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Least squares
The treatment of this topic is significantly different from the one taken in the 
book.  I find the approach proposed here simpler and clearer. The book treatment 
however has its merits offering insights that are not apparent here. I suggest the 
interested students to have a look at the book contents even though that material 
will not be part of the mandatory readings.


Part of this material is based on Gilbert Strang linear algebra lessons (freely 
available on iTunesU and at https://ocw.mit.edu/courses/mathematics/18-06-
linear-algebra-spring-2010/video-lectures/).

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/


Best fitting line
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Matrix representation

x y
-1 -1,52

-0,8 -1,21
-0,6 -0,67
-0,4 -0,56
-0,2 1,46
0 0,57

0,2 1,37
0,4 1,91
0,6 1,31
0,8 2,78
1 3,84

We want to find the parameters 
(C,D) of the linear model                   
that best fits the data.
Ideally we would like that, for each 
row of the table on the left, the 
linear equation above would hold. 
I.e. we aim at finding (C,D) such 
that: 8

>>><

>>>:

�1C +D = �1.52

�0.8C +D = �1.21

�0.6C +D = �0.67

. . .

Cx+D = y



Matrix equation
8
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>>>:

�1C +D = �1.52

�0.8C +D = �1.21

�0.6C +D = �0.67

. . .

corresponding 
to the matrix 

equation:
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�1.52
�1.21
�0.67
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1

CCA

X w y

i.e.,:

So we end up 
with the system:

Xw = y



Solving the matrix equation — ideal case

In the ideal case X is squared and full rank, and the 
equation can be solved simply by multiplying both sides by 
the inverse of X.

Unfortunately, this is true only in the most trivial cases. X is 
not usually invertible and a more general approach is 
needed. 

We start by noticing that by varying w we are actually 
spanning the column space of X and that y does not 
belong to it (otherwise we could solve for equality).

w = X�1 · y



Relationship between x and estimation errors
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Least squares as a minimisation problem

We can then formulate the problem as the one of minimising the 
norm of e, which is equivalent to minimise the sum of the 
squared differences between components of y and p. 

Since, by definition:

It follows that the whole problem can be formulated as

Error: kek2 = ky � pk2 =

sX

i

(yi � pi)2

minimizeŵkXŵ � yk22

p = Xŵ



Relationship between x and estimation errors
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Least squares solution

Imposing orthogonality of e and C(X) is equivalent to 
impose: 

implying:

XT e = 0

XT (y �Xŵ) = 0

) XTy �XTXŵ = 0

) XTXŵ = XTy

) ŵ = (XTX)�1XTy



Example using three points
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Example: Matrix formulation

x y
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Example: calculating solution



Example: calculating solution

ŵ = (XTX)�1XTy



Example: calculating solution

ŵ = (XTX)�1XTy
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Example: calculating solution

ŵ = (XTX)�1XTy
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Example: calculating solution
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Example: calculating solution
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Example: least squares solution plot
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Least Squares Overfitting 



Regularised regression

Regularisation is a general method to avoid overfitting by 
applying additional constraints to the weight vector. A 
common approach is to make sure the weights are, on 
average, small in magnitude: this is referred to as 
shrinkage. 

The regularised version of the least squares optimisation is: 

where λ is a scalar determining the amount of regularization.

7. Linear models 7.1 The least-squares method

? Regularised regression I

Regularisation is a general method to avoid overfitting by applying additional
constraints to the weight vector. A common approach is to make sure the
weights are, on average, small in magnitude: this is referred to as shrinkage.

The least-squares regression problem can be written as an optimisation problem:

w§ = argmin
w

(y°Xw)T(y°Xw)

The regularised version of this optimisation is then as follows:

w§ = argmin
w

(y°Xw)T(y°Xw)+∏||w||2

where ||w||2 =P
i w2

i is the squared norm of the vector w, or, equivalently, the
dot product wTw; ∏ is a scalar determining the amount of regularisation.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 281 / 540



Regularised regression

This regularised problem still has a closed-form solution: 

where I denotes the identity matrix. Regularisation amounts 
to adding λ to the diagonal of XTX, a well-known trick to 
improve the numerical stability of matrix inversion. This form 
of least-squares regression is known as ridge regression.

