Covert Communication in a Dark P2P Network A major new version of Freenet

Ian Clarke and Oskar Sandberg

The Freenet Project

• We have long been interested in decentralised "Peer to Peer" networks. Especially Freenet.

- We have long been interested in decentralised "Peer to Peer" networks. Especially Freenet.
- But when individual users come under attack, decentralisation is not enough.

- We have long been interested in decentralised "Peer to Peer" networks. Especially Freenet.
- But when individual users come under attack, decentralisation is not enough.
- Future networks may need to limit connections to trusted friends.

- We have long been interested in decentralised "Peer to Peer" networks. Especially Freenet.
- But when individual users come under attack, decentralisation is not enough.
- Future networks may need to limit connections to trusted friends.
- The next version of Freenet will be based on this philosophy, a so called dark network.

Overview of "Peer to Peer" networks

 Information is spread across many interconnected computers

Overview of "Peer to Peer" networks

- Information is spread across many interconnected computers
- Users want to find information

Overview of "Peer to Peer" networks

- Information is spread across many interconnected computers
- Users want to find information
- Some are centralised (eg. Napster), some are semi- centralised (eg. Kazaa), others are distributed (eg. Freenet)

Light P2P Networks

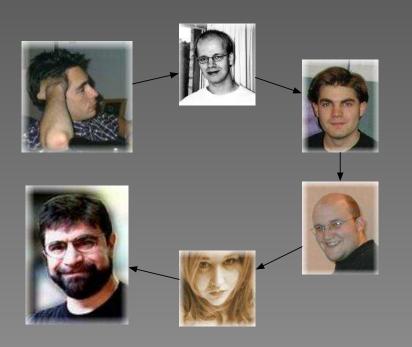
 Examples: Gnutella, Freenet, Distributed Hash Tables

Light P2P Networks

- Examples: Gnutella, Freenet, Distributed Hash Tables
- Advantage: Globally scalable with the right routing algorithm

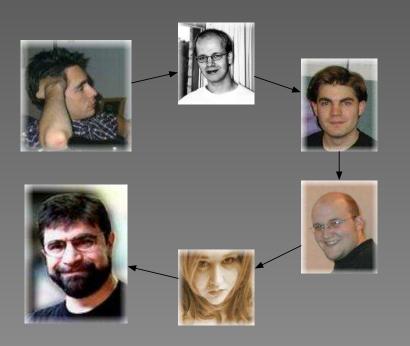
Light P2P Networks

- Examples: Gnutella, Freenet, Distributed Hash Tables
- Advantage: Globally scalable with the right routing algorithm
- Disadvantage: Vulnerable to "harvesting", ie.
 people you don't know can easily discover whether you are part of the network

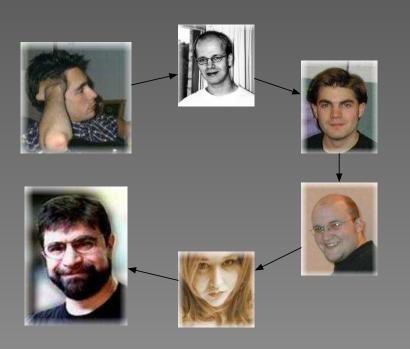

 Peers only communicate directly with "trusted" peers

- Peers only communicate directly with "trusted" peers
- Examples: Waste

- Peers only communicate directly with "trusted" peers
- Examples: Waste
- Advantage: Only your trusted friends know you are part of the network


- Peers only communicate directly with "trusted" peers
- Examples: Waste
- Advantage: Only your trusted friends know you are part of the network
- Disadvantage: Networks are disconnected and small, they typically don't scale well

The Small World Phenomenon


• In "Small world" networks short paths exist between any two peers

The Small World Phenomenon

- In "Small world" networks short paths exist between any two peers
- People tend to form this type of network (as shown by Milgram experiment)

The Small World Phenomenon

- In "Small world" networks short paths exist between any two peers
- People tend to form this type of network (as shown by Milgram experiment)
- Short paths may exist but they may not be easy to find

Ħ

Navigable Small World Networks

Concept of similarity or "closeness" between peers

- Concept of similarity or "closeness" between peers
- Similar peers are more likely to be connected than dissimilar peers

- Concept of similarity or "closeness" between peers
- Similar peers are more likely to be connected than dissimilar peers
- You can get from any one peer to any other simply by routing to the closest peer at each step

- Concept of similarity or "closeness" between peers
- Similar peers are more likely to be connected than dissimilar peers
- You can get from any one peer to any other simply by routing to the closest peer at each step
- This is called "Greedy Routing"

- Concept of similarity or "closeness" between peers
- Similar peers are more likely to be connected than dissimilar peers
- You can get from any one peer to any other simply by routing to the closest peer at each step
- This is called "Greedy Routing"
- Freenet and "Distributed Hash Tables" rely on this principal to find data in a scalable decentralised manner

How can we apply small world theory to routing in a Dark peer to peer network?

How can we apply small world theory to routing in a Dark peer to peer network?

• Just like on the Internet, we need a way to route through the network.

