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Abstract. Translation validation is an alternative to the verification of
translators (compilers, code generators). Rather than proving in advance
that the compiler always produces a target code which correctly imple-
ments the source code (compiler verification), each individual translation
(i.e. a run of the compiler) is followed by a validation phase which verifies
that the target code produced on this run correctly implements the sub-
mitted source program. In order to be a practical alternative to compiler
verification, a key feature of this validation is its full automation.

Since the validation process attempts to “unravel” the transformation
effected by the translators, its task becomes increasingly more difficult
(and necessary) with the increase of sophistication and variety of the
optimizations methods employed by the translator. In this paper we ad-
dress the practicability of translation validation for highly optimizing,
industrial code generators from SIGNAL; a widely used synchronous lan-
guage, to C. We introduce new abstraction techniques as part of the
automation of our approach.

1 Introduction

A significant number of embedded systems contain safety-critical aspects. There
is an increasing industrial awareness of the fact that the application of for-
mal specification languages and their corresponding verification /validation tech-
niques may significantly reduce the risk of design errors in the development of
such systems. However, if the validation efforts are focused on the specifica-
tion level, the question arises how can we ensure that the quality and integrity
achieved at the specification level is safely transferred to the implementation
level. Today’s process of the development of such systems consists of hand-coding
followed by extensive unit and integration-testing.

The highly desirable alternative, both from a safety and a productivity point
of view, to automatically generate code from verified/validated specifications,
has failed in the past due to the lack of technology which could convincingly
demonstrate to certification authorities the correctness of the generated code.
Although there are many examples of compiler verification in the literature (see,
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for-example, [5, 9, 10, 15, 12, 11, 14, 13]), the formal verification of industrial
code generators is generally prohibitive due to their size. Another problem with
compiler verification is that the formal verification freezes the design and evolu-
tion of the compiler, as each change to the code generators nullifies their previous
correctness proof.

Alternately, code-validation suggests to construct a fully automatic tool
which establishes the correctness of the generated code individually for each
run of the code generator. In general, code-validation can be the key enabling
technology to allow the usage of code generators in the development cycle of
safety-critical and high-quality systems. The combination of automatic code gen-
eration and validation improves the design flow of embedded systems in both
safety and productivity by eliminating the need for hand-coding of the target
code (and consequently coding-errors are less probable) and by considerably
reducing unit/integration test efforts.

Of course, it is not clear that every compiler and every source and target
languages can be verified according to the code-validation paradigm. But the fact
that the compiler we considered was highly optimized and the source and target
languages had completely different structures (synchronous versus sequential
code) indicates that this method has the potential of solving realistic, non-trivial
cases.

The work carried out in the SACRES project proves the feasibility of code-
validation for the industrial code generator used in the project, and demonstrates
that industrial-size programs can be verified fully automatically in a reasonable
amount of time.

1.1 Technical Introduction

In this paper we consider translation validation for the synchronous languages
Signal [3]. This language is mainly used in industrial applications for the de-
velopment of safety-critical, reactive systems. In particular, it is designed to
be translatable into code which is as time/space efficient as handwritten code.
This code is generated by sophisticated code generators which perform vari-
ous analyses/calculations on the source code in order to derive highly efficient
implementations in languages such as C, ADA, or JAVA.

The presented translation validation approach addresses two industrial com-
pilers from SIGNAL to C. These compilers — which apply more than 100 op-
timization rules during code generation [16] were developed in the ESPRIT
project SACRES by the French company TNI and by Inria (Rennes) and are
used by Siemens, SNECMA and British Aerospace. Their formal verification is
prohibitive due to their size (more than 20,000 lines of code each) and the fact
that they are constantly improved /extended.

While developed in the context of code generators for synchronous languages,
the proposed method has wider applicability. The main feature which enables
us to perform the validation task algorithmically is that the source language
has a restricted explicit control structure. This is also represented by the fact



that the resulting C-code consists of a single main loop whose body is a loop-
free program. Source languages with these features can benefit from the method
proposed in this paper. For example, the language UNITY [6] which comes from
the world of asynchronous distributed systems is another possible client of the
proposed method.

We present a common semantic model for SIGNAL and C, introduce the
applied notion of being a correct implementation, formulate the correctness of
the generated C code as proof obligations in first order logic, and present efficient
decision procedures to check the correctness of the generated proof obligations.
All translations and constructions which are presented in the course of the paper
have been implemented in a tool called CVT (Code Validation Tool) [19]. CVT
has been used to validate the code generated from a 6000 lines SIGNAL program
with more than 1000 variables. This program is a turbine-control system which
was developed as an industrial case study by SNECMA in the SACRES project.

A major advantage of a carefully designed translation validation tool is that it
can replace the need for correctness proofs for various compilers if these compilers
are based on the same definition of “correct code generation”. This is the case
for the TNI and the Inria compiler and, indeed, CVT is used to validate code
originating from either of these two compilers.

1.2 Run Time Result Verification

There is a growing interest in the concept of verifying run-time results, rather
than programs or models. A recently held workshop entitled “run-time result
verification” presented various applications of run-time verification techniques.
These applications, in most cases, had similar characteristics to compiler verifi-
cation, although they come from a variety of domains: it is very hard, or even
impossible to formally verify them in the ‘traditional’, single-time proof on the
one hand, and on the other hand, their design often changes while the system
is developed. Another motivation for this approach is that in some cases the
program itself is not available for inspection due to commercial and intellectual
property factors!. A good example of such a domain is the formal verification
of decision procedures. Implementations of Decision procedures are often exper-
imental and not very robust. They are typically complex and keep evolving over
time. Being generic tools for verifying safety-critical systems, the correctness of
the tools is at least as important as that of the applications they help to verify.
In [21], the decision procedure generates proofs during run-time, in order to val-
idate the decision process. An axiomatization of the proof system is presented in
another formal system, which is referred to as the ‘logical framework’ in which
the proof is carried out. The logical framework tool includes a proof checker of
its own, that can check proofs of any system that is axiomatized in the frame-
work. This enables automatic validation of every run of the decision procedure

! this is also a common argument in the domain of testing, where often ’black-box’
testing is used rather than 'white-box’ testing simply because the code is not available
for inspection



by producing a proof script for the run and applying to it the framework’s proof
checker.