7. Linear models 7.1 The least-squares method

? Regularised regression II

This regularised problem still has a closed-form solution:

ŵ = (XTX+∏I)°1XTy

where I denotes the identity matrix. Regularisation amounts to adding ∏ to the
diagonal of XTX, a well-known trick to improve the numerical stability of matrix
inversion. This form of least-squares regression is known as ridge regression.

An interesting alternative form of regularised regression is provided by the lasso,
which stands for ‘least absolute shrinkage and selection operator’. It replaces the
ridge regularisation term

P
i w2

i with the sum of absolute weights
P

i |wi |. The
result is that some weights are shrunk, but others are set to 0, and so the lasso
regression favours sparse solutions.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 282 / 540



Regularised regression

An interesting alternative form of regularised regression is 
provided by the lasso, which stands for ‘least absolute 
shrinkage and selection operator’. It replaces the ridge 
regularisation term ||w||2 with the sum of absolute weights: 

The result is that some weights are shrunk, but others are 
set to 0, and so the lasso regression favours sparse 
solutions.

kwk1 =
X

i

|wi|



Example
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Understanding regularisation

Why does minimising the norm of the weight vector 
improve results?



Understanding regularisation

Why does minimising the norm of the weight vector 
improve results?

 Why does the lasso approach favour sparse solutions?



Minimisation of the norm of the weight vector

Several reasons justify minimising the norm of the weight 
vector: 

If you assume that X is affected by an error D then:  

and minimising the norm of the weight vector minimizes 
the effect of the error on X. 
Smaller weight vectors can be thought as “simpler” 
models. In this sense minimising the norm of the weight 
vector is tantamount to following the Occam’s razor 
principle.

(X+D)w = Xw +Dw



Minimisation of the norm of the weight vector (2)

by imposing these additional constraints we are imposing 
a bias to the learning algorithm and this reduces the error 
variance: as a consequence of its quadratic loss, least 
squares is quite an unstable regressor: small variations in 
the data are emphasised by the loss.  

By regularising it we are improving the error by reducing 
variance without hurting too much the bias component 
(surely it can be the case that the true function has a 
large ||w|| and that this is not reflected in the data, but we 
can assume this is an uncommon situation).



Norm minimisation and sparsity

6.1 Norm approximation 297
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Figure 6.2 Histogram of residual amplitudes for four penalty functions, with
the (scaled) penalty functions also shown for reference. For the log barrier
plot, the quadratic penalty is also shown, in dashed curve.

Image courtesy of Stephen Boyd and Lieven Vandenberghe, from the book 
“Convex Optimization". Cambridge University Press.



Least squares for classification



Using least squares for classification

The least squares approach can be easily adapted to cope 
with classification tasks by representing the positive class 
using “1” and the negative class using “-1”.  

Then:

Note: t represents the intercepts. In previous slides this was 
included in the parameter vector and x was assumed to 
contain a 1 in the last position.

ĉ(x) =

8
><

>:

1 if xT ŵ � t > 0

0 if xT ŵ � t = 0

�1 if xT ŵ � t < 0



Example
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Example



Support Vector Machines
The treatment of this topic is in part different from the one taken in the book.  



SVM: finding the hyperplane maximising the margin
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SVM: finding the hyperplane maximising the margin
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Functional and 
Geometric Margin

• Our first goal will be to reduce the 
possible solutions only to those that do 
not make any error. This will lead to the 
definition of the functional margin. 

• Then we can focus on the problem of 
forcing the solution to maximise the 
distance from the nearest positive/
negative examples. This will lead to the 
definition of the geometric margin.
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Functional margin

Let us define f(xi) = w · xi - t  to 
be the value of the hyperplane 
at point xi and let us use +1, -1 

as our labels for positive and 
negative examples. 

Note that we can then use 

f(xi) > 0 

 as our decision rule to 
discriminate between classes. 

