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Objective
– To learn to write and analyze a high-performance scan kernel

– Interleaved reduction trees
– Thread index to data mapping
– Barrier Synchronization
– Work efficiency analysis
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A Better Parallel Scan Algorithm
1. Read input from device global memory to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration

• Active threads stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from shared memory and writes 

result into element j in shared memory
• Requires barrier synchronization, once before read and once before 

write
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A Better Parallel Scan Algorithm
1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration. 
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A Better Parallel Scan Algorithm
1. Read input from device to shared memory
2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration
3. Write output from shared memory to device memory

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 3
STRIDE = 4

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

XY 3 4 11 11 15 16 22 25

STRIDE 4
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Handling Dependencies
– During every iteration, each thread can overwrite the input of 

another thread
– Barrier synchronization to ensure all inputs have been properly generated
– All threads secure input operand that can be overwritten by another thread
– Barrier synchronization is required to ensure that all threads have secured their 

inputs
– All threads perform addition and write output

XY 3 4 8 7 4 5 7 9
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ITERATION = 1
STRIDE = 1
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A Work-Inefficient Scan Kernel
__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {

__shared__ float XY[SECTION_SIZE];
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < InputSize) {XY[threadIdx.x] = X[i];}

// the code below performs iterative scan on XY
for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2) {
__syncthreads();

float in1 = XY[threadIdx.x - stride];
__syncthreads();
XY[threadIdx.x] += in1;

}
__ syncthreads();
If (i < InputSize) {Y[i] = XY[threadIdx.x];}

}
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Work Efficiency Considerations
– This Scan executes log(n) parallel iterations

– The iterations do (n-1), (n-2), (n-4),..(n- n/2) adds each
– Total adds: n * log(n)  - (n-1)  O(n*log(n)) work

– This scan algorithm is not work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) can hurt: 10x for 1024 elements!

– A parallel algorithm can be slower than a sequential one 
when execution resources are saturated from low work 
efficiency
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