The concept of validating translators/compilers by proving semantical equiv-
alence between source and target code has been applied in various other projects.
In [22] and [8] the verification of the translator from a high level description lan-
guage to executable code is carried out in two distinct stages: in the ’on-line’
stage, each run of the translator is verified by proving several simple conditions
on the syntactical structure of the results, in comparison to the source code. This
stage is fully automatic and implemented by a simple 'checker’. The reduction
from full translation verification to these simple rules is carried out manually in
a one-time effort (the 'off-line’ stage) by an expert. This approach was applicable
in their case due to the relatively structured translation scheme of the source
code. A declaration in the source code is translated into code which performs
RNS transformations (it reduces arithmetical operations to a set of indepen-
dent arithmetic operations on integers of limited size). Thus, the main task of
the validation process is to verify that these transformations are correct. Af-
ter computing a mapping between the input and output variables of the source
and target programs, they prove that the correspondence between the 'semantic’
states of the two programs is preserved by the execution steps. In this sense there
model is similar to the model we will present in this paper. In [7], translation
validation is done on a purely syntactic level. Their method is based on find-
ing a bijection between abstract and concrete instruction sets (resp. variables)
because they are considering a structural translation of one sequential program
into another sequential program. Since we are dealing with optimizing compilers
we have to employ a far more involved semantic approach.

The rest of the paper is organized as follows. In Section 2 we give a brief
introduction to SIGNAL and present a running example. After introducing syn-
chronous transition systems as our model of computation in Section 3 we address
the formal semantics of SIGNAL. Section 4 presents the concepts which underly
the generation of the proof obligations. In Section 5 we present the decision pro-
cedure to check the validity of these proof obligations. Finally, Section 7 contains
some conclusions and future perspectives.

2 An Illustrative Example

In this section we first illustrate details of the compilation process by means
of an example and then explain the principles which underly the translation
validation process.

A SIGNAL program describes a reactive system whose behavior along time is
an infinite sequence of instants which represent reactions, triggered by external
or internal events. The main objects manipulated by a SIGNAL program are
flows, which are sequences of values synchronized with a clock. A flow is a typed
object which holds a value at each instant of its clock. The fact that a flow is
currently absent is represented by the bottom symbol L (cf. [3]). Clocks are
unary flows, assuming the values {T, L}. A clock has the value T if and only if



the flow associated with the clock holds a value at the present instant of time.
Actually, any expression ezp in the language has its corresponding clock clk(exp)
which indicates whether the value of the expression at the current instant is
different from L.

Besides external flows (input/output flows), which determine the interface
of the SIGNAL program with its environment, also internal flows are used and
manipulated by the program. Consider the following SIGNAL program DEC:

process DEC=
( ? integer FB
! integer N
)
(| N:= FB default (ZN-1)
| ZN:= N $§ init 1
| FB"=when (ZN<=1)
D
where
integer ZN init 1 ;
end

Program DEC (standing for “decrement”) has an input FB and an output N,
both declared as integer variables. Now and then, the environment provides a
new input via variable FB. Receiving a new positive input, the program starts
an internal process which outputs the sequence of values FB, FB-1, ..., 2, 1 via
output variable N. After outputting 1, the program is ready for the next input.
This program illustrates the capability of a multi-clock synchronous language to
generate a new clock (the clock of the output N) which over-samples the input
clock associated with FB. The program uses the local variable ZN to record the
previous value of N.

The body of DEC is composed of three statements which are executed con-
currently as follows. An input FB is read and copied to N. If N is greater than 1
it is successively decremented by referring to ZN, which holds the previous value
of N (using $ to denote the “previous value” operator) . No new input value for
FB is accepted until ZN becomes (or is, in case of a previous non-positive input
value for FB) less than or equal to 1. This is achieved by the statement

FB =when (ZN<=1),

which is read “the clock of FB is on when ZN < 1”7, and allows FB to be present
only when ZN < 1. When the clock of FB is off, the default action of assigning
N the value of ZN-1 is activated. A possible computation of this program is:

FB: L FB:3 FB: L FB: L FB:5 FB: L
N:1L|—-] N:3|—=] N:2]—-|] N:1|—=| N:5|—=| N:4 |—...
ZN: 1 ZN:1 ZN : 3 ZN : 2 ZN :1 ZN: 5

Where | denotes the absence of a signal. Note, that SIGNAL programs are
not expected to terminate.



2.1 Compilation of Multi-clocked Synchronous Languages

The compilation scheme for SIGNAL to an imperative, sequential languages
(s.a. C, ADA) proceeds as follows. The statements of a SIGNAL program P form
a Set of Logical Equations (SLE) on the flows of P and their associated clocks.
Solutions of SLE for a given set of input /register values determine the next state
of the system. The compiler derives from P an imperative program C' which con-
sists of one main loop whose task is to repeatedly compute such solutions of the
SLE. In order to do so, the compiler computes from SLE a conditional depen-
dency graph on flows and another linear equation system — the, so called, clock
calculus [3]  which records the dependencies amongst clocks. The produced
code contains statements originating from the clock calculus and assignments to
variables (representing the flows of P) whose order must be consistent with the
dependency graph. These assignments are performed if the corresponding flow
is currently present in the source program, i.e. the clocks of flows determine the
control structure of the generated program.

