
Accelerated Computing

GPU Teaching Kit

Lecture 14.3 - Overlapping Data Transfer with Computation
Module 14 – Efficient Host-Device Data Transfer



2

Objective

– To learn how to overlap data transfer with computation
– Asynchronous data transfer in CUDA
– Practical limitations of CUDA streams



3

Simple Multi-Stream Host Code

cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc() calls for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go 
here



4

Simple Multi-Stream Host Code (Cont.)

for (int i=0; i<n; i+=SegSize*2) {

cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);

cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0,…);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);

cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);

cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1);

vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(d_C1, h_C+i+SegSize, SegSize*sizeof(float),…, stream1);

}



5

A View Closer to Reality

MemCpy A.0

MemCpy B.0

MemCpy C.0

MemCpy A.1

MemCpy B.1

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy 
Engine

PCIe
up

PCIe
down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1



6

Not quite the overlap we want in some GPUs

– C.0 blocks A.1 and B.1 in the copy engine queue

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1= A.1 + B.1

Trans 
C.1



7

Better Multi-Stream Host Code 

for (int i=0; i<n; i+=SegSize*2) {
cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);
cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1); 

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, …);
vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(h_C+i+SegSize, d_C1, SegSize*sizeof(float),…, stream1);

}



8

C.0 no longer blocks A.1 and B.1

MemCpy A.0

MemCpy B.0

MemCpy A.1

MemCpy B.1

MemCpy C.0

Kernel 0

Kernel 1

Stream 0 Stream 1

Copy 
Engine

PCIe
up

PCIe
down

Kernel Engine

Operations (Kernel launches, cudaMemcpy() calls)

MemCpy C.1



9

Better, not quite the best overlap

– C.1 blocks next iteration A.0 and B.0 in the copy engine queue

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1= A.1 + B.1

Trans 
C.1

Trans 
A.2

Trans 
B.2

Trans 
A.2

Comp 
C.2 = A.2 
+ 

Iteration n

Iteration n+1



10

Ideal, Pipelined Timing

– Will need at least three buffers for each original A, B, and C, 
code is more complicated (see Lab assignment description)

Trans 
A.0

Trans 
B.0

Trans 
C.0

Trans 
A.1

Comp 
C.0 = A.0 + B.0

Trans 
B.1

Comp 
C.1 = A.1 + B.1

Trans 
A.2

Trans 
B.2

Trans 
C.1

Comp 
C.2 = A.2 + B.2

Trans 
A.3

Trans 
B.3



11

Hyper Queues

– Provide multiple queues for each engine
– Allow more concurrency by allowing some streams to make 

progress for an engine while others are blocked 

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 0

Stream 1

Stream 2
Multiple Hardware Work Queues

A--B--C

P--Q--R

X--Y--Z



12

Wait until all tasks have completed

– cudaStreamSynchronize(stream_id)
– Used in host code
– Takes one parameter – stream identifier
– Wait until all tasks in a stream have completed
– E.g., cudaStreamSynchronize(stream0)in host code ensures that all tasks 

in the queues of stream0 have completed

– This is different from cudaDeviceSynchronize()
– Also used in host code
– No parameter
– cudaDeviceSynchronize() waits until all tasks in all streams have completed 

for the current device



Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under 
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 14 – Efficient Host-Device Data Transfer
	Objective
	Simple Multi-Stream Host Code
	Simple Multi-Stream Host Code (Cont.)
	A View Closer to Reality
	Not quite the overlap we want in some GPUs
	Better Multi-Stream Host Code 
	C.0 no longer blocks A.1 and B.1
	Better, not quite the best overlap
	Ideal, Pipelined Timing
	Hyper Queues
	Wait until all tasks have completed
	Slide Number 13

