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Use of clusters (prune search 
space)     

l  …eliminate clusters based on their representatives 

C1 

C4 

C3 

C2 

Q 

δ 
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Evaluation of clustering methods 

C1 

C2 

Maria Luisa Sapino (BDM 2018) 

Evaluation of clustering methods 

C1 

C2 

Q 



2 

Maria Luisa Sapino (BDM 2018) 

Evaluation of clustering methods 

C1 

C2 

Q 

items in C1 are 
returned as result 
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Evaluation of clustering methods 

C1 

C2 

Q 

items in C1 are 
returned as result 

users view of what the 
results should be 
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Evaluation of clustering methods 

C1 

C2 

Q 

false hits 

misses 
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Precision 

l  Precision 
Retrieved and Relevant 

Retrieved 
measures 
the effect of 
false hits 
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Precision and recall 

l  Precision 

l  Recall 

Retrieved and Relevant 

Retrieved 

Retrieved and Relevant 

Relevant 

measures 
the effect of 
false hits 

measures the effect 
of misses 
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Precision and recall 

l  Precision 

l  Recall 

Retrieved and Relevant 

Retrieved 

Retrieved and Relevant 

Relevant 

measures 
the effect of 
false hits 

measures the effect 
of misses 

. Both should be closer to 1!!!! 
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What if we also have rankings in 
the result??? 

C1 

C2 

Q 

items in C1 are 
returned as results 

users view of what the 
results should be 

1 2 3 

4 
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14 13 
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16 
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What if we also have rankings in 
the result??? 

C1 

C2 

Q 

12 out of 14 
recall = 0.86 
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What if we also have rankings in 
the result??? 

1 2 3 4 5 6 7 10 14 13 11 15 
recall = 0.07 
pre=1.0 

recall 

pr
ec

is
io

n 

1.0 

1.0 
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What if we also have rankings in 
the result??? 

1 2 3 4 5 6 7 10 14 13 11 15 
recall = 0.14 
pre=1.0 

recall 

pr
ec

is
io

n 

1.0 

1.0 
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What if we also have rankings in 
the result??? 

1 2 3 4 5 6 7 10 14 13 11 15 
recall = 0.21 
pre=1.0 

recall 

pr
ec

is
io

n 

1.0 

1.0 

Maria Luisa Sapino (BDM 2018) 

What if we also have rankings in 
the result??? 

1 2 3 4 5 6 7 10 14 13 11 15 
recall = 0.5 
pre=1.0 

recall 

pr
ec

is
io

n 

1.0 

1.0 



6 

Maria Luisa Sapino (BDM 2018) 

What if we also have rankings in 
the result??? 

1 2 3 4 5 6 7 10 14 13 11 15 
recall = 0.57 
pre=8/10=0.8 

recall 

pr
ec

is
io

n 

1.0 

1.0 
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What if we also have rankings in 
the result??? 

1 2 3 4 5 6 7 10 14 13 11 15 
recall = 0.64 
pre=9/11=0.81 

recall 

pr
ec

is
io

n 

1.0 

1.0 
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What if we also have rankings in 
the result??? 

1 2 3 4 5 6 7 10 14 13 11 15 
recall = 0.71 
pre=10/13=0.77 

recall 

pr
ec

is
io

n 

1.0 

1.0 
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What if we also have rankings in 
the result??? 

1 2 3 4 5 6 7 10 14 13 11 15 
recall = 0.86 
pre=12/15=0.8 

recall 

pr
ec

is
io

n 

1.0 
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Precision/recall curve 

1 2 3 4 5 6 7 10 14 13 11 15 

recall 
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1.0 
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Precision/recall curve 

recall 

pr
ec

is
io

n 

1.0 

1.0 

pretty good!!! 

usual shape 



8 

Maria Luisa Sapino (BDM 2018) 

Precision/recall curve 

recall 

pr
ec

is
io

n 

1.0 

1.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Standard description is with 0.1 increments 
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Precision/recall curve 

recall 

pr
ec

is
io

n 

1.0 

1.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Standard description is with 0.1 increments 

Standard interpolation: 
Maximum of the following 
range 
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Precision/recall curve 

recall 

pr
ec

is
io

n 

1.0 

1.0 

Given multiple queries: we need to take the average behavior! 
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Single-value summaries  

l  R-precision 
–  # of relevant documents within first R 
–  R is the total number of relevant documents in the 

result 

Maria Luisa Sapino (BDM 2018) 

Single-value summaries  

l  R-precision 
–  # of relevant documents within first R 
–  R is the total number of relevant  documents in the result 

l  Example: 
–  R = 14 
–  # of relevant document in the first 14 is 11 

–  R-precision for this query is  11/14 = 0.876 

1 2 3 4 5 6 7 10 14 13 11 15 

Maria Luisa Sapino (BDM 2018) 