The C program which is generated by the compiler from the DEC program
consists of a main program containing two functions:

— An initialization function, which is called once to provide initial values to

the program variables.
— An iteration function which is called repeatedly in an infinite loop. This

function, whose body calculates the effect of one synchronous “step” of the
abstract program, is the essential part of the concrete code.

The iteration function obtained by compiling DEC is given by:

logical DEC_iterate()

{

10: hl, = TRUE;

11:  h2, =7ZN,. <=1;

12: if (h2,)

12.1: read(FB.);

13 if (h2,)

13.1: N. = FB,;
else

13.2: N. =7ZN,. 1 1;

14:  write(N,);

15:  7ZN. = Ng;

return TRUE;
}

The labels in function DEC_iterate() are not generated by the compiler but
have been added for reference. We added ’c’ as subscript for the program vari-
ables, to distinguish them from the SIGNAL variables.

The C-code introduces explicit boolean variables to represent the clocks of
SIGNAL variables. Variable h1, is the clock of N. and ZN,, and h2, is the clock
of FB..



The C program works as follows. If h2., the clock of FB., has the value T,
a new value for FB is read and assigned to the variable N.. If h2. is F, N, gets
the value ZN. L 1. In both cases the updated value of N is output (at I4) and
also copied into ZN,, for reference in the next step .

A computation of this program is given below. We skip intermediate states
and consider complete iterations of the while loop. The notation X : * is used
to denote that variable X has an arbitrary value.

FB: * FB: 3 FB: 3 FB: 3 FB: 5 FB: 5
N: % N:3 N:2 N:1 N:5 N:4
hi:« || h1:T hl:T hi: T hi:T hi:T |7
h2: % h2: T h2: F h2: F h2:T h2: F
7y 7wl 7wl 7y 7wl 7wl

Taking into account that hl, is the clock of N. and that h2. is the clock
of FB,, we have an accurate state correspondence between the computation of
the SIGNAL program and the computation of the C-code, when we restrict our
observations to subsequent visits at location lj.

This state correspondence is a general pattern for programs generated by
the SACRES compiler. Intuitively, the generated C-code correctly implements the
original STGNAL program if the sequence of states obtained at the designated
control location Iy corresponds to a possible sequence of states in the abstract
system.

In the rest of the paper, we show how this approach can be formalized and
yield a fully automatic translation validation process.

3 Computational Model and Semantics of SIGNAL

In order to present the formal semantics of SIGNAL we introduce a variant of
synchronous transition systemns (STS) [20]. sTS is the computational model of our
translation validation approach.

Let V be a set of typed variables. A state s over V is a type-consistent
interpretation of the variables in V. Let X', denote the set of all states over V.
A synchronous transition system A = (V, 0, p) consists of a finite set V' of typed
variables, a satisfiable assertion @ characterizing the initial states of system A,
and a transition relation p. This is an assertion p(V, V'), which relates a state
s € X, to its possible successors s’ € X, by referring to both unprimed and
primed versions of variables in V. Unprimed variables are interpreted according
to s, primed variables according to s’. To the state space of an STS A we refer as
X 4. We will also use the term “system” to abbreviate “synchronous transition
system”. Some of the variables in V are identified as volatile while the others are
identified as persistent. Volatile variables represent flows of SIGNAL programs,
thus their domains contain the designated element L to indicate absence of the
respective flow.



For a variable v € V we write clk(v) and clk(v') to denote the inequalities
v # 1L and v' # L, implying that the signal v or v’ is present.

A computation of A = (V,0,p) is an infinite sequence o = (sp, $1, 82, - - -),
with s; € X, for each ¢ € N, which satisfies s = © and Vi € N. (s, s5i41) = p-
Denote by ||A|| the set of computations of the sTs A.

Before we describe how to construct an STS @p corresponding to a given
SIGNAL program P, let us first describe the primitives of a SIGNAL program.

3.1 A Sketch of SIGNAL Primitives

SIGNAL supports the following primitives.

1. vi= fug,.. . up,) function extended to sequences
2. w:= 0§ init wy shift register

3. v :=u when b data dependent down-sampling
4. w := u default v merging with priority

5. P|Q program composition

In these primitives, u, v, w, b denote typed signals, i.e., sequences of values of the
considered type extended with the special symbol L. In the when expression,
the b signal is assumed boolean. In the last instruction, both P and @ denote
SIGNAL programs.

The assignment v := f(u1,...,u,) can only be applied to signals u,...,un
which share the same clock. It defines a new signal v with the same clock such
that, for every 1 = 1,2,..., v[i] = f(u1[i], ..., un[i]).

The assignment w := v $ init wy defined a signal w with the same clock as
v and such that w[1] = wy and, for every i > 1, w[i] = v[i L 1].

The assignment v := u when b defines a signal whose values equal the value
of w at all instances in which u and b are both defined and b = true.

The assignment w := v default v defines a signal w which equals v whenever
u is defined and equals v at all instance in which v is defined while u is absent.

Finally, P|Q is the composition of the programs (set of statements) P and

Q.

3.2 System Variables

The system variables of @ are given by V = U U X, where U are the SIGNAL
signals explicitly declared and manipulated in P, and X is a set of auxiliary
memorization variables, whose role is explained below.

3.3 Initial Condition
The initial condition for @ is given by
O: /\ u=1
uelU

By convention, the initial value of all declared signal variables is L. The initial-
ization of memorization variables is explained in the following subsection.