 

f

f(xi)

xi

+1

-1

++ +++

-----

++ +++-----



 f(xi) example (3D)

xi

f(xi)

xj

f(xj)

https://www.monroecc.edu/faculty/paulseeburger/calcnsf/CalcPlot3D/?type=z;z=0;visible=true;umin=-128;umax=128;vmin=-128;vmax=128;grid=3;format=constant;alpha=-1;constcol=rgb(255,0,0);view=0;contourcolor=red;fixdomain=false&type=z;z=0.3x+0.2y-1;visible=true;umin=-128;umax=128;vmin=-128;vmax=128;grid=3;format=normal;alpha=73;constcol=rgb(106,168,79);view=0;contourcolor=red;fixdomain=false&type=point;point=(1.3,0.7,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(0.5,0.9,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(0.5,1.3,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(1.2,2.7,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(2.3,0.2,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(2.8,1.8,1);visible=true;color=rgb(0,0,255);size=4&type=point;point=(3.8,0.4,1);visible=true;color=rgb(0,0,255);size=4&type=point;point=(3.9,1,1);visible=true;color=rgb(0,0,255);size=4&type=point;point=(3,3.3,1);visible=true;color=rgb(0,0,255);size=4&type=point;point=(4.8,1.4,1);visible=true;color=rgb(0,0,255);size=4&type=window;hsrmode=0;nomidpts=true;anaglyph=-1;center=0.41070462636812927,-1.382188288220688,0.4133730104694837,1;focus=0,0,0,1;up=-0.06498535569366203,0.26815232033739866,0.9611822078269227,1;transparent=true;alpha=140;twoviews=false;unlinkviews=false;axisextension=0.7;xaxislabel=x;yaxislabel=y;zaxislabel=z;edgeson=true;faceson=true;showbox=false;showaxes=true;showticks=false;perspective=true;centerxpercent=0.3987796123474514;centerypercent=0.4759519038076153;rotationsteps=30;autospin=true;xygrid=false;yzgrid=false;xzgrid=false;gridsonbox=false;gridplanes=false;gridcolor=rgb(128,128,128);xmin=-128;xmax=128;ymin=-128;ymax=128;zmin=-128;zmax=128;xscale=64;yscale=64;zscale=64;zcmin=-256;zcmax=256;zoom=0.351959;xscalefactor=1;yscalefactor=1;zscalefactor=-123456.654321#Examples


Functional margin

Let us define the functional 
margin of example xi w.r.t. 
the hyperplane determined 
by w and t as the quantity: 

µ(xi) = yi(w · xi - t) = yi f(xi) 

Note that µ(xi) > 0 iff x is 
correctly classified.

f

f(xi)

xi

+1

-1

++ +++

-----



Functional margin

In our solution we will then want a functional margin larger 
than 0 for each example, i.e.: 

yi(w · xi - t) > 0

If we rescale w and t we just 
change the slope of the 
hyperplane without changing the 
decision surface.

+1

-1

++ +++

-----



Support vectors

We are then free to require that for each example in the 
dataset it holds: 

yi(w · xi � t) � 1

and also that strict equality holds for the examples on the 
boundary: 

Examples on the boundary have a special name in the SVM 
theory: they are called the support vectors. 

yi(w · xi � t) = 1



Geometric margin
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(w0,w1) is orthogonal to the discriminating line (hyperplane)

The discriminating line is at the 
intersection of the plane with z = 0. 

The plane has equation: 
 

The line has then equation: 
 

For any two points r1 and r2 on the 
line it holds:  

w0x + w1y + w2z + d = 0

w0x + w1y + d = 0

(w0, w1) ⋅ (r1 − r2) = 0

x
<latexit sha1_base64="WBQ6po/p5LK1PKuvRDf0H0/wKrM=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiRWfOyKbly2YB/QhjKZTtqxk0mYmYgl9AvcuFDErZ/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yXXqd+6pVCwUt3oaUTfAI8F8RrA2UvNhUK7YVTsDWiROTiqQozEof/SHIYkDKjThWKmeY0faTbDUjHA6K/VjRSNMJnhEe4YKHFDlJtmhM3RklCHyQ2lKaJSpPycSHCg1DTzTGWA9Vn+9VPzP68Xav3ATJqJYU0Hmi/yYIx2i9Gs0ZJISzaeGYCKZuRWRMZaYaJNNKQvhMsXZ98uLpH1SdWrVWvO0Ur/K4yjCARzCMThwDnW4gQa0gACFR3iGF+vOerJerbd5a8HKZ/bhF6z3L/8BjTM=</latexit>

