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Objective

– To learn how to overlap data transfer with computation
– Asynchronous data transfer in CUDA
– Practical limitations of CUDA streams
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Simple Multi-Stream Host Code

cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);

float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc() calls for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go 
here
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Simple Multi-Stream Host Code (Cont.)

for (int i=0; i<n; i+=SegSize*2) {

cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);

cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0,…);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);

cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);

cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1);

vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(d_C1, h_C+i+SegSize, SegSize*sizeof(float),…, stream1);

}
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A View Closer to Reality
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Not quite the overlap we want in some GPUs

– C.0 blocks A.1 and B.1 in the copy engine queue
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Better Multi-Stream Host Code 

for (int i=0; i<n; i+=SegSize*2) {
cudaMemcpyAsync(d_A0, h_A+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_B0, h_B+i, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(d_A1, h_A+i+SegSize, SegSize*sizeof(float),…, stream1);
cudaMemcpyAsync(d_B1, h_B+i+SegSize, SegSize*sizeof(float),…, stream1); 

vecAdd<<<SegSize/256, 256, 0, stream0>>>(d_A0, d_B0, …);
vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);

cudaMemcpyAsync(h_C+i, d_C0, SegSize*sizeof(float),…, stream0);
cudaMemcpyAsync(h_C+i+SegSize, d_C1, SegSize*sizeof(float),…, stream1);

}
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C.0 no longer blocks A.1 and B.1
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Better, not quite the best overlap

– C.1 blocks next iteration A.0 and B.0 in the copy engine queue
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Ideal, Pipelined Timing

– Will need at least three buffers for each original A, B, and C, 
code is more complicated (see Lab assignment description)
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Hyper Queues

– Provide multiple queues for each engine
– Allow more concurrency by allowing some streams to make 

progress for an engine while others are blocked 

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 0

Stream 1

Stream 2
Multiple Hardware Work Queues
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Wait until all tasks have completed

– cudaStreamSynchronize(stream_id)
– Used in host code
– Takes one parameter – stream identifier
– Wait until all tasks in a stream have completed
– E.g., cudaStreamSynchronize(stream0)in host code ensures that all tasks 

in the queues of stream0 have completed

– This is different from cudaDeviceSynchronize()
– Also used in host code
– No parameter
– cudaDeviceSynchronize() waits until all tasks in all streams have completed 

for the current device
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