How can we apply small world theory to routing in a Dark peer to peer network?

- Just like on the Internet, we need a way to route through the network.
- If people can route in a social network, then it should be possible for computers.

How can we apply small world theory to routing in a Dark peer to peer network?

- Just like on the Internet, we need a way to route through the network.
- If people can route in a social network, then it should be possible for computers.
- Jon Kleinberg explained in 2000 how small world networks can be navigable.

• The possibility of routing efficiently depends on the proportion of connections that have different lengths with respect to the "position" of the nodes.

- The possibility of routing efficiently depends on the proportion of connections that have different lengths with respect to the "position" of the nodes.
- The proportion of connections with a certain length should be inverse to the length.

- The possibility of routing efficiently depends on the proportion of connections that have different lengths with respect to the "position" of the nodes.
- The proportion of connections with a certain length should be inverse to the length.
- In this case a simple greedy routing algorithm performs in $O(\log^2 n)$ steps.

- The possibility of routing efficiently depends on the proportion of connections that have different lengths with respect to the "position" of the nodes.
- The proportion of connections with a certain length should be inverse to the length.
- In this case a simple greedy routing algorithm performs in $O(\log^2 n)$ steps.
- But in a social network, how do we see if one person is closer to the destination than another?

Is Alice closer to Harry than Bob?

Is Alice closer to Harry than Bob?

 In real life, people presumably use a large number of factors to decide this. Where do they live? What are their jobs? What are their interests?

Is Alice closer to Harry than Bob?

- In real life, people presumably use a large number of factors to decide this. Where do they live? What are their jobs? What are their interests?
- One cannot, in practice, expect a computer to route based on such things.

Is Alice closer to Harry than Bob?

- In real life, people presumably use a large number of factors to decide this. Where do they live? What are their jobs? What are their interests?
- One cannot, in practice, expect a computer to route based on such things.
- Instead, we let the network tell us!

 Kleinberg's model suggests: there should be few long connections, and many short ones.

Application, cont.

- Kleinberg's model suggests: there should be few long connections, and many short ones.
- We can assign numerical identities placing nodes in a grid, and do it in such a way that this is fulfilled.

Application, cont.

- Kleinberg's model suggests: there should be few long connections, and many short ones.
- We can assign numerical identities placing nodes in a grid, and do it in such a way that this is fulfilled.
- In other words, we "reverse engineer" the nodes positions based on the connections in the network.

Application, cont.

- Kleinberg's model suggests: there should be few long connections, and many short ones.
- We can assign numerical identities placing nodes in a grid, and do it in such a way that this is fulfilled.
- In other words, we "reverse engineer" the nodes positions based on the connections in the network.
- Then greedy route with respect to these numerical identities.

The Method

• When nodes join the network, they choose a position randomly.

The Method

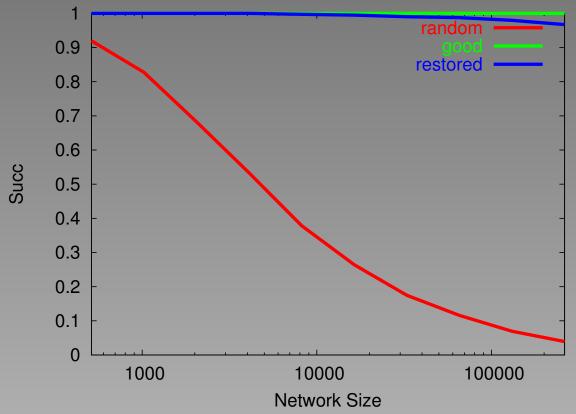
- When nodes join the network, they choose a position randomly.
- They then switch positions with other nodes, so as to minimize the product of the edge distances.

We have simulated networks in three different modes:

We have simulated networks in three different modes:

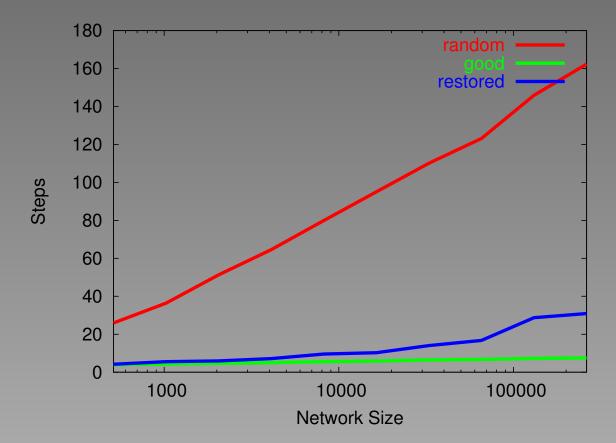
• Random walk search: "random".

We have simulated networks in three different modes:


- Random walk search: "random".
- Greedy routing in Kleinberg's model with identities as when it was constructed: "good".

We have simulated networks in three different modes:

- Random walk search: "random".
- Greedy routing in Kleinberg's model with identities as when it was constructed: "good".
- Greedy routing in Kleinberg's model with identities assigned according to our algorithm (2000 iterations per node): "restored".