Harmonic mean 

l  The harmonic mean of n numbers   (where i = 
1, ..., n) is  

l  Therefore, harmonic mean of x= P and y= R 

H(P,R) = 2PR/ (P+R) 
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Harmonic mean 

l  The harmonic mean of n numbers   (where i = 
1, ..., n) is  

l  Therefore, harmonic mean of x= P and y= R 

H(P,R) = 2PR/ (P+R) 

High only when 
both P and R are 
high 

Maria Luisa Sapino (BDM 2018) 

Coverage and Novelty 

Relevant(rel) Returned(ret) 

Maria Luisa Sapino (BDM 2018) 

Coverage and Novelty 

Relevant(rel) Returned(ret) 

Relevant 
documents 

known to the 
user (K) 
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Coverage and Novelty 

Relevant(rel) Returned(ret) 

Relevant 
documents 

known to the 
user(Rk) 

Relevant documents 
known to the user 
that are retrieved 

(RkR) 

Relevant documents 
unknown to the user 

that are retrieved (RuR) 
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Coverage and novelty 

l  Coverage 

l  Novelty 

RkR 

Rk 

RuR 

RuR + RkR  

Maria Luisa Sapino (BDM 2018) 

Relevance feedback 
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Relevance feedback 

Maria Luisa Sapino (BDM 2018) 

Relevance feedback (?) 

l  User submits a query, Q 
l  System retrieves and ranks a set of objects, S 
l  User selects a set of relevant (R) and irrelevant (I) 

objects from S or provides a new ranking 
l  How can the system improve retrieval results? 

–  relevance is subjective 
–  distance is objective 

Maria Luisa Sapino (BDM 2018) 

Subjectivity vs. objectivity  

l  Q: query 
l  R: event that a document is relevant to the user 
l  P(R|Oi): given features and weights, the probability 

that object Oi is relevant to the user 
l  …then, retrieval is effective iff 

),(),()|()|( jiji OQsimOQsimORpORp >⇔>
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Query and results 

δ 

query 

1 

2 

3 

4 

f1 

f2 

f3 
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Query and results 

δ 

query 

1 

2 

3 

4 

Relevant 

Irrelevant 

f1 

f2 

f3 
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..modify query 

1 

2 

3 

δ 

f1 

f2 

f3 
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…modify radius 

δ’ 1 

2 

3 

f1 

f2 

f3 
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…modify importance (weight) of 
the features 

δ 1 

2 

3 

f1 

f2 

f3 
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..remove add features 

δ 

1 

2 

f4 

f2 

f3 
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..change the distance measure 

δ 1 

2 

3 

f1 

f2 

f3 
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..recluster 

δ 1 

2 

3 

4 

f1 

f2 

f3 

cluster center 

cluster center 
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..recluster (cont) 

δ 

1 

2 

f1 

f2 

f3 

cluster center 

cluster center 



16 

Maria Luisa Sapino (BDM 2018) 

Basic approach  

l  An ideal query should separate relevant 
objects from irrelevant ones 
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Basic approach  

l  ..assuming linear distance function 
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Basic approach  

l  Move the query 
–  closer to the relevant documents and 
–  away from irrelevant documents 
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Basic Approach 

f2 

f1 

f3 

Maria Luisa Sapino (BDM 2018) 

Basic Approach 

f1 

f2 

f3 
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Basic Approach 

f1 

f2 

f3 
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Basic Approach 

f1 

f2 

f3 
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Basic Approach 

f1 

f2 

f3 
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Basic Approach 

f1 

f2 

f3 
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δ 

Basic Approach 

f1 

f2 

f3 
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Feature (term) readjustment    

l  Q: query 
l  R: event that a document is relevant to the user 
l  P(R|Oi): given features and weights, the probability 

that object oi is relevant to the user 
l  Significance of a feature fk is 
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Feature (term) readjustment    

l  Q: query 
l  R: event that a document is relevant to the user 
l  P(R|Oi): given features and weights, the probability 

that object oi is relevant to the user 
l  Significance of a feature fk is 
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How do we 
estimate these 
probabilities 
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Feature (term) readjustment    

l  Case I  
–  If fk is not a query term (not used in retrieval) 

)&|()|( RelevantRetrievedfpRfp kk =
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Feature (term) readjustment    

l  Case II  
–  If fk is a query term (used in retrieval) 