y
<latexit sha1_base64="NZ6boFnOmWjw9jRHpv0m4i6agHw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQqPnZFNy5bsA9oQ5lMJ+3YySTMTIQQ+gVuXCji1k9y5984SYOo9cCFwzn3cu89XsSZ0rb9aZWWlldW18rrlY3Nre2d6u5eR4WxJLRNQh7KnocV5UzQtmaa014kKQ48Trve9Cbzuw9UKhaKO51E1A3wWDCfEayN1EqG1Zpdt3OgReIUpAYFmsPqx2AUkjigQhOOleo7dqTdFEvNCKezyiBWNMJkise0b6jAAVVumh86Q0dGGSE/lKaERrn6cyLFgVJJ4JnOAOuJ+utl4n9eP9b+pZsyEcWaCjJf5Mcc6RBlX6MRk5RonhiCiWTmVkQmWGKiTTaVPISrDOffLy+SzkndOa2fts5qjesijjIcwCEcgwMX0IBbaEIbCFB4hGd4se6tJ+vVepu3lqxiZh9+wXr/AgCUjTQ=</latexit>

(w0, w1)
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r1
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r2
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(w0,w1) is orthogonal to the discriminating line (hyperplane)

From the line equation:  
 

It follows:  

,  

w0x + w1y + d = 0

r1 = (x1, −
w0x1 + d

w1 ) r2 = (x2, −
w0x2 + d

w1 )
implying: 

(w0, w1) ⋅ (r2 − r1) = (w0, w1) ⋅ (x2 − x1, −
w0x2 + d

w1
+

w0x1 + d
w1 )

= w0(x2 − x1) + w1 (−
w0x2 − w0x1

w1 ) = 0



SVM: finding the hyperplane maximising the margin

The margin size can be then evaluated as:
µ = (x+ � x�) ·

w

kwk

=
x+ ·w
kwk � x� ·w

kwk

For x+ and x_, being examples on the boundary, it holds 
that:

�(x� ·w � t) = 1 ) x� ·w = t� 1

implying:

x+ ·w � t = 1 ) x+ ·w = 1 + t

µ =
1 + t

kwk � t� 1

kwk =
2

kwk



SVM: optimisation problem

To maximise 1/||w|| is equivalent to minimise ||w|| which, in 
turn, is equivalent to minimise ||w||2. The SVM optimisation 
problem can be then formulated as:

minimize
w,t

1

2
kwk2

subject to yi(w · xi � t) � 1; 0  i  n



Dual formulations

Let us consider the optimisation problem:
minimizex f0(x)

subject to fi(x)  0, i = 1, . . . ,m

gi(x) = 0, i = 1, . . . , p

The Lagrange dual function is, by definition:

g(↵, ⌫) = inf
x

⇤(x,↵, ⌫)

= inf
x

 
f0(x) +

mX

i=1

↵ifi(x) +
pX

i=1

⌫igi(x)

!



Duality

Duality can be thought of as “an organised way to form 
highly non trivial bounds on optimisation 
problems” (Stephen Boyd). 

In convex problems the bound is (usually) strict and 
maximising the bound (which is the dual formulation of the 
problem) leads to the same solution as minimising the 
original function (the primal formulation). In such case we 
have strong duality. 

For strong duality a set of conditions known as the 
Karush-Kuhn-Tucker (KKT) conditions needs to hold.



