

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 12 / 23



Before the Android system can start an app component, the system must know that the com-
ponent exists by reading the app’s AndroidManifest.xml file (the “manifest” file). Your app
must declare all its components in this file, which must be at the root of the app project
directory.

The manifest does a number of things in addition to declaring the app’s components, such as:

Identify any user permissions the app requires, such as Internet access or read-access to the user’s contacts.

Declare the minimum API Level1 required by the app, based on which APIs the app uses.

Declare hardware and software features used or required by the app, such as a camera, bluetooth services,
or a multitouch screen.

API libraries the app needs to be linked against (other than the Android framework APIs), such as the
Google Maps library2.

And more

1
[http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels]

2
[http://code.google.com/android/add-ons/google-apis/maps-overview.html]

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 13 / 23

http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels
http://code.google.com/android/add-ons/google-apis/maps-overview.html


Declaring components

The primary task of the manifest is to inform the system about the app’s components.

Example
A manifest file can declare an activity as below.

In the <application> element, the android:icon attribute points to resources for an icon that
identifies the app.

In the <activity> element, the android:name attribute specifies the fully qualified class name of the
Activitya subclass and the android:label attributes specifies a string to use as the user-visible label for
the activity.

a
[http://developer.android.com/reference/android/app/Activity.html)]

1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest ... >

3 <application android:icon="@drawable/app_icon.png" ... >

4 <activity android:name="com.example.project.ExampleActivity"

5 android:label="@string/example_label" ... >

6 </activity>

7 ...

8 </application>

9 </manifest>

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 14 / 23

http://developer.android.com/reference/android/app/Activity.html)


You must declare all app components this way:

<activity> [http://developer.android.com/guide/topics/manifest/activity-element.html] elements for activities

<service> [http://developer.android.com/guide/topics/manifest/service-element.html] elements for services

<receiver> [http://developer.android.com/guide/topics/manifest/receiver-element.html] elements for broadcast
receivers

<provider> [http://developer.android.com/guide/topics/manifest/provider-element.html] elements for content
providers

Activities, services, and content providers that you include in your source but do not declare in
the manifest are not visible to the system and, consequently, can never run.3

3However, broadcast receivers can be either declared in the manifest or created dynamically in code (as
BroadcastReceiver objects) and registered with the system by callingregisterReceiver().

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 15 / 23

http://developer.android.com/guide/topics/manifest/activity-element.html
http://developer.android.com/guide/topics/manifest/service-element.html
http://developer.android.com/guide/topics/manifest/receiver-element.html
http://developer.android.com/guide/topics/manifest/provider-element.html


Declaring components capabilities

The real power of intents lies in the concept of implicit intents. An implicit intent:

simply describes the type of action to perform (and, optionally, the data upon which you’d like to perform
the action), and

allows the system to find a component on the device that can perform the action and start it (if there are
multiple components that can perform the action described by the intent, then the user selects which one
to use).

The system identifies the components that can respond to an intent by comparing the intent received to the
intent filters provided in the manifest file of other apps on the device.

When you declare an activity in your app’s manifest, you can optionally include intent filters that declare
the capabilities of the activity so it can respond to intents from other apps.

You can declare an intent filter for your component by adding an <intent-filter>4 element as a child of
the component’s declaration element.

4
[http://developer.android.com/guide/topics/manifest/intent-filter-element.html]

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 16 / 23

http://developer.android.com/guide/topics/manifest/intent-filter-element.html


Example
if you’ve built an email app with an activity for composing a new email, you can declare an intent filter to
respond to ”send” intents (in order to send a new email) like below.

Then, if another app creates an intent with the ACTION SENDa action and pass it to startActivity()b,
the system may start your activity so the user can draft and send an email.

a
[http://developer.android.com/reference/android/content/Intent.html#ACTION_SEND]

b
[http://developer.android.com/reference/android/app/Activity.html#startActivity(android.content.Intent)]

1 <manifest ... >

2 ...