3.4 The Transition Relation and its Properties

The composition | of SIGNAL programs corresponds to logical conjunction. Thus,
the transition relation p will be a conjunction of assertions where each SIGNAL
statement gives rise to a conjunct in p. Below, we list the statements of SIGNAL
and present for each of them the conjunct it contributes to the transition relation.

e Consider the S1GNAL statement v := f(u1,...,un), where f is a state-
function. This statement contributes to p the following conjunct:

ck(uwh) = ... = clk(u))
A v =if clk(u}) then f(u),...,ul) else L
This formula requires that the signals v, uq,...,u, are present at precisely
the same time instants, and that at these instants v = f(u1,...,un).

e The statement
r:=wv$ init wy

contributes to p the conjunct:

m.r' = if clk(v') then o' else m.r

A 1 = if clk(v') then m.r else L

This definition introduces a memorization variable m.r which stores the last
(including the present) non-bottom value of v. Variable m.r is initialized
in the initial condition @ to wy. From now on we refer to flows r that are
defined by this type of statement as register flows. Variables in an sTS which
represent register flows will typically be denoted by r, and the corresponding
memorization variables by m.r. Note that unlike the other system variables
in the constructed STS, memorization variables are persistent.

e The statement
v :=u when b

contributes to p the conjunct:
v' = if ' =T then u' else L.

e The statement
w := u default v

contributes to p the conjunct:
w' = if clk(u') then u' else v'.

According to the above explanations, the SIGNAL program DEC is represented
by the following s1s A = (V,, 6., p.).



V = {FB, N, ZN, m.ZN}
O=(FB=L AN=1LAZN=1 A mZN=1)
N’ = if FB'# 1 then FB' else ZN 11

A m7ZN' = if N # 1 then N else m.ZN

Pa =
A ZN' = if N #1 then m.ZN else L

A IN'<1 & FB' #1

In the following sections, we assume that the type definitions for variables also
specify the “SIGNAL type” of variables, i.e. whether they are input, output,
register, memorization or local variables. The respective sets of variables are
denoted by 1,0, R, M, L. Combinations of these letters stand for the union of the
respective sets; e.g. IOR stands for the set of input/output/register variables of
some system. Note that the M variables are not originally present in the SIGNAL
program, but are introduced by its translation into the STS notation.

For the translation validation process, the generated C programs is also trans-
lated into the sTs formalism. Below, we present the STS representation of the
DEC _iterate() generated code, where the predicate pres-but(U) indicates that all
variables in the set V' \ U preserve their values during the respective transition.
Thus, the values of all variables except, possibly, those in U are preserved.

C=(V.,0.p.) where
V = {FB., N,, ZN,, hl., h2.}
O=(ZN.=1 A pc=1ly)

pc = A hl, =T A pc =11 A pres-but(pc,hl.)) )
pc = A h2! = (ZN, < 1) Apc' =1y A pres-but(pc,h2.))
pc = A h2, A pc' = ly1 A pres-but(pc

!

)
pc = A —h2, Apcd =13 A pres-but(pc)

pc=1s1 A pc’ =13 A pres-but(pc

)

)

FB.))
pe )
pc = A —h2, A pc' =139 A pres-but(pc))
pc = l3 1 N’ = FB. Apcd =14y A pres-but(pc,N,))

pe=l3.9 N/ =7ZN. L1 Apcd =1y A pres-but(pc,N,.))

o)
| |

D pc =15 A pres-but(pc))

pe ZN! = N, A pc =1y A pres-but(pc, ZN,)) )

( (
( (
( (
( (
( (pc,
(pc = A h2, A pc' =31 A pres-but(pc)
( (pc)
( (
( (
( (
( (

< < < < < < < < < <
> > > >

Ve



Note, that the C programs use persistent variables (i.e. variables which are never
absent) to implement SIGNAL programs which use volatile variables. This has to
be taken into account when defining the notion of “correct implementation” in
the next section.

4 The “Correct Implementation” Relation

The notion of correct implementation used in this work is based on the general
concept of refinement between synchronous transition systems.

Let A=(V,,0,,p,,0" and C = (V,,6.,p,,0°) be an abstract and con-
crete sTS’s, where O and O€ are observation functions, respectively mapping
the abstract and concrete states into a common data domain D.

An observation of STS is any infinite sequence of D-elements which can be
obtained by applying the observation function O* to each of the states in a com-
putation of A. That is, a sequence which has the form 0% (sg), O4(s,),..., for
some o : 8,81, ..., a computation of A. We denote by Obs(A) the set of obser-
vations of system A. In a similar way, we define Obs(C) the set of observations
of sTs C.

We say that system C refines system A, denoted

CCA,

if Obs(C) C Obs(A). That is, if every observation of system C is also an obser-
vation of A.

4.1 Adaptation to SIGNAL Compilation

To adapt this general definition to the case at hand, there are several factors
that need to be considered.

A first observation is that whatever the SIGNAL program can accomplish in a
single step takes the corresponding C program several steps of execution. In fact,
it takes a single full execution of the loop’s body in the C program to perform
a single abstract step. Consequently, we take for the STS representation of the
compared C program a system obtained by composing the transition relations
of the individual statements inside the loop’s body. Since the body does not
contain any nested loops, the computation of the overall transition relation is
straightforward and can be achieved by successive substitutions. We refer to the
resulting STS as the composite STS corresponding to the C' program.

A second consideration is the choice of the abstract and concrete observa-
tion functions. For the abstract SIGNAL program, the natural observation is the
snapshot of the values of the input and output variables. Thus, the abstract
observation will be the tuple of values for the IO variables. For example, for the
DEC SIGNAL program, the observation function is given by O* = (FB, N).

A major feature of all the SIGNAL compilers we are treating is that all vari-
ables in the IOR set are preserved in the translation and are represented by



identically named C' variables. Therefore, the natural candidate for the concrete
observation is the tuple of values of the IO C variables.

Unfortunately, there is a difference in the types of an IO SIGNAL variable and
its corresponding C variable. While any 7O signal v € IO may also assume the
value L, signifying that the signal v is absent in the current step, all C variables
are persistent and can never assume the value 1. This implies that we have to
identify for every concrete step and every IO-variable v whether the abstract
version of v is present or absent in the current step.

Our decision was that an input variable v should be considered present in
the current step iff a new value for v has been read during the current execution
of the loop’s body. Similarly, an output variable » is considered present iff the
variable v was written during the current step.