SVM dual problem

In the SVM case, we start by adding multipliers αi for each 
inequality constraint to obtain the Lagrange function (with 
the constraint αi ≥ 0):

7. Linear models 7.3 Support vector machines

? Deriving the dual problem I

Adding the constraints with multipliers Æi for each training example gives the
Lagrange function

§(w, t ,Æ1, . . . ,Æn ) = 1
2
||w||2 °

nX

i=1
Æi (yi (w ·xi ° t )°1)

= 1
2
||w||2 °

nX

i=1
Æi yi (w ·xi )+

nX

i=1
Æi yi t +

nX

i=1
Æi

= 1
2

w ·w°w ·
√

nX

i=1
Æi yi xi

!

+ t

√
nX

i=1
Æi yi

!

+
nX

i=1
Æi

t By taking the partial derivative of the Lagrange function with respect to t
and setting it to 0 we find

Pn
i=1Æi yi = 0.

t Similarly, by taking the partial derivative of the Lagrange function with
respect to w and setting to 0 we obtain w =Pn

i=1Æi yi xi – the same
expression as we derived for the perceptron.
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SVM dual problem

To write the dual formulation we still have to take the 
infimum (w.r.t. x and t) of the Lagrangian. To find the 
infimum, we start by calculating the partial derivatives of the 
Lagrangian.

@⇤

@t
=

X

i

↵iyi

⇤(w, t,↵1, . . . ,↵n) =
1

2
w ·w �w ·

 
nX

i=1

↵iyixi

!
+ t

 
nX

i=1

↵iyi

!
+

nX

i=1

↵i

@⇤

@w
= w �

X

i

↵iyixi

yielding (by setting them equal to zero):
w =

X

i

↵iyixi

X

i

↵iyi = 0



SVM dual problem

By substituting back into the Lagrangian, we get the 
formulation of the dual function:

g(↵) = �1

2

nX

i=1

nX

j=1

↵i↵jyiyjxixj +
nX

i=1

↵i

which, as mentioned, is a general lower bound on the 
solution parametrised by α. By maximising it, we get the 
dual formulation of the SVM problem:

maximize↵ � 1

2

nX

i=1

nX

j=1

↵i↵jyiyjxixj +
nX

i=1

↵i

subject to ↵i � 0 for i = 1, . . . , n, and
X

i

yi↵i = 0



Finding solutions to the SVM problem

How can one find a solution to the primal problem? 

Convex optimization (numerical algorithms). 

How can one find a solution to the dual problem? 

Convex optimization (numerical algorithms). 

Why, then, bother to formulate the dual problem?



Advantages of the dual formulation

We learn something about the solution: 

• the solution vector w is a linear combination of the 
support vectors; 

• positive Lagrange multipliers are associated with support 
vectors (implying that non support vectors have null 
Lagrange multipliers); 

• both learning and classification can be done in terms of 
dot products of support vectors; 

In the dual formulation SVM can be used to learn non-
linear concepts by using the kernel trick;



Positive Lagrange multipliers are associated with 
support vectors

Among the previous observations, the only one that still 
needs a justification is the assertion that positive Lagrange 
multipliers are associated with support vectors. 

This property follows from the KKT condition: 

↵i(yi(w · xi � t)� 1) = 0



Allowing margin errors

+

+

+

+
-

-

-
w

+
⇠i

yi(w · xi � t) � 1� ⇠i



Allowing margin errors

The idea is to introduce slack variables, one for each 
example, which allow some of them to be inside the margin 
or even at the wrong side of the decision boundary. 

Slack variables relax the constraints, but are penalised in 
the objective: to find the optimal solution the solver needs 
to struck a good balance between the maximisation of the 
margin and the minimisation of the number (and magnitude) 
of the slack variables.

minimize
w,t,⇠

1

2
kwk2 + C

nX

i=1

⇠i

subject to yi(w · xi � t) � 1� ⇠i; 1  i  n

⇠i � 0; 1  i  n



Allowing margin errors

C is a user-defined parameter trading off margin 
maximisation against slack variable minimisation: a high 
value of C means that margin errors incur a high penalty, 
while a low value permits more margin errors (possibly 
including misclassifications) in order to achieve a large 
margin.

