
A Work-inefficient Scan Kernel
Module 10.2 – Parallel Computation Patterns (scan)

GPU Teaching Kit
Accelerated Computing

2

Objective
– To learn to write and analyze a high-performance scan kernel

– Interleaved reduction trees
– Thread index to data mapping
– Barrier Synchronization
– Work efficiency analysis

3

A Better Parallel Scan Algorithm
1. Read input from device global memory to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration

• Active threads stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from shared memory and writes

result into element j in shared memory
• Requires barrier synchronization, once before read and once before

write

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 1
STRIDE = 1

STRIDE 1

4

A Better Parallel Scan Algorithm
1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration.

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 2
STRIDE = 2

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

5

A Better Parallel Scan Algorithm
1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration
3. Write output from shared memory to device memory

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 3
STRIDE = 4

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

XY 3 4 11 11 15 16 22 25

STRIDE 4

6

Handling Dependencies
– During every iteration, each thread can overwrite the input of

another thread
– Barrier synchronization to ensure all inputs have been properly generated
– All threads secure input operand that can be overwritten by another thread
– Barrier synchronization is required to ensure that all threads have secured their

inputs
– All threads perform addition and write output

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 1
STRIDE = 1

STRIDE 1

7

A Work-Inefficient Scan Kernel
__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {

__shared__ float XY[SECTION_SIZE];
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < InputSize) {XY[threadIdx.x] = X[i];}

// the code below performs iterative scan on XY
for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2) {
__syncthreads();

float in1 = XY[threadIdx.x - stride];
__syncthreads();
XY[threadIdx.x] += in1;

}
__ syncthreads();
If (i < InputSize) {Y[i] = XY[threadIdx.x];}

}

8

Work Efficiency Considerations
– This Scan executes log(n) parallel iterations

– The iterations do (n-1), (n-2), (n-4),..(n- n/2) adds each
– Total adds: n * log(n) - (n-1)  O(n*log(n)) work

– This scan algorithm is not work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) can hurt: 10x for 1024 elements!

– A parallel algorithm can be slower than a sequential one
when execution resources are saturated from low work
efficiency

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 10.2 – Parallel Computation Patterns (scan)
	Objective
	A Better Parallel Scan Algorithm
	A Better Parallel Scan Algorithm
	A Better Parallel Scan Algorithm
	Handling Dependencies
	 A Work-Inefficient Scan Kernel
	Work Efficiency Considerations
	Slide Number 9