To detect these events, we have instrumented the given C program by adding
a boolean variable rd.v for each input variable v, and a boolean variable wr.v
for each output variable?. All these auxiliary variables are set to 0 (false) at
the beginning of the loop’s body. After every read(v) operation, we add the
assignment rd.v := 1, and after every write(v) operation, we add the assignment
wr.v = 1.

In Fig. 1, we present the instrumented version of function DEC _iterate().

logical DEC_iterate()

{

rd.FB. = F; wr.N, =F;
10: hl. = TRUE;
11: h2. =72N. <=1;
12: if (h2.)
12.1:  {read(FB.); rd.FB. = T;};
13:  if (h2.)
13.1: N, =FBg;

else
13.2:  N.=Z7ZN.—1;
14:  {write(N.); wr.N. = T;};
15: 7ZN. = Ng;

return TRUE;

}

Fig. 1. Instrumented version of function DEC_iterate().

In Fig. 2, we present the composite STS corresponding to the instrumented C
program. This presentation of the composite STS identifies the concrete obser-
vation function as O¢ = ((’)SB , (’)S), where OSB and (’)S are defined in Fig. 2.

As can be seen in Fig. 2, the instrumented variables rd.FB,. and wr.N, are
defined within p_ and then used in the definition of the observation function

OC. Therefore, it is possible to simplify the composite STS by substituting the

2 Our final implementation does not really add these auxiliary variables but performs
an equivalent derivation. Introducing these variables simplifies the explanation.



V., :{FB., N¢, ZN., hl., h2., rd.FB., wr.N.}
O, :ZN.=1 A pc=lo

(- (=T )
(h2. = (ZN. < 1))
(h2. = (N. = FRY))

(=h2, = (FB, = FB. AN, = ZN. — 1))
(2N, = N.)

(rd. FB. = h2.)

A (wrNL=T) )
OSB . if rd . FB. then FB. else —

O$ :if wr.N. then N, else —

)
3
> > > > >

Fig. 2. Composite STS corresponding to the instrumented C program.

definition of the instrumented variables into @€ and removing their definition
from p_ . The actual implementation of the presented techniques within the code
validation tool CVT never explicitly generate the instrumented version of the
program but computes directly the simplified version as presented in Fig. 3.

V. :{FB., N., ZN., hl., h2.}
O, ZNc.=1 A pc=lo
(b1, =T)
A (h2, = (ZN. < 1))
pe | A (2= (N =FBL)
A (=h2, = (FB. = FB. AN, = ZN, — 1))
A (AN =N
OSB :if h2. then FB. else —
0f :N.

Fig. 3. The actual (simplified) STSprc as generated by the CVT tool.

Before computing the composite STS corresponding to a given C program, the
CVT tool performs some syntactic checks. For example, it checks that all refer-
ences to an input variable ¢ € I syntactically succeed the statement which reads
the external input into i. Symmetrically, the tool checks that all assignments
to an output variable o € O syntactically precede the statement which exter-
nally writes o. Failure in any of these checks will cause the tool to declare the
translation as invalid.



In summary, we expect the abstract and concrete systems to be related as
depicted below:

. Pa
Signal @ —— -------- ) -—0 ...
0A|_ 0° 0A|: o°¢ 0A| o°¢
C |.-> R . |.-> - ,0c ----- > l-» P

4.2 Proving Refinement by Simulation plus Abstraction Mapping

Let A =(V,,0,,p,,0%) and C = (V.,0,,p.,0°) be a given abstract and
concrete systems. The standard way of proving that C refines A (cf. [1]) is based
on the identification of an abstraction mapping V, = a(V,) mapping concrete
states to abstract states, and establishing the premises of rule REF presented
in Fig. 4. In many places, the mapping « is referred to as refinement mapping.
Premise R1 of the rule ensures that the mapping a maps every initial concrete

For an abstraction mapping V, = a(V,),

R1. 6, AV, =«V,) — O, Initiation

R2. V, =a(V,) AN po NV, =a(lV.) — p, Propagation

R3. V,=«a(V,) — 0O*=0¢ Compatibility with observations
CCA

Fig. 4. Rule REF.

state into an initial abstract state. Premise R2 requires that if the abstract state
s, and the concrete state s. are a-related, and s, is a p.-successor of s,
then the abstract state s’ = a(s.,) is a p,-successor of s,. Together, R1 and

R2 establish by induction that, for every concrete computation o, : s, sl ...,
there exists a corresponding abstract computation o, : s%,s' ..., such that
s? = a(s)) for every j = 0,1,... . Applying premise R3, we obtain that the

observations obtained from o, and o, are equal. This shows that rule REF is
sound.

Rule REF , in the form presented in Fig. 4, is often not complete. In many
cases we need to add an auxiliary invariant to the premises. However, in the case
at hand, the relation V, = a(V,,) is the only invariant we need.

4.3 Construction of the Mapping «

To complete the description of our verification methodology, it only remains to
describe how we can construct automatically the abstraction mapping a.

The range of the mapping « is a tuple of values over the domains of the
abstract variables V, . In fact, for every abstract variable v € V,, the mapping



") which defines the value of v in the abstract state
a-related to the concrete state represented by V.

For the abstract observable variables v € IO, premise R3 already constrains
us to choose a,(V,) = OF(V..). It therefore remains to describe the mappings
a, forveV, 1L 10 =MRL.

Recall that every variable v € R gives rise to an abstract register variable v,
an abstract memorization variable m.v introduced into the STS corresponding to
A, and a corresponding concrete variable v.. For example, the register flow ZN
in the S1GNAL program DEC, gave rise to a similarly named variable and to the
memorization variable m.ZN in the sTs DEC and to the concrete variable ZN.
in function DEC_iterate().

