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Reference material:

� Tutorial material from the nuSMV web site 
http://nusmv.fbk.eu/NuSMV/tutorial/index.html

� Notes of prof. Alessandro Artale in Bozen: 
http://www.inf.unibz.it/~artale/FM/fm.htm
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nuSMV

NUSMV is a symbolic model checker developed as a joint 
project between the  Formal Methods group at ITC-IRST, the 
Model Checking group at Carnegie Mellon University, the 
Mechanized Reasoning Group at University of Geneva and the 
Mechanized Reasoning Group at University of Trento.

Current version: 2.6.0

Tutorial 2.6

The input language are state machines
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From the  website: 

NuSMV is a symbolic model checker developed as a joint project between:
• the Embedded Systems Unit in the Center for Information Technology at 

FBK-IRST
• the Model Checking group at Carnegie Mellon University , 
• the Mechanized Reasoning Group at University of Genova
• The Mechanized Reasoning Group at University of Trento.

NuSMV is a reimplementation and extension of SMV, the first model checker 
based on BDDs. NuSMV has been designed to be an open architecture for 
model checking, which can be reliably used for the verification of industrial 
designs, as a core for custom verification tools, as a testbed for formal 
verification techniques, and applied to other research areas.
. 
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From the  website: 

NuSMV2, combines BDD-based model checking component that exploits 
the CUDD library developed by Fabio Somenzi at Colorado University and 
SAT-based model checking component that includes an RBC-based 
Bounded Model Checker, which can be connected to the Minisat SAT Solver 
and/or to the ZChaff SAT Solver. The University of Genova has contributed 
SIM, a state-of-the-art SAT solver used until version 2.5.0, and the RBC 
package use in the Bounded Model Checking algorithms. 
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nuSMV – input language

State machines are defined by a guarded-command language.
NUSMVconsists of one or more modules and one must
be called main.

An SMV program consists of:
� Type declarations of the system variables;
� Assignments that define the valid initial states                                           

(e.g., init(b0) := 0).
� Assignments that define the transition relation 

(e.g., next(b0) := !b0).
� They can be Non-Deterministic: Several values in braces.
� CTL or LTL specifications introduced by the keywords SPEC, 

LTLSPEC, respectively.
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nuSMV

� NUSMV takes the specification of a model and a set of 
properties (either in CTL or LTL) as input.

� NUSMV output either True if the properties hold or False with 
a trace showing the failure.

� The set of states correspond to the set of all possible values 
for the variables.

� NUSMV uses !,&, |, -> for the boolean not, and, or, implies.
� NUSMV uses G,F,X,U,A,E as defined before
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nuSMV

� NUSMV breaks a system description into modules.

� A module is instantiated when a variable having the module 
as its type is declared.

� Modules can have parameters.
� The notation module-name.x is used to access the 

variable x of the module-name.
� The keyword DEFINE is used to assign (the current value of) 

an expression to a symbol without the need to introduce a 
variable.

� Defined symbols refer just to an expression then they 
cannot be assigned non-deterministically.
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nuSMV

� Modules, by default, are composed synchronously
� Each of the modules execute in parallel (e.g., the counter 

example).
� Using the keyword process modules are composed 

asynchronously (interleaving semantics): at each tick one 
of them is non-deterministically chosen and executed.

� The main use of NUSMV is through an interactive shell.
� The user has the possibility to:

� Explore the possible executions called Traces;
� Construct the Model;
� Check specification and/or build counterexamples;
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The variable request is not assigned. This means that there are no constraints 

on its values, and thus it can assume any value. request is thus an 

unconstrained input to the system.

nuSMV: first example

MODULE main

VAR

request : boolean;

state :  {ready,busy};

ASSIGN

init(state) := ready;

next(state):= case

state=ready & request=1: busy;

TRUE : {ready, busy}

esac;
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nuSMV: first example

MODULE main

VAR

request : boolean;

state :  {ready,busy};

ASSIGN

init(state) := ready;

next(state):= case

state=ready & request=1: busy;

TRUE : {ready, busy}

esac;
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MODULE main
VAR
request : {Tr, Fa};
state : {ready, busy};

ASSIGN
init(state) := ready;
next(state) := case

state = ready & (request = Tr): busy;
TRUE : {ready,busy};

esac;
SPEC
AG((request = Tr) -> AF state = busy
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nuSMV: second example

MODULE counter_cell (carry_in)
VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value):= (value + carry_in) mod 2;

DEFINE

carry_out := value & carry_in;

MODULE  main
VAR

bit0 : counter_cell(1);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);
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MODULE counter_cell (carry_in)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value):= (value + carry_in) mod 2;

DEFINE

carry_out := value & carry_in;

MODULE  main

VAR bit0 : counter_cell(1);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

value Carry_in Carry_out

bit0 0 1 0

bit1 0 0 0

bit2 0 0 0

bit0 1 1 0

bit1

bit2

bit0

bit1

bit2

bit0

bit1

bit2

bit0

bit1

bit2

bit0.carry_in = 1

bit1.carry_in = bit0.value

bit2.carry_in = bit1.value & bit1.carry_in 

bit0.carry_out = bit0.value

bit1.carry_out = bit1.value & bit1.carry_in

bit2.carry_out = bit2.value & bit2.carry_in
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nuSMV: asynchronous example

nuSMV allows for synchronous behaviour (as in previous 
example) as well as asynchronous, through the keyword 
"process"

It is implicit that if a given variable is not assigned by the 
process in a step, , then its value remains unchanged.



