Multi-dimensional index structures
¢ ]

e ... cluster objects when the individual
dimensions (features) are known...

e ...what if we do not have explicit features??
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Multi-dimensional index structures
G

e ... cluster objects when the individual
dimensions (features) are known...

e ...what if we do not have explicit features??

- ...we may have a “ ” which can
compare two objects

- ...we may have “ " evaluating the similarity
of objects

Maria Luisa Sapino (BDM 2018)




Multi-dimensional index structures

e ... cluster objects when the individual
dimensions (features) are known...

e ...what if we do not have explicit features??
- ...we may have a “ ’

" which can
compare two objects

- ...we may have “ " evaluating the similarity
of objects

[o we need a clustering scheme that does not ]

need explicit features!!!!
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What if we do not have features??

d(,4) d@.2) diz4) d(1,3) d@34) d23)

We know the distances, but
« we do not have explicit features

« distances are not metric....
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Multi Dimensional Scaling
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MDS
. |

e The criterion for the mapping is to minimize stress

stress =

e Start with a (random) configuration of points with low dimensions

e Apply some form of steepest descent iteratively to minimize the
stress.

- move objects
- add dimensions
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MDS
. |

e How to map the query?
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Use of clusters (prune search
space)

cluster
representative
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Use of clusters (prune search
space)

e ...given a query
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Use of clusters (prune search
space)

e ...eliminate clusters based on their representatives
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Clustering methods
G

e Sound methods:

- need a fixed document-to-document similarity
matrix

e [terative methods:
- use document vectors iteratively
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Outline of sound methods
¢ |

e Find the similarity of each object pair
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Outline of sound methods
G
e Find the similarity of each object pair

e Setup a threshold
- sim(01,02) < T (objects are very different!)
- sim(01,02) >= T (objects are comparable)
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Outline of sound methods
G

e Find the similarity of each object pair
e Setup a threshold
- sim(01,02) < T (objects are very different!)
- sim(01,02) >= T (objects are comparable)
e Create a graph which represents object
similarities
- Each pair of objects that are comparable is
connected with an edge
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Example collection
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Connected components
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Connected components
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06

e ...are o1 and o4 really similar????
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Clique...
v Q\OZ 05/ . 07
o3 :
06

e Clusters are overlapping!
e Costlier to compute (NP-complete)
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...or single-pass iterative method
.

e choose an object, and make it a cluster
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...or single-pass iterative method
G
e choose an object, and make it a cluster
e choose another object,
- find the closest cluster, ¢
- ifdist(o,c)<Taddotoc
- else o is a new cluster
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...or single-pass iterative method
. |
e choose an object, and make it a cluster

e choose another object,
- find the closest cluster, c
- ifdist(o,c)<Taddotoc
- else 0 is a new cluster
e repeat until all objects are processed
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...or single-pass iterative method
G
e choose an object, and make it a cluster
e choose another object,
- find the closest cluster, ¢
- ifdist(o,c)<Taddotoc
- else o is a new cluster
e repeat until all objects are processed

also called the “leader” algorithm
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....how do we compute distance?
e
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....how do we compute distance?
. _ |

e use a cluster representative...
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....how do we compute distance?
|

)

Fixed (first object in the
cluster)

e use a cluster representative...
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....how do we compute distance?
e

—| Adaptive (center of the
cluster)

()

Fixed (first object in the
cluster)

e use a cluster representative...
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....alternatives...
/// T
‘ 6) n
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....alternatives...
/// T
' (6} n

First cluster
«fast....
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....alternatives...

@ ]
Closest cluster
= compact clusters....
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....alternatives...
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| « spread the wealth
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Maria Luisa Sapino (BDM 2018)

What if we do not have a
threshold??

e Find a minimum spanning tree of the input
graph
- O(N?) edges to O(N) edges
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What if we do not have a
threshold??

e Find a minimum spanning tree of the input
graph
- O(N?) edges to O(N) edges

e Remove all edges longer than the average of
their neighbors

- threshold is determined based on the
neighborhood
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What if we do not have a
threshold??

e Find a minimum spanning tree of the input
graph
- O(N?) edges to O(N) edges

e Remove all edges longer than the average of
its neighbors

- threshold is determined based on the
neighborhood

e Apply connected-components or clique..
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Max-a-min
G
e The number of clusters is known, r (say 4)
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Max-a-min
G
e Choose a random leader
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Max-a-min

G
e Find the furthest point to the leader
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Max-a-min

G
e Find the furthest point to the 2 leaders
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Max-a-min
G
e Find the furthest point to the 3 leaders
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Max-a-min