Therefore, we define for each register flow r the following two instances of
the a mapping:

contains a component «,(V,

Qpy.r = Te « = r.

For example, the mapping into the abstract variable m.ZN will be given by the
equation m.ZN = ZN..

It only remains to define «,, for v € RL. Since variables in L do not necessarily
have counterparts in the C program, it may not be so easy to find an expression
over V, which will capture their values.

Here we are helped by the fact that every compilable SIGNAL program A
is determinate in the new values of I (the inputs) and R (the register flows).
Equivalently, the corresponding sTs, is determinate in the values of I' (new
inputs) and M (old memorization values). Determinateness means that a set of
values for these variables uniquely define the new values of all other variables
(all variables in IORM L). Determinateness is the necessary condition for being
able to compile the program into a deterministic running program. Input SIGNAL
programs which are not determinate are rejected by all the SIGNAL compilers
we worked with.

We use the fact that every abstract variable v € RL has a unique equation
of the form v’ = eq, within STS,. In principle, determinateness implies that we
could chase these equations applying successive substitutions until we find for v
a defining expression all in terms of the concrete variables V. However, this is
not actually necessary. Instead, we transform premises R1-R3 into the following
two verification conditions:

W1 0, A N(mr=r)An A\ (w=1) S e,
rER veElIORL
W2. /\ [/\ T;n;; i :f] A pe A /\ (' = (0%)) A /\ (v = eq,)

reR velO vERL

= Pa

Obviously, we can dispense with premise R3 since O* = OC is automatically
guaranteed by taking o, = OF for each v € TO. In verification condition W1, we
simplified the mapping « having the prior information that only the m.r € M



variables have non-bottom values and they are mapped by « into their concrete
counterparts 7.

In verification condition W2 we used the fact that the only unprimed variables
to which p, refers are the memorization variables m.r. Therefore, it is sufficient
to map them in the unprimed version of V, = «(V,). For the primed version
of a, we used OF for all v € 10O, m.r' = 1! for all r € R (m.r € M). and the
original sTS, equations for each v € RL.

Theorem 1. With the notation introduced above, if verification conditions W1
and W2 are valid, then C C A.

4.4 Tllustrate on the Example

Applying these methods to the case of the SIGNAL program DEC and its trans-
lated C-program DEC_iterate(), we obtain the following two verification condi-
tions:

FB = 1 N s
Ul. ZN.=1 A mZN=7ZN, A | A N=1 —
AN — L A ZIN=1
A mZN =1
m.ZN = ZN,
A FB' =if h2! then FB. else L
U2. p. A | A N =N, -,
A m.ZN' = ZN!

A ZN'=if N' # | then m.ZN else L

Note that the a-mapping for the IO variables FB' and N’, and for the M variable
m.ZN is given directly in terms of the concrete variables, while the a-mapping
of ZN' is given in terms of the abstract variables N’ and m.ZN. In principle, it
is possible to substitute the definitions of N’ and m.ZN in the right-hand side
of the definitions for ZN' and obtain a mapping which expresses all the relevant
abstract variables in terms of the concrete variables. Performing the substitution
and some simplifications concerning comparison to L, we obtain the following
version of U2:

m.ZN = ZN,
A FB' = if h2] then FB/ else L
U2a. e AN | A N = N, - .,

A mZN' = ZN'
A ZIN' = ZN,

The presented approach is immune against the optimizations performed by the
industrial code generators that we considered. The proof technique exploits, in
contrast to our previous work [20], only minimal knowledge about the code gen-
eration process. We only assume that TOM variables are reconstructible which
is the minimal requirement for the C-code to be a correct implementation of the
SIGNAL source [16].



5 Checking the Proof Obligations

As shown in the previous section, the generated proof obligations are quantifier-
free implications referring to potentially infinite data domains such as the inte-
gers. Direct submission of these implications to a theorem prover such as PVS
and invoking various proof procedures turned out to be far too slow.

In this section we explain the theoretical basis for an efficient BDD-based
evaluation of the proof obligations on the basis of uninterpreted functions.

Typically, the verification conditions involve various arithmetical functions
and predicates, tests for equality, boolean operations, and conditional (if-then-
else) expressions. It has been our experience that the compiler performs very
few arithmetical optimizations and leaves most of the arithmetical expressions
intact. This suggests that most of the implications will hold independently of
the special features of the operations and will be valid even if we replace the
operations by uninterpreted functions.

5.1 The Uninterpreted Functions Encoding Scheme

Under the uninterpreted functions abstraction, we follow the encoding procedure
of [2]. For every operation f occurring in a formula ¢, which is not an equality
test or a boolean operator, we perform the following:

of a type equal to that of the value returned by f. Occurrences f(t1,...,tx)
and f(uy,...,u) are replaced by the same v} iff ¢; is identical to wu; for
every j =1,...,k .

e Replace each occurrence of a term f(¢1,...,tx) in ¢ by a new variable v}

e Let £ denote the result of replacing all outer-most occurrences of the form
f(t1,...,tx) by the corresponding new variable v} in a sub-term ¢ of ¢. For

every pair of newly added variables v’ and v;, 1 # j, corresponding to the
non-identical occurrences f(ty,...,tx) and f(uy,...,uy), add the implication

3

(1 = UL A=Aty = 1iy) = vy = v} as antecedent to the transformed formula.