minimize
w,t,⇠

1

2
kwk2 + C

nX

i=1

⇠i

subject to yi(w · xi � t) � 1� ⇠i; 1  i  n

⇠i � 0; 1  i  n



Allowing margin errors

If we allow more margin errors we need fewer support 
vectors, hence C controls to some extent the ‘complexity’ 
of the SVM and hence is often referred to as the complexity 
parameter. 

minimize
w,t,⇠

1

2
kwk2 + C

nX

i=1

⇠i

subject to yi(w · xi � t) � 1� ⇠i; 1  i  n

⇠i � 0; 1  i  n



Dual formulation

The Lagrange function is:
⇤(w, t, ⇠i,↵i,�i) =

1

2
kwk2 + C

nX

i=1

⇠i �
nX

i=1

↵i(yi(w · xi � t)� (1� ⇠i))�
nX

i=1

�i⇠i

=
1

2
kwk2 +

nX

i=1

C⇠i �
nX

i=1

↵i(yi(w · xi � t)� 1)�
nX

i=1

↵i⇠i �
nX

i=1

�i⇠i

= ⇤(w, t,↵i) +
nX

i=1

C⇠i �
nX

i=1

↵i⇠i �
nX

i=1

�i⇠i

= ⇤(w, t,↵i) +
nX

i=1

⇠i(C � ↵i � �i)

minimize
w,t,⇠

1

2
kwk2 + C

nX

i=1

⇠i

subject to yi(w · xi � t) � 1� ⇠i; 1  i  n

⇠i � 0; 1  i  n



Dual formulation

By setting the derivative of the ξi variables to zero we obtain 
C - αi - βi = 0, implying:

⇤(w, t, ⇠i,↵i,�i) = ⇤(w, t,↵i)

maximize
↵

� 1

2

nX

i=1

nX

j=1

↵i↵jyiyjxixj +
nX

i=1

↵i

subject to 0  ↵i  C; i = 1, . . . , n
nX

i=1

yi↵i = 0

Which allows us to write the dual formulation of the soft 
margin SVM problem as:



Dual formulation

Also, one of the KKT conditions states that βiξi=0              
implying that if an example is a margin error (i.e., has ξi>0) 
then βi=0, which in turns implies αi=C (see previous slide). 
From these considerations (and from everything we already 
know about support vectors) it follows that examples for 
which: 
αi = 0   	 are examples outside (or on) the margin; 
0 < αi < C   are support vectors 
αi = C 	 are margin errors  



Slack variables interpretation

+

+

+

+
-

-

-
w

+
↵i = C

0 < ↵i < C

↵i = 0



Kernels



The kernel trick

The “kernel trick” is an established way to extend (some) 
linear algorithms to cope with non-linear hypotheses 
spaces. 

The main idea is based on the fact that a linear decision 
surface on a transformed space may correspond to a non-
linear decision surface on the original feature space.



The kernel trick

Example: consider the mapping

and the form of the classification function of the svm:

�(x) = (x2
1,
p
2x1x2, x

2
2, c)

ĉ(x) = sign(w · x� t)

and how it changes after substituting the dot product with a 
kernel based on the above mapping:
ĉ(x) = sign(K(w,x)� t) = sign(�(w) · �(x)� t)

= sign((w2
1,
p
2w1w2, w

2
2, c) · (x2

1,
p
2x1x2, x

2
2, c)� t)

= sign(w2
1x

2
1 + 2w1w2x1x2 + w2

2x
2
2 + c2 � t)



Kernel functions

A kernel function is a function K: 𝕍 × 𝕍 → ℝ for which it 
holds that there exists a mapping ϕ: 𝕍 → 𝔽 (with 𝔽 being a 
Hilbert space, i.e., a complete vector space equipped with 
an inner product), such that: 

K(x,y) = ⟨ϕ(x), ϕ(y)⟩ 

i.e., a kernel function computes an inner product of x and y 
after mapping them into a different (possibly very high 
dimensional) Hilbert space. 