16

nuSMV: asynchronous example
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output input

gate1 0 0

gate2 0 0

gate3 0 0

gate1 0 0

gate2 0 0

gate3 1 0

gate1 0 1

gate2 1 0

gate3 1 0

gate1 1

gate2 0

gate3 1

gate1

gate2

gate3

gate1.output = !gate1.input = !gate3.output 

gate2.output = !gate2.input = !gate1.output 

gate3.output = !gate3.input = !gate2.output 
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nuSMV: fairness - justice

In asynchronous nuSMV a process is not "forced" to move 
(and therefore also unrealistic sequences are considered)

A fairness contraints can be specified:

FAIRNESS f

Implies that only paths in which formula f is infinitely often 
true are considered by the model-checker

Example: FAIRNESS running

Where "running" is a predefined variable associated to each 
process, with the obvious meaning
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Synchronous inverter and fairness

In this case we cannot force the inverters to be effectively active 
infinitely often using a fairness declaration. In fact, a valid scenario for 
the synchronous model is the one where all the inverters are idle and 
assign to the next output the current value of output.
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nuSMV: fairness - compassion

In NUSMV we can also specify compassion

COMPASSION p q

Implies that only paths in which GF p � GF q is satisfied are 
considered by the model-checker

Example: COMPASSION ask receive

means that only paths that satisfy 

GF ask � GF receive 

are considered for model checking.

NOTE: not available for CTL model checking (guess why…)
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nuSMV: semaphore
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nuSMV: traces

Three simulation modes (how to select a state): 
� random
� deterministic, 
� interactive
In deterministic simulation mode the first state of a set 

(whatever it is) is chosen, while in the random one the 
choice is performed nondeterministically. Traces are 
automatically generated by NUSMV: the user obtains the 
whole of the trace in a time without control over the 
generation itself (except for the simulation mode and 
the number of states entered via command line).

In the third simulation mode, the user has a complete 
control over the trace, as it can choose the next step of 
the execution
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nuSMV: traces

For the very first example (called short.smv)
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nuSMV: traces
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nuSMV: traces – choose a state
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nuSMV: traces
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nuSMV: CTL/LTL model checking

A CTL specification is a CTL formula preceeded by the 
keyword SPEC

A LTL specification is a LTL formula preceeded by the 
keyword LTLSPEC

If the formula is not true a trace that provides a counter 
example is shown (for A quantifiers, since for existential 
does not make sense)
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nuSMV: CTL model checking of semaphore
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nuSMV: CTL model checking
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CTL: Syntax

AP, set of atomic proposition. p∈AP.

CTL formulae: 

ϕ ::= p | ¬ϕ |  ϕ ∨ ϕ |  EXϕ |  E[ϕU ϕ]| A[ϕU ϕ]

E: “for some path”

A: “for all paths”

EX: “for some path next”

U: until

Note: syntactically correct formulas quantifiers and 
temporal operators are in strict alternation 
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Derived operators

� EFϕ ≡ E[true U ϕ]  “ϕ holds potentially” - “ϕ is 
possible” 

� AFϕ ≡ A[true U ϕ]  “ϕ is inevitable (unavoidable)”

� EGϕ ≡ ¬AF¬ϕ “potentially always ϕ” – "globally 
along some path"

� AGϕ ≡ ¬EF¬ϕ “invariantly ϕ”

� AXϕ ≡ ¬EX¬ϕ “for all paths next”
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Implementare in NuSMV

Check the validity of the formulae in each state

EFϕ ≡ E[true U ϕ]  “ϕ holds potentially”

AFϕ ≡ A[true U ϕ]  “ϕ is inevitable”

EGϕ ≡ ¬AF¬ϕ “potentially always ϕ”

AGϕ ≡ ¬EF¬ϕ “invariantly ϕ”
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Exercise on CTL – implement in nuSMV

EFp: start with Q = {s1, s2, s3, s4} and in one step add s0, and 
at the next iteration the algorithm stops

AFp: start with Q = {s1, s2, s3, s4} and in the next  step 
consider s0. S0 can be added only if all arcs out of s0 are in Q

EFp ≡ E[true U p]  

AFp ≡ A[true U p]  
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Exercise on CTL – implement in nuSMV

EGp: the result is the complement of the states that satisfy AF¬p
that can be computed as before

AGp: the result is the complement of the states that satisfy EF¬p

EGp ≡¬AF¬p ≡ ¬A[true U ¬p]  

AGp ≡ ¬EF¬p ≡ ¬E[true U ¬p]  
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Exercise on CTL – implement in nuSMV

EFq: start with Q = {s1, s2} and in one step add s0, and s3, and 
at the next iteration the algorithm stops

AFq: start with Q = {s1, s2} and in the next  step s0 is added. 
At the next iteration no new element is added and the algorithm 
stops.

EFq ≡ E[true U q]  

AFq ≡ A[true U q]  
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Exercise on CTL – implement in nuSMV

EGq ≡¬AF¬q ≡ E[true U q]  

AGq ≡ ¬EF¬q ≡A[true U q]  

EGq: the result is the complement of the states that satisfy AF¬q
that can be computed as before

AGq: the result is the complement of the states that satisfy EF¬q
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Exercise on CTL – implement in nuSMV

Check the validity of the formulae in each state
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End of nuSMV