Ezample 1. Following are p. and p, of program DEC, after performing the unin-
terpreted functions abstraction. Note how the ’-’ function and the <’ predicate
were replaced by the new symbols v* and v’ respectively, where i is a running
index: h

Pec =

> > > >



N' = if FB' # L then FB'else v2
A m.ZN = if N'# L then N else m.ZN
P A ZN = i N % 1 then m.ZN else L
A vi < FB' # L
After adding the functionality constraints, we obtain:
o: (@ A (ZN,=7ZN' A 1=1— (v A vt =0%)) = (p. = pa))

=

IN N

1
<
where @ stands for the conjunction

m.ZN ZN,
A FB' = if h2] then FB/ else L
A N = N/
A m.ZN' = ZN!
A ZN' ZN,

as presented in the verification condition U2a. We can use the substitution a
to replace all occurrences of abstract variables in ¢ by their corresponding con-
crete expressions. After some simplifications, this yields the following implication
referring only to the concrete variables and the newly added v’s:

(b1, =T)
g A (02, = (v)))
7] [Mj:v;]/\ A (b2, = N, = FB]) -
T A (-h2, = (FB, = FB, AN. = ¢!))
A (ZN., =N))

N! =if h2! then FB/ else v> A ZN/ =N/ A vi & h2,

Note that the third conjunct of p,, the one related to ZN’', has been simplified
away. The reason is that this conjunct was used to define the a mapping for ZN',
so it would be trivially satified after the substituition.

The resulting equality formula belongs to a fragment of first order logic which
has a small model property [4]. This means that the validity of these formulas
can be established by solely inspecting models up to a certain finite cardinality.
In order to make these finite domains as small as possible we apply another
technique called range allocation.

The domain that can always be taken when using these kind of abstractions is
simply a finite set of integers whose size is the number of (originally) integer/float



variables (e.g. if there are n integer/float variables, then each of these variables
ranges over [1..n]). It is not difficult to see that this range is sufficient for proving
the invalidity of a formula if it was originally not valid. The invalidity of the
formula implies that there is at least one assignment that makes the formula
false. Any assignment that preserves the partitioning of the variables in this
falsifying assignment will also falsify the formula (the absolute values are of no
importance). This is why the [1..n] range, which allows all possible partitions, is
sufficient regardless of the formula’s structure.

5.2 Range Allocation

The size of the state-space imposed by the [1..n] range as suggested in the pre-
vious section is n”. For most industrial-size programs this state-space is far too
big to handle. But apparently there is a lot of redundancy in this range that
can be avoided. The [1..n] range is given without any analysis of the formula’s
structure. Note that our informal justification of the soundness of this method
is independent of the structure of the formula we try to validate, and thus the
range is sufficient for all formulas with n variables. This is probably the best we
can do when the only information we have about the formula is that it has n
variables. However, a more detailed analysis of the structure of the formula we
wish to validate makes it possible to significantly decrease the ranges, and con-
sequently the state space can be drastically reduced. This analysis is performed
by the 'Range Allocation’ module, using the range allocation algorithm, which
significantly reduces the range of each of these (now enumerated type) variables,
and enables the handling of larger programs. By applying the range-allocation
technique, CVT decreases the state space of the verified formulas typically by
orders of magnitude. We have many examples of formulas containing 150 integer
variables or more (which result in a state-space of 150" if the [1..n] range is
taken) which. after performing the range allocation algorithm, can be proved
with a state-space of less than 100, in less than a second.

The range allocation algorithm is somewhat complex and its full description
is beyond the scope of this paper. We refer the reader to [17] for more details,
and describe here only the general idea.

The algorithm attempts to solve a satisfiability (validity) problem efficiently,
by determining a range allocation R : Vars(p) — QN, mapping each integer
variable z; € ¢ into a small finite set of integers, such that ¢ is satisfiable
(valid) iff it is satisfiable (respectively, valid) over some R-interpretation. After
each variable z; is encoded as an enumerated type over its finite domain R(x;),
we use a standard BDD package, such as the one in TLV (see Section 5.5), to
construct a BbD B,,. Formula ¢ is satisfiable iff B is not identical to 0.

Obviously, the success of our method depends on our ability to find range
allocations with a small state-space.

In theory, there always exists a singleton range allocation R*, satisfying the
above requirements, such that R* allocates each variable a domain consisting of a
single integer, i.e., |R*| = 1. This is supported by the following trivial argument:



If ¢ is satisfiable, then there exists an assignment (z1,...,2,) = (21,-..,2n)
satisfying . It is sufficient to take R* : z1 — {z1},...,2, — {z,} as the
singleton allocation. If ¢ is unsatisfiable, it is sufficient to take R* : z1,...,x, —
{0}.

However, finding the singleton allocation R* amounts to a head-on attack
on the primary NP-complete problem. Instead, we generalize the problem and
attempt to find a small range allocation which is adequate for a set of formulas
@ which are “structurally similar” to the formula ¢, and includes ¢ itself.

Consequently, we say that the range allocation R is adequate for the formula
set @ if, for every equality formula in the set ¢ € @, ¢ is satisfiable iff ¢ is
satisfiable over R.

5.3 An Approach Based on the Set of Atomic Formulas

We assume that ¢ has no constants or boolean variables, and is given in a positive
form, i.e. negations are only allowed within atomic formulas of the form z; # z;.
Any equality formula can be brought into such positive form, by expressing all
boolean operations such as —, < and the if-then-else construct in terms of the
basic boolean operations =, V, and A, and pushing all negations inside.

Let At(p) be the set of all atomic formulas of the form z; = z; or z; # x;
appearing in ¢, and let &(p) be the family of all equality formulas which have
the same set of atomic formulas as ¢. Obviously ¢ € &(p). Note that the family
defined by the atomic formula set {z1 = z2, 21 # z2} includes both the satisfiable
formula zy=x5 V 1722 and the unsatisfiable formula zy=x9 A 1#z5.

For a set of atomic formulas A, we say that the subset B = {41,...,¢¥,} C A
is consistent if the conjunction ¥1 A- - - Ay is satisfiable. Note that a set B is con-
sistent iff it does not contain a chain of the form 1y = x5, 2 = 3, ..., T,_1 = Z,
together with the formula z; # z,.

Given a set of atomic formulas A, a range allocation R is defined to be
satisfactory for A if every consistent subset B C A is R-satisfiable.

