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Objective
– To gain deeper understanding of multi-dimensional grid kernel 

configurations through a real-world use case
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RGB Color Image Representation

– Each pixel in an image is an RGB value
– The format of an image’s row is

(r g b) (r g b) … (r g b)
– RGB ranges are not distributed uniformly
– Many different color spaces, here we show the 

constants to convert to AdbobeRGB color space
– The vertical axis (y value) and horizontal axis (x value) show 

the fraction of the pixel intensity that should be allocated to G 
and B. The remaining fraction (1-y–x)  of the pixel intensity that 
should be assigned to R

– The triangle contains all the representable colors in this color 
space
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RGB to Grayscale Conversion

A grayscale digital image is an image in which the value of 
each pixel carries only intensity information.
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Color Calculating Formula

– For each pixel (r g b) at (I, J) do:
grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

– This is just a dot product <[r,g,b],[0.21,0.71,0.07]> with the 
constants being specific to input RGB space

0.21
0.71

0.07
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RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r =  rgbImage[rgbOffset ]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}
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