3 <application ... >

4 <activity android:name="com.example.project.ComposeEmailActivity">

5 <intent-filter>

6 <action android:name="android.intent.action.SEND" />

7 <data android:type="*/*" />

8 <category android:name="android.intent.category.DEFAULT" />

9 </intent-filter>

10 </activity>

11 </application>

12 </manifest>

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 17 / 23

http://developer.android.com/reference/android/content/Intent.html#ACTION_SEND
http://developer.android.com/reference/android/app/Activity.html#startActivity(android.content.Intent)


Declaring apps requirements

There are a variety of devices powered by Android and not all of them provide the same
features and capabilities.

In order to prevent your app from being installed on devices that lack features needed by
your app, it’s important that you clearly define a profile for the types of devices your app
supports by declaring device and software requirements in your manifest file.

Most of these declarations are informational only and the system does not read them, but
external services such as Google Play do read them in order to provide filtering for users
when they search for apps from their device.

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 18 / 23



Example

If your app requires a camera and uses APIs introduced in Android 2.1 (API Level 7), you should declare these
as requirements in your manifest file like below.

Now, devices that do not have a camera and have an Android version lower than 2.1 cannot install your
app from Google Play.

However, you can also declare that your app uses the camera, but does not require it. In that case, your
app must set the requireda attribute to “false” and check at runtime whether the device has a camera
and disable any camera features as appropriate.

a
[http://developer.android.com/guide/topics/manifest/uses-feature-element.html#required]

1 <manifest ... >

2 <uses-feature android:name="android.hardware.camera.any"

3 android:required="true" />

4 <uses-sdk android:minSdkVersion="7" android:targetSdkVersion="19" />

5 ...

6 </manifest>

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 19 / 23

http://developer.android.com/guide/topics/manifest/uses-feature-element.html#required


Outline

1 APK and Manifest

2 High-level Concepts

3 The Manifest File

4 App Resources

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 20 / 23



An Android app is composed of more than just code—it requires resources that are separate
from the source code, such as images, audio files, and anything relating to the visual
presentation of the app.

Example
You should define animations, menus, styles, colors, and the layout of activity user interfaces with XML files.

This makes it easy to update various characteristics of your app without modifying code and—by
providing sets of alternative resources—enables you to optimize your app for a variety of device
configurations (such as different languages and screen sizes).

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 21 / 23



For every resource that you include in your Android project, the SDK build tools define a
unique integer ID, which you can use to reference the resource from your app code or from
other resources defined in XML.

Example

If your app contains an image file named logo.png (saved in the res/drawable/ directory), the SDK tools
generate a resource ID named R.drawable.logo, which you can use to reference the image and insert it in your
user interface.

One of the most important aspects of providing resources separate from your source code is
the ability for you to provide alternative resources for different device configurations.

Example
By defining UI strings in XML, you can translate the strings into other languages and save those strings in
separate files. Then, based on a language qualifier that you append to the resource directory’s name (such as
res/values-fr/ for French string values) and the user’s language setting, the Android system applies the
appropriate language strings to your UI.

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 22 / 23



Android supports many different qualifiers for your alternative resources.

The qualifier is a short string that you include in the name of your resource directories in order
to define the device configuration for which those resources should be used.

Example
You should often create different layouts for your activities, depending on the device’s screen orientation and
size. For example, when the device screen is in portrait orientation (tall), you might want a layout with buttons
to be vertical, but when the screen is in landscape orientation (wide), the buttons should be aligned horizontally.
To change the layout depending on the orientation, you can define two different layouts and apply the
appropriate qualifier to each layout’s directory name. Then, the system automatically applies the appropriate
layout depending on the current device orientation.

Ferruccio Damiani (Università di Torino) Android: app fundamentals Mobile Device Programming 23 / 23


	APK and Manifest
	High-level Concepts
	The Manifest File
	App Resources