For example, the range allocation R:z1,za,z3 — {0} is satisfactory for the
atomic formula set {z1 = x9, £ = z3}, while the allocation R:zy — {1}, 23 —
{2}, z3 — {3} is satisfactory for the formula set {x; # z2, 2 # 23}. On the
other hand, no singleton allocation is satisfactory for the set {z1 = x2, 1 # z2}.
A minimal satisfactory allocation for this set can be given by R:z1 — {1}, 29 —

{1,2}.

Claim. The range allocation R is satisfactory for the atomic formula set A iff R
is adequate for #(A), the set of formulas ¢ such that At(p) = A.

Thus, we concentrate our efforts on finding a small range allocation which is
satisfactory for A = At(yp) for a given equality formula ¢. In view of the claim,
we will continue to use the terms satisfactory and adequate synonymously.

We partition the set A into the two sets A = A_ U A, where A_ contains
all the equality formulas in A, while A contains the inequalities.

Note that the sets A=(¢) and Ax(p) for a given formula ¢ can be computed
without actually carrying out the transformation to positive form. All that is



required is to check whether a given atomic formula has a positive or negative
polarity within ¢, where the polarity of a sub-formula p is determined according
to whether the number of negations enclosing p is even (positive polarity) or odd
(negative polarity). Additional considerations apply to sub-formulas involving
the if-then-else construct.

Ezample 2. Let us illustrate these concepts on program DEC whose validity we
wish to check.

Since our main algorithm checks for satisfiability, we proceed by calculating
the polarity of each comparison in —(:

A= ={(FB, =FB,), (N, =FB,), (N, =vl), (ZN, =Np),
(vl =02)}

Ay = {(NL #FBy), (N, #0%), (ZN] # N[}

For example, the comparison (N’ = v! ) in ¢ is contained within one negation
(implied by appearing on the left hand side of the implication). Since we are
considering -, this amounts to 2 negations, and since 2 is even, we add (N, =

vl) to A_. 3

This example would require a state-space in the order of 10% if we used the full
[1..n] range. The range allocation algorithm of [17] will find ranges adequate for
this formula, with a state space of 32.

- T~ /—\\
\
\

\

Fig. 5. The Graph G : G+ U G = representing -y

5.4 A Graph-Theoretic Representation

The sets A+ and A— can be represented by two graphs, G— and G defined as
follows:

(x4,;) is an edge on G_, the equalities graph, iff (v, = ;) € A_.

(x;,x;) is an edge on G, the inequalities graph, iff (z, # ;) € A4.
We refer to the joint graph as G.

An inconsistent subset B C A will appear, graphically, as a cycle consisting
of a single G-edge and any positive number of G_-edges. We refer to these
cycle as contradictory cycles.



In Fig. 5, we present the graph corresponding to the formula —p, where G_-
edges are represented by dashed lines and G-edges are represented by solid
lines.

The range allocation algorithm has several stages of traversing the graph,
analyzing reachability, removing vertices etc. Without going into the details of
the algorithm, we will present the ranges adequate for this graph, as computed by
the algorithm: R : ZN! — {1,2}, N/ — {1}, FB! — {1,3}, FB, — {1,3}, v! —
{1,4}, and v? — {1,4}.

Indeed, every consistent subset of the edges in the graph can be satis-
fied with these ranges. For example, for the subset made of the dashed edges
{(FB.,FB.), (FB.,N), (v*,v") and the solid edge {(v*,N.)} we can assign
FB. = FB, = N, = 1, and v! = v? = 4. Clearly this assignment satisfies
the constraints that are represented by these edges.

In this case we reduced the state space from 6° to 32. In many cases the
graphs are not as connected as this one, and therefore the reduction in the
state space is much more significant. Often, 60 - 70% of the variables become
constants, in the same way that N’ became a constant in the example given
above. We once more refer the reader to [17] for further details.

5.5 The Verifier module (TLV)

The validity of the verification conditions is checked by TLV [18], an SMV-based
tool which provides the capability of BDD-programming and has been developed
mainly for finite-state deductive proofs (and is thus convenient in our case for
expressing the refinement rule). In the case that the equivalence proof fails, a
counter example is displayed. Since it is possible to isolate the conjunct(s) that
failed the proof, this information can be used by the compiler developer to check
what went wrong. A proof log is generated as part of this process, indicating
what was proved, at what level of abstraction and when.

6 A case study

We used CVT to validate an industrial size program, a code generated for the
case study of a turbine developed by SNECMA, which is one of the industrial
case studies in the SACRES project. The program was partitioned manually (by
SNECMA) into 5 units which were separately compiled. Altogether the SIGNAL
specification is a few thousand lines long and contains more than 1000 variables.
After the abstraction we had about 2000 variables (as explained in Section 5, the
abstraction module replaces function symbols with new variables). Following is
a summary of the results achieved by CVT:



[Module|Conjuncts|Time (min.)|

M1 530 1:54
M2 533 1:30
M3 124 0:27
M4 308 2:22
M5 860 5:55

[Total :| 2355 |  12:08 |

Although it is hard to assess at this stage how strongly this particular ex-
ample indicates the feasibility of the Translation Validation approach, the case
study undoubtedly shows that a compilation process (of the type we consid-
ered) of an industrial size program can be automatically verified in a reasonable
amount of time.

7 Conclusions

We have presented the theory which underlies our translation validation ap-
proach for optimizing industrial compilers from SIGNAL to C. We described the
translation of SIGNAL and C programs to STS, the generation of the substitu-
tion a and the final assembling of the proof obligations according to Rule REF
as they are implemented in CVT (the Code Validation Tool). In addition, the
decision procedure, including the abstraction, the Range Allocation algorithm
and various other optimizations that were not presented in this paper, are also
implemented in CVT. We believe that the case study that was presented in the
paper is a strong indication that translation validation is a viable alternative to
full compiler verification.
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