G
e Assign points to closest leader..
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K-means (iterative improvement)
G
e Minimize a “global cost function”
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K-means (iterative improvement)
. |

e Minimize a “global cost function”

o
)
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e ...each item is checked whetherdnoving to another
cluster would reduce global cost
Maria Luisa Sapino (BDM 2018)
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e ...each item is checked whetherdnoving to another

cluster would reduce global cost
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K-means (iterative improvement)
G

e Minimize a “global cost function”

e ...each item is checked whethercg]oving to another
cluster would reduce global cost
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K-means (iterative improvement)

e Minimize a “global cost function”
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e ...each item is checked whetherdnoving to another
cluster would reduce global cost
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K-means (iterative improvement)
. |

e Minimize a “global cost function”

| Not
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e ...each item is checked whetherdnoving to another
cluster would reduce global cost
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K-means (iterative improvement)
G

e Minimize a “global cost function”

e ...each item is checked whethercg]oving to another
cluster would reduce global cost
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K-means (iterative improvement)

e Minimize a “global cost function”
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e ...each item is checked whetherdnoving to another
cluster would reduce global cost
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K-means (iterative improvement)
. |

e Minimize a “global cost function”
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e ...each item is checked whetherdnoving to another
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K-means (iterative improvement)
G

e Minimize a “global cost function”

o
o .... ° o0
(@] ° e © ©
() 090 @
® o
® @ o

e ...each item is checked whethercg]oving to another
cluster would reduce global cost
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What are the possible criteria??
e

e Compactness (minimize root-mean-square)

C)
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¥ 2 1 &
RMSE,, = 3 [Fm(z.') _ F'm(z,')] RMSE= -3 RMSE,

m=1
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What are the possible criteria??
e —

e Evenly sized clusters (maximize entropy)
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What if we do not have
distances???
¢ ]

e ...we need to learn from
- user feedback or
- user access patterns!!

Maria Luisa Sapino (BDM 2018)




Confidence clustering...
. |

e Assumption:
- each cluster can have maximum r objects

e ...keeps adapting the clusters to user access
pattern
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Confidence clustering...
G

e Assign each object o to cluster C; with
random confidence (0 <= conf(i,j)<= 10) )

Maria Luisa Sapino (BDM 2018)

Confidence clustering...
.

e Assign each object o to cluster C; with
random confidence (0 <= conf(i,j)<= 10)

e If user accesses o, and oy, then

Maria Luisa Sapino (BDM 2018)
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Confidence clustering...
. |

e Assign each object o to cluster C; with
random confidence (0 <= conf(i,j)<= 10)

e [f user accesses o, and o, then
- if o, and o, are in the same cluster C, then

e conf(a,j)++
e conf(b,j)++

Maria Luisa Sapino (BDM 2018)

Confidence clustering...
G

e Assign each object o to cluster C; with
random confidence (0 <= conf(i,j)<= 10)

e If user accesses o, and o, then
- ifo, isin cluster C, and then
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Confidence clustering...
.

e Assign each object o to cluster C; with
random confidence (0 <= conf(i,j)<= 10)

e If user accesses o, and oy, then

- ifo, isin cluster C, and then
e if conf(a,i) > 1 and then
- conf(a,i)--
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Confidence clustering...
. |

e Assign each object o to cluster C; with
random confidence (0 <= conf(i,j)<= 10)

e [f user accesses o, and o, then
- if o, is in cluster C; and then
e if conf(a,i) == 1 and then
- conf(b,i)=1 (move o, from Cjto C;)
- (move some o, from C;to C))
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Confidence clustering...
G

e Assign each object o to cluster C; with
random confidence (0 <= conf(i,j)<= 10)

e If user accesses o, and o, then
- ifo, isin cluster C, and then
e if conf(a,i) >1 and then
- there exists conf(c,i) == 1
e conf(b,i)=1 (move o, from Cjto C;)
. (move o, from C;to C)

Maria Luisa Sapino (BDM 2018)

Confidence clustering...
.

e Assign each object o to cluster C; with
random confidence (0 <= conf(i,j)<= 10)

e If user accesses o, and oy, then

- ifo, isin cluster C, and then
e if conf(a,i) >1 and then
- there does not exists conf(c,i) ==
e conf(a,i)--

Maria Luisa Sapino (BDM 2018)
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Adaptive clustering...
G

e What if we do not know the number of
clusters????

e .. .keeps adapting the clusters to user access
pattern
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Adaptive clustering...
C |

e start with a random assignment of objects to
aline
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Adaptive clustering...
.

e If a set of objects are accessed together...

Maria Luisa Sapino (BDM 2018)
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Adaptive clustering...
G

8] S— s—[u]

e _.pull the objects closer to their average
point..
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Adaptive clustering...
C |

e ..choose another random set of objects..
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Adaptive clustering...
.

< 1 | D

e ..push these away from their average point..

Maria Luisa Sapino (BDM 2018)
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Adaptive clustering...

e ...overtime...
- similar objects will come closer...
- different objects will get apart...
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24



