

GPU Teaching Kit

Accelerated Computing

Module 4.2 – Memory and Data Locality Tiled Parallel Algorithms

Objective

- To understand the motivation and ideas for tiled parallel algorithms
 - Reducing the limiting effect of memory bandwidth on parallel kernel performance
 - Tiled algorithms and barrier synchronization

Global Memory Access Pattern of the Basic Matrix Multiplication Kernel

Global Memory

Tiling/Blocking - Basic Idea Global Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number of tiles at each point in time

Tiling/Blocking - Basic Idea Global Memory

Basic Concept of Tiling

- In a congested traffic system, significant reduction of vehicles can greatly improve the delay seen by all vehicles
 - Carpooling for commuters
 - Tiling for global memory accesses
 - drivers = threads accessing their memory data operands
 - cars = memory access requests

Some Computations are More Challenging to Tile

- Some carpools may be easier than others
 - Car pool participants need to have similar work schedule
 - Some vehicles may be more suitable for carpooling
- Similar challenges exist in tiling

Carpools need synchronization.

- Good: when people have similar schedule

Carpools need synchronization.

- Bad: when people have very different schedule

Same with Tiling

- Good: when threads have similar access timing

- Bad: when threads have very different timing

Barrier Synchronization for Tiling

Outline of Tiling Technique

- Identify a tile of global memory contents that are accessed by multiple threads
- Load the tile from global memory into on-chip memory
- Use barrier synchronization to make sure that all threads are ready to start the phase
- Have the multiple threads to access their data from the on-chip memory
- Use barrier synchronization to make sure that all threads have completed the current phase
- Move on to the next tile

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>