–  There would be bias  
l  Most retrieved objects will have fk 

)&|()|( RelevantRetrievedfpRfp kk ≠
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Feature (term) readjustment    

l  Let us assume binary feature and query 
–  o= <f1,f2,…..fn>        fi = 0 or 1 
–  q= <w1,w2,…..wn>   wi = 0 or 1 

l  Let us assume dot product as the similarity 
 

∑
=

=
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i
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Feature (term) readjustment    

l  If a document is returned, then 
 

Tfwqosim
n

i
ii >=∑

=1

),(
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Feature (term) readjustment    

l  Let’s focus on a specific feature 

or  
 

{ } { }
Tfwfwqosim

jni
iijj >+= ∑

−∈ ..1
),(

Tqosimfwqosim jjj >+= − ),(),( )(
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Feature (term) readjustment    

 

Tqosimfwqosim jjj >+= − ),(),( )(

a 0 

b c 

fj=0 fj=1 

Tqosim j ≤− ),()(

Tqosim j >− ),()(

cbaretrievedrelevant ++=|&|
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Feature (term) readjustment    
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Feature (term) readjustment    

independent 
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Feature (term) readjustment    

independent 
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Feature (term) readjustment    
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Ranking  

l  Q: query 
l  R: event that a document is relevant to the user 
l  P(R|Oi): given features and weights, the probability 

that object oi is relevant to the user 
l  …then, retrieval is effective iff 

),(),()|()|( jiji OQsimOQsimORpORp >⇔>
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Ranking  

l  Let’s try to rewrite the first half of the 
equation using Bayes theorem 

),(),()|()|( jiji OQsimOQsimORpORp >⇔>
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Bayes Theorem  
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Bp
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Bayes Theorem  
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Relevance of two objects  
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Relevance of two objects  
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ROp

j

j

i

i >

Maria Luisa Sapino (BDM 2018) 

…so we have  
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)|(
)|(

)|(
)|(

ji
j

j

i

i OQsimOQsim
IOp
ROp

IOp
ROp

>⇔>

How do we compute these probabilities??? 
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…so we have  

∏
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l  Let us assume features are independent 
–  o= <f1,f2,…..fn> 
–  q= <w1,w2,…..wn> 
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…so we have  

∏
=
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k
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l  Let us assume features are independent 
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…so we have  

∏
=

=
n

k
kii RfpROp

1
, )|()|(

l  Let us assume features are independent 
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…so we have  

l  Let us assume features are independent 
–  use dot product as the similarity measure 

–  use                             as the weight of the kth feature 

–  use <1,1,1,…,1> as the query!!! 
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…what if features are not 
independent?  

∏
=

≠
n

k
kii RfpROp

1
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l  Let us assume features are not independent 
–  o= <f1,f2,…..fn> 
–  q= <w1,w2,…..wn> 

∏
=

≠
n

k
kii IfpIOp

1
, )|()|(

Maria Luisa Sapino (BDM 2018) 

…what if features are not 
independent? 

l  Let us assume features are not independent 
–  o= <f1,f2,…..fn> 
–  q= <w1,w2,…..wn> 

l  How can we incorporate term dependence??? 
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…so we have  

l  Let us assume features are not independent 
–  o= <f1,f2,…..fn> 
–  q= <w1,w2,…..wn> 

l  How can we incorporate term dependence??? 
l  Degree of approximation….. 

–  p1=p2       implies that  I=0 
–  p1<>p2     implies that  I>0 

∑=
x xp

xpxpppI
)(2
)(1log)(1)2,1(
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…so we have  

l  Degree of approximation….. 

 
–  p1=p2       implies that  I=0;   p1<>p2     implies that  I>0 

l  Degree of dependence between fi and fj 

∑=
x xp

xpxpppI
)(2
)(1log)(1)2,1(

( ))()(),( jijiij fpfpffpID ∧=

If the two terms are independent, then Dij will be 0!!! 
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Dependence graph  

If the two terms are independent, then Dij will be 0!!! 
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Dependence graph  

If the two terms are independent, then Dij will be 0!!! 
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spanning tree 
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Dependence graph  

If the two terms are independent, then Dij will be 0!!! 
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Maximum 
spanning tree 
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Dependence graph  

                can be computed using the distribution of the features in R!!! 
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Maximum 
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)|( ROp i

                can be computed using the distribution of the features in I!!! )|( IOp i

Maria Luisa Sapino (BDM 2018) 

Feedback without user’s help.. 

res1 
res2 

res3 
res4 

res5 

resN 

System returns N 
ranked results 

Q Retrieval 
Engine 
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Feedback without user’s help.. 

res1 
res2 

res3 
res4 

res5 

resN 

resk 

First k ranked results 
are chosen 

Feedback  
Engine 

δ 
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Feedback without user’s help.. 

res1 
res2 

res3 
res4 

res5 

resN 

System returns 
new N ranked 
results 

Q’ Retrieval 
Engine 

δ 


