
1

Reference material:

� Tutorial material from the nuSMV web site
http://nusmv.fbk.eu/NuSMV/tutorial/index.html

� Notes of prof. Alessandro Artale in Bozen:
http://www.inf.unibz.it/~artale/FM/fm.htm

2

Verifica dei Programmi Concorrenti 19-20

NuSMV

Prof.ssa Susanna Donatelli

Universita’ di Torino

www.di.unito.it

susi@di.unito.it

3

nuSMV

NUSMV is a symbolic model checker developed as a joint
project between the Formal Methods group at ITC-IRST, the
Model Checking group at Carnegie Mellon University, the
Mechanized Reasoning Group at University of Geneva and the
Mechanized Reasoning Group at University of Trento.

Current version: 2.6.0

Tutorial 2.6

The input language are state machines

4

From the website:

NuSMV is a symbolic model checker developed as a joint project between:
• the Embedded Systems Unit in the Center for Information Technology at

FBK-IRST
• the Model Checking group at Carnegie Mellon University ,
• the Mechanized Reasoning Group at University of Genova
• The Mechanized Reasoning Group at University of Trento.

NuSMV is a reimplementation and extension of SMV, the first model checker
based on BDDs. NuSMV has been designed to be an open architecture for
model checking, which can be reliably used for the verification of industrial
designs, as a core for custom verification tools, as a testbed for formal
verification techniques, and applied to other research areas.
.

5

From the website:

NuSMV2, combines BDD-based model checking component that exploits
the CUDD library developed by Fabio Somenzi at Colorado University and
SAT-based model checking component that includes an RBC-based
Bounded Model Checker, which can be connected to the Minisat SAT Solver
and/or to the ZChaff SAT Solver. The University of Genova has contributed
SIM, a state-of-the-art SAT solver used until version 2.5.0, and the RBC
package use in the Bounded Model Checking algorithms.

6

nuSMV – input language

State machines are defined by a guarded-command language.
NUSMVconsists of one or more modules and one must
be called main.

An SMV program consists of:
� Type declarations of the system variables;
� Assignments that define the valid initial states

(e.g., init(b0) := 0).
� Assignments that define the transition relation

(e.g., next(b0) := !b0).
� They can be Non-Deterministic: Several values in braces.
� CTL or LTL specifications introduced by the keywords SPEC,

LTLSPEC, respectively.

7

nuSMV

� NUSMV takes the specification of a model and a set of
properties (either in CTL or LTL) as input.

� NUSMV output either True if the properties hold or False with
a trace showing the failure.

� The set of states correspond to the set of all possible values
for the variables.

� NUSMV uses !,&, |, -> for the boolean not, and, or, implies.
� NUSMV uses G,F,X,U,A,E as defined before

8

nuSMV

� NUSMV breaks a system description into modules.

� A module is instantiated when a variable having the module
as its type is declared.

� Modules can have parameters.
� The notation module-name.x is used to access the

variable x of the module-name.
� The keyword DEFINE is used to assign (the current value of)

an expression to a symbol without the need to introduce a
variable.

� Defined symbols refer just to an expression then they
cannot be assigned non-deterministically.

9

nuSMV

� Modules, by default, are composed synchronously
� Each of the modules execute in parallel (e.g., the counter

example).
� Using the keyword process modules are composed

asynchronously (interleaving semantics): at each tick one
of them is non-deterministically chosen and executed.

� The main use of NUSMV is through an interactive shell.
� The user has the possibility to:

� Explore the possible executions called Traces;
� Construct the Model;
� Check specification and/or build counterexamples;

10

The variable request is not assigned. This means that there are no constraints

on its values, and thus it can assume any value. request is thus an

unconstrained input to the system.

nuSMV: first example

MODULE main

VAR

request : boolean;

state : {ready,busy};

ASSIGN

init(state) := ready;

next(state):= case

state=ready & request=1: busy;

TRUE : {ready, busy}

esac;

11

nuSMV: first example

MODULE main

VAR

request : boolean;

state : {ready,busy};

ASSIGN

init(state) := ready;

next(state):= case

state=ready & request=1: busy;

TRUE : {ready, busy}

esac;

12

MODULE main
VAR
request : {Tr, Fa};
state : {ready, busy};

ASSIGN
init(state) := ready;
next(state) := case

state = ready & (request = Tr): busy;
TRUE : {ready,busy};

esac;
SPEC
AG((request = Tr) -> AF state = busy

13

nuSMV: second example

MODULE counter_cell (carry_in)
VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value):= (value + carry_in) mod 2;

DEFINE

carry_out := value & carry_in;

MODULE main
VAR

bit0 : counter_cell(1);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

14

MODULE counter_cell (carry_in)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value):= (value + carry_in) mod 2;

DEFINE

carry_out := value & carry_in;

MODULE main

VAR bit0 : counter_cell(1);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

value Carry_in Carry_out

bit0 0 1 0

bit1 0 0 0

bit2 0 0 0

bit0 1 1 0

bit1

bit2

bit0

bit1

bit2

bit0

bit1

bit2

bit0

bit1

bit2

bit0.carry_in = 1

bit1.carry_in = bit0.value

bit2.carry_in = bit1.value & bit1.carry_in

bit0.carry_out = bit0.value

bit1.carry_out = bit1.value & bit1.carry_in

bit2.carry_out = bit2.value & bit2.carry_in

15

nuSMV: asynchronous example

nuSMV allows for synchronous behaviour (as in previous
example) as well as asynchronous, through the keyword
"process"

It is implicit that if a given variable is not assigned by the
process in a step, , then its value remains unchanged.