The proportion of queries that succeeded within $(\log_2 n)^2$ steps, where *n* is the network size:

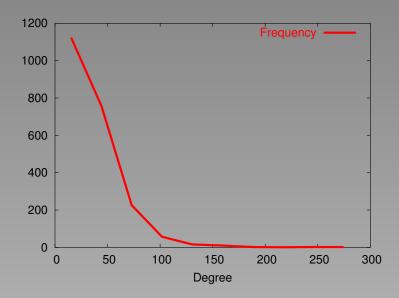
The proportion of queries that succeeded within $(\log_2 n)^2$ steps, where *n* is the network size:

The average length of the successful routes:

The average length of the successful routes:

• Simulated networks are only so interesting, what about the real world?

- Simulated networks are only so interesting, what about the real world?
- We borrowed some data from orkut.com. 2196 people were spidered, starting with Ian.



• The set was spidered so as to be comparatively dense (average 36.7 connections per person).

- The set was spidered so as to be comparatively dense (average 36.7 connections per person).
- It contains mostly American techies and programmers. Some are probably in this room. (No Brazilians...)

- The set was spidered so as to be comparatively dense (average 36.7 connections per person).
- It contains mostly American techies and programmers. Some are probably in this room. (No Brazilians...)

• The degree distribution is approximately Power-Law:

Searching the Orkut dataset, for a maximum of $\log_2(n)^2$ steps.

Random Search Our Algorithm

Success Rate | Mean Steps

Searching the Orkut dataset, for a maximum of $\log_2(n)^2$ steps.

Random Search Our Algorithm

Success RateMean Steps0.7243.85

Searching the Orkut dataset, for a maximum of $\log_2(n)^2$ steps.

Random Search Our Algorithm

 Success Rate
 Mean Steps

 0.72
 43.85

 0.97
 7.714

Clipping degree at 40 connections. (24.2 connections per person.)

Random Search Our Algorithm

Success Rate | Mean Steps

Clipping degree at 40 connections. (24.2 connections per person.)

Random Search Our Algorithm

Success RateMean Steps0.5150.93

Clipping degree at 40 connections. (24.2 connections per person.)

Random Search Our Algorithm
 Success Rate
 Mean Steps

 0.51
 50.93

 0.98
 10.90

Clipping degree at 40 connections. (24.2 connections per person.)

	Success Rate	Mean Steps
Random Search	0.51	50.93
Our Algorithm	0.98	10.90

Our algorithm takes advantage of there being people who have many connections, but it does not depend on them.

• So the theory works, but how does one implement such a network in practice?

- So the theory works, but how does one implement such a network in practice?
- Key concerns:

- So the theory works, but how does one implement such a network in practice?
- Key concerns:
 - Preventing malicious behaviour

- So the theory works, but how does one implement such a network in practice?
- Key concerns:
 - Preventing malicious behaviour
 - Ensuring ease of use

- So the theory works, but how does one implement such a network in practice?
- Key concerns:
 - Preventing malicious behaviour
 - Ensuring ease of use
 - Storing data

Preventing Malicious Behaviour

Threats:

Selection of identity to attract certain data

Preventing Malicious Behaviour

Threats:

- Selection of identity to attract certain data
- Manipulation of other node's identities

• Peers will need to be "always on"

- Peers will need to be "always on"
- Peer introduction

- Peers will need to be "always on"
- Peer introduction
 - Email

- Peers will need to be "always on"
- Peer introduction
 - Email
 - Phone

- Peers will need to be "always on"
- Peer introduction
 - Email
 - Phone
 - Trusted third party

- Peers will need to be "always on"
- Peer introduction
 - Email
 - Phone
 - Trusted third party
- What about NATs and firewalls

- Peers will need to be "always on"
- Peer introduction
 - Email
 - Phone
 - Trusted third party
- What about NATs and firewalls
 - Could use UDP hole- punching (as used by Dijjer, Skype)

- Peers will need to be "always on"
- Peer introduction
 - Email
 - Phone
 - Trusted third party
- What about NATs and firewalls
 - Could use UDP hole- punching (as used by Dijjer, Skype)
 - Would require third- party for negotiation

We believe very strongly that building a navigable, scalable Darknet is possible. *And we intend to do it!*

• There is still much work to do on the theory.

- There is still much work to do on the theory.
 - Can other models work better?

- There is still much work to do on the theory.
 - Can other models work better?
 - Can we find better selection functions for switching?

- There is still much work to do on the theory.
 - Can other models work better?
 - Can we find better selection functions for switching?
 - It needs to be tested on more data.

• We have learned the hard way that practice is more difficult than theory.

- We have learned the hard way that practice is more difficult than theory.
 - Security issues are very important.

- We have learned the hard way that practice is more difficult than theory.
 - Security issues are very important.
 - How the network is deployed will affect how well it works.

- We have learned the hard way that practice is more difficult than theory.
 - Security issues are very important.
 - How the network is deployed will affect how well it works.

People who are interested can join the discussion at *http://freenetproject.org/*.