Inner products

An inner product is a generalisation of a dot product to 
arbitrary vector spaces. It is axiomatically defined as a 
function that associates each pair of vectors a scalar (let’s 
say a real number, even though it should be defined over 
arbitrary fields). To be an inner product the function must 
satisfy: 
- symmetry: ⟨x,y⟩ = ⟨y, x⟩ 

- linearity in the first argument: ⟨ax+by,z⟩ = a⟨x,z⟩ + b⟨y,z⟩ 

- positive-definiteness: ⟨x,x⟩ ≥ 0;  ⟨x,x⟩ = 0 ⇔ x = 0



Kernels: motivations

representational: 
• extend linear classifiers to cope with non-linear 

problems; 
computational: 

• compute a similarity function in a high-dimensional 
feature space without actually computing the feature 
vectors; 

theoretical: 
• conditions exist to establish if a given function is a kernel 

(to actually prove they hold, can be hard); 
• compositional properties allow one to build new kernels 

from known ones.



Important kernels

Polinomial Kernel of degree d:  
K(x,y) = (x ⋅ y)d     or   K(x,y) = (x ⋅ y + 1)d 

Notice:  
for d = 1 we have the linear (trivial/identity) Kernel 

for d = 2 we have the quadratic Kernel (often used in 
Natural Language Processing problems) 
for a generic d the considered feature space has a 
dimensionality which is exponential in d.



Important Kernels

Gaussian Kernel: 

Note: 

the features space has infinite dimensionality 

σ is a parameter usually set by cross validation on an 
independent validation set

K(x,y) = exp

✓
�kx� yk2

2�2

◆

<latexit sha1_base64="QlVSi5mr3Uz7wKLv77+rtsFar7s="></latexit>



Other kernels

Many other kernels exist. The concept can also be applied to 
structured data such as strings or trees. 

String kernel (often used in biology) example: 

       ϕ(x) = (1,   2,   0,  ….,  0 ) 

          AAA   AAB   AAC ….  ZZZ 

The mapping function stores in a vector the number of times 
each substring of the given length (3 in our example) appear 
in string x. The kernel is actually computed using a dynamic 
programming algorithm.



Kernel intuition

Kernels can be thought of similarity functions in the “output” 
feature space. 

In fact, if the vectors are “similar” then they probably point in 
a similar direction and the dot product is likely to be large. 

If the vectors are “dissimilar” then they probably point in 
different directions and the dot product ought to be small.



Mercer’s conditions

Let’s say that one has built a function K(x,y) which 
implements a similarity between x and y. How can he/she 
be sure that K is a valid kernel? I.e., how can he/she be 
sure that there exists a Hilbert space H such that K 
evaluates the inner product in H? 

Mercer’s conditions: 

 A function K is a valid kernel if and only if for any finite set 
of points {x1,…,xm}, the matrix K (defined as Ki,j = K(xi,xj)) is 
symmetric and positive semi-definite.



Mercer’s conditions: if K is a kernel, then K is 
symmetric and K ⪰ 0

Let us prove the if part of the statement about the Mercer’s 
conditions (the other direction will not be proved here). 

We want to prove that if there exists ϕ such that  
K(x,y)=⟨ϕ(x), ϕ(y)⟩, then for any set of points {x1,…,xn}, K is 
symmetric and positive semidefinite.  

The symmetric part is trivial (by definition of inner product). 



Mercer’s conditions: if K is a kernel, then K ⪰ 0

Let us now show that K ⪰ 0, i.e., that for all z: zT K z ≥ 0. 

zTKz =
X

i

X

j

zizjKi,j =
X

i

X

j

zizjK(xi,xj) =

=
X

i

X

j

zizjh�(xi),�(xj)i

=
X

i

X

j

hzi�(xi), zj�(xj)i

=
X

i

hzi�(xi),
X

j

zj�(xj)i

= h
X

i

zi�(xi),
X

j

zj�(xj)i = h
X

i

zi�(xi),
X

i

zi�(xi)i � 0



Building new kernels

• K(x,y) = K1(x,y) K2(x,y)       Roughly equivalent to AND ops 

• K(x,y) = K1(x,y) + K2(x,y)   Roughly equivalent to OR ops 

• K(x,y) = aK1(x,y), for a>0 

• K(x,y) = f(x) f(y), for any function f 

• …