16

nuSMV: asynchronous example

17

output input

gate1 0 0

gate2 0 0

gate3 0 0

gate1 0 0

gate2 0 0

gate3 1 0

gate1 0 1

gate2 1 0

gate3 1 0

gate1 1

gate2 0

gate3 1

gate1

gate2

gate3

gate1.output = !gate1.input = !gate3.output

gate2.output = !gate2.input = !gate1.output

gate3.output = !gate3.input = !gate2.output

18

nuSMV: fairness - justice

In asynchronous nuSMV a process is not "forced" to move
(and therefore also unrealistic sequences are considered)

A fairness contraints can be specified:

FAIRNESS f

Implies that only paths in which formula f is infinitely often
true are considered by the model-checker

Example: FAIRNESS running

Where "running" is a predefined variable associated to each
process, with the obvious meaning

19

Synchronous inverter and fairness

In this case we cannot force the inverters to be effectively active
infinitely often using a fairness declaration. In fact, a valid scenario for
the synchronous model is the one where all the inverters are idle and
assign to the next output the current value of output.

20

nuSMV: fairness - compassion

In NUSMV we can also specify compassion

COMPASSION p q

Implies that only paths in which GF p � GF q is satisfied are
considered by the model-checker

Example: COMPASSION ask receive

means that only paths that satisfy

GF ask � GF receive

are considered for model checking.

NOTE: not available for CTL model checking (guess why…)

21

nuSMV: semaphore

22

nuSMV: traces

Three simulation modes (how to select a state):
� random
� deterministic,
� interactive
In deterministic simulation mode the first state of a set

(whatever it is) is chosen, while in the random one the
choice is performed nondeterministically. Traces are
automatically generated by NUSMV: the user obtains the
whole of the trace in a time without control over the
generation itself (except for the simulation mode and
the number of states entered via command line).

In the third simulation mode, the user has a complete
control over the trace, as it can choose the next step of
the execution

23

nuSMV: traces

For the very first example (called short.smv)

24

nuSMV: traces

25

nuSMV: traces – choose a state

26

nuSMV: traces

27

nuSMV: CTL/LTL model checking

A CTL specification is a CTL formula preceeded by the
keyword SPEC

A LTL specification is a LTL formula preceeded by the
keyword LTLSPEC

If the formula is not true a trace that provides a counter
example is shown (for A quantifiers, since for existential
does not make sense)

28

nuSMV: CTL model checking of semaphore

29

nuSMV: CTL model checking

30

CTL: Syntax

AP, set of atomic proposition. p∈AP.

CTL formulae:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E[ϕU ϕ]| A[ϕU ϕ]

E: “for some path”

A: “for all paths”

EX: “for some path next”

U: until

Note: syntactically correct formulas quantifiers and
temporal operators are in strict alternation

31

Derived operators

� EFϕ ≡ E[true U ϕ] “ϕ holds potentially” - “ϕ is
possible”

� AFϕ ≡ A[true U ϕ] “ϕ is inevitable (unavoidable)”

� EGϕ ≡ ¬AF¬ϕ “potentially always ϕ” – "globally
along some path"

� AGϕ ≡ ¬EF¬ϕ “invariantly ϕ”

� AXϕ ≡ ¬EX¬ϕ “for all paths next”

32

Implementare in NuSMV

Check the validity of the formulae in each state

EFϕ ≡ E[true U ϕ] “ϕ holds potentially”

AFϕ ≡ A[true U ϕ] “ϕ is inevitable”

EGϕ ≡ ¬AF¬ϕ “potentially always ϕ”

AGϕ ≡ ¬EF¬ϕ “invariantly ϕ”

33

Exercise on CTL – implement in nuSMV

EFp: start with Q = {s1, s2, s3, s4} and in one step add s0, and
at the next iteration the algorithm stops

AFp: start with Q = {s1, s2, s3, s4} and in the next step
consider s0. S0 can be added only if all arcs out of s0 are in Q

EFp ≡ E[true U p]

AFp ≡ A[true U p]

34

Exercise on CTL – implement in nuSMV

EGp: the result is the complement of the states that satisfy AF¬p
that can be computed as before

AGp: the result is the complement of the states that satisfy EF¬p

EGp ≡¬AF¬p ≡ ¬A[true U ¬p]

AGp ≡ ¬EF¬p ≡ ¬E[true U ¬p]

35

Exercise on CTL – implement in nuSMV

EFq: start with Q = {s1, s2} and in one step add s0, and s3, and
at the next iteration the algorithm stops

AFq: start with Q = {s1, s2} and in the next step s0 is added.
At the next iteration no new element is added and the algorithm
stops.

EFq ≡ E[true U q]

AFq ≡ A[true U q]

36

Exercise on CTL – implement in nuSMV

EGq ≡¬AF¬q ≡ E[true U q]

AGq ≡ ¬EF¬q ≡A[true U q]

EGq: the result is the complement of the states that satisfy AF¬q
that can be computed as before

AGq: the result is the complement of the states that satisfy EF¬q

37

Exercise on CTL – implement in nuSMV

Check the validity of the formulae in each state

38

End of nuSMV

