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Introduction

• We have long been interested in decentralised
“Peer to Peer” networks. Especially Freenet.

• But when individual users come under attack,
decentralisation is not enough.

• Future networks may need to limit connections to
trusted friends.

• The next version of Freenet will be based on this
philosophy, a so called dark network.
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Overview of “Peer to Peer” net-
works

• Information is spread across many inter-
connected computers

• Users want to find information
• Some are centralised (eg. Napster), some are

semi- centralised (eg. Kazaa), others are
distributed (eg. Freenet)
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Light P2P Networks

• Examples: Gnutella, Freenet, Distributed Hash
Tables

• Advantage: Globally scalable with the right
routing algorithm

• Disadvantage: Vulnerable to “harvesting”, ie.
people you don’t know can easily discover
whether you are part of the network
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Dark or “Friend to Friend” P2P
Networks

• Peers only communicate directly with “trusted”
peers

• Examples: Waste
• Advantage: Only your trusted friends know you

are part of the network
• Disadvantage: Networks are disconnected and

small, they typically don’t scale well
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The Small World Phenomenon

• In "Small world" networks short paths exist
between any two peers

• People tend to form this type of network (as
shown by Milgram experiment)

• Short paths may exist but they may not be easy to
find
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Navigable Small World Net-
works

• Concept of similarity or “closeness” between
peers

• Similar peers are more likely to be connected
than dissimilar peers

• You can get from any one peer to any other
simply by routing to the closest peer at each step

• This is called “Greedy Routing”
• Freenet and “Distributed Hash Tables” rely on

this principal to find data in a scalable
decentralised manner
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Application

How can we apply small world theory to routing in a
Dark peer to peer network?

• Just like on the Internet, we need a way to route
through the network.

• If people can route in a social network, then it
should be possible for computers.

• Jon Kleinberg explained in 2000 how small world
networks can be navigable.
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Kleinberg’s Result

• The possibility of routing efficiently depends on
the proportion of connections that have different
lengths with respect to the “position” of the
nodes.

• The proportion of connections with a certain
length should be inverse to the length.

• In this case a simple greedy routing algorithm
performs in O(log2

n) steps.
• But in a social network, how do we see if one

person is closer to the destination than another?
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Application, cont.

Is Alice closer to Harry than Bob?

• In real life, people presumably use a large number
of factors to decide this. Where do they live?
What are their jobs? What are their interests?

• One cannot, in practice, expect a computer to
route based on such things.

• Instead, we let the network tell us!
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Application, cont.

• Kleinberg’s model suggests: there should be few
long connections, and many short ones.

• We can assign numerical identities placing nodes
in a grid, and do it in such a way that this is
fulfilled.

• In other words, we “reverse engineer” the nodes
positions based on the connections in the
network.

• Then greedy route with respect to these
numerical identities.
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The Method

• When nodes join the network, they choose a
position randomly.

• They then switch positions with other nodes, so
as to minimize the product of the edge distances.
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Simulations

We have simulated networks in three different modes:

• Random walk search: “random”.
• Greedy routing in Kleinberg’s model with

identities as when it was constructed: “good”.
• Greedy routing in Kleinberg’s model with

identities assigned according to our algorithm
(2000 iterations per node): “restored”.
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Simulations, cont.

The proportion of queries that succeeded within
(log2 n)2 steps, where n is the network size:
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Simulations, cont.

The average length of the successful routes:
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Results

• Simulated networks are only so interesting, what
about the real world?

• We borrowed some data from orkut.com. 2196
people were spidered, starting with Ian.
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Results, cont.

• The set was spidered so as to be comparatively
dense (average 36.7 connections per person).

• It contains mostly American techies and
programmers. Some are probably in this room.
(No Brazilians...)

• The degree distri-
bution is approxi-
mately Power-Law:
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Results, cont.

Searching the Orkut dataset, for a maximum of
log2(n)2 steps.

Success Rate Mean Steps
Random Search

0.72 43.85

Our Algorithm

0.97 7.714
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Results

Clipping degree at 40 connections. (24.2 connections
per person.)

Success Rate Mean Steps
Random Search

0.51 50.93

Our Algorithm

0.98 10.90

Our algorithm takes advantage of there being people
who have many connections, but it does not depend
on them.
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Practical Concerns

• So the theory works, but how does one
implement such a network in practice?

• Key concerns:
• Preventing malicious behaviour

• Ensuring ease of use

• Storing data
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Preventing Malicious Behaviour

Threats:

• Selection of identity to attract certain data

• Manipulation of other node’s identities
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Ensuring ease of use

• Peers will need to be “always on”

• Peer introduction
• Email
• Phone
• Trusted third party

• What about NATs and firewalls
• Could use UDP hole- punching (as used by

Dijjer, Skype)
• Would require third- party for negotiation
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Conclusion

We believe very strongly that building a navigable,
scalable Darknet is possible. And we intend to do it!

• There is still much work to do on the theory.
• Can other models work better?
• Can we find better selection functions for

switching?
• It needs to be tested on more data.
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Conclusion, cont.

• We have learned the hard way that practice is
more difficult than theory.

• Security issues are very important.
• How the network is deployed will affect how

well it works.

People who are interested can join the discussion at
http://freenetproject.org/.
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